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Abstract

In our previous work, we developed TRAFFIC(X), a specification language for modeling bi-directional network
flows featuring a type system with constrained polymorphism. In this paper, we present two ways to customize the
constraint system: (1) when using linear inequality constraints for the constraint system, TRAFFIC(X) can describe
flows with numeric properties such as MTU (maximum transmission unit), RTT (round trip time), traversal order,
and bandwidth allocation over parallel paths; (2) when using Boolean predicate constraints for the constraint system,
TRAFFIC(X) can describe routing policies of an IP network. These examples illustrate how to use the customized
type system.

1 Introduction

Experimenting with complex network systems can be expensive, both in the cost of hardware and in the labor to con-
figure physical network nodes. As physical units are built to have increasingly better durability and performance, we
can now build networks that support higher-level applications, such as virtual private network (VPN), video streaming
network in 3G, and network for distributed computing. These applications may even span several link layer technolo-
gies where encapsulation is commonly used for interoperability (e.g., IP over over GRE/IP over Ethernet over ATM
over SONET). Diagnosis now becomes problematic because errors may be introduced due to interaction of several
units or layers when they are combined, rather than due to the fault of individual units.

Network Simulators [1] let a network designer run a network model on a computer and observe its behavior, thus
reducing cost of experimentation. However, testing alone does not confer correctness. The notion of correctness also
needs to be defined, usually by listing functional properties of the system and making sure they hold for the model.

Formal verification is a practice that models a system in the syntax of an abstract language and uses mathematical
expressions to state functional properties. Although the cost benefit is not immediately obvious, this aids design by
formulating a concrete specification of a system. The end result is a machine checked specification that avoids human
error factor.

Related Work Many formal verification frameworks have been proposed. Petri net [14, 13] and π-calculus [9] are
traditionally used to model concurrency properties of a system. These are interesting to us because networks can be
seen as concurrent systems, and some network properties can be encoded in terms of known analysis, taking advantage
of extensive research in these areas. Theorem proving (Isabelle[11], Twelf [15], PVS [12], and Coq [7]) has been used
to prove the correctness of an ATM network switching fabric [4], albeit through significant manual effort. Binary
Decision Diagram [2] has been used to detect policy conflicts of IPsec rules [6] with some success, and it inspires the
example in Section 3.

∗This work is partially supported by NSF Award No. CCR-0205294
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x, y, z ∈ FlowVar flow variable
A,B ∈ LocalFlow local flow
A,B ∈ GlobalFlow ::= x | A

| A ;B sequential flow
| A ‖B parallel flow
| let x = A in B let-binding

Figure 1.1: Syntax of flow specification.

1.1 The TRAFFIC(X) Framework

We developed TRAFFIC(X), which is both a specification language and a type system that serves as the basis for
verification [8], to specialize in high-level networked applications. The global-flow specification language provides a
way to model end-to-end network flow, a bi-directional stream of data, which is the basic functional abstraction in our
model. Two flows can be put together sequentially or in parallel, which results in a larger flow. The smallest unit of a
flow is a local flow, which represents off-the-shelf components with known properties.

The language also has a “let-binding” syntax that provides an abstraction, so a programmer can define a flow as
some variable once and use the flow many times by referring to the variable. An important property that constitutes the
soundness of our type system stems from the fact that using let-binding does not change the correctness of a flow. A
flow with let-bindings can be normalized to one without, and the resulting flow is type-safe if and only if the original
flow is type-safe.

Assigning Types to Flow A flow has four ports—inputs and outputs of forward and backward directions—and this
is reflected in the flow type, written as [ ρi ρo

σo σi ], where ρ is for forward type, and σ for backward type; subscript i is for
input, and subscript o for output. A flow type describes interfacing properties of a flow and determines how one flow
may be composed with another. To illustrate sequential and parallel composition, suppose we have flows A : [ ρi ρo

σo σi ]
and A′ :

[
ρ′

i ρ′
o

σ′
o σ′

i

]
.

When combining two flows in parallel, no connection is done; all ports of the two flows are simply paired together

respectively, and we expose four pairs of bundled ports as (A‖A ′) :
[

ρi·ρ′
i ρo·ρ′

o

σo·σ′
o σi·σ′

i

]
.

When combining two flows sequentially, forward output of the first flow is connected to the forward input of the
second, and backward output of the second flow is connected to the backward input of the first. The type system
verifies, according to type of these flows, whether such connection is safe to do. Generally, we check if output and
input have equal types. Sometimes we can relax the requirement by checking if output type is a subtype of input type,
meaning it is okay to provide data that over-qualify for the requirement. Once this is done, we only need to expose the

outer connections, and we can regard the sequentially composed flows as being one flow (A ;A′) :
[

ρi ρ′
o

σo σ′
i

]
.

Flow types of local flows are defined by the user. We use the notation type(A) = [ ρi ρo
σo σi

] to denote the assignment
of flow type [ ρi ρo

σo σi ] to local flow A.

Type Variables and Constraints A distinct feature of TRAFFIC(X) is to allow types to be partially specified; any
unspecified part is written as a type variable. Two partially specified types can be related by using the same type
variable. In the presence of type variables, checking if two types are equal becomes the question whether there exists
a way to substitute type variables for concrete types that makes the two types equal—this is the notion of equality
constraint. Similarly, checking whether there exists a way to substitute type variables so a type is a subtype of another
type is the notion of subtyping constraint.

When flows with partially specified types are composed sequentially, equality and subtyping constraints are col-
lected and considered altogether. A set of constraints is satisfiable if there exists a substitution for all the type variables
in the constraints so that all equality and subtyping relations in the set hold.

Polymorphism with Constraints Type variables that appear in a flow type that do not rely on external assumption
can be generalized using the ∀-quantifier. For this, we introduce flow type scheme written as ∀ᾱ(C). [ ρi ρo

σo σi
], where

ᾱ = (α1, . . . , αn) is a vector of type variables that appear in ρ i, ρo, σo, σi. We also have C, a set of constraints, to
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r, s, t ∈ TypeLit
α, β ∈ TypeVar
F ∈ TypeCons

ρ, σ, τ ∈ Type ::= t | α | τ1 · τ2 | F τ1 . . . τn

T ∈ FlowType ::= [ ρi ρo
σo σi ]

P ∈ Predicate
c, d ∈ Constraint ::= τ1 <: τ2 | τ1 .= τ2 | P τ1 . . . τn | true | false

| T1 <: T2 | T1
.= T2 | P T1 . . . Tn

C,D,E ∈ ConstraintSet ::= {c1, . . . , cn}

S ∈ FlowTypeScheme ::= T | ∀ᾱ(C).T

Figure 1.2: Syntax of Types

act as a guard. The flow type scheme is instantiated by substituting ᾱ for either fresh type variables or concrete types,
provided the constraint set C subject to the same substitution remains satisfiable.

User never manipulates type variables directly. The type system, defined in Appendix A, serves as a vehicle to
collect, generalize, and instantiate constraints by walking the syntax case-by-case. Manipulation of type variables and
constraints is done by a constraint solver. As we promote more prominent use of type with type variables, type system
becomes an interface to the constraint solver, which does the actual verification.

1.2 Customizing TRAFFIC(X)

Summarizing the explanation above, syntax of types and variable use is formally defined in Figure 1.2. So far, we
have seen α, β to range over the set of type variables, or TypeVar; ρ, σ, τ for types that describe a port, or Type; and
C,D for constraint set. We use T to range over the set of flow types, or FlowType, and S to range over flow type
schemes. The remaining items that deserve our attention are TypeLit (type literals), TypeCons (type constructors),
and Predicate (constraint predicates), and the definition and interpretation of these items vary from application to
application, depending on how TRAFFIC(X) is used to perform formal verification. These customizations are the X
in TRAFFIC(X).

Type literals are the most basic description of a type. For example, when describing bandwidth usage of a port, it
would be a number. Type constructors are abstract functions that take types as input and return a type, i.e., Type n →
Type for an n-ary type constructor. The bundling operator for parallel flows (·) is a special case of type constructor.
Predicates are functions with the sort Typen → Constraint for an n-ary predicate. The special cases are subtyping
(<:) and equality (

.=) predicates. There are also the nullary predicates true and false .
The only operation required from a constraint solver is the entailment relation (�); that is, given two constraint

sets C and D, decide if C � D. Conceptually, C entails D means that C is a stricter set of constraints than D, so that
C is satisfiable implies D is satisfiable.

Constraint solver must be able to resolve constraints using every predicates defined in Predicate, so introduction
of new predicates requires modifying the constraint solver to handle them. The constraints may also contain new type
constructors, and the constraint solver must be extended accordingly. Since implementation and changes to constraint
solver could be rather involved, we expect that type constructors, predicates, and constraint solver to be provided as a
whole package X for TRAFFIC(X) to the user.

In this paper, we examine two ways to customize types and constraint system and provide some examples to
illustrate what they are useful for.

2 Linear Inequality Constraints

Types as numeric quantities can be used to represent bandwidth, bandwidth delay product, maximum transmission
unit (MTU), number of concurrent connections, and TCP window size. When considering a numeric type with type
variables, it is natural to extend types to include algebraic operators so we can write a type as a function of some
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variables. An inequality constraint results from comparing two numeric quantities with unknowns. A linear inequality
constraint consists of constants and degree one variables with constant coefficients.

2.1 Defining Constraint System

Let TypeLit range over real numbers, and we introduce three binary type constructors +, − and ×. The resulting Type
allows us to construct polynomials whose variables range over TypeVar. The meaning of subtyping (<:) is treated as
if it were less-than-or-equal-to (≤R), and equality (

.=) the same as algebraic equality (=R). Even though the way we
define Type can potentially result in non-linear polynomials, our constraint solver will only accept linear constraints.

We are only interested to see if a set of constraints have a feasible solution, which can be determined using the
initialization routine of the Simplex algorithm [3, pp. 812]. Special caution must be observed that variables of a
feasible solution must have non-negative values.

A feasible region of a set of constraints is the space enclosed by all the inequalities in that set. We write C � D to
denote that the feasible region defined by constraints in C lies entirely inside the feasible region defined by constraints
in D. If C is infeasible, then C � false . It should be clear that false represents the empty region, and true represents
the entire unbounded quadrant.

To decide if C � D, we consider the base case C � d supposing there is only one constraint d in D. Let I be a set
of points that constraints in C intersect each other, and J be a set of points that constraints in C intersect d. If there is
a point in J − I that lies inside the feasible region of C, then we know d “cuts off” a part of C, so C �� d. We iterate
this process for all constraints in D, that is, C � D if C � d for all d ∈ D.

2.2 Path Maximum Transmission Unit

As an introduction for how constraints are collected and processed, let us consider the scenario for maximum trans-
mission unit.

Data are sent over a network as packets, which are parsed, processed, and retransmitted as they traverse through
routers and switches. For reasons such as collision control and buffering, these packets have a size limit, which is
called maximum transmission unit (MTU). It is common to have heterogeneous network where individual segments
are built from different link layer technologies, hence have different packet size limits. IP (Internet Protocol) deals
with this situation by allowing packets to be fragmented. However, fragmentation is undesirable because it increases
the chance of packet loss. Fragments may also arrive out of order, making reassembly difficult. Path MTU discovery
is a technique to avoid IP packet fragmentation [10] by finding the smallest MTU along a point-to-point path.

In this example, we show how to describe MTU constraints in TRAFFIC(X) and explain how these constraints
are collected. Suppose we use the following local flows to represent various network segments with different MTUs.

Local Flow MTU

A1 2000
A2 1100
A3 1500

For each local flow Ai listed above, we have

type(Ai) = ∀p, q(p, q ≤ µi).
[
p p
q q

]

where µi is the MTU for Ai. Types describe the packet size. As indicated, the incoming packet size is exactly the
same as outgoing packet size.

An end-to-end flow passing through all these segments is expressed as A 1 ;A2 ;A3, so we apply (SEQ) rule twice.
The type system has to first instantiate the flow type schemes and turn p and q to fresh type variable instances. We get
the following flow type diagram as the result.

[
p1 p1

q1 q1

]
−

[
p2 p2

q2 q2

]
−

[
p3 p3

q3 q3

]

A1 A2 A3
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This flow has the type [ p1 p3
q1 q3 ], and the constraints to be solved are {p1

.= p2, p2
.= p3, q3

.= q2, q2
.= q1}∪{p1, q1 ≤ 2000}∪

{p2, q2 ≤ 1100} ∪ {p3, q3 ≤ 1500}. Altogether, this means that all the p’s and q’s must be less than or equal to 1100.

2.3 Computing Round Trip Time

In this example, we demonstrate how latency can be expressed in flow types, and how this information can be used to
compute round trip time using linear inequality constraints. Suppose the following local flows have latencies that are
asymmetric for forward and backward directions:

Local Flow Forward Lat. φ Backward Lat. δ

A1 10 ms. 6 ms.
A2 12 ms. 15 ms.
A3 8 ms. 9 ms.

For each local flow Ai listed above, we have

type(Ai) = ∀x, y.
[

x x + φi

y + δi y

]

where φi is the forward latency, and δi the backward latency. Types describe the wall clock time a signal enters or
leaves a flow, in milliseconds. The flow type is quantified over two variables, x, which denotes the time a signal enters
the forward input, and y, which denotes the time a signal enters the backward input. Forward signal exits at time
x + φi, and backward signal at time y + δi.

To compute round trip time of the flow A1 ;A2 ;A3, we need two more pieces: Ping initiates a probe signal, and
Pong returns it at the far end. To make the example more interesting, suppose Pong also inflicts a latency of 50 ms.
for returning the signal. Both local flows are simply schematic; we do not simulate the sending of probe signal, but
rely on the constraint solver to analyze statically whether a given round-trip time can be satisfied. Flow type schemes
of Ping and Pong are defined as follows:

type(Ping) = ∀x, y(D).
[
Fnil x
Fnil y

]
type(Pong) = ∀x.

[
x Fnil

x + 50 Fnil

]

The additional constraints for limiting round-trip time is added to the constraints of Ping , in set D. An example is to
let D = {y − x ≤ 100}, i.e., the time difference between sending a probe signal and receiving it back is less than or
equal to 100 ms. One can immediately compute that such round-trip time cannot be satisfied in this setting. However,
let us examine how the constraint solver comes to the same conclusion.

First, the type system of TRAFFIC(X) causes flow type schemes of Ping , A1, A2, A3,Pong to be instantiated.
The x and y variables become distinct variables, so we obtain the following flow type diagram:
[
Fnil x0

Fnil y0

]
−

[
x1 x1 + 10

y1 + 6 y1

]
−

[
x2 x2 + 12

y2 + 15 y2

]
−

[
x3 x3 + 8

y3 + 9 y3

]
−

[
x4 Fnil

x4 + 50 Fnil

]

Ping A1 A2 A3 Pong

This flow is a sequential flow, so (SEQ) rule is applied (several times in succession) to produce a typing of this flow.

The final type of the flow is
[

Fnil Fnil
Fnil Fnil

]
, which is not very interesting, but the rule requires the following constraints

to be solved:
{ x0 = x1, x1 + 10 = x2, x2 + 12 = x3, x3 + 8 = x4, x4 + 50 = y3,

y3 + 9 = y2, y2 + 15 = y1, y1 + 6 = y0, y0 − x0 ≤ 100 }
At this moment, the simplex solver is not invoked yet, because many of those equality constraints can be eliminated
by simple substitution. It boils down to y0 = x0 + 110, which expresses the exact relation between start and end time.
We then have the constraint x0 + 110 − x0 ≤ 100, and after algebraic simplification, we have 110 ≤ 100, which is
false .
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Backward output

Forward input

Forward output A

Backward input A

Forward output B

Backward input B

(a) Splitter

Forward input A

Backward output A

Forward input B

Backward output B

Forward output

Backward input

(b) Combiner

Figure 2.1: Splitter and combiner flows.

(2)

(3)

(1)

(6)

(4)

(5)

(a) L1

(1)

(2)

(5)

(6)

(3)

(4)

(b) R1

(2)

(1)

(4)

(6)

(5)

(3)

(c) L2

(1)

(5)

(6)

(4)

(2)

(3)

(d) R2

Figure 2.2: Two possible packet traversal order assignments.

2.4 Packet Traversal Order

Taking the previous example further, we can use constraints to restrict the order of packet traversal. For every local
flow Ai as in the previous section, we can express the requirement that packets exit in the forward direction before
entering in the backward direction by writing the flow type as:

type(Ai) = ∀x, y (x + φi ≤ y).
[

x x + φi

y + δi y

]

where φi is the forward latency, and δi the backward latency; x + φi is the forward exit time, and y the backward
arrival time.

So far, flows have been composed sequentially, and we have not examined cases for parallel flow. Two parallel
flows are by default independent of each other, unless they are made to interact using combiner or splitter as shown in
Figure 2.1. Splitter and combiner let us divide one flow path into two and later join them.

Determining round trip time in the presence of multiple flow paths becomes an interesting problem because there
are many ways that a packet can be routed over multiple paths. Figure 2.2 shows two possible order assignments
L1 ;R1 and L2 ;R2, where the numeric labels denote packet traversal order.

Using σ for forward type and ρ for backward type, the flow type of a splitter is written as
[

σin (σout.A·σout.B)
τout (τin.A·τin.B)

]
, and

a combiner as
[

(σin.A·σin.B) σout

(τout.A·τout.B) τin

]
. If we name variables xk in the order they are seen at each socket position, we can

write the flow type schemes for L1 R1 L2 R2 as follows:

type(L1) = ∀x̄(C).
[
x1 (x2 · x4)
x6 (x3 · x5)

]
type(R1) = ∀x̄(C).

[
(x1 · x5) x3

(x2 · x6) x4

]

type(L2) = ∀x̄(C).
[
x1 (x2 · x5)
x4 (x6 · x3)

]
type(R2) = ∀x̄(C).

[
(x1 · x5) x2

(x6 · x4) x3

]

and we simply let C = {xi ≤ xi+1 | 1 ≤ i ≤ 5}.
Notice that if we mix the two order assignments, i.e. L1 ;R2 and L2 ;R1, then antisymmetry of ≤ forces packets

to appear at exact the same time on multiple paths. If the two paths both incur latency, then the resulting constraint
sets would not be solvable.
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2.5 Parallel Flow Bandwidth

Accounting bandwidth usage, when flow is split and combined, is also an interesting use of linear inequality con-
straints. When flows are combined, their bandwidth uses are added together. Constraints allow us to check whether
the total bandwidth does not exceed a certain quantity.

For example, suppose A1 and A2 are gateways connecting two networks. Schematically, A1 is a combiner in
Figure 2.1, and A2 is a splitter. The flow types of their bandwidth usage can be written as follows:

type(A1) = ∀ā, b̄.
[
(a1 · a2) a1 + a2

(b1 · b2) b1 + b2

]
type(B) = ∀a, b(C).

[
a a
b b

]
type(A2) = ∀ā, b̄.

[
a1 + a2 (a1 · a2)
b1 + b2 (b1 · b2)

]

There are several possibilities to write the constraint set C. These bandwidth accounting methods have different
implications on the limits of network traffic pattern.

• If bandwidths of the forward and backward directions are independently throttled, for example, at 10 Mbps and 5
Mbps respectively, then C = {a ≤ 10, b ≤ 5}. This scenario is commonly seen for ADSL (Asymmetric Digital
Subscriber Line) connections, where the asymmetry is in downstream and upstream bandwidth allowance.

• If bandwidths of the forward and backward directions altogether may not exceed, for example, 15 Mbps, then
C = {a + b ≤ 15}. This scenario is commonly seen for leased, dedicated line subscriptions to an ISP.

Furthermore, the delivery medium between A1 and A2 may specify more bandwidth constraints.

3 Boolean Predicate Constraints

A network typically allows all sorts of packets to be transmitted from any node to another. However, upon closer
inspection, there are a number of situations where nonsensical packets should be dropped; such packets are typically
also non-routable. For example,

• Packets originating from or destined to 127.0.0.0/8 are non-routable. Such packets should never appear on a
network.

• Packets traversing from network A to network B should have the source IP that matches the subnet of network
A and destination IP that matches the subnet of network B. Vice versa for packets traversing from network B to
network A.

• Every host has an interface with an IP address. All packets originating from this interface must have its source
IP address the same as the interface IP address. Only packets destined for this interface address may be received
by the host.

Traditionally, networks are designed with best-effort delivery with no access control; nonsensical packets may still be
delivered as long as it has a destination address that can be recognized by a router. Nowadays, many networks also
have firewalls that filter nonsensical and other malicious traffic. In addition, a firewall may be configured to allow only
incoming traffic for certain services or connections that are already established. More generally, it is observed that
routing and firewalling rules are intrinsically related [16].

In this section, we use constraints in the form of Boolean predicates to describe the type of traffic that is allowed
for the ports of a flow.

3.1 Defining Constraint System

Let TypeLit range over integers (for port number), symbols for protocol (e.g., tcp, udp, icmp), and IP addresses (in
the form www .xxx .yyy .zzz/nn where nn is prefix length). When appearing alone, these type literals do not have a
meaning because of ambiguity. For example, when we see an IP address, is it matched against the source or destination
IP address of a packet? Similarly, when we see an integer, is it matched against the source or destination port number?
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To disambiguate the matching, we introduce five type constructors:

ν ∈ Type0 ::= t | α
τ ∈ Type ::= · · · | ipaddrsrcν | ipaddrdstν

| portsrc[ν, ν] | portdst [ν, ν] | proto ν

The presence of two fields in port constructors allows us to specify a range of ports rather than a singleton port; prefix
length of an IP address already allows us to specify a range of IP addresses. We also have negation (¬) as unary
type constructor, conjunction (∧) and disjunction (∨) as binary type constructors. The resulting Type lets us specify
basic firewalling rules, restricting properties of a packet based on protocol, source and destination IP address, and port
number in a packet’s header information.

The meaning of subtyping (<:) is treated as logical implication (⇒), and equality (
.=) the same as logical equiv-

alence (⇔). In addition, we have predicates such as “does not imply” (�⇒) and “are not equivalent” ( /⇔), which
obviously are neither partial order nor equivalence relations. A set of constraints C = {c 1, . . . , cn} is treated as if
c1 ∧ · · · ∧ cn. However, this does not mean that such set is in conjunctive normal form.

Special considerations about these type constructors are observed as follows:

• Conjunction of disjoint sets of IP addresses and port ranges is equivalent to false ; source and destination are
considered separately.

• Conjunction of conflicting protocols is equivalent to false .

Solving satisfiability of Boolean constraints in general is NP -complete. Binary Decision Diagram is a possible con-
straint solving algorithm, which has worst case exponential space but efficient in practice.

3.2 Predicate Routing

The idea of predicate routing is to unify the specification of firewall and routing rules using binary predicates—as
described in the previous subsection—so they can be easily deployed and checked for error [16]. We demonstrate how
to specify flow types of different kinds of network nodes, which we assume are well-behaving; that is, they behave
according to the predicate routing rules that describe them. Enforcement of these rules belongs to be role of firewall
or packet filter. Since TRAFFIC(X) lacks the aspect of deployment, we focus instead on the verification part.

Static IP Host A well-behaving host produces an IP packet whose source is the IP address of the host. It also only
accept packets whose destination IP address is the same IP address as the host. Due to the way TRAFFIC(X) models
a network as an end-to-end bi-directional flow, upstream hosts and downstream hosts are specified differently (but one
is the transpose of the other). Assuming the IP address of the upstream host is ip 1, and downstream is ip2, we write
their types as:

type(Upstream) =
[
Fnil ipaddrsrcip1

Fnil ipaddrdst ip1

]
type(Downstream) =

[
ipaddrdst ip2 Fnil

ipaddrsrcip2 Fnil

]

Dynamic IP (DHCP) Host A host whose IP address is dynamically configured can be expressed in TRAFFIC(X)
using ∀-quantifier. Assuming now that upstream host belongs to IP subnet net 1, and downstream to IP subnet net 2,
we can write their types as follows. Notice that subnets are simply IP address with a prefix length shorter than the full
length (32 bit).

type(Upstream) = ∀α
(

ipaddrsrcα ∧ (ipaddrsrcα ⇒ ipaddrsrcnet1)
ipaddrdstα ∧ (ipaddrdstα ⇒ ipaddrdstnet1)

)
.

[
Fnil ipaddrsrcα
Fnil ipaddrdstα

]

type(Downstream) = ∀α
(

ipaddrsrcα ∧ (ipaddrsrcα ⇒ ipaddrsrcnet2)
ipaddrsrcα ∧ (ipaddrdstα ⇒ ipaddrdstnet2)

)
.

[
ipaddrdstα Fnil

ipaddrsrcα Fnil

]

The constraint (ipaddr?α) ∧ (ipaddr?α ⇒ ipaddr?net) establishes that α must be instantiated to be a subnet of net
by modus ponens.
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Router A router is a device that sits between two networks, relaying traffic from one network to another. Suppose
the two networks are net 1 and net2, we can write its type as:

type(Router) =
[
ipaddrsrcnet1 ∧ ipaddrdstnet2 ipaddrsrcnet1 ∧ ipaddrdstnet2
ipaddrsrcnet2 ∧ ipaddrdstnet1 ipaddrsrcnet2 ∧ ipaddrdstnet1

]

NAT Device A Network Address Translation device is like a router, typically used to connect between a local area
network (LAN) and a wide area network (WAN). Unlike a router, it mangles packet header in the following manner:
when a packet from LAN is received, NAT rewrites its source address to make it appear as if it originates from the
NAT device. When a packet from WAN arrives in response to the first packet, NAT rewrites its destination address to
that of the initiative host. Such translation is transparent to the original source and destination hosts.

NAT uses a state table to keep track of connections in order to rewrite packets forth and back. Without loss of
generality, we can write the type as if NAT is tracking only one connection. Assuming the device has a WAN IP
address ip assigned statically,

type(NAT ) = ∀α, β.
[
ipaddrsrcα ∧ ipaddrdstβ ipaddrsrcip ∧ ipaddrdstβ
ipaddrsrcβ ∧ ipaddrdstα ipaddrsrcβ ∧ ipaddrdst ip

]

In this setting, LAN connects to the left of NAT , and WAN to its right.
Using subtyping by logical implication, TRAFFIC(X) is able to verify the correctness of firewall rules among the

connected components.

4 Conclusion

We described our formal verification framework TRAFFIC(X) that is specifically tailored for networked application.
We proposed two ways to customize the constraint system: using linear inequality constraints, solved by simplex al-
gorithm; and using Boolean predicate constraints, solved by Binary Decision Diagram. We provided several network-
centric examples to demonstrate to use of these constraint systems. For these examples, we considered network
engineering problems such as maximum transmission unit, timing, bandwidth allocation, firewall and routing, and
showed that TRAFFIC(X) can formally verify these examples with ease.

TRAFFIC(X) was first described in [8], and this paper extends the motivation of the system. Our future work will
focus on implementing:

• A type inference algorithm for TRAFFIC(X), so flows can be verified without explicit type annotation.

• Constraint solvers for linear inequality constraints and Boolean predicates.

• Constraint solvers using Constraint Handling Rules [5].

and making the system available for the public.
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A The Type System TRAFFIC(X)

A.1 Constraints

It is important to keep in mind that constraints in a set C = {c1, c2, . . . cn} are logically conjunct, i.e., c1∧c2∧· · ·∧cn,
so the union of two sets C ∪D really means C ∧D.

Notation A.1 (Substitution). Let ψ with the sort TypeVar → Type be a partial mapping that can be applied on types,
constraints, flow types, and environments.

Assumption A.2 (Properties of Constraint Entailment). Given constraint sets C and D, any constraint system that
models our notion of constraint entailment C � D must satisfy these properties:

(i) C � D
C ∪C′ � D

(ii)
C � D

ψC � ψD
(iii) C � D C ∪D � E

C � E

(iv) D ⊆ C

C � D
(v) C � D C � E

C � D ∪ E
(vi)

C � D1 ∪D2

C � Di
i = 1, 2
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A.2 Typing Rules

Notation A.3 (Environment). Let Γ with the sort FlowVar → FlowTypeScheme be a partial mapping, written as:

Γ = {x1 : S1, . . . , xn : Sn}

Notation A.4 (Typing Judgment). A typing judgment, written as C,Γ � A : S, means that under the assumption of
constraint set C and environment Γ, the flow A has a flow type scheme S, according to the typing rules in Figure A.1.

(VAR-ADD)
Γ(x) = ∀ᾱ(D).T C ∪D �� false

C ∪D,Γ � x : ∀ᾱ(D).T
(LET)

C,Γ � A : S C,Γ ∪ {x : S} � B : T ′

C,Γ � let x = A in B : T ′

(LOCAL-ADD)
type(A) = ∀ᾱ(D).T C ∪D �� false

C ∪D,Γ � A : ∀ᾱ(D).T
(PAR)

C,Γ � A : [ τ1 τ2
τ3 τ4 ] C,Γ � B : [ τ5 τ6

τ7 τ8 ]
C,Γ � A‖B : [ τ1·τ5 τ2·τ6

τ3·τ7 τ4·τ8 ]

(SEQ)
C,Γ � A : [ τ1 τ2

τ3 τ4 ] C,Γ � B : [ τ5 τ6
τ7 τ8 ] C � {τ2 .= τ5, τ7

.= τ4}
C,Γ � A ;B : [ τ1 τ6

τ3 τ8 ]

(∀-INTRO)
C ∪D,Γ � A : T ᾱ ∩ ftv(C,Γ) = ∅

C ∪D,Γ � A : ∀ᾱ(D).T
(SUB)

C,Γ � A : T C � T <: T ′

C,Γ � A : T ′

(∀-ELIM)
C,Γ � A : ∀ᾱ(D).T C � ψD

C,Γ � A : ψT
where dom(ψ) = ᾱ.

Figure A.1: Typing rules of TRAFFIC(X).
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