On the Kottwitz conjecture for local Shimura varieties

Files
FixedPoints.pdf(733.23 KB)
First author draft
Date
DOI
Authors
Kaletha, Tasho
Weinstein, J.
Version
OA Version
Citation
J Weinstein, Tasho Kaletha. "On the Kottwitz Conjecture for local Shimura varieties." Forum of Mathematics, Pi,
Abstract
Kottwitz’s conjecture describes the contribution of a supercuspidal represention to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. Using a Lefschetz-Verdier fixedpoint formula, we prove a weakened generalized version of Kottwitz’s conjecture. The weakening comes from ignoring the action of the Weil group and only considering the actions of the groups G and Jb up to non-elliptic representations. The generalization is that we allow arbitrary connected reductive groups G and non-minuscule coweights µ.
Description
License