Chern-Weil techniques on loop spaces and the Maslov index in partial differential equations

Date
2016
DOI
Authors
McCauley, Thomas
Version
OA Version
Citation
Abstract
This dissertation consists of two distinct parts, the first concerning S^1-equivariant cohomology of loop spaces and the second concerning stability in partial differential equations. In the first part of this dissertation, we study the existence of S^1-equivariant characteristic classes on certain natural infinite rank bundles over the loop space LM of a manifold M. We discuss the different S^1-equivariant cohomology theories in the literature and clarify their relationships. We attempt to use S^1-equivariant Chern-Weil techniques to construct S^1-equivariant characteristic classes. The main result is the construction of a sequence of S^1-equivariant characteristic classes on the total space of the bundles, but these classes do not descend to the base LM. In addition, we identify a class of bundles for which a single S^1-equivariant characteristic class does admit an S^1-equivariant Chern-Weil construction. In the second part of this dissertation, we study the Maslov index as a tool to analyze stability of steady state solutions to a reaction-diffusion equation in one spatial dimension. We show that the path of unstable subspaces associated to this equation is governed by a matrix Riccati equation whose solution S develops singularities when changes in the Maslov index occur. Our main result proves that at these singularities the change in Maslov index equals the number of eigenvalues of S that increase to +∞ minus the number of eigenvalues that decrease to -∞.
Description
License