Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer

    Thumbnail
    License
    © The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Date Issued
    2020-12-07
    Publisher Version
    10.1038/s41467-020-20054-x
    Author(s)
    Levi-Galibov, Oshrat
    Lavon, Hagar
    Wassermann-Dozorets, Rina
    Pevsner-Fischer, Meirav
    Mayer, Shimrit
    Wershof, Esther
    Stein, Yaniv
    Brown, Lauren E.
    Zhang, Wenhan
    Friedman, Gil
    Nevo, Reinat
    Golani, Ofra
    Katz, Lior H.
    Yaeger, Rona
    Laish, Ido
    Porco, John A.
    Sahai, Erik
    Shouval, Dror S.
    Kelsen, David
    Scherz-Shouval, Ruth
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/42360
    Version
    Published version
    Citation (published version)
    Oshrat Levi-Galibov, Hagar Lavon, Rina Wassermann-Dozorets, Meirav Pevsner-Fischer, Shimrit Mayer, Esther Wershof, Yaniv Stein, Lauren E Brown, Wenhan Zhang, Gil Friedman, Reinat Nevo, Ofra Golani, Lior H Katz, Rona Yaeger, Ido Laish, John A Porco, Erik Sahai, Dror S Shouval, David Kelsen, Ruth Scherz-Shouval. 2020. "Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer.." Nat Commun, Volume 11, Issue 1, pp. 6245 - ?. https://doi.org/10.1038/s41467-020-20054-x
    Abstract
    In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.
    Rights
    © The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Collections
    • CAS: Chemistry: Scholarly Papers [127]
    • BU Open Access Articles [3866]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help