Building Adaptive Basis Functions with a Continuous Self-Organizing Map

Date
1999-01
DOI
Authors
Campos, Marcos M.
Carpenter, Gail A.
Version
OA Version
Citation
Abstract
This paper introduces CSOM, a continuous version of the Self-Organizing Map (SOM). The CSOM network generates maps similar to those created with the original SOM algorithm but, due to the continuous nature of the mapping, CSOM outperforms the SOM on function approximation tasks. CSOM integrates self-organization and smooth prediction into a single process. This is a departure from previous work that required two training phases, one to self-organize a map using the SOM algorithm, and another to learn a smooth approximation of a function. System performance is illustrated with three examples.
Description
License
Copyright 1999 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.