Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Adding measurement error to location data to protect subject confidentiality while allowing for consistent estimation of exposure effects

    Thumbnail
    License
    © 2020 The Authors. Journal of the Royal Statistical Society: Series C (Applied Statistics) Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
    Date Issued
    2020-11
    Publisher Version
    10.1111/rssc.12439
    Author(s)
    Karra, Mahesh
    Canning, David
    Sato, Ryoko
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/41989
    Version
    Published version
    Citation (published version)
    Mahesh Karra, David Canning, Ryoko Sato. 2020. "Adding measurement error to location data to protect subject confidentiality while allowing for consistent estimation of exposure effects." Journal of the Royal Statistical Society: Series C (Applied Statistics), Volume 69, Issue 5, pp. 1251 - 1268. https://doi.org/10.1111/rssc.12439
    Abstract
    In public use data sets, it is desirable not to report a respondent's location precisely to protect subject confidentiality. However, the direct use of perturbed location data to construct explanatory exposure variables for regression models will generally make naive estimates of all parameters biased and inconsistent. We propose an approach where a perturbation vector, consisting of a random distance at a random angle, is added to a respondent's reported geographic co‐ordinates. We show that, as long as the distribution of the perturbation is public and there is an underlying prior population density map, external researchers can construct unbiased and consistent estimates of location‐dependent exposure effects by using numerical integration techniques over all possible actual locations, although coefficient confidence intervals are wider than if the true location data were known. We examine our method by using a Monte Carlo simulation exercise and apply it to a real world example using data on perceived and actual distance to a health facility in Tanzania.
    Rights
    © 2020 The Authors. Journal of the Royal Statistical Society: Series C (Applied Statistics) Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
    Collections
    • CAS: Global Studies: Scholarly Papers [82]
    • BU Open Access Articles [4833]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help