Self-Organizing Hierarchical Knowledge Discovery by an Artmap Information Fusion System

Date
2005-01
DOI
Authors
Carpenter, Gail
Martens, Siegfried
Version
OA Version
Citation
Abstract
Classifying terrain or objects may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from users with different goals and situations. Current fusion methods can help resolve such inconsistencies, as when evidence variously suggests that an object is a car, a truck, or an airplane. The methods described here define a complementary approach to the information fusion problem, considering the case where sensors and sources arc both nominally inconsistent and reliable, as when evidence suggests that an object is a car, a vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the automated system or the human user. The ARTMAP self-organizing rule discovery procedure is illustrated with an image example, but is not limited to the image domain.
Description
License
Copyright 2005 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.