Synthesis and characterization of indium phosphide-based quantum dot heterostructures
OA Version
Citation
Abstract
Colloidal semiconductor nanocrystal quantum dots (QDs) have been extensively studied for applications in optoelectronic devices, biosensing, and imaging. Recent interest has turned to heavy metal-free compositions such as indium phosphide as an alternative to cadmium- and lead-based materials. Photoluminescence emission from InP QDs is size-tunable over a wide spectral range, providing superior color tuning compared to traditional CdSe QD but their optical properties and chemical synthesis is less well established. This study examines how InP-based heterostructures can be engineered to enhance their utility as heavy metal-free fluorophores emitting throughout the visible and near infrared (NIR) wavelength ranges by addressing three fundamental materials design and synthesis issues.
First, the bandgap engineering of InP-based QDs is achieved by varying the core size, shell composition, and shell thickness of a core/shell heterostructures, generating emitters spanning 500 – 1100 nm. Second, the brightness mismatch between small blue/green emitters and large red-emitting QDs is addressed by tuning the absorption cross-section and extinction coefficient by synthesizing a series of QDs with a combination of core sizes, shell thicknesses, and shell compositions, resulting in a rainbow of brightness-matched InP emitters. Finally, the synthesis of inverted InP heterostructures, producing the reddest-emitting InP QDs ever reported by generating photoluminescence from a quantum confined InP shell, was significantly improved. The non-toxic nature of InP in conjunction with its unique optical properties render it an excellent candidate for use in in vitro and in vivo clinical or commercial settings.
Description
License
Attribution-NonCommercial 4.0 International