Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Sarc-Graph: automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes

    Thumbnail
    License
    © 2021 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Date Issued
    2021-10
    Publisher Version
    10.1371/journal.pcbi.1009443
    Author(s)
    Zhao, Bill
    Zhang, Kehan
    Chen, Christopher S.
    Lejeune, Emma
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/44197
    Version
    Published version
    Citation (published version)
    B. Zhao, K. Zhang, C.S. Chen, E. Lejeune. 2021. "Sarc-Graph: Automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes.." PLoS Comput Biol, Volume 17, Issue 10, pp. e1009443 - ?. https://doi.org/10.1371/journal.pcbi.1009443
    Abstract
    A better fundamental understanding of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has the potential to advance applications ranging from drug discovery to cardiac repair. Automated quantitative analysis of beating hiPSC-CMs is an important and fast developing component of the hiPSC-CM research pipeline. Here we introduce "Sarc-Graph," a computational framework to segment, track, and analyze sarcomeres in fluorescently tagged hiPSC-CMs. Our framework includes functions to segment z-discs and sarcomeres, track z-discs and sarcomeres in beating cells, and perform automated spatiotemporal analysis and data visualization. In addition to reporting good performance for sarcomere segmentation and tracking with little to no parameter tuning and a short runtime, we introduce two novel analysis approaches. First, we construct spatial graphs where z-discs correspond to nodes and sarcomeres correspond to edges. This makes measuring the network distance between each sarcomere (i.e., the number of connecting sarcomeres separating each sarcomere pair) straightforward. Second, we treat tracked and segmented components as fiducial markers and use them to compute the approximate deformation gradient of the entire tracked population. This represents a new quantitative descriptor of hiPSC-CM function. We showcase and validate our approach with both synthetic and experimental movies of beating hiPSC-CMs. By publishing Sarc-Graph, we aim to make automated quantitative analysis of hiPSC-CM behavior more accessible to the broader research community.
    Rights
    © 2021 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Collections
    • ENG: Biomedical Engineering: Scholarly Papers [294]
    • BU Open Access Articles [4757]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help