The impact of data resolution on dynamic causal inference in multiscale ecological networks

OA Version
Citation
E. Saberski, T. Lorimer, D. Carpenter, E. Deyle, E. Merz, J. Park, G.M. Pao, G. Sugihara. 2024. "The impact of data resolution on dynamic causal inference in multiscale ecological networks." Communications Biology, Volume 7, Issue 1, pp.1442-. https://doi.org/10.1038/s42003-024-07054-z
Abstract
While it is commonly accepted that ecosystem dynamics are nonlinear, what is often not acknowledged is that nonlinearity implies scale-dependence. With the increasing availability of high-resolution ecological time series, there is a growing need to understand how scale and resolution in the data affect the construction and interpretation of causal networks-specifically, networks mapping how changes in one variable drive changes in others as part of a shared dynamic system ("dynamic causation"). We use Convergent Cross Mapping (CCM), a method specifically designed to measure dynamic causation, to study the effects of varying temporal and taxonomic/functional resolution in data when constructing ecological causal networks. As the system is viewed at different scales relationships will appear and disappear. The relationship between data resolution and interaction presence is not random: the temporal scale at which a relationship is uncovered identifies a biologically relevant scale that drives changes in population abundance. Further, causal relationships between taxonomic aggregates (low-resolution) are shown to be influenced by the number of interactions between their component species (high-resolution). Because no single level of resolution captures all the causal links in a system, a more complete understanding requires multiple levels when constructing causal networks.
Description
License
The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.