Linking the Laminar Circuits of Visual Cortex to Visual Perception
OA Version
Citation
Abstract
A detailed neural model is being developed of how the laminar circuits of visual cortical areas V1 and V2 implement context-sensitive binding processes such as perceptual grouping and attention, and develop and learn in a stable way. The model clarifies how preattentive and attentive perceptual mechanisms are linked within these laminar circuits, notably how bottom-up, top-down, and horizontal cortical connections interact. Laminar circuits allow the responses of visual cortical neurons to be influenced, not only by the stimuli within their classical receptive fields, but also by stimuli in the extra-classical surround. Such context-sensitive visual processing can greatly enhance the analysis of visual scenes, especially those containing targets that are low contrast, partially occluded, or crowded by distractors. Attentional enhancement can selectively propagate along groupings of both real and illusory contours, thereby showing how attention can selectively enhance object representations. Model mechanisms clarify how intracortical and intercortical feedback help to stabilize cortical development and learning. Although feedback plays a key role, fast feedforward processing is possible in response to unambiguous information.
Description
License
Copyright 2001 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.