Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    A mechanistic multi-area recurrent network model of decision-making

    Thumbnail
    Date Issued
    2021-12-01
    Author(s)
    Kleinman, Michael
    Chandrasekaran, Chandramouli
    Kao, Jonathan
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/44207
    Version
    Published version
    Citation (published version)
    M. Kleinman, C. Chandrasekaran, J. Kao. 2021. "A mechanistic multi-area recurrent network model of decision-making." Advances in neural information processing systems. NeurIPS. Virtual, 2021-12-07 - 2021-12-10.
    Abstract
    Recurrent neural networks (RNNs) trained on neuroscience-based tasks have been widely used as models for cortical areas performing analogous tasks. However, very few tasks involve a single cortical area, and instead require the coordination of multiple brain areas. Despite the importance of multi-area computation, there is a limited understanding of the principles underlying such computation. We propose to use multi-area RNNs with neuroscience-inspired architecture constraints to derive key features of multi-area computation. In particular, we show that incorpo- rating multiple areas and Dale’s Law is critical for biasing the networks to learn biologically plausible solutions. Additionally, we leverage the full observability of the RNNs to show that output-relevant information is preferentially propagated between areas. These results suggest that cortex uses modular computation to generate minimal sufficient representations of task information. More broadly, our results suggest that constrained multi-area RNNs can produce experimentally testable hypotheses for computations that occur within and across multiple brain areas, enabling new insights into distributed computation in neural systems.
    Collections
    • CAS: Psychological and Brain Sciences: Scholarly Papers [262]
    • BU Open Access Articles [4833]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help