Show simple item record

dc.contributor.advisorJeffries-EL, Malikaen_US
dc.contributor.advisorSchaus, Scott E.en_US
dc.contributor.authorGott-Betts, Carmen Louiseen_US
dc.date.accessioned2021-02-08T19:23:07Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/2144/42003
dc.description.abstractWhen designing novel materials for organic photovoltaic (OPV) applications, it is important to consider the significance of structural design on both the chemical and physical properties of the resulting material. The designed targets should promote efficient charge transport along a planar backbone, be solution processable and ideally, both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) should be able to be easily tuned via synthetic modifications. Using a concise synthetic route, a variety of novel semiconducting polymers and small molecules based on 2,6-di(aryl)benzo[1,2-b:4,5-b']difuran (BDF), an electron donating unit, have been developed and characterized. This benzodifuran moiety is of particular interest in this work as it is able to be synthesized in concise, high yielding steps and the core structure has the potential to be readily modified. Chapters Two through Four will demonstrate the power of fine-tuning this molecular species and how a facile synthetic route lends itself to the application specific design and development of BDF polymers and small molecules. The field of organic electronics primarily focusses on polymers and small molecules; however, each of these categories of materials have intrinsic drawbacks. Polymers are generally difficult to solubilize and the batch-to-batch consistency (involving parameters such as molecular weight and material uniformity) is almost impossible to control. Small molecules, while being very uniform and having a defined molecular structure, are difficult to deposit as uniform device films since they are typically not solution processed and are, instead, thermally evaporated onto a substrate. As a result of these key issues, a material of intermediate size and length, namely oligomers, which combine the benefits of small molecules and polymers is highly desired. Towards the realization of this goal, the Chapter Five of this work will share various flow reactor designs specifically geared towards modified flow platforms that allow for the synthesis of oligomeric materials.en_US
dc.language.isoen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectChemistryen_US
dc.subjectFlow chemistryen_US
dc.subjectOrganic chemistryen_US
dc.subjectOrganic electronicsen_US
dc.subjectPolymer chemistryen_US
dc.titleDesign of next-generation organic semiconductors and the development of new methods for their synthesisen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2021-02-08T17:06:41Z
dc.description.embargo2022-02-08T00:00:00Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineChemistryen_US
etd.degree.grantorBoston Universityen_US
dc.identifier.orcid0000-0003-2091-4451


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International