A Neural Network Method for Land Use Change Classification, with Application to the Nile River Delta
Files
Date
2001-12
DOI
Authors
Carpenter, Gail
Gopal, Sucharita
Shock, Byron
Woodcock, Curtis
Version
OA Version
Citation
Abstract
Detecting and monitoring changes in conditions at the Earth's surface are essential for understanding human impact on the environment and for assessing the sustainability of development. In the next decade, NASA will gather high-resolution multi-spectral and multi-temporal data, which could be used for analyzing long-term changes, provided that available methods can keep pace with the accelerating flow of information. This paper introduces an automated technique for change identification, based on the ARTMAP neural network. This system overcomes some of the limitations of traditional change detection methods, and also produces a measure of confidence in classification accuracy. Landsat thematic mapper (TM) imagery of the Nile River delta provides a testbed for land use change classification methods. This dataset consists of a sequence of ten images acquired between 1984 and 1993 at various times of year. Field observations and photo interpretations have identified 358 sites as belonging to eight classes, three of which represent changes in land use over the ten-year period. Aparticular challenge posed by this database is the unequal representation of various land use categories: three classes, urban, agriculture in delta, and other, comprise 95% of pixels in labeled sites. A two-step sampling method enables unbiased training of the neural network system across sites.
Description
License
Copyright 2001 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.