Prioritized data synchronization with applications

Date
2013
DOI
Authors
Jin, Jiaxi
Version
OA Version
Citation
Abstract
We are interested on the problem of synchronizing data on two distinct devices with differed priorities using minimum communication. A variety of distributed sys- tems require communication efficient and prioritized synchronization, for example, where the bandwidth is limited or certain information is more time sensitive than others. Our particular approach, P-CPI, involving the interactive synchronization of prioritized data, is efficient both in communication and computation. This protocol sports some desirable features, including (i) communication and computational com- plexity primarily tied to the number of di erences between the hosts rather than the amount of the data overall and (ii) a memoryless fast restart after interruption. We provide a novel analysis of this protocol, with proved high-probability performance bound and fast-restart in logarithmic time. We also provide an empirical model for predicting the probability of complete synchronization as a function of time and symmetric differences. We then consider two applications of our core algorithm. The first is a string reconciliation protocol, for which we propose a novel algorithm with online time com- plexity that is linear in the size of the string. Our experimental results show that our string reconciliation protocol can potentially outperform existing synchroniza- tion tools such like rsync in some cases. We also look into the benefit brought by our algorithm to delay-tolerant networks(DTNs). We propose an optimized DTN routing protocol with P-CPI implemented as middleware. As a proof of concept, we demonstrate improved delivery rate, reduced metadata and reduced average delay.
Description
License