Contour Integration Across Polarities and Spatial Gaps: From Local Contrast Filtering to Global Grouping

Date
1995-09
DOI
Authors
Dresp, Birgitta
Grossberg, Stephen
Version
OA Version
Citation
Abstract
This article introduces an experimental paradigm to selectively probe the multiple levels of visual processing that influence the formation of object contours, perceptual boundaries, and illusory contours. The experiments test the assumption that, to integrate contour information across space and contrast sign, a spatially short-range filtering process that is sensitive to contrast polarity inputs to a spatially long-range grouping process that pools signals from opposite contrast polarities. The stimuli consisted of thin subthreshold lines, flashed upon gaps between collinear inducers which potentially enable the formation of illusory contours. The subthreshold lines were composed of one or more segments with opposite contrast polarities. The polarity nearest to the inducers was varied to differentially excite the short-range filtering process. The experimental results are consistent with neurophysiological evidence for cortical mechanisms of contour processing and with the Boundary Contour System model, which identifies the short-range filtering process with cortical simple cells, and the long-range grouping process with cortical bipole cells.
Description
License
Copyright 1995 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.