Rigorous justification of Taylor Dispersion via Center Manifold theory

Date
2017
DOI
Authors
Chaudhary, Osman
Version
OA Version
Citation
Abstract
Imagine fluid moving through a long pipe or channel, and we inject dye or solute into this pipe. What happens to the dye concentration after a long time? Initially, the dye just moves along downstream with the fluid. However, it is also slowly diffusing down the pipe and towards the edges as well. It turns out that after a long time, the combined effect of transport via the fluid and this slow diffusion results in what is effectively a much more rapid diffusion process, lengthwise down the stream. If 0 <nu << 1 is the slow diffusion coeffcient, then the effective longitudinal diffusion coeffcient is inversely proportional to 1/nu, i.e. much larger. This phenomenon is called Taylor Dispersion, first studied by GI Taylor in the 1950s, and studied subsequently by many authors since, such as Aris, Chatwin, Smith, Roberts, and others. However, none of the approaches used in the past seem to have been mathematically rigorous. I'll propose a dynamical systems explanation of this phenomenon: specifically, I'll explain how one can use a Center Manifold reduction to obtain Taylor Dispersion as the dominant term in the long-time limit, and also explain how this Center Manifold can be used to provide any finite number of correction terms to Taylor Dispersion as well.
Description
License