Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Informative predictors of pregnancy after first IVF cycle using eIVF practice highway electronic health records

    Thumbnail
    License
    © The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Date Issued
    2022-01-17
    Publisher Version
    10.1038/s41598-022-04814-x
    Author(s)
    Xu, Tingting
    de Figueiredo Veiga, Alexis
    Hammer, Karissa C.
    Paschalidis, Ioannis C.
    Mahalingaiah, Shruthi
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/44403
    Version
    Published version
    Citation (published version)
    T. Xu, A. de Figueiredo Veiga, K.C. Hammer, I.C. Paschalidis, S. Mahalingaiah. 2022. "Informative predictors of pregnancy after first IVF cycle using eIVF practice highway electronic health records." Sci Rep, Volume 12, Issue 1: 839. https://doi.org/10.1038/s41598-022-04814-x
    Abstract
    The aim of this study is to determine the most informative pre- and in-cycle variables for predicting success for a first autologous oocyte in-vitro fertilization (IVF) cycle. This is a retrospective study using 22,413 first autologous oocyte IVF cycles from 2001 to 2018. Models were developed to predict pregnancy following an IVF cycle with a fresh embryo transfer. The importance of each variable was determined by its coefficient in a logistic regression model and the prediction accuracy based on different variable sets was reported. The area under the receiver operating characteristic curve (AUC) on a validation patient cohort was the metric for prediction accuracy. Three factors were found to be of importance when predicting IVF success: age in three groups (38-40, 41-42, and above 42 years old), number of transferred embryos, and number of cryopreserved embryos. For predicting first-cycle IVF pregnancy using all available variables, the predictive model achieved an AUC of 68% + /- 0.01%. A parsimonious predictive model utilizing age (38-40, 41-42, and above 42 years old), number of transferred embryos, and number of cryopreserved embryos achieved an AUC of 65% + /- 0.01%. The proposed models accurately predict a single IVF cycle pregnancy outcome and identify important predictive variables associated with the outcome. These models are limited to predicting pregnancy immediately after the IVF cycle and not live birth. These models do not include indicators of multiple gestation and are not intended for clinical application.
    Rights
    © The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Collections
    • ENG: Biomedical Engineering: Scholarly Papers [294]
    • BU Open Access Articles [4757]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help