Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Bitcoin price prediction using transfer learning on financial micro-blogs

    Thumbnail
    Date Issued
    2020-12-23
    Author(s)
    Davchev, Jovan
    Mishev, Kostadin
    Vodenska, Irena
    Chitkushev, Ljubomir
    Trajanov, Dimitar
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/43647
    Version
    Published version
    Citation (published version)
    J. Davchev, K. Mishev, I. Vodenska, L. Chitkushev, D. Trajanov. 2020. "Bitcoin Price Prediction using Transfer Learning on Financial Micro-blogs." Proceedings of the 16th Annual International Conference on Computer Science and Education in Computer Science.
    Abstract
    We present a methodology for predicting the price of Bitcoin using Twitter data and historical Bitcoin prices. Bitcoin is the largest cryptocurrency that, in terms of market capitalization, represents over 110 billion dollars. The news volume is rapidly growing, and Twitter is increasingly used as a news source influencing purchase decisions by informing users of the currency and its popularity. Using modern Natural Language Processing models for transfer learning, we analyze tweets’ meaning and calculate sentiment using the NLP transformers. We combine the daily historical Bitcoin price data with the daily sentiment and predict the next day’s price using auto-regressive models for time-series forecasting. The results show that modern approaches for sentiment analysis, time-series forecasting, and transfer-learning are applicable for predicting Bitcoin price when we include sentiment extracted from financial micro-blogs as input. The results show improvement when compared to the old approaches using only historical price data. Additionally, we show that the NLP models based on transfer-learning methodologies improve the efficiency in sentiment extraction in financial micro-blogs compared to standard sentiment extraction methods.
    Collections
    • MET: Scholarly Works [151]
    • CAS: Computer Science: Scholarly Papers [257]
    • BU Open Access Articles [4751]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help