Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Data mining of host transcriptome and microbiome in pulmonary disease

    Thumbnail
    Date Issued
    2020
    Author(s)
    Zhao, Yue
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/41563
    Abstract
    Pulmonary disease is one of the most common and serious medical conditions in the world, and the correct diagnosis and prediction of incipient pulmonary diseases such as tuberculosis (TB) and lung cancer can greatly decrease the number of pulmonary disease-related deaths. In this thesis, I studied the transcriptome and microbiome difference between pulmonary disease patients and healthy controls, developed and applied several pipelines incorporating bioinformatics methods, statistics and machine learning models to identify patterns in human transcriptome as well as microbiome data for pulmonary disease prediction. On the host transcriptome side, I first evaluated the performance of existing TB disease and TB progression biomarkers, created a bulk RNA-seq gene-expression based biomarker selection pipeline, and then identified a 29-gene signature that can correctly predict TB progression as far as 6 years before the TB diagnosis. On microbiome side, I developed Animalcules, an R package for microbiome data analysis such as diversity comparison and differential abundance analysis, which supports both user graphical interface and command-line functions. I then applied Animalcules for two microbiome case studies: identifying the TB and Asthma related microbes. After working on host transcriptome and microbiome separately, I then discussed the computational framework for identifying host-microbe interactions, and its significant potential for studying pulmonary disease pathogenesis, diagnosis and treatment.
    Collections
    • Boston University Theses & Dissertations [6905]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help