Finite-size scaling in quantum annealing with decoherence
Permanent Link
https://hdl.handle.net/2144/41694Abstract
Quantum annealing represents an essential milestone towards the goal of adiabatic quantum computing. In quantum annealing, the computation involves finding the ground state of a classical Ising-like Hamiltonian realized as interactions between qubits. Quantum fluctuations are introduced to allow the wavefunction of the qubits to explore the energy landscape, the hope being that the wavefunction finds a minimum energy configuration and possibly giving the result of the computation. While quantum annealing likely may not be as powerful as adiabatic quantum computing, it is possible that it may be better at optimization compared to analogous classical algorithms. In physical realizations of quantum annealing, there are still questions as to the role of quantum fluctuations in the operation of a device given the short coherence times of the individual qubits. These questions have consistently posed a serious theoretical challenge making it difficult to verify experimental results. Here we simplify the problem by considering a system of qubits with ferromagnetic interactions, modeling the decoherence effects as classical noise in the transverse-field of each qubit. We compare the calculations to data collected from a system of manufactured qubits produced by D-wave Systems by performing a finite-size scaling analysis that captures the competition between quantum fluctuations of the transverse-field and bit-flip errors from the noise. We argue that on time-scales larger than the single-qubit decoherence time, the device produces the expected quantum fluctuations for the many-body system. Using this finite-size scaling, one can diagnose sources of noise in the system. Hopefully, in the near future, these devices will not only be realizing coherent quantum annealing but will likely be useful as another example of synthetic quantum matter.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Floquet-engineered quantum state manipulation in a noisy qubit
Boyers, Eric; Pandey, Mohit; Campbell, David K.; Polkovnikov, Anatoli; Sels, Dries; Sushkov, Alexander O. (American Physical Society, 2019-07-25)Adiabatic evolution is a common strategy for manipulating quantum states and has been employed in diverse fields such as quantum simulation, computation and annealing. However, adiabatic evolution is inherently slow and ... -
From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics
D'Alessio, Luca; Kafri, Yariv; Polkovnikov, Anatoli; Rigol, Marcos (TAYLOR & FRANCIS LTD, 2016-01-01)This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural ... -
High-dimensional quantum information processing with linear optics
Fitzpatrick, Casey Alan (2017)Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their ...