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Abstract

The approximate degree of a Boolean function f captures how well f can be approximated
pointwise by low-degree polynomials. This manuscript surveys what is known about approxi-
mate degree and illustrates its applications in theoretical computer science.

A particular focus of the survey is a method of proving lower bounds via objects called dual
polynomials. These represent a reformulation of approximate degree using linear programming
duality. We discuss in detail a recent, powerful technique for constructing dual polynomials,
called “dual block composition”.
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1 Introduction

The ability (or inability) to represent or approximate Boolean functions by polynomials is a cen-
tral concept in complexity theory, underlying interactive and probabilistically checkable proof
systems, circuit lower bounds, quantum complexity theory, and more. In this manuscript, we
survey what is known about a particularly natural notion of approximation by polynomials, cap-
turing pointwise approximation over the real numbers. The ε-approximate degree of a Boolean
function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least total degree of a real polynomial
p : {−1, 1}n → R such that

|f(x)− p(x)| ≤ ε for all x ∈ {−1, 1}n. (1)

By total degree of p, we refer to the maximum sum of the degrees of all variables appearing in any
monomial. For example, p(x1, x2, x3) = x21x2x

2
3 + x1x

3
2 has total degree 5.

Every Boolean function is approximated to error ε = 1 by the constant 0 function, implying
that d̃eg1(f) = 0 for all such f . However, whenever ε is strictly less than 1, d̃egε(f) is a fascinating
notion with a rich theory and applications throughout theoretical computer science.

Applications of approximate degree lower bounds. The study of approximate degree is it-
self a “proto-complexity theory” [Aar08], with pointwise approximation by real polynomials serving
as a rudimentary model of computation, and degree acting as a measure of complexity. Moreover,
when f has large (say, nΩ(1)) approximate degree, it is also hard to compute in a variety of other
computational models. Different models correspond to different settings of the error parameter ε
with two regimes of particular interest. First, if d̃eg1/3(f) is large, then f cannot be efficiently eval-

uated by bounded-error quantum query algorithms [BBC+01].1 This connection is often referred
to as the “polynomial method in quantum computing.”

Second, if d̃egε(f) is large for every ε < 1, then f is difficult to compute by unbounded-error
randomized (or quantum) query algorithms (see, e.g., [DGRMT22, Lemma 6]). These are random-
ized algorithms that are only required to do slightly better than random guessing, and correspond
to the complexity class PP (short for probabilistic polynomial time) defined by Gill [Gil77]. This
connection has been used to answer long-standing questions in relativized complexity, e.g., in study-
ing the power of statistical zero-knowledge proofs (Section 7.2.2), and in communication complexity
(Section 10). Approximability of f in this error regime, wherein the error ε is allowed to be ar-
bitrarily close to (but strictly less than) 1,2 is captured by a notion termed threshold degree and
denoted deg±(f).

Applications of approximate degree upper bounds. As just discussed, lower bounds on
d̃egε(f) imply hardness results for computing f . There are also many applications of upper bounds

on d̃egε(f), typically in the design of fast algorithms in areas such as learning theory [KS04,
KKMS08] (see Section 11.2) and differential privacy [TUV12, CTUW14].

1The choice of constant 1/3 is made for aesthetic reasons. Replacing ε = 1/3 with any other constant in (0, 1)
changes the ε-approximate degree of f by at most a constant factor.

2Approximate degree is a meaningful notion even for error parameters ϵ that are doubly-exponentially close to
1. In particular, for any degree bound d, there are known Boolean functions that can be approximated by degree-d

polynomials to error 1− 2−nΘ(d)

but not to smaller error [Pod08, Pod09, BT18a].
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In addition to algorithmic applications, approximate degree upper bounds have also been used
to prove complexity lower bounds. Here is an illustrative example. Suppose one shows that every
circuit over n-bit inputs in a class C can be approximated to error ε < 1 by a polynomial of
degree o(n). We know that simple functions f such as Majority and Parity require approximate
degree Ω(n), and therefore cannot be computed by circuits in C. In fact, if ε = 1/3, then one can
even conclude that C is not powerful enough to compute these functions on average, meaning that
for every circuit C ∈ C, we have Prx∼{−1,1}n [C(x) = f(x)] ≤ 1/2 + 1

nω(1) [Tal17, BKT21]. This
principle underlies several state-of-the-art lower bounds for frontier problems in circuit complexity
(Section 11.3.2).

Goals of this survey. This survey covers recent progress on proving approximate degree lower
and upper bounds and describes some applications of the new bounds to oracle separations, quan-
tum query and communication complexity, and circuit complexity. On the lower bounds side,
progress has followed from an approach called the method of dual polynomials, which seeks to
prove approximate degree lower bounds by constructing solutions to (the dual of) a certain linear
program that captures the approximate degree of any function. This survey explains how several
of these advances have been unlocked by a particularly simple and elegant technique—called dual
block composition—for constructing solutions to this dual linear program. We also provide concise
coverage of even more recent lower bound technique based on a new complexity measure called
spectral sensitivity.

On the upper bounds side, recent explicit constructions of approximating polynomials have
been inspired by quantum query algorithms. These constructions also involve new techniques that
first express the approximations as sums of exponentially many high-degree terms, and then replace
each term with a low-degree approximation that is accurate to exponentially small error.

Roadmap and suggestions for reading the survey. After covering preliminaries (Section 2),
we begin in Sections 3 and 4 by covering approximate degree upper bounds, i.e., techniques for
constructing low-degree approximations to Boolean functions. We then turn to lower bound tech-
niques, starting with the simpler and older technique of symmetrization (Section 5) before turning
to the method of dual polynomials (Section 6). The next two chapters provide progressively more
sophisticated developments of this technique, with Section 7 introducing dual block composition as
a technique for lower bounding the approximate degree of block-composed functions, and Section 8
moving beyond block-composed functions. Section 9 covers approximate degree lower bounds via
spectral sensitivity.

The survey then turns to applications of approximate degree upper and lower bounds. Sec-
tion 10 covers (a variant of) the so-called pattern matrix method for translating approximate
degree lower bounds into approximate-rank and communication lower bounds. Section 11 covers
assorted additional applications of both upper and lower bounds on approximate degree.

We have primarily organized the survey by technique. For example, all upper bounds that we
cover appear in Sections 3 and 4, with the exception of the approximate degree upper bound for a
function called Surjectivity that appears in Section 8.1. This organization maximizes technical and
conceptual continuity, but does have some downsides. The results are not covered in increasing
order of difficulty, e.g., the easiest lower bounds come after the most challenging upper bounds. It
also means that for any specific function or class of functions, the tight upper and lower bounds
appear in different parts of the survey.
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Readers may wish to skip some of the more technical results that we cover on a first read-
ing. Prominent examples include the upper bound for a function called Element Distinctness in
Section 4.4.2, the proof of Theorem 44 in Section 7.2 on a state-of-the-art lower bound for block-
composed functions, the entirety of Section 8.5 on lower bounds for problems called Collision and
Permutation Testing, and the proof of Theorem 92 in Section 10.5.1, which constructs a dual wit-
ness for the high threshold-degree of an AC0 function with certain “smoothness” properties that
are important for applications in communication- and circuit-complexity.

2 Preliminaries

2.1 Terminology and Notation

Boolean functions, Hamming weight, etc. In this manuscript, we primarily model Boolean
functions as mapping the domain {−1, 1}n to the range {−1, 1}, with −1 interpreted as logical
TRUE and +1 is interpreted as logical FALSE.

Many authors instead use the domain {0, 1}n or the range {0, 1}, with 1 interpreted as TRUE
and 0 as FALSE. The domain {−1, 1}n and range {−1, 1} turn out to be the most convenient
choice for proving approximate degree lower bounds. and hence we use this convention throughout
the vast majority of this survey, The domain {0, 1}n and the range {0, 1} can be more convenient
when establishing approximate degree upper bounds; accordingly we do use this domain and range
sparingly (see Section 4.5).

We often use a subscript after a function to clarify the number of variables over which it is
defined. For example, ORn denotes the function over domain {−1, 1}n that evaluates to −1 if at
least one of its inputs equals −1, and otherwise evaluates to 1.

For any input x ∈ {−1, 1}n, we let |x| =
∑n

i=1(1 − xi)/2 denote the number of coordinates of
x equal to −1 and refer to |x| as the Hamming weight of x. We let

A(x) =
n∑
i=1

xi.

Note that |x| and A(x) are both degree-1 polynomials in x.
We use [n] to denote the set {1, 2, . . . , n}, [n]∗ to denote {0, 1, . . . , n}, and 1n to denote the

input in {−1, 1}n in which all entries are 1.
For a real number t, we let sgn(t) equal 1 if t is nonnegative and equal −1 if t is negative. All

logarithms in this survey have base 2 unless specified otherwise.

Binomial coefficients. For integers 0 ≤ k ≤ n,
(
n
k

)
= n!

k!(n−k)! denotes the binomial coefficient,

and
(
n
≤k
)
denotes the partial sum

∑k
i=0

(
n
i

)
. Two standard upper bounds on these quantities are(

n

k

)
≤
(
n

≤ k

)
≤ (ne/k)k

and for n, k > 1, (
n

≤ k

)
≤ nk.
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Function composition and product distributions. For two functions fm, gb, we denote by
fm ◦ gb the block-composed function over domain

(
{−1, 1}b

)m
, i.e.,

(fm ◦ gb) (x1, . . . , xm) := f(g(x1), . . . , g(xm)).

Given probability distributions µ1, . . . , µm over {−1, 1}b, we let ⊗m
i=1µi denote the product distri-

bution over (x1, . . . , xm) ∈
(
{−1, 1}b

)m
in which xi is drawn from distribution µi. Given a single

probability distribution µ, the distribution µ⊗n is the product distribution over (x1, . . . , xn) that
chooses each xi independently according to distribution µ. Given a finite set Y , we use y ∼ Y to
indicate that y is drawn uniformly at random from Y .

Polynomials and their degree. We assume that all polynomials with domain {−1, 1}n are
multilinear. This means that they have degree at most one in each variable, e.g., p(x1, x2, x3) =
x1x2x3 is multilinear, but p(x1, x2, x3) = x21x2x3 is not. This is without loss of generality because
x2i = 1 whenever xi ∈ {−1, 1}. We denote the degree of a univariate polynomial q by deg(q). For
a multivariate polynomial p, we denote by deg(p) the total degree of p, i.e., the maximum sum of
variable degrees over all monomials of p with nonzero coefficients. For example, the polynomial
p(x1, x2, x3) = x1x2x3 + x1x3 has total degree three.

Approximate degree and threshold degree. Recall that in applications of approximate de-
gree, two regimes for the error parameter ε are of particular relevance. The first is ε = 1/3. For

brevity, we use d̃eg(f) as a shorthand for d̃eg1/3(f), and refer to this quantity without qualification
as the approximate degree of f . The second regime of special interest considers all ε arbitrarily
close to, but strictly less than, 1. This regime is equivalent to a notion called the threshold degree
of f , denoted deg±(f), which is the least degree of a polynomial p such that

p(x) · f(x) > 0 for all x ∈ {−1, 1}n. (2)

It is not hard to see that the threshold degree of f is greater than d if and only if for every ε < 1,
f cannot be approximated to error ε by any degree-d polynomial. Any function p that satisfies
Condition (2) is said to sign-represent f , and p is called a polynomial threshold function (PTF) for
f . If p has degree 1, then it called a linear threshold function (LTF) for f . Another term for an
LTF is a halfspace. If a nonzero polynomial p satisfies Condition (2) with weak rather than strict
inequality, p is said to weakly sign-represent f .

Basics of Fourier analysis. For S ⊆ [n], let χS(x) =
∏
i∈S xi; we refer to χS as the parity

function over S, or sometimes as the S’th parity function. We will occasionally refer to any such
parity function as a Fourier basis function or simply as a monomial.

For any function f : {−1, 1}n → R, there is a unique multilinear polynomial

p(x) =
∑

x∈{−1,1}n
f̂(S) · χS(x)

such that p(x) = f(x) for all x ∈ {−1, 1}n. The quantity f̂(S) is called the S’th Fourier coefficient
of f . The degree of f (sometimes referred to as the Fourier degree of f) is the total degree of p,
i.e., the size of the largest set S such that f̂(S) ̸= 0. Sometimes p is referred to as the multilinear

7



extension of f , because, unlike f , it makes sense to evaluate p even at inputs that are not in
{−1, 1}n.

For a real-valued function f : {−1, 1}n → R given by f(x) =
∑

S⊆[n] f̂(S)χS(x), the Fourier

weight of f , denoted weight(f), is
∑

S⊆[n] |f̂(S)|. In other words, weight(f) is the ℓ1-norm of the

Fourier coefficients of f .3 Likewise, the Fourier sparsity of f , denoted sparsity(f), is the number
of non-zero Fourier coefficients of f .

The following basic fact offers a crude upper bound on the Fourier sparsity and Fourier weight
of any low-degree function.

Fact 1. Let f : {−1, 1}n → R satisfy |f(x)| ≤ A for all x ∈ {−1, 1}n. If f has Fourier degree
at most d, then the Fourier sparsity of f is at most

(
n
≤d
)
and the Fourier weight of f is at most

A ·
(
n
≤d
)
≤ A · nd.

Proof. The set {χS : S ⊆ [n]} forms an orthonormal basis for the vector space of all functions
mapping {−1, 1}n → R under the inner product relation

⟨p, q⟩ = 2−n
∑

x∈{−1,1}n
p(x) · q(x).

Accordingly, we can express the Fourier coefficients of f via:

f̂(S) = ⟨f, χS⟩ = 2−n
∑

x∈{−1,1}n
f(x) · χS(x).

Hence, |f̂(S)| ≤ A for each S ⊆ [n]. If f has Fourier degree at most d, then f̂(S) ̸= 0 for at most(
n
≤d
)
subsets S. The fact follows.

We use a special notation for the parity function on all n bits, χ[n], denoting it by ⊕n. The
bit-wise parity of two vectors x, y ∈ {−1, 1}n is denoted x⊕ y.

A useful inequality. Several times in this survey, we use the following fact:

Fact 2. For any real number t > 1,
(1− 1/t)t ≤ 1/e,

and
(1− 1/t)t−1 ≥ 1/e,

where e ≈ 2.718 is Euler’s constant.

2.2 The Cast of Characters

We briefly introduce the most important functions that appear throughout this survey. The approx-
imate degree of each of these functions is now mostly or completely understood, and we state what
is known for each. Implications of these degree bounds are detailed later in the survey. Beyond
their direct consequences, the efforts that led to these results yielded new and broadly applicable
techniques for bounding approximate degree.

3We remark that many authors use the term “Fourier weight” to refer to the (squared) ℓ2-norm of the Fourier
coefficients of f – this is not the convention used here.
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Figure 1: The Minsky-Papert CNF on n variables. The top AND gate has fan-in n1/3, while each
of the bottom OR gates have fan-in n2/3. For each i = 1, 2, . . . , n1/3, yi ∈ {−1, 1}n2/3

denotes the
input to the ith OR gate.

Symmetric functions. A symmetric function f : {−1, 1}n → {−1, 1} is any function that is
invariant under permutations of its input bits. Equivalently, a function is symmetric if its value
on any input x depends only on |x|, the number of −1s, also known as the Hamming weight of x.
Examples of symmetric functions include the OR, AND, Parity, and Majority functions. These ask
whether their inputs have Hamming weight that is greater than 0, exactly n, odd, or at least n/2,
respectively.

The approximate degree and threshold degree of symmetric functions are completely under-
stood, with several proofs of the upper and lower bounds now known. For approximate degree,
the upper and lower bounds are covered in Sections 4.3 and 5.2 (see also Section 7.3.2), while for
threshold degree they are covered in Sections 3.1 and 5.2.

Theorem 3. Let f : {−1, 1}n → {−1, 1} be a symmetric function and t be the smallest number
such that f is constant on all inputs of Hamming weight between t and n−t. Then for ε ∈ (2−n, 1/3),

we have d̃egε(f) = Θ
(√

nt+
√
n log(1/ε)

)
.

Theorem 4. Let [n]∗ = {0, 1, . . . , n}. Let f : {−1, 1}n → {−1, 1} be a symmetric function where
f(x) = F (|x|) for a function F : [n]∗ → {−1, 1}. Then deg±(f) = |{i : F (i) ̸= F (i+ 1)}|.

DNF and CNF formulas. A function that has served a central historical role in the study of
approximate degree and threshold degree is the so-called Minsky-Papert DNF and CNF.4 These
are, respectively, the read-once DNF and CNF over n variables, with top fan-in n1/3 and bottom
fan-in n2/3. Here, the top fan-in refers to the number of terms or clauses in the DNF or CNF,
respectively, while the bottom fan-in refers to the width of each term or clause. See Figure 1 for
a depiction. It is known that the Minsky-Papert DNF and CNF have approximate degree Θ(n1/2)
(Sections 3.5 and 7.1) and threshold degree Θ̃(n1/3) (Sections 3.3 and 5.3).5

4A DNF formula (short for disjunctive normal form) of size s is an OR of at most s ANDs, where each AND is
evaluated over a set of literals. Here, a literal is an input variable or its negation. So, for example, OR(x1 ∧ x̄2, x1 ∧
x3, x2 ∧ x̄3) is a DNF of size 3. A CNF is defined analogously with the role of OR and AND reversed.

5The tilde notations Θ̃, Ω̃, or Õ hide polylogarithmic, rather than merely constant, factors.
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Properties of lists. Several important functions, mainly arising from the quantum computing
literature, are best thought of as “properties” of lists of numbers. Let N ≥ R with R a power
of 2. Each of the following functions takes as input a vector in x ∈ {−1, 1}n with n = N log2R.
It interprets the vector as a list of (the binary representations of) N numbers (k1, . . . , kN ) from
range [R] = {1, . . . , R}, and it outputs −1 if and only if that list has the stated property. For
example, suppose N = R = 4, and the range elements 1, . . . , 4 are represented in binary by (1, 1),
(1,−1), (−1, 1), and (−1,−1). Then x = ((1, 1), (−1, 1), (1,−1), (−1, 1)) would be interpreted as
the following list of four numbers: (1, 3, 2, 3).

Two properties of such a list that one might be interested in are: Does every range element
appear at least once in the list? Does any range element appear more than once? As we discuss
next, the first property is captured by the so-called Surjectivity function, and the second by the
Element Distinctness function.

Surjectivity (SURJ) For every i ∈ [R], does there exist at least one index j such that kj =
i? Equivalently, if the input list (k1, . . . , kN ) is thought of as the evaluation table of some
function, then SURJ evaluates to −1 if the function is surjective.

It is known that if R = N/2, then the approximate degree of SURJ is Θ̃(n3/4) (Section 8.1.1)
and the threshold degree is Θ̃(n1/2) (Section 8.1.3).

For a positive integer ℓ, call a list of N numbers ℓ-to-1 if ℓ divides N , and N/ℓ range items each
appears exactly ℓ times in the list. So for example, if N = 4 and R = 4, then the list (4, 3, 2, 1) is
1-to-1, and the list (4, 4, 2, 2) is 2-to-1. If x ∈ {−1, 1}n is interpreted as a list (k1, . . . , kN ) that is
ℓ-to-1, we also refer to x itself as ℓ-to-1. If N = R, we refer to 1-to-1 inputs as permutations.

Element Distinctness ED: Is the list 1-to-1? That is, for every i ∈ [R], is it the case that there
is at most one index j such that kj = i? Or put yet another way, are all numbers in the list
distinct?

Element Distinctness generalizes to the k-distinctness function k-ED for integers k > 2. This
function interprets its input as a list of N numbers from a range of size R and outputs 1 if
and only if there is some range item that appears at least k times in the list.

The Collision Problem: Is the list 1-to-1, under the promise that it is either 1-to-1 or 2-to-1?

Permutation Testing (PTP): Is the list a permutation, under the promise that it is either a
permutation or far from any permutation? By far from any permutation, we mean that at
least, say, 10% of range items do not appear even once in the list.

The above three functions all have threshold degree Õ(1),6 but their approximate degrees are
much more interesting. For N = R, ED has (1/3)-approximate degree Θ̃(n2/3) (Sections 4.4.2 and
8.6). Meanwhile, the Collision and Permutation Testing problems have (1/3)-approximate degree
Θ̃(n1/3) (Section 8.5).7 k-ED is known to have approximate degree approaching n3/4 from below

6ED, the Collision Problem, and PTP each evaluates to FALSE if and only if there is one or more collisions in
the input list, meaning a pair of list elements kj = kj′ with j ̸= j′. One can count the number of collisions in the
input list by summing over each pair of list elements and checking if the pair collides. This yields a polynomial of
degree Õ(1). An appropriate affine transformation of the polynomial approximates each of the three functions to
error 1−Θ(1/n2).

7See Section 7.3.2 for discussion of how to define the approximate degree of promise problems such as these.
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Function Approximate Degree Threshold Degree

OR and AND Θ(n1/2) 1

Symmetric t-threshold function (t ≤ n/2) Θ
(√
nt
)

1

Minsky-Papert DNF and CNF Θ(n1/2) Θ̃(n1/3)

Surjectivity Θ̃(n3/4) Θ̃(n1/2)

Element Distinctness Θ̃(n2/3) Θ̃(1)

Collision Problem and Permutation Testing Θ̃(n1/3) Θ̃(1)

Table 1: Approximate degree and threshold degree of the “cast of characters”—specific functions
on n bits playing a prominent role in the study of approximate degree. The symmetric t-threshold
function evaluates to −1 if and only if the Hamming of the input is at least t.

for large values of k. Exactly how quickly d̃eg1/3(k-ED) approaches n
3/4 as k grows remains open,

i.e., for every fixed k > 2, there remains a polynomial gap between the known upper and lower
bounds on d̃eg1/3(k-ED).

3 General Upper Bound Techniques

In this section, we discuss several fundamental techniques for proving approximate degree and
threshold degree upper bounds. Notable examples include polynomial interpolation, approximation
via Chebyshev polynomials, and sign-representation via rational approximations.

3.1 Interpolation

A simple place to begin is sign representation of symmetric functions. Recall that a symmetric
function f mapping {−1, 1}n to {−1, 1} is one that depends only on the Hamming weight of its
input, so it is characterized by f(x) = F (|x|) for some univariate function F : [n]∗ → {−1, 1}. One
example is the ORn function, which takes the value 1 when |x| = 0 and the value −1 otherwise.

It is easy to show that, for ε ≥ 1− 1/n, d̃egε(ORn) = 1. To see this, let

p(x) =
1

n
(1− 2|x|). (3)

Then deg(p) = 1 since |x| is a linear funtion of x, and moreover

|p(x)− ORn(x)| ≤ 1− 1/n for all x ∈ {−1, 1}n. (4)

We can think of the above polynomial p as arising from the following process. Rather than
considering F , which is defined over the discrete domain [n]∗, consider the piecewise-linear function
G that “extends” the domain of F to the continuous interval [0, n] ⊂ R, i.e., such that

G(i) = F (i) for all i ∈ [n]∗. (5)

In the case of ORn, G has a single root, at input t = 1/2, and Equation (3) defines p to be the
degree-1 function with this root (p is then scaled appropriately to minimize its approximation error,
ensuring that Equation (4) holds).

11



Figure 2: A degree-3 polynomial p defined via Equation (6) to sign-represent the following function
f(x) : {−1, 1}n → {−1, 1} with three “sign changes”. Define f(x) = F (|x|) where F (0) = −1,
F (1) = F (2) = 1, F (3) = −1 and F (k) = 1 for all k ∈ {4, . . . , n}. The behavior of F at inputs in
{0, 1, 2, 3, 4} are depicted with blue dots.

In general, let f be a symmetric function that changes sign k times as the Hamming weight of
its input increases from 0 to n. Then f can be sign-represented by a polynomial p of degree k, i.e.,
sgn(p(x)) = f(x) for all x ∈ {−1, 1}n.

More explicitly, let f(x) = F (|x|) where t1, . . . , tk are the Hamming weights where F (ti) ̸=
F (ti + 1). Then either the following degree-k polynomial sign-represents f , or its negation does:

p(x) = (|x| − (t1 + 1/2))(|x| − (t2 + 1/2)) . . . (|x| − (tk + 1/2)). (6)

Indeed, one can check that p(x) > 0 if |x| ≥ tk + 1 since in this case all terms in the product on
the right hand side of Equation (6) are strictly positive. Similarly, p(x) < 0 if |x| ∈ [tk−1 + 1, tk],
since in this case the final term in the product is negative and all other terms are positive. And
p(x) > 0 if |x| ∈ [tk−2 + 1, tk], since the final two terms in the product are negative and all other
terms are positive. And so on. See Figure 2 for an example.

The polynomial p in Equation (6) is precisely the degree-k polynomial that has the same roots
as the natural piecewise-linear function G satisfying Equation (5). We refer to this construction as
performing interpolation, since it is defining p via its evaluations at specific points, namely at G’s
roots.

The threshold degree upper bound given above is in fact tight for any symmetric function, as
we show in Section 5.2. Unfortunately, while the behavior of the constructed sign-representing
polynomial p is precisely controlled at the interpolation points, p can grow rapidly as one moves
away from those points. In particular, |p(x)| can be as large as nΘ(k) for some inputs x ∈ {−1, 1}n
(and it is easily checked that |p(x)| is never less than 1/2 for any x ∈ {−1, 1}n). This means that
interpolation-based constructions do not tell us much about the ε-approximate degree of symmetric
functions when ε is less than 1 − n−O(k). For that, we need more sophisticated tools. The next
section describes perhaps the single most important such tool: the Chebyshev polynomials.

3.2 Chebyshev Approximations

Approximate degree considers low-degree point-wise approximations of functions over the discrete,
n-dimensional domain {−1, 1}n. For centuries, the field of approximation theory has studied a
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related notion: low-degree point-wise approximations of functions defined over the continuous,
unidimensional domain [−1, 1]. A typical question in this area is as follows: Given a function
F : [−1, 1] → [−1, 1], what is the least degree of a real polynomial P : [−1, 1] → R such that
|P (x) − F (x)| ≤ ε for all x ∈ [−1, 1]? So-called “Jackson-type” theorems give general answers to
this question in terms of the continuity and smoothness properties of F . The Chebyshev polynomials
are central tools for proving results of this type.

Definition 5. For d ≥ 0, the d’th Chebyshev polynomial of the first kind is the unique polynomial
Td : R → R of degree d such that Td(cos θ) = cos(dθ) for every θ ∈ R.

One can show using the double-angle formula in trigonometry that the function Td in Definition 5
is indeed a polynomial of degree at most d. The Chebyshev polynomials have several alternative
characterizations, including one given by the recurrence T0(x) = 1, T1(x) = x, and Td(x) =
2xTd−1(x)− Td−2(x).

Their importance to classical approximation theorem stems from a number of “extremal” prop-
erties. For instance, xd − 2−d+1Td(x) is the polynomial of degree d − 1 that provides the best
pointwise approximation to xd. The Chebyshev polynomials are also extremal for a classical result
called Markov’s inequality [Mar90].8 This inequality states that if G is degree-d polynomial that is
bounded over the interval [−1, 1], then its derivative G′(t) cannot be too large at any point within
the interval.

Theorem 6. (Markov’s inequality) Let G : [−1, 1] → [−1, 1] be a real polynomial of degree at
most d. Then maxt∈[−1,1] |G′(t)| ≤ d2.

The Chebyshev polynomials are exactly extremal for this result: For any integer d > 0, the
degree-d Chebyshev polynomial Td satisfies |Td(t)| ≤ 1 for all t ∈ [−1, 1], while T ′

d(t) ≥ d2 for all
t ∈ [1,∞], with equality at t = 1. In particular, for d = ⌊

√
2n⌋, T ′

d(1) ≈ 2n.
It should come as little surprise, then, that Chebyshev polynomials are useful tools for the

discrete approximation problem captured by approximate degree. Their simplest application is to
a tight upper bound on the approximate degree of the OR function [NS94].

Lemma 7. d̃eg1/3(ORn) = O(
√
n).

Proof. Our goal is to construct a polynomial p(x) such that p(1n) = 1 and p(x) = −1 for all other x.
Recalling that A(x) =

∑n
i=1 xi, we may do so by defining p(x) = q(A(x)/n) where q is a univariate

polynomial of degree O(
√
n) such that q(1) = 1 and q(t) ≤ −2/3 for all t ∈ [−1, 1 − 2/n]. That

is, as its input t decreases from 1, the polynomial q “jumps” very quickly from 1 down toward −1,
and stays near −1 until t leaves the interval [−1, 1− 2/n].

By shifting and scaling Td without increasing its degree (i.e., by performing an affine transfor-
mation), we can obtain a univariate polynomial q with these properties. En route to constructing
this polynomial q, consider the polynomial Td(t + 4/d2) where d = ⌊

√
2n⌋. While Td(t + 4/d2) is

bounded by 1 for all t ∈ [−1, 1− 2/n], the fact that T ′
d(t) ≥ d2 for all t ≥ 1 ensures that it jumps

up to at least 4 for t = 1. An additional affine shift produces the following polynomial q with the
desired behavior:

q(t) = 2 · Td(t+ 4/d2)

Td(1 + 4/d2)
− 1. (7)

See Figures (a) and (b) for illustrations of Td(t) and q(t) when n = 172 = 289 and d = ⌊
√
2n⌋ = 24.

8Not to be confused with Markov’s inequality from probability theory, but rather a special case of the “Markov
brothers’ inequality” attributed jointly to A.A. Markov and V.A. Markov.
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(a) The degree-24 Chebyshev polynomial
T24, which has derivative 242 = 576 at
input 1.

(b) The polynomial q from Equation (7) with d = 24 (used to
approximate ORn for n = 172 = 289).

A slight generalization of this proof shows that d̃egε(ORn) = O(
√
n log(1/ε)) for vanishing ε

(one can also apply generic error reduction as discussed in Section 3.4). This turns out not to be
optimal, as ORn can be approximated to error ε using degree O(

√
n log(1/ε)) by taking advantage

of the discrete nature of the problem. We describe this upper bound in detail in Section 4.2.1.
Combining what we know about sign representation and Chebyshev approximation already

allows us to construct interesting sign representations for CNF formulas. Specifically, consider the
block-composed function ANDm ◦ ORb. Let x = (x1, . . . , xm) ∈

(
{−1, 1}b

)m
denote an arbitrary

input to this function.

Lemma 8. deg±(ANDm ◦ ORb) = O
(√
b logm

)
.

Proof. Let p be a polynomial of degree O
(√
b logm

)
that approximates ORb to error 1/(3m).

Letting xi ∈ {−1, 1}b denote the input to the ith OR gate, the following polynomial of degree
O
(√
b logm

)
sign-represents (ANDm ◦ ORb)(x1, . . . , xm):

q(x1, . . . , xm) := −1 +

m∑
i=1

(1 + p(xi)). (8)

Indeed, if OR(xi) = −1 for all i, then |1 + p(xi)| ≤ 1/(3m) for all i, and hence q(x) ≤ −2/3 < 0.
Meanwhile, if OR(xi) = 1 for even a single i, then (1+p(xi)) ≥ 2−1/(3m) and hence q(x) > 0.

Note that the sign representing polynomial q constructed above is not a bounded-error approx-
imation, since it can grow to as large as Ω(m) on inputs for which OR(xi) = 1 for Ω(m) values of
i.

3.3 Rational Approximation and Threshold Degree Upper Bounds

Another way to sign-represent a CNF formula is to approximate each ORb using a ratio of low-
degree polynomials, combine these as before using a linear sign-representation of ANDm, and then
“clear the denominator” to obtain a polynomial. This is a key idea underlying Beigel, Reingold,
and Spielman’s famous result that PP is closed under intersection [BRS95]. Specifically, there are
degree-1 polynomials p(x), q(x) over domain {−1, 1}b such that the ratio p/q approximates ORb to
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error 1/(3m) as follows. For M ≥ 6m, let p(x) = 1−M · |x| and q(x) = 1+M · |x|. Then if x = 1b,

we have p(x)/q(x) = 1
1 = 1, while if x ̸= 1b, we have p(x)

q(x) ∈
[
−1, 1−M1+M

]
⊆
[
−1,−1 + 1

3m

]
.

Since p(x)/q(x) approximates ORb to error 1/(3m), by analogy with Equation (8), the following
quantity sign-represents (ANDm ◦ ORb)(x1, . . . , xm):

−1 +
m∑
i=1

(
1 +

p(xi)

q(xi)

)
. (9)

Unfortunately, Expression (9) is not itself a low-degree polynomial; rather, it is a sum of ratios of
degree-1 polynomials. To get a polynomial that sign-represents ANDm ◦ ORb, we place all terms
in the sum of Expression (9) over the common denominator r(x) =

∏m
j=1 q(xj). That is, for

i = 1, . . . ,m, let si(x) := p(xi) ·
∏
j=1,...,m : j ̸=i q(xj). Then Expression (9) becomes

1

r(x)
·

(
(m− 1)r(x) +

m∑
i=1

si(x)

)
.

Finally, observe that r(x) > 0 for all x ∈ {−1, 1}n, as it is a product of polynomials q(xj)
which are all positive. Hence, multiplication by the denominator r(x) does not alter the sign of the
expression. This means that p∗(x) := (m− 1)r(x) +

∑m
i=1 si(x) sign-represents ANDm ◦ORb and is

clearly a polynomial of degree at most m.

Lemma 9. deg±(ANDm ◦ ORb) = O(m).

Lemmas 8 and 9 together imply that ANDm ◦ ORb has threshold degree at most

O(min{
√
b logm,m}).

Minsky and Papert [MP69] famously showed a (nearly) matching lower bound of Ω
(
min{

√
b,m}

)
.

Later, we describe multiple proofs of Minsky and Papert’s lower bound; see Theorem 26 for one
based on symmetrization and Theorem 48 for a more general result based on the method of dual
polynomials.

3.4 Error Reduction for Approximating Polynomials

Theorem 10. Let f : {−1, 1}n → {−1, 1} be any function. Then for any ε > 0, d̃egε(f) ≤
O(d̃eg(f) · log(1/ε)).

Proof. We follow the exposition of [DGJ+10, Claim 4.3], which uses a construction called amplifying
polynomials. For even integers ℓ > 0, define the degree-ℓ univariate polynomial

Aℓ(u) :=
∑
k≥ℓ/2

(
ℓ

k

)
((1 + u)/2)k ((1− u)/2)ℓ−k .

On any input u ∈ [−1, 1], Aℓ(u) equals the probability that the majority of tosses of a coin come
up Heads, when the probability of seeing Heads is (1 + u)/2. This polynomial has the following
properties (easily proved via the Chernoff bound):
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• If u ∈ [3/5, 1], then 2Aℓ(u)− 1 ∈ [1− 2e−ℓ/6, 1].

• If u ∈ [−1,−3/5], then 2Aℓ(u)− 1 ∈ [−1,−1 + 2e−ℓ/6].

Let p be a 1/3-approximating polynomial for f , and let ℓ = O(log(1/ε)) be a large enough even
integer such that 2e−ℓ/6 ≤ ε. Then the composition 2Aℓ(p)− 1 is an ε-approximation for f .

There is a natural algorithmic interpretation of the construction of Theorem 10. Later, in
Section 4.1, we will see that for a polynomial p approximating a Boolean function f , (1− p(x))/2
can often be thought of as outputting the acceptance probability of some (randomized or even
quantum) algorithm A computing f , when A is run on input x. In this context, Aℓ(p(x)) is the
acceptance probability of the algorithm that runs ℓ independent copies of A on x and outputs the
majority answer.

3.5 Robust Composition

A beautiful and important result of Sherstov (refining earlier work of Buhrman et al. [BNRdW07])
shows that ε-approximate degree can increase at most multiplicatively under block composition.

Theorem 11 ([She12a]). Let f : {−1, 1}m → {−1, 1} and g : {−1, 1}n → {−1, 1} be arbitrary

Boolean functions. Then d̃eg(f ◦ g) ≤ O(d̃eg(f) · d̃eg(g)).

Sketch. A natural approach is to attempt to construct a low-degree approximation for f ◦ g by
simply taking low-degree approximations p and q to f and g respectively, and hoping that the
composition p ◦ q approximates f ◦ g. Unfortunately, this does not work directly. The issue is that
while |p(x) − f(x)| ≤ 1/3 for all x ∈ {−1, 1}m, this does not grant us any information about p’s
behavior at non-Boolean inputs, while q’s outputs may indeed be non-Boolean, because q does not
exactly compute g, but rather only approximates it at each input in {−1, 1}n. Hence, understanding
the behavior of p ◦ q requires us to control p’s behavior not only at inputs in {−1, 1}m, but in fact
at real-valued inputs.

Fortunately, q’s outputs are not totally arbitrary real numbers: since q approximates a Boolean
function g to error at most 1/3, we know that q(x) ∈ [−4/3,−2/3] ∪ [2/3, 4/3] for all x ∈ {−1, 1}n
(in particular, q never outputs values in the interval (−2/3, 2/3)). What we need is a way to make
p robust to q’s errors, in the sense that, for i = 1, . . . ,m, feeding q(xi) as the i’th input to p rather
than g(xi) does not substantially alter the output of p.

Sherstov [She12a], building on earlier work of [BNRdW07], showed how to accomplish this with
only a constant-factor increase in the degree of q. Specifically, he proved the following lemma,
whose proof we omit. However, in the next section (Theorem 19), we do prove a weaker result with
a far simpler (and algorithmically-inspired) proof, due to Buhrman et al. [BNRdW07].

Lemma 12 (Sherstov [She12a]). For any δ > 0 and any polynomial p : {−1, 1}m → [−4/3, 4/3]
there is a corresponding polynomial probust : Rm → R of degree O(deg p+ log 1/δ) that is robust to
noise in the inputs: |p(x)− probust(x+ ε)| < δ for all x ∈ {−1, 1}m and all ε ∈ [−1/3, 1/3]n.9

Accordingly, one can construct an approximating polynomial for f ◦ g by taking any (1/3)-
approximating polynomial q for g and any (1/4)-approximating polynomial p for f , applying

9Note that probust may not be multilinear, as Lemma 12 requires control of its behavior at inputs outside of
{−1, 1}m.
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Lemma 12 to p (with δ = 1/12) to obtain a polynomial probust with only a constant-factor
blowup in degree. Lemma 12 implies that for all inputs (x1, . . . , xm) ∈ {−1, 1}n·m to f ◦ g,
|(probust ◦ q)(x1, . . . , xm)− (f ◦ g)(x1, . . . , xm)| < (1/4) + (1/12) = 1/3.

In contrast to the situation for related measures such as quantum query complexity, it is still
open whether the bound in Theorem 11 is tight for every pair of functions f, g.

Open Problem 13. For every pair of total Boolean functions f, g, is it the case that d̃eg(f ◦ g) ≥
Ω(d̃eg(f) · d̃eg(g))?

4 Polynomials from Query Algorithms

4.1 A (Very) Brief Introduction to Query Complexity

In (deterministic) query complexity, an algorithm is given oracle access to the bits of an unknown
input x ∈ {−1, 1}n. Its goal is to evaluate a known function f on x by making as few queries to
the oracle as possible. Quantum query complexity is a generalization of this model wherein the
algorithm is allowed to make queries in superposition, and must output f(x) with probability at
least 2/3. Here, making queries in superposition roughly means that at each step, the algorithm
assigns an amplitude (the quantum analog of a probability) to each possible query that it might
make, in the same way a randomized algorithm at each step assigns a probability to each bit to
determine which one to query at random. We refer the reader to [Amb18] for details of the model
and a recent survey of results.

While quantum query complexity is an information-theoretic model (i.e., the query algorithm
is allowed to spend as long as it wants to decide which bits of x to query and to process the oracle’s
responses to the queries), it turns out to capture much of the power of quantum computing: Most
query-efficient quantum algorithms can be realized as time-efficient algorithms and vice versa.
While we draw heavily on intuition from quantum query complexity in this survey, we do not
require any details of the quantum query model beyond the (limited and vague) description given
above.

Beals et al. [BBC+01] proved a result that is central to our understanding of quantum query
complexity. They showed that for any quantum query algorithm for f making at most T queries
on every input, there is a polynomial p : {−1, 1}n → R of total degree at most 2T such that for all
x ∈ {−1, 1}n, p(x) equals the probability that the algorithm outputs −1 when run on input x.

Since this probability is at least 2/3 when f(x) = −1 and at most 1/3 when f(x) = 1, it follows
that 1− 2p(x) approximates f to error 2/3. In other words, if f is computed by a quantum query
algorithm of cost at most T , then the (2/3)-approximate degree of f is at most 2T .

This has two (equivalent) implications. The first is relevant to deriving approximate degree
upper bounds: if one can give a T -query quantum algorithm for f , then one can conclude that the
approximate degree of f is at most O(T ). The second is relevant to deriving quantum query lower

bounds: if one can show that d̃eg(f) ≥ d, then the quantum query complexity of f is at least Ω(d)
(see Theorem 70 in Section 10.1).
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4.2 Upper Bounds from Quantum Algorithms

4.2.1 The vanishing-error approximate degree of OR

Theorem 10 takes any (1/3)-approximation to f and turns it into an ε-approximation with an
O(log(1/ε))-factor blowup in degree. For many functions f , this is not the most efficient way to
obtain an ε-approximation. For example, recall from Lemma 7 that the approximate degree of OR
is O(

√
n). Applying Theorem 10 to f = OR would give an upper bound of O(

√
n · log(1/ε)). The

following result shows that the dependence on log(1/ε) can be improved quadratically. We show a
matching lower bound in Section 7.3.1.

Theorem 14 (Buhrman, Cleve, de Wolf, Zalka ([BCDWZ99])). For any ε ∈ [3−n, 1), d̃egε(ORn) =

O
(√

n log(1/ε)
)
.

Our preferred construction of an ε-approximating polynomial for OR derives the polynomial
from an ε-error quantum query algorithm for OR due to [BCDWZ99]. To understand this algorithm,
one need not know any details of the quantum query complexity model. All one needs to know is
the following fact about (a variant of) Grover’s search algorithm.

Fact 15. For any integer ℓ > 0, there is a quantum query algorithm Groverℓ making O(
√
n/ℓ)

queries to x such that

• If x has Hamming weight 0, the algorithm rejects with probability 1.

• If x has Hamming weight exactly ℓ, the algorithm accepts with probability 1.

• If ℓ < |x| ≤ n, the algorithm accepts with probability at least 2/3.

That is, Groverℓ computes OR(x) with error probability at most 1/3 under the promise that its
input has Hamming weight equal to 0 or at least ℓ. And moreover, its error probability is zero on
the input of Hamming weight 0 or any input of Hamming weight exactly ℓ.

For the reader interested in the underlying quantum algorithms, Fact 15 follows by combining
two standard variants of Grover search from [BHT98, BHMT02] that each individually makes
O(
√
n/ℓ) queries. The first is an “exact” version of search which identifies a marked item in an

unsorted list of n elements with probability 1 under the promise that exactly ℓ items are marked.
The second is a “promise” version of search that finds such a marked element with probability 2/3
under the promise that at least ℓ items are marked. The guarantee of Fact 15 follows by running
the exact version of search, and if it fails, running the promise version of search.

With these facts in hand, we now describe the ε-error quantum algorithm for OR of [BCDWZ99].

Let t = log(1/ε). For i = 1, 2, . . . , t, run Groveri on x and halt and accept if Groveri accepts.
Accept if any run accepts; otherwise reject.

Error Analysis. The above algorithm rejects with probability 1 when run on the input of Ham-
ming weight 0 because each call to Groveri for i = 1, . . . , t rejects with probability 1 when run on
this input. If run on an input x of Hamming weight between 1 and t, the algorithm accepts with
probability 1, because Grover|x| will be called on x and will accept with probability 1. Finally, if
run on an input x of Hamming weight more than t, the algorithm will accept with probability at
least 1− (1/3)t ≥ 1− ε, because each call to Groveri will independently accept with probability at
least 2/3.
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Query Cost. The number of queries the algorithm makes to the input is

t∑
i=1

O
(√

n/i
)
≤ O

(√
n log (1/ε)

)
.

The inequality here follows from the fact that
∑t

i=1 1/
√
i ≤ 1+

∫ t
1 1/

√
x dx = 1+2t1/2−1 = O(t1/2).

By the seminal result of Beals et al. [BBC+01] that the ε-error quantum query complexity
of any function f is, up to a constant factor, at least its ε-approximate degree, we may immedi-
ately conclude from the above algorithm that d̃egε(ORn) ≤ O(

√
n log(1/ε)). However, we find it

instructive to explicitly construct the ε-approximating polynomial, below.

Turning the algorithm into a polynomial. Let pi be the univariate polynomial of degree
O(
√
n/i) corresponding to the acceptance probability of Groveri, i.e., pi has the following four

properties.

• pi(0) = 0.

• pi(i) = 1.

• pi(r) ∈ [2/3, 1] for r ∈ {i, i+ 1, . . . , n},

• pi(r) ∈ [0, 1] for all r ∈ {0, 1, . . . , n}.
The polynomial pi can be constructed explicitly as follows. The construction of Section 3.2

(after a suitable affine transformation) yields a univariate polynomial Qn of degree O(
√
n) such

that Qn(0) = 0, Qn(1) = 1, Qn(k) ∈ [2/3, 1] for all k ∈ [1, n], and |Qn(k)| ≤ 1 for all k ∈ [0, n].
Defining

pi(k) := Qn/i(k/i) (10)

ensures that pi has degree O(
√
n/i) and has the four properties above.

Consider

p := p1 + p2 · (1− p1) + p3 · (1− p2) · (1− p1) + · · ·+ pt · (1− pt−1) · (1− pt−2) · . . . · (1− p2) · (1− p1)

where t = log(2/ε).
Intuitively, this captures the acceptance probability of the algorithm that, like [BCDWZ99],

first runs Grover1, and if it returns −1 then it halts and outputs −1, and if not it runs Grover2
and it halts and outputs −1, and if not it runs Grover3, and so forth up to Grovert.

Another way of expressing p is as p = 1 −
∏
i∈[t](1 − pi). Using this expression, it is easy to

check that:

• p(0) = 0.

• p(r) = 1 for r ∈ {1, . . . , t}. Indeed, pr(r) = 1 implies that
∏
i∈[t](1− pi(r)) = 0, so p(r) = 1.

• p(r) ∈ [1 − ε/2, 1] for r ∈ {t + 1, . . . , n}. That p(r) ≥ 1 − ε/2 follows from the fact that

pi(r) ≥ 2/3 for every i ∈ {1, . . . , t}, and hence p(r) ≥ 1−
(
1
3

)t ≥ 1− ε/2.

That p(r) ≤ 1 follows from the fact that pi(r) ∈ [0, 1] for every i, and hence
∏
i∈[t](1−pi(r)) ∈

[0, 1].

The degree of p is
∑t

i=1O
(√

n/i
)
= O

(√
n · t

)
= O

(√
n log(1/ε)

)
. Hence, −1 + 2p(|x|) is an

ε-approximation to ORn of degree O
(√

n log(1/ε)
)
.
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Additional discussion of error reduction. As previously discussed, Theorem 14 shows that
the generic error reduction result of Theorem 10 is not tight for OR, in that it yields a quadratically
suboptimal dependence on log(1/ε). In fact, it is not known whether Theorem 10 is tight for any
total Boolean function. As far as we know, it could even be the case that for every total function
f of approximate degree at most O(nc) for constant c ∈ (0, 1), the ε-approximate degree of f is at
most O(nc · log(1/ε)1−c).

Open Problem 16. For some constant c ∈ (0, 1) exhibit a total Boolean function f with ε-
approximate degree Θ(min{nc log(1/ε), n}) for all ε ∈ [2−n, 1/3], or show that no such function
exists.

4.3 Consequences of the Vanishing-Error Upper Bound for OR and AND

Theorem 17. Let f : {−1, 1}n → {−1, 1} be any Boolean function with |f−1(−1)| ≤ T , where

f−1(−1) = {x : f(x) = −1}. Then d̃egε(f) ≤ O
(√

n log T +
√
n log(1/ε)

)
.

Proof. First, we represent f as a sum of T conjunctions as follows. For each input y ∈ {−1, 1}n,
let EQy(x) : {−1, 1}n → {0, 1} denote the function that evaluates to 1 if and only if x = y. Then

f(x) = 1− 2
∑
y∈T

EQy(x).

Note that EQy(x) can be computed by composing (the negation of) OR with the degree-1 function
xi 7→ yixi.

Next, for each y ∈ T , let py denote a polynomial that approximates EQy(x) to error ε/T (this

can be done with degree O(
√
n log(T/ε)) by Theorem 14), and define p(x) = 1− 2

∑
y∈T py(x). By

the triangle inequality, p approximates f to error at most T · (ε/T ) = ε.

Consequences for symmetric functions. Suppose f : {−1, 1}n → {−1, 1} is a symmetric
function that is constant at all inputs of Hamming weight between t and n − t. Then either f
satisfies

|f−1(−1)| ≤ 2
t∑
i=0

(
n

t

)
≤ 2nt (11)

or the negation of f does. If f satisfies Equation (11) then Theorem 17 implies that d̃egε(f) ≤
O(

√
nt log n+

√
n log(1/ε)). This result is tight up to a

√
log n factor (the tight bound is O(

√
nt+√

n log(1/ε)) [dW08]). If the negation of f satisfies Equation (11) then we can draw the same
conclusion, as approximate degree is preserved under negation.

The results above approximate f by expressing f as a sum of conjunctions, approximates each
term of the sum to exponentially small error, and sums the approximations. The same technique
can be used to prove that the approximate degree of the Surjectivity function, SURJ, is Õ(n3/4).
We defer coverage of this result to Theorem 53 in Section 8.1.1. The technique arises yet again in
the Õ(n2/3) upper bound for Element Distinctness that we prove shortly, in Section 4.4.2.
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4.4 More Algorithmically Inspired Polynomials

4.4.1 Collision and PTP

Recall that the Collision and Permutation Testing (PTP) problems for domain size N and range
size R were defined in Section 2.2. For example, in the PTP problem, the goal is to distinguish the
case that the input list is a permutation, from the case that the list is far from any permutation.

The following quantum algorithm for the Collision and PTP problems, due to Brassard, Hoyer,
and Tapp [BHT97], solves both problems with query costO(N1/3). For an input list k = (k1, . . . , kN ) ∈
[R]N , we describe the algorithm assuming it can learn any ki with a single query; if the list is actu-

ally specified via a bit-vector x ∈
(
{−1, 1}logR

)N
as per Section 2.2, the query cost would increase

by a logR factor, as each ki can be learned with logR queries to bits of x.

For an input list k = (k1, . . . , kN ) ∈ [R]N , randomly sample a set S of N1/3 list elements. Let
k|S denote the sampled list elements and k|S̄ denote the unsampled list elements. If k|S contains
a collision, i.e., ki = kj for distinct i, j ∈ S, then halt and accept. Otherwise, let R ⊆ [R] denote
the range elements appearing in the sample, noting that R is now known to the algorithm. Apply
Groverℓ (see Fact 15) to k|S̄ with ℓ = |S|/100 to search for an element of R appearing in k|S̄ ,
accepting if such an element is found, and rejecting otherwise.

Query cost. The number of queries made by the algorithm is |S|, plus the number of queries
made by Groverℓ. In total, this is O(|S|+

√
N/|S|) = O(N1/3) queries.

Correctness analysis. For simplicity, we analyze the algorithm’s correctness for the Collision
problem, though a nearly identical analysis applies to PTP. If the input list k is 1-to-1, then the
algorithm will never find a collision and so it rejects with probability 1. If the input list k is 2-to-1,
then the algorithm accepts with probability at least 2/3. This is because, if k is a 2-to-1 input,
then either k|S contains a collision or else there are |S| > |S|/100 “cross-collisions” (i.e., j ̸∈ S such
that kj = ki for at least one ki ∈ S).

Explicit construction of the resulting polynomials. It is straightforward to translate this
quantum query algorithm into an explicit polynomial of degree O(N1/3 · logR) approximating the
Collision and PTP problems. For an input x ∈ {−1, 1}N , write x = (x1, . . . , xN ) ∈ ({−1, 1}logR)N .
For a set S ⊆ [N ], let x|S denote the subvector (xi : i ∈ S) ∈ ({−1, 1}logR)|S|. For a vector of range

elements r = (r1, . . . , r|S|) ∈ [R]N
1/3

, let EQr(x|S) denote that function that equals 1 if x|S is the
binary representation of r1, . . . , rN1/3 . Note that EQr(x|S) is computed exactly by a polynomial of
degree at most |S| logR. Finally, let inrr(x|S̄) ∈ {−1, 1}N−|S| be the bit-vector with entries indexed
by [N ] \ S such that (inrr(x|S̄))i equals −1 if and only if there is some j ∈ [|S|] with xi = rj . Note
that each entry of inrr(x|S̄) depends on only logR bits of x|S̄ , and hence is exactly computed by a
polynomial of degree logR.

Then consider the polynomial:

1(
N

N1/3

) ∑
S⊆[N ] : |S|=N1/3

pS(x) + qS(x), (12)
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where

pS(x) =
∑

r=(r1,...,rN1/3 )∈[R]N
1/3

: ri=rj for some i ̸=j

EQr(x|S)

and

qS(x) =
∑

r=(r1,...,rN1/3 )∈[R]N
1/3

: all ri are distinct

EQr(x|S) · pℓ(inrr (x|S̄)).

Here, pℓ is the polynomial capturing the acceptance probability of Groverℓ given in Equation (10)
of Section 4.2.1.

The polynomial in Equation (12) exactly computes the acceptance probability of the quantum
algorithm above. Intuitively, pS outputs 1 if the sample x|S contains a collision and 0 otherwise,
while qS(x) outputs the probability that the sample x|S does not contain a collision, yet Grover
search finds a “cross-collision”, i.e., an item outside of the sample that collides with an item in
the sample. Equation (12) outputs the average of these acceptance probabilities over the random
choice of S.

4.4.2 Element Distinctness

Recall from Section 2.2 that the k-distinctness function k-ED (for constant k) interprets its input
as a list of N numbers (k1, . . . , kN ) from a range of size R and outputs −1 if and only if there is
some range item that appears at least k times in the list. The special case k = 2 is a particularly
natural and is referred to as Element Distinctness, or ED for short. Much later in the survey,
Section 8.6 establishes a lower bound of Ω(N2/3) on the approximate degree of ED when R ≥ N .
In this section, we sketch a matching upper bound.

The upper bound has been known since the discovery of an O(N2/3)-query quantum algorithm
due to Ambainis [Amb07] (recall that Theorem 70 translates any quantum query algorithm for a
function f into an approximating polynomial for f). But an explicit description of an approximating
polynomial was not given until work of Sherstov [She18a]. We cover Sherstov’s construction, though
our presentation is quite different than the treatment in [She18a].

For illustration, we start by giving a simple quantum algorithm for the negation of ED that
makes O(N5/6) queries. This implies the existence of an approximating polynomial for ED of degree
O(N5/6). We then explain how to lower the degree bound to the optimal O(N2/3).

The O(N5/6)-query algorithm utilizes a subroutine with the following property. Say that a list
item ki is involved in a collision if there is some j ̸= i such that kj = ki. If there is any list item
involved in a collision, the subroutine will find the collision with probability at least 1/N2/3.

SUBROUTINE 1: Randomly sample b = N1/3 inputs, then determine if any sampled item is involved
in a collision. That is, randomly pick a set S ⊆ [N ] of size b and query {ki : i ∈ S}. Let {r1, . . . , rb}
denote the multiset of sampled range items. If there exist distinct i, j ∈ [b] such that ri = rj , halt
and accept. Otherwise, Grover-search over the un-sampled items {ki : i ̸∈ S} for an appearance
of one of r1, . . . , rb, accepting if Grover search finds such an appearance, and rejecting otherwise.
This costs O(b+

√
N) queries (b queries for the sample, O(

√
N) for the Grover search).

If there is one or more ki’s involved in a collision, the probability that at least one such ki
is sampled by SUBROUTINE 1 is at least b/N ≥ Ω(1/N2/3), and conditioned on this event, the
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probability that the subroutine accepts is at least 2/3. Meanwhile, if there is no ki involved in a
collision, then obviously the probability that SUBROUTINE 1 accepts is 0. Hence, by Theorem 70,
SUBROUTINE 1 can be transformed into a polynomial p of degree at most O(b +

√
N) such that

p(x) = 0 for all x ∈ (ED)−1(−1) while p(x) ≥ b/N for all x ∈ (ED)−1(1).
Using a technique in quantum algorithm design called amplitude amplification, one can boost

the success probability from Ω(b/N) to 2/3 while increasing the degree by a factor of O
(√

N/b
)
=

O
(
N1/3

)
. This yields a query upper bound of O(N1/2 ·N1/3) = O(N5/6). The following theorem

captures the analog of amplitude amplification in the context of approximate degree, yielding the
claimed O(N5/6) approximate degree upper bound for ED.

Theorem 18. Let f : {−1, 1}n → {−1, 1}. Suppose that there is a polynomial p of degree at
most d, such that p(x) = 0 for all x ∈ f−1(−1) and δ ≤ p(x) ≤ 1 for all x ∈ f−1(1). Then the

(1/3)-approximate degree of f is at most O
(
d ·
√
1/δ
)
.

Proof. Using Chebyshev polynomials (cf. Section 3.2), we can construct a univariate polynomial

A of degree O
(√

1/δ
)
such that A(0) = 1 and A(x) ∈ [−4/3,−2/3] for all x ∈ [−1 + δ, 1]. Then

−A(p(x)) approximates f to error 1/3 and has degree d · deg(A) ≤ O(d ·
√

1/δ).

In summary, we have identified a polynomial approximating ED of the form −A ◦ p, where A is
the polynomial of degree O(N1/3) appearing in the proof of Theorem 18 and p(x) is the acceptance
probability of SUBROUTINE 1 on input x.

A first attempt at improvement. How can one improve the above approximate degree upper
bound of O(N5/6)? First, let us replace the invocation of Grover search in SUBROUTINE 1, which
has query cost only O(

√
N) but has non-zero error probability, with an exact search (exact search

has trivial query cost Ω(N), but failure probability zero). Let q denote the acceptance probability
of this algorithm. Then just as for −A◦p, −A◦q is a (1/3)-approximation to ED, though its degree
is much larger than that of −A ◦ p.

What actually works. The key idea is that, owing to its composed structure, A◦ q itself can be
approximated pointwise by a polynomial of degree just O(N2/3), despite the fact that q itself has
degree Ω(N). Since −A ◦ q approximates ED, any sufficiently accurate pointwise approximation to
−A ◦ q will itself approximate ED.

To approximate A ◦ q, the idea is to express A ◦ q as a weighted sum of 2O(deg(A)) terms, with
each term equal to a power of (1− q), i.e., of the form ci · (1− q(x))i for some ci ∈ R and integer
i ≤ deg(A). We will then approximate each term to exponentially small error, ensuring that the
sum of the term-by-term approximations is a good approximation to A ◦ q.

For example, if A(t) = 2t3 − 4t2 + 3t− 1, then

(A ◦ q)(x) = 2q(x)3 − 4q(x)2 + 3q(x)− 1 = −2(1− q(x))3 + 2(1− q(x))2 − (1− q(x)).

If we approximate the three terms in this expression, namely −2(1 − q(x))3, 2(1 − q(x))2, and
−(1 − q(x)), individually to error 1/12 and sum the approximations, we obtain a polynomial Q
such that |Q(x)−(A◦q)(x)| ≤ 3 ·1/12 = 1/4 for all x in the domain of ED. Note that this technique
is identical to that used to approximate any symmetric function (Theorem 17) and to approximate
SURJ (Theorem 53). Details follow.
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As the polynomial A from Theorem 18 is derived from the Chebyshev polynomial of degree
deg(A), it can be shown that the ℓ1-norm of the coefficients of A is 2O(deg(A)). That is,

A(x) =

deg(A)∑
i=0

ci · (1− q(x))i

for some real numbers c0, . . . , cdeg(A) such that

deg(A)∑
i=0

|ci| ≤ 2O(deg(A)).

Hence, it suffices to approximate each power (1− q(x))i of q(x) to error ε = 2−Θ(deg(A)). Summing
the approximations yields a polynomial Q such that |Q(x)− (A ◦ q)(x)| ≤ ε · 2O(deg(A)) ≤ o(1) for
all inputs x to ED.

What degree suffices to approximate (1 − q(x))i to error ε? Since q specifies the acceptance
probability of SUBROUTINE 1 (modified to use exact search rather than Grover search), the quan-
tity

(1− q(x))i

captures the probability that i independent runs of SUBROUTINE 1 all output reject. Here, run-
ning i ≤ deg(A) independent instances of SUBROUTINE 1 corresponds to taking i independent
subsamples of the input list, with each subsample having size b, and then for each subsample (if
there is no collision within the subsample), determining whether any range item from the sample
appears elsewhere in the input list.

The key insight is that the above probability is unchanged if we do not run deg(A) independent
searches, one for each subsample of size b, but rather run a single search, looking for a second
occurrence of any range item in the “combined” subsample of size b · deg(A). If the single search
procedure fails to find a second occurrence of a range item from the combined sample, this is
equivalent to the failure of all deg(A) independent searches, one for each subsample.

Performing the single search procedure using ε-error Grover search (Section 4.2.1), the ac-
ceptance probability of this algorithm can be approximated to error ε = 2−Θ(deg(A)) with degree

O
(
b · deg(A) +

√
n · log(1/ε)

)
= O(N2/3) as claimed. Here, b · deg(A) comes from computing

deg(A) subsamples each of size b, and
√
n · log(1/ε) comes from running an ε-error Grover search

procedure to determine if any range item from any of the deg(A) subsamples appears amongst the
N − b · deg(A) un-sampled items in the input list.

4.5 Algorithmically-Inspired Upper Bound for Composed Functions

We now prove a weaker version of Theorem 11, which upper bounds the approximate degree of a
composed function f ◦ g by the product of the approximate degree of f and the δ′-approximate
degree of g where δ′ is much lower than in Theorem 11, namely O(1/m) rather than a positive
constant. The reason we include this theorem despite its sub-optimality is that it has a clean,
algorithmically-inspired proof.

Theorem 19. Let ε, δ > 0 and suppose that f : {−1, 1}m → {−1, 1} satisfies d̃egε(f) ≤ d and

g : {−1, 1}n → {−1, 1} satisfies d̃egδ/m(g) ≤ d′. Then d̃egε+δ(f ◦ g) ≤ d · d′.
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Proof. For purposes of this proof, it will be convenient to treat f as a function mapping {0, 1}m →
{0, 1} rather than mapping {−1, 1}m → {−1, 1}, and accordingly to treat g as function from {0, 1}n
to {0, 1}.

Let p be a polynomial of degree that approximates f to error ε, i.e., |p(x) − f(x)| ≤ ε for all
x ∈ {0, 1}m. Similarly, let q be a polynomial that approximates g to error at most δ/m. We claim
that p ◦ q approximates f ◦ g to error at most ε+ δ.

The intuition for why this is true is as follows. Suppose that the polynomials p and q, when
evaluated on a Boolean input, output the acceptance probability of randomized query algorithms
Af and Ag when run on that input. That is, one can think of p(x) as the probability that Af

accepts when run on input x, and similarly q(y) as the probability that Ag accepts when run on
input y.10 The fact that p approximates f to error ε means that, on each input y in {0, 1}m, Af

errs when run on y with probability at most ε (i.e., accepts inputs in f−1(0) or rejects inputs in
f−1(1)), and similarly for Ag.

Let (x1, . . . , xm) ∈ ({0, 1}n)m denote an input to f ◦g, and let y = (g(x1), . . . , g(xm)) ∈ {0, 1}m.
Then it turns out that p◦q is the acceptance probability of the natural “composed algorithm” Af◦g
that runs Af on y, and every time Af queries a bit yi of y, it answers the query by running Ag

on xi. Since Ag errs with probability at most δ/m, then by a union bound over all (at most m)
calls to Ag, with probability at least 1 − δ, Ag returns g(xi) for every i on which it is called. In
this case, the composed algorithm returns the same answer that Af returns when run on input
y = (g(x1), . . . , g(xm)). Since Af itself errs with probability at most ε, the error probability of
Af◦g is at most ε + δ. Since (p ◦ q)(x1, . . . , xm) is the acceptance probability of Af◦g on input
(x1, . . . , xm), this means that p ◦ q approximates f ◦ g to error at most ε+ δ.

Here is the formal analysis. Let us assume that q(x) ∈ [0, 1] for all x ∈ {0, 1}n and p(y) ∈ [0, 1]
for all y ∈ {0, 1}m.11 Recall that p is a multilinear polynomial. Since for any (x1, . . . , xm) ∈
({0, 1}n)m, (q(x1), . . . , q(xm)) ∈ [0, 1]m, Fact 20 below implies that p(x1, . . . , xm) equals the expec-
tation of p(y) under the product distribution over y ∈ {0, 1}m in which yi = 1 with probability
q(xi). Since q approximates g to error at most δ/m, the ith coordinate in this product distribution
equals g(xi) with probability at least 1−δ/m. By a union bound of all m coordinates, this product
distribution places mass at least 1− δ on the point (g(x1), . . . , g(xm)). Hence, p(q(x1), . . . , q(xm))
lies in the interval

[p(g(x1), . . . , g(xm))− δ, p(g(x1), . . . , g(xm)) + δ].

Since |p(y)− f(y)| ≤ ε for all y ∈ {0, 1}m, this implies that

|p(q(x1), . . . , q(xm))− f(g(x1), . . . , g(xm))| ≤ ε+ δ.

Fact 20. For any multilinear polynomial q : Rn → R and point (u1, . . . , un) ∈ [0, 1]n, q(u1, . . . , un)
equals the expected value of q under the product distribution in which the ith coordinate is chosen
to equal 1 with probability ui and 0 with probability (1− ui).

10In general, p and q may not actually correspond to the acceptance probability of any low-query algorithm, even
if they output values in [0, 1] when evaluated at any Boolean input. That is, although for any T -query randomized
algorithm, there exists a degree-T polynomial computing its acceptance probability on each input, the converse is not
true [Amb06, She18a] (see Section 8.2 for details). Nonetheless, thinking of p and q as if they do compute acceptance
probabilities of query algorithms can be a powerful source of intuition regarding their behavior.

11In general, a (δ/m)-approximation q to g can take values in [−δ/m, 1+δ/m], but the assumption can be ensured
by replacing q with (q(x) + δ/m) /(1 + 2δ/m). This maintains the degree of q while increasing the error to at most
2δ/m. Similarly, p can be assumed to only take values in [0, 1] with at most a doubling of its error.
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Proof. By linearity of expectation, it suffices to consider a multilinear polynomial q consisting of a
single monomial, say, q(x) = x1 · x2 . . . xi. In this case, the statement is immediate from the fact
that the expectation of the product of independent random variables equals the product of their
expectations.

5 Lower Bounds by Symmetrization

Prior to the development of the method of dual polynomials (Section 6), approximate degree lower
bounds were typically proved via a technique called symmetrization. The ethos of this technique
is that univariate polynomials are generally easier to understand than multivariate polynomials.
Hence, symmetrization seeks to reduce the task of lower bounding the ε-approximate degree of
a multivariate function f to a question about univariate polynomials. This is usually done by
generically transforming an n-variate polynomial p into a univariate polynomial q without increasing
its degree. One then argues that if p satisfies Condition (1), then q exhibits some behavior that
forces it to have large degree. Since deg(q) lower bounds deg(p), one concludes that p must have
large degree as well.

The transformation giving q is often built from a sequence of probability distributions Dt over
{−1, 1}n, where t ranges over a (finite or infinite) subset S of R. One then shows that for any
n-variate polynomial p, its symmetrization q(t) = Ex∼Dt [p(x)] is a univariate polynomial of degree
at most deg(p) over t ∈ S. Here are two classic examples.

• (t-biased symmetrization): Let S be the interval [−1, 1]. For t ∈ S, let µt be the distribution
over {−1, 1} with expected value t. Let Bt be the product distribution µ⊗nt on {−1, 1}n.

• (Minsky–Papert symmetrization): Let S = [n]∗. For each t ∈ S, define Ht to be the uniform
distribution over x ∈ {−1, 1}n with Hamming weight t (i.e., exactly t entries equal to −1).

The next two lemmas show that both of these classic symmetrization techniques are indeed
degree non-increasing maps from n-variate to univariate polynomials.

Lemma 21. For any polynomial p : {−1, 1}n → R of total degree at most d, the univariate function
q(t) = Ex∼Bt [p(x)] is a polynomial of degree at most d over [−1, 1].

Proof. By linearity of expectation, it is without loss of generality to consider a polynomial p con-
sisting of a single monomial, e.g., p(x) = x1x2 . . . xd. Then since Bt is a product distribution,

Ex∼Bt [p(x)] = Ex1∼µt [x1] · Ex2∼µt [x2] · . . . · Exd∼µt [xd] = td.

Lemma 22. For any polynomial p : {−1, 1}n → R of total degree at most d, the univariate function
q(t) = Ex∼Ht [p(x)] is a polynomial of degree at most d over [n]∗.

Proof. Again, it is without loss of generality to assume p is a single monomial, e.g., p(x) =
x1x2 . . . xd. Applying the variable transformation xi 7→ (1 − xi) does not alter the degree of p,
and hence it is also without loss of generality to assume that p(x) = (1− x1) · (1− x2) · · · (1− xd).
In this case, for x ∈ {−1, 1}n we have p(x) = 2d if x1 = x2 = · · · = xd = −1 and p(x) = 0 otherwise.
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For any t ∈ [n]∗, the number of n-bit inputs with Hamming weight exactly t is
(
n
t

)
, while the

number of such inputs that additionally satisfy x1 = x2 = · · · = xd = −1 is
(
n−d
t−d
)
. (We are using

the convention that if t− d is negative, then
(
n−d
t−d
)
is 0.) It follows that, for any t ∈ [n]∗,

Ex∼Ht [p(x)] = 2d ·
(
n−d
t−d
)(

n
t

) =

(
2d · (n− d)!

n!

)
· t(t− 1)(t− 2) · · · (t− d+ 1)

or the zero polynomial. Either way, this is a polynomial in t of degree at most d.

5.1 Symmetrization Lower Bound for OR

The tight Ω(
√
n) lower bound for the approximate degree of ORn follows easily from Lemma 21

and Markov’s inequality (Theorem 6). In short, the proof applies Lemma 21 to any polynomial p
approximating ORn to derive a univariate polynomial q(t) that is bounded on the whole interval
[−1, 1] but has a large “jump” in the vicinity of t = 1 (quantitatively, a derivative of Ω(n)).
Markov’s inequality then implies that q has degree Ω(

√
n).

Theorem 23. The approximate degree of ORn is Ω(
√
n).

Proof. Let p approximate ORn to error at most 1/3, and let q be the univariate polynomial whose
existence is guaranteed by Lemma 21. Since the distribution B1 assigns probability 1 to the input
1n, we may conclude that q(1) = p(1n) ∈ [2/3, 4/3].

Now let t = 1− 4/n. Then Bt assigns probability mass at most (1− 2/n)n < 1/e2 to 1n, where
the inequality holds by Fact 2. Hence,

q(1− 4/n) = Ex∼Bt [p(x)] ≤ (4/3) · 1/e2 + (−2/3) · (1− 1/e2) ≤ −1/3.

The Mean Value Theorem now implies that there is some t∗ ∈ (1− 4/n, 1) such that q′(t∗) ≥ n/4.
Finally, since it approximates ORn, the polynomial p has magnitude at most 4/3 over the entire

Boolean hypercube {−1, 1}n. Hence q(t) ∈ [−4/3, 4/3] for all t ∈ [−1, 1] as well. Applying Markov’s
inequality to 3

4q now implies that deg(p) ≥ deg(q) ≥
√
3n/16.

An alternative proof using Minsky-Papert Symmtrization. Our proof of Theorem 23
derived the Ω(

√
n) lower bound for ORn from t-biased symmetrization (Lemma 21). The bound can

also be derived from Minsky-Papert symmetrization (Lemma 22), but the derivation is complicated
by the fact that the univariate polynomial q(t) = Ex∼Ht [p(x)] in Lemma 22 is not a priori guaranteed
to be bounded in magnitude at inputs non-integer values between 0 and n. This prevents a direct
application of Markov’s inequality even to affine transformations of q, as Markov’s inequality applies
only to polynomials bounded over the real interval [−1, 1].

Our preferred way to address this issue is to invoke a result of Coppersmith and Rivlin [CR92],
which states that any degree-d polynomial that is bounded at integer inputs in [0, n] cannot be
larger than 2O(d2/n) even at non-integer inputs within the same interval (we do not prove this result
in this survey).

Theorem 24 (Coppersmith and Rivlin [CR92]). For every univariate polynomial q of degree d
such that |q(x)| ≤ 1 for all integers x ∈ [0, n], we have |q(x)| < a ·2bd2/n for all real x ∈ [0, n], where
a, b > 0 are universal constants.
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Combined with Lemma 22, this rules out an approximating polynomial for ORn of degree o(
√
n).

If such a polynomial existed, then Lemma 22 would turn it into a univariate polynomial q of degree
≪

√
n such that q(0) ∈ [2/3, 4/3], q(1) ∈ [−4/3,−2/3], and |q(t)| ≤ 4/3 for all t ∈ [n]∗. Moreover,

since d2/n < 1, Theorem 24 guarantees that there is a universal constant c such that |q(x)| ≤ c for
all real numbers x ∈ [0, n]. That is, for degrees smaller than

√
n, boundedness at integer inputs

implies boundness even at non-integer inputs in the same interval. Hence, letting C = max{c, 4/3},
Q(x) := (1/C) · q((1 − x)/2) is a univariate polynomial of degree ≪

√
n such that Q′(x) ≥ Ω(n)

for some x ∈ [1 − 2/n, 1] (here, we are invoking the Mean Value Theorem just as in the proof of
Theorem 23). Moreover, |Q(x)| ≤ 1 for all real numbers x ∈ [−1, 1]. But this contradicts Markov’s
inequality.

Application: Optimality of Grover’s search algorithm. Recall from Section 4.1 that an
approximate degree lower bound for f implies a lower bound on the quantum query complexity of f .
Theorem 23 thus implies that the quantum query complexity of ORn is Ω(

√
n), matching the upper

bound achievable via Grover’s search algorithm (Section 4.2.1). Equivalently, to quote the most
recent tagline of Scott Aaronson’s blog, “quantum computers need ∼

√
n queries to search a list of

size n.” While this did not give the first tight quantum query lower bound proof for ORn—it was first
proved by Bennett et al. [BBBV97] using different techniques—the proof via approximate degree
has other consequences in quantum complexity. We will see later (Section 10) that approximate
degree lower bounds extend in a black-box manner from quantum query to quantum communication
lower bounds [She11, SZ09]. In particular, the lower bound for ORn transfers to a tight Ω(

√
n) lower

bound on the quantum communication complexity of the Disjointness function, DISJ, an important
result (first proved by Razborov [Raz03]) that is not known to follow from other techniques for
lower bounding quantum query complexity. We cover this result in this survey (Corollary 82 in
Section 10.4.3).

5.2 Arbitrary Symmetric Functions

Threshold degree lower bound via Minsky-Papert symmetrization. Let f(x) : {−1, 1}n →
{−1, 1} be a symmetric Boolean function such that f(x) = F (|x|) for all x ∈ {−1, 1}n. Suppose
that F (i − 1) ̸= F (i) for k values of i ∈ [n]. We saw in Section 3.1 that deg±(F ) ≤ k. Here
we prove a matching lower bound. Let p be a polynomial that sign-represents f and let q be the
Minsky-Papert symmetrization of p as per Lemma 22. Then q is a univariate polyonmial of degree
at most deg(p), and q(i− 1) ̸= q(i) for k values of i ∈ [n]. If k > 0, this means that q is a non-zero
polynomial with at least k roots, and hence deg(q) ≥ k. Since deg(q) ≤ deg(p), we conclude that
the sign-representation p for f has degree at least k.

Approximate degree lower bound via Minsky-Papert symmetrization. Recall from Sec-
tion 4.3 that if f is a symmetric function that is constant on all inputs of Hamming weight be-
tween t and n − t with t ≤ n/2, then d̃eg(f) = O(

√
nt). Here, we sketch a proof of a match-

ing lower bound. For simplicity, let us focus on the symmetric t-threshold function on n bits,
THRtn : {−1, 1}n → {−1, 1}, for which THRtn(x) = −1 if and only if |x| ≥ t. The lower bound

d̃eg(THRtn) ≥ Ω(
√
tn) was originally proved by Paturi [Pat92] using symmetrization, and a variant

of Markov’s inequality (Theorem 6) called the Markov-Bernstein inequality. Our sketch of Paturi’s
analysis in this section omits some technical details. We give a different proof of the result via the
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method of dual polynomials in Section 7.3.2.

Theorem 25 (Markov-Bernstein inequality). Let g be a univariate polynomial of degree at most
d such that |g(x)| ≤ 1 for all x ∈ [−1, 1]. Then |g′(x)| ≤ O(d/

√
1− x2) for all x ∈ [−1, 1] such that√

1− x2 ≥ 1/d.

The idea of Paturi’s analysis is the following. Let p be a polynomial approximation to THRtn of
degree d, and let q be its Minsky-Papert symmetrization (Lemma 22). Then Q(ℓ) := q(n(ℓ+ 1)/2)
is a univariate polynomial of degree at most d and satisfies

|Q(ℓ)| ≤ 1 for all ℓ ∈ [−1, 1] that are integer multiplies of 2/n. (13)

Moreover, Q(−1 + 2(t− 1)/n) ∈ [2/3, 4/3], while Q(−1 + 2t/n) ∈ [−4/3,−2/3], and hence there is
some x∗ ∈ [−1 + 2t/n− 2/n,−1 + 2t/n] with Q′(x∗) ≥ n/2.

If Equation (13) actually guaranteed |Q(ℓ)| ≤ 1 for all real numbers ℓ ∈ [−1, 1], we could apply
Theorem 25 to conclude that d ≥ Ω(

√
nt). To see this, observe that:

d/
√

1− (x∗)2 = d/
√

1− (1−O(t/n))2 = d/
√
O(t/n) = O

(
d
√
t/n
)
.

Since Q′(x∗) ≥ n/2, d must be large enough to ensure that d
√
t/n ≥ Ω(n), and hence d ≥ Ω

(√
nt
)
.

In the case that d ≤
√
n, Coppersmith-Rivlin’s result (Theorem 24) implies that Equation (13)

in fact implies that |Q(ℓ)| ≤ 2O(d2/n) = O(1) for all real numbers ℓ ∈ [−1, 1]. However, for larger
values of d, Equation (13) does not guarantee that |Q(ℓ)| ≤ 1 for all real numbers ℓ ∈ [−1, 1]. So
Paturi’s proof involves a tricky case analysis to handle the situation when Q(ℓ) may be extremely
large at inputs in [−1, 1] that are not integer multiples of 2/n.

5.3 Threshold Degree Lower Bound for the Minsky-Papert CNF

Recall that in Lemma 8 and Lemma 9, we established two different upper bounds on the threshold
degree of the Minsky-Papert CNF, ANDm◦ORb, one based on Chebyshev approximations to ORb and
one based on rational approximations. Minsky and Papert [MP69] gave a classic symmetrization
argument showing that one of these approximation techniques is always optimal, at least up to an
O(

√
logm) factor.

Theorem 26. deg±(ANDm ◦ ORb) ≥ Ω(min{m, b1/2}).

At a high level, Minsky and Papert’s proof works as follows. They use a generalization of
Lemma 22 (Lemma 27 below) to show that if p sign-represents ANDm ◦ OR4m2 , then there exist
a polynomial q : ([4m2]∗)m → R such that q(t1, . . . , tm) > 0 iff ti = 0 for some index i. The
polynomial q can then be symmetrized once again (while at most doubling its degree) into a
univariate polynomial q̃ : [2m]∗ → R that changes sign m times as its input increases from 0 to 2m.
Such a polynomial requires degree at least m, so (up to a factor of 2) q does as well, and hence so
does the original polynomial p. Details follow.

Proof of Theorem 26. We need the following generalization of Lemma 22.

Lemma 27. Let p : Rm·b → R be any polynomial of total degree most d. Then there is a degree
d polynomial q : Rm → R such that the following holds. Let x = (x1, . . . , xm) denote an arbitrary
input in ({−1, 1}b)m. For all integers ℓ1, . . . , ℓm ∈ [b]∗,

q(ℓ1, . . . , ℓm) = Ex=(x1,...,xm) : |xi|=ℓi for i=1,...,m[p(x)].
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Proof. By linearity, it suffices to prove the lemma when p =
∏m
i=1 pi(xi) where

∑m
i=1 deg(pi) ≤ d.

By Lemma 22, for each pi there is some univariate polynomial qi of degree at most deg(pi) such that
for all ℓi ∈ [b]∗, q(ℓi) = Exi∈{−1,1}b : |xi|=ℓi [pi(xi)]. Hence, we can let q(ℓ1, . . . , ℓm) =

∏m
i=1 qi(ℓi).

Without loss of generality, let us assume that 4m2 ≤ b (if not, then apply the argument to
follow to ANDm′ ◦ ORb for m′ := ⌈(b/4)1/2⌉, which is a subfunction of ANDm ◦ ORb). We prove a
lower bound of m on the threshold degree of ANDm ◦ ORb.

Let p be a sign-representing polynomial for ANDm ◦ ORb and q be the m-variate polynomial
whose existence is guaranteed by applying Lemma 27 to p. Consider the univariate polynomial

q̃(t) = q
(
(t− 0)2, (t− 2)2, (t− 4)2, . . . , (t− 2(m− 1))2

)
. (14)

Clearly, deg(q̃) ≤ 2 deg(q) ≤ 2 deg(p). Observe that if t is an integer in the set [2m − 1]∗ =
{0, 1, . . . , 2m− 1}, then all inputs to q on the right hand side of Equation (14) are in the set [b]∗.

If t is odd, then each of the integers fed into q, namely (t− 2i)2 for i = 0, 1, . . . ,m− 1, is equal
to the square of a non-zero integer, and hence strictly greater than 0. Since q was obtained by
applying Lemma 27 to a polynomial p that sign-represents ANDm ◦ ORb, it follows that q̃(t) < 0
for odd values of t in [2m− 1]∗.

Meanwhile, if t = 2i is an even integer in [2m−1]∗, then there is one value fed into q on the right
hand side of Equation (14) that equals 0 (namely the value (t− 2i)2 = 0). Since q was obtained by
applying Lemma 27 to a polynomial p that sign-represents ANDt ◦ ORb, this implies that q̃(t) > 0
for even values of t in [2m− 1]∗.

The above means that q̃ is a polynomial that changes sign at least 2m − 1 times as its input
increases from 0 to 2m− 1. It follows that q̃ has at least 2m− 1 zeros. Since q̃ is not constant, it
must have degree at least 2m− 1. Since deg(q̃) ≤ 2 deg(p), p has degree at least m.

Preview: Applications to learning, circuits, and communication. In a 1969 book,12 Min-
sky and Papert showed that their CNF has threshold degree Ω(n1/3), and also that the Parity
function has threshold degree n (this follows from Section 5.2). Equivalently, polynomial threshold
functions (introduced in Section 2.1) require degree Ω(n1/3) and Ω(n) even to compute functions
as simple as CNFs and Parity.

Polynomial threshold functions can be thought of as very simple (depth-one or depth-two)
neural networks. Hence, these results were interpreted by some researchers as establishing very
strong limitations on the expressiveness of neural networks, and are often said to have helped bring
about the “first AI winter,” which was a sharp decline in research on neural networks in the 1970s.13

Despite the limitations on their expressiveness discussed above, low-degree polynomial threshold
functions still have applications in computational learning theory. As we discuss in Section 11.2, if C
is a class of functions, all of which have low threshold degree, then there is a learning algorithm for C
in the so-called Probability Approximately Correctly (PAC) model that runs in time exponential in
d. Klivans and Servedio [KS04] showed that the threshold degree of any polynomial size CNF is at
most Õ(n1/3), thereby obtaining an algorithm for PAC-learning CNF formulas in time exponential

12Minksy and Papert’s book was titled Perceptrons, a historic term synonymous with halfspaces, also known as
linear threshold functions.

13Of course, polynomial threshold functions are an extremely simple kind of neural network—deeper networks
(that also differ from Perceptrons in other ways, e.g., by outputting real numbers rather than merely Boolean values)
are more expressive and have proven central to progress in machine learning in recent years.
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in n1/3. This remains the fastest known algorithm for this problem. Up to logarithmic factors, the
Minsky–Papert CNF thus has the largest possible threshold degree amongst all CNFs.

As with bounded-error approximate degree (see the end of Section 5.1), generic theorems are
known that translate threshold degree lower bounds into communication lower bounds. For ex-
ample, Sherstov [She09, She11] showed how Theorem 26 implies an Ω(n1/3) lower bound on the
PP communication complexity of a problem computed by a polynomial-size depth-3 circuit. As
a consequence, such a circuit cannot be computed by depth-2 majority circuits of subexponen-
tial size, despite the fact that quasipolynomial-size depth-3 majority circuits can compute all of
AC0 [All89]. This result was later strengthened by Razborov and Sherstov [RS10] to show that
the same polynomial-size depth-3 circuit cannot be computed efficiently in the even more pow-
erful UPP communication model, answering an old open question of Babai, Frankl, and Simon
[BFS86] regarding the relationship between UPP and the communication analog of the polynomial
hierarchy.

These results and applications (as well as definitions of the PP and UPP communication
models) are covered in detail in Section 10.

6 The Method of Dual Polynomials

Symmetrization arguments are quite powerful and have been used to determine the ε-approximate
degree of many important functions. This includes all symmetric functions—those which depend
only on the Hamming weight of the input [Pat92]. More sophisticated (and ad hoc) symmetrization
arguments have also been applied to classes of non-symmetric functions such as halfspaces [She13b,
She13c] and other functions central to quantum computing, cryptography, and circuit complexity
[MP69, AS04], including the Minsky–Papert CNF as we have seen (Theorem 26).

Nevertheless, we should not expect symmetrization arguments to yield tight lower bounds for
arbitrary functions. Approximating an n-variate function f is inherently a multivariate question.
Unless f itself exhibits symmetric structure, it seems unlikely that a univariate function could fully
capture the resistance of f to approximation by low-degree n-variate polynomials.

In contrast, a more recent lower bound technique called the method of dual polynomials is
“lossless” in the sense that for any function f and any setting of the error parameter ε, the method
is in principle capable of proving a tight lower bound on degε(f). Here is how the method works.
Fix a function f : {−1, 1}n → {−1, 1} of interest and a degree bound d. What is the smallest error
to which any polynomial of degree less than d can approximate f? The answer to this question is
the value of the following linear program. It has

(
n
<d

)
+1 variables, one for each coefficient of p and

one for the error parameter ε, and 2 · 2n linear constraints that force p to approximate f to error
at most ε at each input x ∈ {−1, 1}n.

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p < d

Taking the dual yields the following linear program, which has 2n real-valued variables, one for
each x ∈ {−1, 1}n.14 It is helpful to think of these 2n variables as comprising all evaluations of a

14Excellent introductions to linear-programming duality can be found at [O’D11] and [Vaz01, Chapter 12].
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real-valued function ψ : {−1, 1}n → R.

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)p(x) = 0 for all p with deg p < d

ψ(x) ∈ R for all x ∈ {−1, 1}n

Weak LP duality implies that in order to prove that degε(f) ≥ d, it suffices to identify a function
ψ : {−1, 1}n → R satisfying the following three conditions.∑

x∈{−1,1}n
ψ(x)f(x) > ε (15)

∑
x∈{−1,1}n

|ψ(x)| = 1 (16)

∑
x∈{−1,1}n

ψ(x)p(x) = 0 for all polynomials p of degree less than d. (17)

Strong LP duality, moreover, implies that every approximate degree lower bound on f is wit-
nessed by such a ψ. Such a ψ is called a dual polynomial for f . We refer to Condition (15) by
saying that ψ has correlation at least ε with f , to Condition (16) by saying that ψ has ℓ1-norm 1,
and to Condition (17) by saying that ψ has pure high degree at least d, denoting the largest such
d by phd(ψ). This terminology comes from the fact that ψ satisfies Condition (17) if and only if
its representation as a multilinear polynomial is a sum only of monomials with degree at least d.
We use ∥ψ∥1 =

∑
x∈{−1,1}n |ψ(x)| to denote the ℓ1-norm of ψ and ⟨ψ,φ⟩ =

∑
x∈{−1,1}n ψ(x)φ(x) to

denote the correlation of any two functions ψ,φ : {−1, 1}n → R.
We encapsulate the discussion above with the following statement.

Theorem 28. Let f : {−1, 1}n → {−1, 1}. Then for every ε > 0, we have degε(f) ≥ d if and only
if there exists a dual polynomial ψ : {−1, 1}n → R meeting conditions (15), (16), and (17) above.

One may find it helpful to think of ψ as capturing the “component” of f that is “completely
missed” by polynomials of degree less than d. Indeed, the pure high degree condition means that
every such polynomial p is totally uncorrelated with ψ. If ψ is well-correlated with f , then it means
that ψ is a “big part” of f and hence such p must incur a lot of error when approximating f .

Decomposing dual polynomials into pieces. It can be fruitful to think of ψ as consisting of
two pieces. There are in fact two natural ways to perform such a decomposition.

• We can think of

ψ =
1

2
(ψ+1 − ψ−1) (18)
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where ψ−1 = 2max{−ψ(x), 0} and ψ+1 = 2max{ψ(x), 0} are non-negative functions. We
think of ψ+1 as the “positive part” of ψ and ψ−1 as the “negative part”. The factor of 2 is
chosen to ensure that ψ−1 and ψ+1 are probability mass functions. Indeed, so long as ψ has
pure high degree at least 1 (implying it is uncorrelated with the constant-1 function), then
since ψ has ℓ1-norm 1, it must be the case that ∥ψ−1∥1 = ∥ψ+1∥1 = 1. The pure high degree
condition ensures that no degree-d polynomial can distinguish the distributions ψ−1 and ψ+1

with any advantage over random guessing,15 while the correlation condition guarantees that
f can distinguish ψ−1 and ψ+1 with advantage ε. This perspective has been helpful in using
approximate degree lower bounds to design low-complexity secret-sharing schemes [BIVW16]
(see Section 11.1).

• Alternatively, we can think of ψ(x) as consisting of a sign, sgn(ψ(x)) ∈ {−1, 1}, and a
magnitude |ψ(x)|, so that ψ(x) = sgn(ψ(x)) · |ψ(x)|. The sign sgn(ψ(x)) can be thought of
as ψ’s “prediction” for f(x) and the magnitude |ψ(x)| as a measure of ψ’s confidence in its
prediction. The correlation requirement (Equation (15)) ensures that ψ’s predictions, when
weighted by its confidence, are accurate on average. With this in mind, we say that ψ makes
an error at x if sgn(ψ(x)) · f(x) < 0.

When ψ has ℓ1-norm 1, we use |ψ| to denote the probability distribution under which x is
assigned probability |ψ(x)|. Observe that the correlation ⟨ψ, f⟩ equals

Pr
x∼|ψ|

[sgn(ψ(x)) = f(x)]− Pr
x∼|ψ|

[sgn(ψ(x)) ̸= f(x)] = 1− 2 Pr
x∼|ψ|

[sgn(ψ(x)) ̸= f(x)].

If ψ weakly sign-represents f (i.e., ψ never makes an error), then ⟨ψ, f⟩ = 1. In this case we
say that ψ is perfectly correlated with f . This means that for every ε < 1, ψ demonstrates
that the ε-approximate degree of f is at least phd(ψ); equivalently, deg±(f) is at least phd(ψ).

This discussion leads us to the following explicit characterization of threshold degree.

Theorem 29. Let f : {−1, 1}n → {−1, 1}. Then deg±(f) ≥ d if and only if there exists a dual
polynomial ψ : {−1, 1}n → R such that

ψ(x)f(x) ≥ 0 for all x ∈ {−1, 1}n (19)∑
x∈{−1,1}n

|ψ(x)| = 1 (20)

∑
x∈{−1,1}n

ψ(x)p(x) = 0 for all polynomials p of degree less than d. (21)

15A polynomial p distinguishes two probability distributions µ and µ′ with advantage ε if |Ex∼µ[p(x)] −
Ex∼µ′ [p(x)]| ≥ ε, i.e., if p’s expected behavior under a random draw from the first distribution differs significantly
from its behavior under a random draw from the second distribution. “Random guessing” refers to the procedure
that ignores its input x and outputs a random bit. Since random guessing ignores its input, it fails to distinguish any
two probability distributions µ and µ′ (i.e., its advantage is 0).
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A simple example of a dual polynomial. Consider the parity function function ⊕n on n
bits. Minsky and Papert famously16 used symmetrization to prove that deg±(⊕n) = n. A dual
polynomial for this fact is simply ψ := 2−n · ⊕n. Clearly ψ has perfect correlation with ⊕n (since
it is just a rescaling of ⊕n itself) and has ℓ1-norm 1. Finally, as ⊕n is a monomial of degree n, it
is uncorrelated with any polynomial of degree at most n− 1.

6.1 A Dual Polynomial for ORn

A more complicated example is to construct a dual polynomial for the fact that d̃eg(ORn) ≥ Ω(
√
n).

Here is a construction from [BT15a], slightly refining an earlier dual polynomial of Špalek [Špa08]
and in turn building on ideas of Kahn et al. [KLS96]. For any subset S ⊆ [n]∗, define the univariate
polynomial qS(t) =

∏
i∈[n]∗,i ̸∈S(t− i). We refer to S as the set of unkilled points, since qS(t) = 0 for

all t ∈ [n]∗ \ S. Let c be a sufficiently large constant, and let

S = {0, 1} ∪ {ci2 : i = 1, 2, . . . , ⌊
√
n/c⌋}. (22)

Define ψ : {−1, 1}n → R as ψ(x) = (−1)|x| · qS(|x|), and finally define the dual polynomial for ORn
to be ψOR(x) = ψ(x)/∥ψ∥1. By design, ψOR has ℓ1-norm 1, so to show that it is a dual polynomial
for ORn, we must show it has pure high degree ⌊

√
n/c⌋ and that it has correlation at least 1/3

with ORn. The former holds by combining the following fact and lemma.

Fact 30. If Q is any univariate polynomial of degree at most n− 1, then
∑n

t=0(−1)t
(
n
t

)
Q(t) = 0.

Proof. We again use the fact that the parity function on n bits is uncorrelated with every polynomial
of total degree at most n − 1. The n-variate polynomial Q(|x|) has degree at most n − 1 and its
correlation with the parity function is

∑n
t=0(−1)t

(
n
t

)
Q(t) (here, we use the fact that there are

exactly
(
n
t

)
inputs of Hamming weight t).

Lemma 31. ψOR has pure high degree at least d = ⌊
√
n/c⌋.

Proof. Let p : {−1, 1}n → R be a polynomial of degree less than d. Then Lemma 22 guarantees
that Q(t) = Ex∼Ht [p(x)] is a univariate polynomial of degree less than d over [n]∗. The correlation
of p with ψOR is

n∑
t=0

∑
x∈Ht

ψOR(x)p(x) =
1

∥ψ∥1

n∑
t=0

(−1)t
(
n

t

)
qS(t) ·Q(t).

This evaluates to 0 using Fact 30 and the fact that qS · Q is a univariate polynomial of degree at
most deg(qS) + deg(Q) ≤ (n− d− 1) + d = n− 1.

The first conceptual step to showing that ψOR has correlation at least 1/3 with ORn is the
following fact.

Fact 32. The correlation of ψOR with ORn is ⟨ψOR,ORn⟩ = 2 · ψOR(1n).

Proof. Since ψOR has pure high degree at least 1, it is uncorrelated with the constant-1 function.
Hence,

∑
x∈{−1,1}n ψOR(x) · ORn(x) = 2 · ψOR(1n) +

∑
x∈{−1,1}n ψOR(x) · (−1) = 2 · ψOR(1n).

16Or perhaps infamously, given that this result contributed to the first “AI winter” for neural network research,
see Section 5.3.
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Hence, to show that ⟨ψOR,OR⟩ ≥ 1/3, it suffices to show that ψOR(1n) ≥ 1/6. In other words,
ψOR places a constant fraction of its mass on this single input. This follows from an elementary
calculation, albeit a lengthy one, upon which we now embark. We attempt to ease the pain by
breaking the calculation into steps and providing intuition for each step as we go. (This calculation
can also be skipped with no loss of continuity in this survey.)

Proof that ψOR(1n) ≥ 1/6. Recall that ψOR(1n) = ∥ψ∥−1
1 · ψ(1n). By construction, ψ(x) = 0

unless |x| ∈ S. Hence, letting A = ψ(1n) and

B =
∑

t∈S\{0}

∑
|x|=t

|ψ(x)|,

we have that

ψOR(1n) =
A

A+B
.

So showing that ψOR(1n) ≥ 1/6 is equivalent to showing that B ≤ 5A.
For t ∈ S, let

Bt =
∑
|x|=t

|ψ(x)| =
(
n

t

)
|qS(t)|.

Then B =
∑

t∈S\{0}Bt. We will show that for any t ∈ S \ {0, 1} and a large enough constant c > 0
in the definition of S (Equation (22)), Bt/A ≲ 2/t (later, we also explain that B1/A ≤ 2). This
ensures the desired result that

B/A ≲ B1/A+ ·

√
n/c∑
i=1

2/(ci2) ≤ 2 +A

∞∑
i=1

2/(ci2) = 2 + π2/(3c),

which is less than 5 if c ≥ 2.
For any t ∈ S \ {0}, here is the key calculation bounding Bt/A:

Bt/A =

(
n

t

)
|qS(t)|
|qS(0)|

=

(
n

t

) ∣∣∣∣∣
∏
j∈[n]∗\S(j − t)∏
j∈[n]∗\S(j − 0)

∣∣∣∣∣ =(
n

t

)(∏
j∈S : j ̸=0(j − 0)

n!

)
·

(
t!(n− t)!∏

j∈S : j ̸=t |j − t|

)
=

∏
j∈S : j ̸=0 j∏

j∈S : j ̸=t |j − t|
. (23)

Before continuing the calculation to upper bound Bt/A, let us attempt to give some intuition
for why Bt/A is small if t is large. The denominator in Equation (23) is the product of the distances
of t to every other unkilled point, while the numerator is the same but with t replaced by 0. The
key intuition is that the numerator is smaller than the denominator because 0 is close to a lot of
unkilled points (namely 1 and ci2 for small values of i). While large values of t ∈ S are not close to
any other unkilled points, because the distance between any two perfect squares ci2 and c(i+ 1)2

is 2ci + 1, which grows linearly with i. For example, whereas the closest point in S to 0 is 1, the
closest point in S to t = c⌊

√
n/c⌋2 ≈ n has distance ≈

√
n/c≫ 1 to t.

The formal calculation upper bounding Expression (23) is simpler if we do not include the point
1 in S. So for illustration, we next show that Expression (23) is at most 2 if

S = {ci2 : i = 0, 1, . . . , ⌊
√
n/c⌋},

and then explain how the tighter bound of 1/t can be obtained if 1 is included in S.
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Bounding Expression (23) if 1 is not included in S. Letting m = ⌊
√
n/c⌋ and t = ci2 for

i ≥ 1, we have:

∏
j∈S : j ̸=0 j∏

j∈S : j ̸=t |j − t|

=

∏m
j=1(cj

2)(∏i−1
j=0 |ci2 − cj2|

)(∏m
j=i+1 |ci2 − cj2|

)
=

(m!)2(∏i−1
j=0 |i− j|(i+ j)

)(∏m
j=i+1 |i− j|(i+ j)

)
=

(m!)2(
i!
∏i−1
j=0(i+ j)

)(
(m− i)!

∏m
j=i+1(i+ j)

)
=

2(m!)2

(m+ i)!(m− i)!
.

Finally, observe that (m!)2

(m+i)!(m−i)! =
m
m+i ·

m−1
m+i−1 · · · · ·

m−i+1
m+1 is a product of terms smaller than

1, and hence
2(m!)2

(m+ i)!(m− i)!
≤ 2. (24)

Bounding Expression (23) if 1 is included in S. One gets a tighter bound on Expression
(23) if 1 is included in S because 0 is much closer to 1 than is any other point in S. Specifically,
for t = ci2 with i ≥ 1, if we include 1 in S, then the numerator of Expression (23) does not
change, while the denominator increases by a factor of (t−1). This gives us the desired bound that
Bt ≤ 2/(t− 1).

Of course, including 1 to S does have the effect of causing B1 ̸= 0, so we must separately show
that |B1| is not too large. One can show that B1/A is only slightly larger than 1 because when
t = 1, each term of the numerator of Expression (23) is exceedingly close to the corresponding
denominator (namely, within additive distance 1).

6.1.1 Where did this dual come from?

A common complaint about dual polynomial constructions is that their definitions appear as if by
magic, with lengthy calculations needed to show they are well-correlated with the target function
f . But there is one source of intuition regarding their construction: complementary slackness.
One can think of a dual polynomial ψ as assigning weights to the constraints of the primal linear
program, with ψ(x) being the weight assigned to the constraint |p(x)− f(x)| ≤ ε. Complementary
slackness asserts that if p is an optimal solution to the primal linear program, there must be an
optimal solution ψ∗ to the dual that only assigns nonzero weight to the constraints made tight by
p, i.e., ψ∗(x) ̸= 0 only for those x such that |p(x)− f(x)| = ε.

For the function f = ORn, we know roughly what an optimal solution to the primal looks
like—see Equation (7), which gave an approximation p(x) = q(A(x)/n) for ORn, where q is the
transformed degree-d Chebyshev polynomial from Equation (7). The values of A(x)/n where
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|q(A(x)/n)−ORn(x)| is maximized are closely approximated by the extreme points of the degree-d
Chebyshev polynomial. These extreme points are well-known to be given by the Chebyshev nodes,
equal to cos

(
iπ
d

)
for i = 1, 2, . . . , d.

Taking the Taylor-series expansion cos(x) = 1 − x2/2! + x4/4! − x6/6! + . . . and truncating it
after the quadratic term shows that

cos

(
iπ

d

)
≈ 1− 1

2
·
(
iπ

d

)2

.

When d = Θ(
√
n) we have 1 − 1

2 ·
(
iπ
d

)2 ≈ 1 − 2ci2/n for some constant c. Inputs x for which
A(x)/n = 1− 2ci2/n are precisely those inputs with Hamming weight |x| = ci2. And these in turn
are exactly those inputs (other than those with |x| = 1) in S that are assigned nonzero values by
ψ per Equation (22).

6.1.2 Two additional properties of ψOR

The dual polynomial ψOR we constructed satisfies additional properties beyond what is needed
(Conditions (15)-(17)) to ensure that d̃eg(OR) ≥ Ω(

√
n). As we will see later, these properties play

essential roles in constructing and analyzing dual polynomials for functions derived from ORn via
composition, e.g., ANDm ◦ ORn.

First, any dual polynomial for ψOR has an important one-sided error property [GS10]. Fact 32
implies that ψOR(1n) must be positive if ψOR is to have positive correlation with ORn. Since
OR−1

n (+1) = {1n}, this means that the only inputs on which ψOR makes an error are in OR−1
n (−1)

(recall that we say ψ makes an error at x if sgn(ψ(x)) · f(x) < 0). This is stated in the following
corollary.

Corollary 33. {x : ψOR(x) · OR(x) < 0} ⊆ OR−1(−1).

Second, as shown in [BT19b, BKT18], the calculation used to show that ψOR(1n) ≥ 1/6 in fact
establishes the following stronger property, showing that the total mass that |ψOR| places on inputs
of Hamming weight t decreases very rapidly with t, especially once t≫

√
n.

Theorem 34. There are constants c1, c2 > 0 such that for all t ∈ [n]∗,∑
|x|=t

|ψOR(x)| ≤ c1 · exp(−c2 · t/
√
n)/t.

Proof. The calculation is identical to that used to show that ψOR(1n) ≥ 1/6, with the additional
observation that Expression (24) is exponentially small if t = ci2 for i ≥ n1/4. Specifically, recalling

the m = ⌊
√
n/c⌋, Expression (24) equals 2(m!)2

(m+i)!(m−i)! = 2 ·
(
2m
m

)−1( 2m
m+i

)
. By standard results about

anti-concentration of the binomial distribution, this is at most 2·exp(−Ω(i2/m)) = exp (−Ω(t/
√
n))

as required to conclude that
∑

|x|=t |ψOR(x)| ≤ c1 · exp(−c2 · t/
√
n)/t for some universal constants

c1, c2 > 0.

The extra properties satisfied by the dual polynomial ψOR captured in Theorem 34 and Corol-
lary 33 both have natural “primal” interpretations, which readers might find more intuitive.
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Primal interpretation of Corollary 33: One-sided approximate degree. Let ψ be a dual
polynomial for the ε-approximate degree of f , such that ψ satisfies the additional property that

{x : ψ(x) · f(x) < 0} ⊆ f−1(−1). (25)

Then ψ in fact witnesses that the one-sided approximate degree of g is at least d = phd(ψ). Here,
one-sided approximate degree is an intermediate notion between approximate degree and threshold
degree, defined below.

Definition 35. A real polynomial p is a one-sided ε-approximation for f if

|p(x)− (−1)| ≤ ε ∀x ∈ f−1(−1) and p(x) ≥ 1− ε ∀x ∈ f−1(1).

The one-sided approximate degree of f , denoted õdegε(g), is the minimum degree of a one-sided
ε-approximation for f .

Note that deg±(f) ≤ õdegε(f) ≤ d̃egε(f) for every ε > 0, but there can be huge gaps in
either inequality. For instance, we’ve seen that ORn has one-sided approximate degree equal to
its approximate degree (namely, Θ(

√
n)), which is vastly larger than its threshold degree, which is

1. Meanwhile õdeg1/3(ANDn) = 1, with the one-sided approximation being A(x) + (n − 1). This
equals the threshold degree of ANDn and is vastly smaller than its approximate degree Θ(

√
n).

Claim 36. For every ε > 0 and degree d, we have õdegε(f) ≥ d if and only if there exists a dual
polynomial ψ satisfying Conditions (15)-(17) as well as Condition (25).

One can prove Claim 36 by expressing one-sided approximate degree as a linear program anal-
ogous to approximate degree, and observing that a ψ satisfying the assumptions of Claim 36 is
equivalent to a solution to the dual linear program with value ε.

Primal interpretation of Theorem 34. Suppose f has a dual polynomial ψ of pure high degree
at least d that places very little mass on a subset S ⊆ {−1, 1}n, i.e., |ψ(S)| :=

∑
x∈S |ψ(x)| is small.

Then f cannot be approximated by any degree-d polynomial p, even if p is allowed to be very large
on inputs in S. This is formalized in the following claim.

Claim 37. Let 0 < δ < 1. Suppose that ψ satisfies Conditions (15)-(17) and additionally that
|ψ(S)| ≤ εδ/3. Then for any polynomial p such that

|p(x)− f(x)| ≤ ε/3 for all x ̸∈ S and |p(x)| ≤ 1/δ for all x ∈ S, (26)

we have deg(p) ≥ d.

Proof. Let p be a polynomial of degree less than d satisfying Condition (26). Then because ψ has
pure high degree at least d, we have ⟨ψ, p⟩ = 0. On the other hand,

⟨ψ, p⟩ =
∑
x ̸∈S

ψ(x)p(x) +
∑
x∈S

ψ(x)p(x) ≥

∑
x ̸∈S

ψ(x)f(x)− |ψ(x)| · ε
3

−
∑
x∈S

|ψ(x)| · 1
δ

≥ ⟨ψ, f⟩ − εδ/3− ε/3− ε/3 > 0.

Here, the first inequality used Condition (26), the second used that the ℓ1-norm of ψ is 1 (Equation
(16)) and that |ψ(S)| ≤ εδ/3, and the final inequality used that ⟨ψ, f⟩ > ε (Condition (15)).
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A similar argument to Claim 37 shows that Theorem 34 implies17 that there is some constant
c > 0 such that no polynomial of degree d ≤ c

√
n can satisfy the following condition:

|p(x)− ORn(x)| ≤ exp(c · |x|/
√
n) for all x ∈ {−1, 1}n.

7 Dual Lower Bounds for Block-Composed Functions

Prior to 2012, Problem 13 was open even for the special case that f = AND and g = OR. This
case was eventually resolved via the method of dual polynomials [She13a, BT15a] using a simple
yet powerful technique called dual block composition. Dual block composition tries to take dual
polynomials witnessing the high approximate degrees of f and g individually, and combine them
in a very specific manner to obtain a dual polynomial for the (even higher) approximate degree of
f ◦ g. The combining technique was proposed by several authors [She13b, Lee09, SZ09]. Here it is:

Definition 38. Given dual polynomials ψ : {−1, 1}m → R and ϕ : {−1, 1}b → R such that ϕ has
pure high degree at least 1, define the dual block composition ψ ⋆ ϕ by

(ψ ⋆ ϕ)(x1, . . . , xm) = ψ(sgn(ϕ(x1)), . . . , sgn(ϕ(xm))) ·
m∏
i=1

(2|ϕ(xi)|).

Intuition for Definition 38. There are two ways to think about Definition 38, corresponding
to the two ways of decomposing dual polynomials as discussed in Section 6. The first way to view
ψ ⋆ ϕ is as half the difference between two distributions (ψ ⋆ ϕ)+1 and (ψ ⋆ ϕ)−1 constructed as
follows. To sample from (ψ ⋆ ϕ)+1, first choose z from ψ+1 and then choose x = (x1, . . . , xm) from
the product distribution ⊗m

i=1ϕzi . Similarly, to sample from (ψ ⋆ ϕ)−1, first choose z from ψ−1 and
then choose x = (x1, . . . , xm) from the product distribution ⊗m

i=1ϕzi .
The second interpretation is to get a prediction sgn((ψ ⋆ ϕ)(x)) for (f ◦ g)(x) as follows. First,

construct the vector z = (sgn(ϕ(x1)), . . . , sgn(ϕ(xm))) consisting of ϕ’s predictions for each evalua-
tion of g on x1, . . . , xm. The final prediction sgn(ψ(z)) for (f ◦g)(x) is then simply ψ’s prediction on
input z. The confidence assigned to this prediction is proportional to the product of the confidences
of all of the constituent predictions, namely |ψ(z)| ·

∏m
i=1 |ϕ(xi)|.

We remark that in the special case that |ϕ| is the uniform distribution, i.e., |ϕ(x)| = 2−b for
all x ∈ {−1, 1}b, then ψ ⋆ ϕ is (up to scaling) the (non-dual) block composition of ψ with 2b · ϕ.
This observation is particularly relevant in Section 10, when we prove communication and matrix-
analytic lower bounds by applying dual block composition with |ϕ| uniform.

When is ψ ⋆ ϕ a good dual witness? The hope is that if ψ is a dual witness to the fact that
d̃eg(f) ≥ df and ϕ is a dual witness to d̃eg(g) ≥ dg, then ψ ⋆ ϕ is a dual witness to the fact

that d̃egε(f ◦ g) ≥ df · dg for some constant ε ∈ (0, 1). This requires showing that ψ ⋆ ϕ satisfies
Conditions (15)-(17) for d = df · dg. In fact, as we prove below (Lemmas 39 and 40), ψ ⋆ ϕ does
always satisfy the second and third (Conditions (16) and (17)).

17One actually needs a slight strengthening of the upper bound in Theorem 34, in which the final factor 1/t is
replaced with 1/t2.
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Lemma 39. If ψ has pure high degree df and ϕ has pure high degree dg, then the pure high degree
of ψ ⋆ ϕ is at least df · dg.

Proof. Let us consider the representation of ψ ⋆ ϕ : {−1, 1}m·b → R as a multilinear polynomial.
(We remind the reader of the discussion of “Basics of Fourier analysis” in Section 2.1.) The lemma
is equivalent to showing that the coefficient of every monomial of degree less than df · dg is 0 (i.e.,
all Fourier coefficients of ψ ⋆ ϕ of degree less than df · dg are 0).

By linearity, it is without loss of generality to assume that ψ(z1, . . . , zm) is itself a monomial.
By assumption, the degree of this monomial is at least df ; say, ψ(z1, . . . , zm) = z1z2 . . . zdf (larger
degree can be handled similarly). Then

2−m · (ψ ⋆ ϕ)(x) =

 df∏
i=1

sgn(ϕ(xi))

( m∏
i=1

|ϕ(xi)|

)
=

 df∏
i=1

ϕ(xi)

 m∏
i=df+1

|ϕ(xi)|

.
By assumption, all monomials of ϕ have degree at least dg. Since x1, . . . , xdf are disjoint blocks

of variables, every monomial appearing in
∏df
i=1 ϕ(xi) has degree at least df · dg. For example, if

ϕ(xi) =
∏dg
j=1 xi,j , then

∏df
i=1 ϕ(xi) =

∏df
i=1

∏dg
j=1 xi,j . Since the blocks of variables xdf+1, . . . , xm

are disjoint from x1, . . . , xdf , multiplying this expression by
∏m
i=df+1 |ϕ(xi)| (or any other function

of xdf+1, . . . , xm for that matter) does not decrease the degree of any appearing monomial. This
proves the lemma.

Lemma 40. If ϕ has pure high degree at least 1, then the ℓ1-norm of ψ ⋆ ϕ is 1.

Proof. Since ψ has ℓ1-norm 1, |ψ| is a probability distribution. Recall that we can think of |ψ⋆ϕ| as
first choosing z according to the probability distribution |ψ|, and then choosing x = (x1, . . . , xm) ∈
({−1, 1}b)m from the product distribution ⊗m

i=1ϕzi . Hence, |ψ ⋆ ϕ| is a convex combination18 of
probability distributions, and thus is itself a probability distribution.

Unfortunately, it is not always true that ψ ⋆ ϕ satisfies Condition (15). An example is when
f = ANDm and g = ANDb. That is, if ψ is a dual witness for

d̃eg(ANDm) ≥ Ω(
√
m)

and
d̃eg(ANDb) ≥ Ω(

√
b),

then ψ ⋆ ϕ is not a dual witness for the fact that d̃eg(ANDm ◦ ANDb) ≥ Ω(
√
mb). While the latter

statement is true (since ANDm ◦ ANDb is simply ANDmb), the function ψ ⋆ ϕ is sadly not a dual
witness to this fact. However, there are a variety of special cases in which ψ ⋆ ϕ is known to
witness that d̃egε(f ◦ g) ≥ df · dg for some constant ε ∈ (0, 1). Section 7.1 describes the proof for
ANDm ◦ ORb.

18A convex combination of objects is a linear combination (i.e., weighted sum) of objects in which the the coeffi-
cients (i.e., weights) of the sum are non-negative and sum to 1.
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7.1 The Approximate Degree of ANDm ◦ ORb is Ω(
√
m · b)

We’ve seen that whenever ψ and ϕ are dual witnesses to the high approximate degrees of f and g,
respectively, then ψ⋆ϕ has two of the three properties needed to prove that f◦g has high approximate
degree (large pure high degree, and ℓ1-norm 1). We now sketch why the third property, namely
high correlation with f ◦ g, holds in the special case of f = ANDm and g = ORb.

Lemma 41. Let ψ have correlation at least 7/8 with ANDm and ϕ have correlation at least 7/8
with ORb. Then ψ ⋆ ϕ has correlation at least 1/3 with ANDm ◦ ORb.

Proof. Recall that to sample from |ψ ⋆ ϕ|, one chooses a vector z ∈ {−1, 1}m according to |ψ|
and then chooses an input x = (x1, . . . , xm) ∈ ({−1, 1}b)m from the product distribution ⊗m

i=1ϕzi .
Taking this perspective, a short calculation shows that ⟨ψ ⋆ ϕ,ANDm ◦ ORb⟩ equals∑

z∈{−1,1}m
ψ(z) · Ex∼⊗m

i=1ϕzi
[(ANDm ◦ ORb)(x)]

=
∑

z∈{−1,1}m
ψ(z) · ANDm(z) ·

1− 2 · Pr
x∼⊗m

i=1ϕzi

[(ANDm ◦ ORb)(x) ̸= ANDm(z)]︸ ︷︷ ︸
:=E(z)

 . (27)

In other words, ⟨ψ ⋆ ϕ,ANDm ◦ ORb⟩ is the same as ⟨ψ,ANDm⟩, but each term in the sum is
adjusted by an error term E(z). Since we know that ψ has high correlation with ANDm, it is
enough to show that these error terms are small. Quantitatively, it will be enough to show that
E(z) ≤ 1/8 for every z.

Case 1: z ̸= −1m. In this case, (ANDm ◦ ORb)(x) = ANDm(z) so long as there is at least one
xi such that ORb(xi) = 1. Let i be any index with zi = 1. Then Fact 32 combined with the
assumption that ϕ has correlation at least 7/8 with ORb implies that ϕ+1(1b) ≥ 7/8 and hence
E(z) ≤ 1/8.

Case 2: z = −1m. In this case, (ANDm ◦ ORb)(x) = ANDm(z) only if ORb(xi) = −1 for all
i = 1, 2, . . . ,m, i.e., if xi ̸= 1b for all i = 1, 2, . . . ,m. In this case, Corollary 33 implies that
ϕ−1(1b) = 0. It follows that for all x in the support19 of ⊗m

i=1ϕ−1, we have xi ̸= 1b for all
i = 1, 2, . . . ,m. Hence, E(−1m) = 0.

Lemmas 39-41, together with d̃eg7/8(ANDm) = Θ(
√
m) and d̃eg7/8(ORb) = Θ(

√
b), imply:

Theorem 42. d̃eg(ANDm ◦ ORb) ≥ Ω(
√
mb).

The key to the proof of Lemma 41 was Case 2, which exploited the fact that the dual witness ϕ
for the inner function g = ORb had one-sided error: {x : ϕ(x) · g(x) < 0} ⊆ g−1(−1) (Corollary 33),

i.e., ϕ is actually a dual witness for õdeg7/8(ORb) ≥ Ω(
√
b) (see Definition 35 and Claim 36). In

fact, the proof of Theorem 42 shows more generally that d̃eg(ANDm ◦ g) ≥ Ω(
√
m · õdeg1/3(g)).

19The phrase “x is in the support of probability distribution µ” means that µ assigns non-zero mass to x, i.e.
µ(x) > 0.
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In contrast, recall that õdeg7/8(ANDb) = 1. This explains why dual block composition yields a
good dual witness for ANDm ◦ ORb but not for ANDm ◦ ANDb, even though both functions have
approximate degree Θ(

√
mb).

7.2 Hardness Amplification via Dual Block Composition

Hardness amplification theorems for approximate degree show that the block composition f ◦ g is
harder to approximate by low-degree polynomials than is g alone.

7.2.1 Increasing degree via composition

Theorem 42 is an example of such a result, with f = ANDm and g = ORb, showing that the degree
required to approximate f ◦g to error 1/3 is larger than the degree required to approximate g to the
same error. Open Problem 13 above asks whether a vast generalization holds: is it the case that
for every pair of functions f, g, d̃eg(f ◦ g) ≥ Ω(d̃eg(f) · d̃eg(g)). This question has been resolved in
a number of important special cases, described below.

The following theorem resolves the question in the case that the approximate degree and thresh-
old degree of g happen to coincide (as is the case, e.g., for g equal to the parity function, ⊕b). This
result will be useful later (Section 10) when developing applications to sign-rank.

Theorem 43. [She13b, Lee09] For any ε > 0 let f : {−1, 1}m → {−1, 1} and g : {−1, 1}b → {−1, 1}
be Boolean functions with degε(f) ≥ d and deg±(g) ≥ D. Then d̃egε(f ◦ g) ≥ D · d. Moreover, this

is witnessed by ψ ⋆ ϕ, where ψ is any dual witness for the fact that d̃egε(f) ≥ d and ϕ is any dual
witness for the fact that deg±(g) ≥ D.

Proof. Suppose without loss of generality that D ≥ 1. Lemma 39 guarantees that ψ ⋆ ϕ has pure
high degree at least d · D and Lemma 40 guarantees it has ℓ1-norm 1. It remains to show that
⟨ψ ⋆ ϕ, f ◦ g⟩ = ε. As per the analysis in Lemma 41,

∑
z∈{−1,1}m

ψ(z) · f(z) ·

1− 2 · Pr
x∼⊗m

i=1ϕzi

[(f ◦ g)(x) ̸= f(z)]︸ ︷︷ ︸
:=E(z)

 . (28)

Hence, it is enough to show that E(z) = 0. Since ϕ witnesses that deg±(g) ≥ D, it follows that
ϕ(y) · g(y) ≥ 0 for all y ∈ {−1, 1}b. (See Theorem 29.) Hence, the support of ϕ+1 is contained in
g−1(+1), and the support of ϕ−1 is contained in g−1(−1). Accordingly, for all z ∈ {−1, 1}m and
all x in the support of ⊗m

i=1ϕzi , we have that (f ◦ g)(x) = f(z). Hence, E(z) = 0 as claimed.

The following theorem resolves Open Problem 13 in a different special case, namely when the
outer function f has linear approximate degree. Its proof is more complicated because the dual
witness constructed to prove it is not obtained via “vanilla” dual block composition ψ ⋆ ϕ, but
rather by multiplying ψ ⋆ ϕ by a function p that is meant to “kill” the witness on problematic
inputs without ruining its pure high degree. By killing a problematic input x, we mean that p is
designed so that it evaluates to 0 at x. This proof is particularly technical and may be skipped
with no loss of continuity in this survey.
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Theorem 44 ([She12b]). For any Boolean functions f : {−1, 1}m → {−1, 1} and g : {−1, 1}b →
{−1, 1}, let d = d̃eg(f) and D = d̃eg1−d/(16m)(g). Then

d̃eg(f ◦ g) ≥ Ω (d ·D) .

Detailed proof sketch. As indicated before the theorem statement, the idea is to construct a dual
witness for the claimed lower bound via a variant of dual block composition. Specifically, let ψ
be a dual witness for d̃eg(f) ≥ d and ϕ be a dual witness for d̃eg1−d/(16m)(g) ≥ D. In general,
ψ ⋆ ϕ may not be well-correlated with f ◦ g. Indeed, recall Equation (28). While we know that∑

z∈{−1,1}m ψ(z) · f(z) = ⟨ψ, f⟩ ≥ 1/3, the additional error term E(z) may be large for each
z ∈ {−1, 1}m, for reasons we now explain.

Let Eϕ := {y : g(y) ̸= sgn(ϕ(y))} denote the error set for the witness ϕ for g, and let Eϕ :=∑
y∈Eϕ |ϕ(y)| denote the total mass placed on Eϕ. We know that 1−d/(16m) = ⟨ϕ, g⟩ = 1−2Eϕ, and

hence Eϕ may be as large as d/(32m). For a fixed bit zi ∈ {−1, 1}, conditioning on sgn(ϕ(xi)) = zi
as done by ϕzi could even raise the mass placed on Eϕ by another factor of 2, to d/(16m). This
means that if x = (x1, . . . , xm) ∼ ⊗m

i=1ϕzi , the expected number of blocks xi ∈ Eϕ may be as large
as m · d/(16m) = d/16, which is much larger than 1 if d ≥ ω(1).

Let us refer to blocks xi ∈ Eϕ as error blocks. If there is even one error block, then it is possible
that (f ◦ g)(x) ̸= sgn((ψ ⋆ ϕ)(x)). So unless the expected number of error blocks is vastly below its
expectation, we cannot rule out the possibility that (f ◦ g)(x) ̸= sgn((ψ ⋆ ϕ)(x)).

Accordingly, call an input x = (x1, . . . , xm) ∈ ({−1, 1}b)m “bad” if there are one or more error
blocks xi ∈ Eϕ, and otherwise call x “good”. The idea is to modify ψ ⋆ ϕ by multiplying it by
a polynomial p designed to “kill” as many bad inputs x as possible. We need to do this without
substantially decreasing the pure high degree of the dual witness. This constraint will prevent p
from killing all bad inputs. Hence, we must also guarantee that p avoids “amplifying” the values
assigned to bad inputs that are not killed by p.

Let IEϕ denote the indicator function of Eϕ. Let Q(t) =
∏d/2
i=1(t−i) be the univariate polynomial

that “kills” all integers between 1 and d/2, and define p such that for all (x1, . . . , xm) ∈
(
{−1, 1}b

)m
p(x1, . . . , xm) = Q

 m∑
j=1

IEϕ(xj)

 .

Intuitively, when applied to an input (x1, . . . , xm) ∈
(
{−1, 1}b

)m
, p counts the number of errors

made by the m copies of ϕ on inputs (x1, . . . , xm), and evaluates to 0 if this number is between 1
and d/2. Note that, assuming d/2 is even, p(x) is non-negative for all x ∈

(
{−1, 1}b

)m
.

An assumption to simplify the construction. To simplify the construction of the appropriate
dual witness for f ◦ g, let us assume that for any zi ∈ {−1, 1}, conditioning on sgn(ϕ(xi)) = zi does
not alter the probability that xi is an error block. That is, we assume that the mass ϕ assigns to
false-negative errors and false-positive errors is the same, i.e.,∑

xi∈{−1,1}b : ϕ(xi)<0,f(xi)=1

|ϕ(xi)| =
∑

xi∈{−1,1}b : ϕ(xi)>0,f(xi)=−1

|ϕ(xi)|. (29)
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The construction under the simplifying assumption. Define

γ′(x) := (ψ ⋆ ϕ)(x) · p(x) (30)

and γ = ∥γ′∥−1
1 · γ′. By design, γ has ℓ1-norm 1. We now explain that it also has pure high degree

at least D · (d/2), and has correlation at least 1/3− o(1) with f ◦ g.

Pure high degree analysis. The key insight for the pure high degree assertion is that the
analysis in Lemma 39 guarantees something a little stronger than the mere fact that phd(ψ ⋆ ϕ) ≥
d · D. Specifically, recall the Fourier representation ψ ⋆ ϕ =

∑
S ψ̂ ⋆ ϕ(S) · χS(x1, . . . , xm). For

every parity function χS(x1, . . . , xm) with a non-zero Fourier coefficient, there are least d blocks
xi1 , . . . xid , such that every block xij has at least D variables in S. For example, if m = 3, b = 2,
and d = D = 2, then x1,1 · x1,2 · x2,1 · x2,2 is a possible parity function with non-zero coefficient in
the Fourier representation of ψ ⋆ ϕ, because there are two blocks that each contribute degree two
to the parity. But x1,1 · x1,2 · x2,1 · x3,2 is not, because while its total degree is four, there is only
one block x1 contributing two or more variables to the parity.

Meanwhile, p is “relatively low-degree” in the following sense. Since the univariate polynomial
Q has degree only d/2, the multivariate polynomial p(x) = (Q ◦ IEϕ)(x) clearly has total degree at
most b · (d/2). But in fact something even stronger holds: for every parity function χS(x1, . . . , xm)
in the Fourier representation of p with a non-zero coefficient, S involves variables from at most d/2
blocks. So in the example above, x1,1 · x1,2 is a possible parity function with non-zero coefficient in
the Fourier representation of p, since it involves variables from only 1 = d/2 blocks, but x1,1 · x2,1
is not as it involves variables from 2 > d/2 blocks.

To summarize this discussion, we have that the non-zero Fourier coefficients of ψ⋆ϕ correspond to
parities involving at least d blocks, while the non-zero Fourier coefficients of p correspond to parities
involving at most d/2 blocks. Therefore, when computing the Fourier representation of (ψ ⋆ ϕ) · p
via the distributive law, each monomial of p only destructively interferes with at most d/2 blocks
of each monomial of ψ⋆ϕ. Hence, (ψ⋆ϕ) ·p has pure high degree at least (d− (d/2)) ·D ≥ (d/2) ·D.
For example, if ψ ⋆ ϕ and p are as per the examples above, then

(ψ ⋆ ϕ)(x) · p(x) = (x1,1 · x1,2 · x2,1 · x2,2) · (x1,1 · x1,2) = x2,1 · x2,2,

which has pure high degree 2 ≥ 1 · 2 = (d− (d/2)) ·D.

Correlation analysis. As usual, the goal is to show that ⟨γ, f ◦g⟩ ≈ ⟨f, ψ⟩. Recall from Section 7
that to sample from |ψ ⋆ ϕ|, one chooses a vector z ∈ {−1, 1}m according to |ψ| and then chooses
an input x = (x1, . . . , xm) ∈ ({−1, 1}b)m from the product distribution ⊗m

i=1ϕzi (see Equation (18)
for the definition of ϕzi).

As γ is obtained by multiplying ψ ⋆ ϕ by p, let µz be the distribution obtained from ⊗m
i=1ϕzi

by multiplying the probability assigned to each input x by p(x), and then renormalizing to ensure
µz has ℓ1-norm 1. By our simplifying assumption (Equation (29)), the distribution of p(x) when
x ∼ ⊗m

i=1ϕzi is independent of z, and hence this normalization factor is the same for all z ∈ {−1, 1}m.
It follows that, in analogy with Equation (28),

⟨γ, f ◦ g⟩ =
∑

z∈{−1,1}m
ψ(z) · f(z) ·

1− 2 · Pr
x∼µz

[(f ◦ g)(x) ̸= f(z)]︸ ︷︷ ︸
:=E′(z)

 .
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For each z ∈ {−1, 1}m, it is possible to establish that E′(z) ≤ 2−Ω(d) via the ideas above. Specif-
ically, under the product distribution x ∼ ⊗m

i=1ϕzi , the number of error blocks is, in expectation,
at most d/16, and p(x) = 0 if this number is between 1 and d/2. Hence, the total mass assigned
by the product distribution ⊗m

i=1ϕzi to bad inputs x with T error blocks is 0 if T ≤ d/2 and, by

a standard Chernoff bound, is at most e−4T 2/d if T > d/2. Meanwhile, p(x) maps good inputs to
(d/2)!, and maps a bad input with T error blocks to (T − 1)(T − 2) · · · · · (T − (d/2)). This ensures
that, relative to good inputs, p amplifies that mass placed on bad inputs by a factor of at most

(T−1)!
(d/2)!(T−1−(d/2))! =

(
T−1
d/2

)
≤
(
T
d/2

)
≤ (2Te/d)d/2.

Since the probability that µz assigns to x is the product of p(x) and the mass assigned to x by
⊗m
i=1ϕzi , this implies that E′(z) is at most

m∑
T=d/2+1

e−4T 2/d · (2Te/d)d/2 ≤ m · e−d · ed/2 ≤ e−d/3.

A last state-of-the-art result resolves Open Problem 13 (up to a logarithmic factor) in the special
case that the outer function f is symmetric.

Theorem 45 ([BBGK18]). Let f : {−1, 1}m → {−1, 1} be a symmetric Boolean function and g

be an arbitrary function. Then d̃eg(f ◦ g) · logm ≥ Ω(d̃eg(f) · d̃eg(g)).

Theorem 45 is not proved using the method of dual polynomials, but rather indirectly relies on
a sophisticated quantum algorithm for combinatorial group testing, due to Belovs [Bel15].

7.2.2 Increasing error via composition

Sherstov [She12b] proved an XOR Lemma for approximate degree showing that ⊕m◦g requires both
higher degree and larger error to approximate than g itself. His proof technique was essentially
identical to Theorem 44, using a refinement of dual block composition to construct a dual witness
for the claim.

Theorem 46. ([She12b]) Let g be a Boolean function with d̃eg1/2(g) ≥ d and F = ⊕m ◦ g. Then
d̃eg1−2−m(F ) ≥ Ω(m · d).

Approximate degree turns out to be a powerful tool for studying the fundamental circuit class
AC0, consisting of constant-depth {AND,OR,NOT}-circuits of polynomial size. We will see later in
this survey (Section 8) that AC0 contains functions that cannot be approximated well by low-degree
polynomials, and this implies that AC0 contains functions that are hard to compute in a variety of
models, such as quantum and small-bias communication complexity.

When using approximate degree to study AC0, one would like the “hardness-amplified” function
F to be a constant-depth circuit whenever g is. Theorem 46 is not useful in this context because
the parity function ⊕m is not in AC0. More recent work has shown that error amplification within
AC0 is possible by taking the outer function to be AND, so long as the inner function has high
one-sided approximate degree (Section 6.1.2).

Theorem 47. ([BT15b]) Let g be a Boolean function with õdeg1/2(g) ≥ d and F = ANDm ◦ g.
Then d̃eg1−2−m(F ) ≥ d.
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Theorem 48. ([She18b]) Let g be a Boolean function with õdeg1/2(g) ≥ d and F = ANDm ◦ g.
Then deg±(F ) ≥ min{d,m}.

Note that since õdeg1/2(ORb) ≥ Ω(
√
b), Theorem 26 is a special case of Theorem 48. That is,

Minsky and Papert’s threshold degree lower bound for their CNF is a special case of a far more
general result that can be proved using dual block composition as opposed to symmetrization.

Theorems 47 and 48 are easily seen to be false if the assumption that õdeg1/2(g) ≥ d is replaced

with d̃eg1/2(g) ≥ d, as can be seen by setting g = AND. Indeed, ANDm ◦ ANDb = ANDm·b, and
ANDm·b can be approximated to error 1− 1/(m · b) with degree 1.

Proof of Theorem 47. Here, we define a simple dual witness ψ for the fact that ANDm has approxi-
mate degree at least 1 by taking ψ(1m) = 1/2, ψ(−1m) = −1/2, and ψ(x) = 0 otherwise. Let ϕ be

any dual witness to the fact that õdeg1/2(f) ≥ d. We claim that ψ ⋆ϕ = 1
2 ·
(
ϕ⊗m+1 − ϕ⊗m−1

)
witnesses

that d̃eg1−2−m(F ) ≥ d. Note that ψ ⋆ ϕ has ℓ1-norm 1 by Lemma 40, and pure high degree d by
Lemma 39 and the fact that phd(ψ) ≥ 1 and phd(ϕ) ≥ d.

To show that ⟨ψ ⋆ ϕ,ANDm ◦ g⟩ ≥ 1− 2−m, recall from the proof of Lemma 41 (Equation (27))
that the key to showing that ⟨ψ ⋆ ϕ,ANDm ◦ g⟩ ≈ ⟨ψ,ANDm⟩ = 1 is to upper bound

E(z) = Pr
x∼⊗m

i=1ϕzi

[(ANDm ◦ g)(x) ̸= ANDm(z)] (31)

for the two points z = −1m,1m in the support of |ψ|.

Case 1: z = 1m. In this case, (ANDm ◦ g)(x) ̸= ANDm(z) only if g(x1) = g(x2) = · · · = g(xm) =
−1. It can be seen that since ϕ has correlation at least 1/2 with g, ϕ+1(g

−1(−1)) ≤ 1/2. Hence,
for z = 1m, Expression (31) is at most 2−m.

Case 2: z = −1m. Since ϕ is a dual witness for the one-sided approximate degree of g, the support
of ϕ−1 is a subset of g−1(−1), and hence the support of ⊗m

i=1ϕ−1 is a subset of (ANDm ◦ g)−1(−1).
Hence, for z = −1m, Expression (31) is 0.

Theorem 48 can be proved by building on this construction, adding to ψ ⋆ ϕ an additional
“correction term” ζ of pure high degree m such that ψ⋆ϕ−ζ is perfectly correlated with ANDm ◦g.
We do not prove Theorem 48 in this survey, but closely related ideas can be found in the proof
of Theorem 92 in Section 10, which constructs an explicit dual solution for the high threshold
degree of the Minsky-Papert CNF ANDn1/3 ◦ ORn2/3 , with additional properties that are useful in
applications to communication and circuit complexity.

Application: Oracle separations for statistical zero knowledge. Certain applications re-
quire the “hardness-amplifying function” to be still simpler than ANDm. Define GAPMAJm : {−1, 1}m →
{−1, 1} to be the partial function that equals −1 if at least 2/3 of its inputs are −1, equals +1 if
at least 2/3 of its inputs are +1, and is undefined otherwise.

Theorem 49 ([BCH+19]). Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let F = GAPMAJm◦f .
Then d̃eg1−2−Ω(m)(F ) ≥ d and deg±(F ) ≥ Ω(min{d,m}).
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Bouland et al. [BCH+19] used this result to exhibit an oracle O relative to which SZKO ̸⊆ PPO.
Here SZK is the class of languages with efficient statistical zero knowledge proofs—interactive
proofs of language membership such that the proofs reveal no information other than their own
validity.20 As PP is a very powerful complexity class, this separation gives some evidence for
the prevailing belief that SZK contains intractable problems. The proof of the oracle separation
proceeds as follows.

A very brief and rough overview of SZK and PP query complexity. Recall that we briefly dis-
cussed the notion of query complexity in Section 4.1. Using a standard diagonalization argument
(see [FSS84b, Ko89, RST15] for details of the technique), it suffices to establish a separation in the
analogous query complexity models:

Fact 50. To obtain an oracle O such that SZKO ̸⊆ PPO, it suffices to identify an F such that
SZKdt(F ) = O(log n) and PPdt(F ) = nΩ(1).

Here SZKdt(F ) denotes the least cost of a statistical zero knowledge query protocol computing
F . The cost of a statistical zero-knowledge query protocol for F refers to the the length of the
proof (i.e., the number of bits exchanged by the prover and verifier), plus the number of queries to
the input string x made by the verifier.

Similarly, PPdt(F ) is the least d for which a randomized algorithm making at most d queries
computes F (x) with probability at least 1/2 + 2−d (see Section 10.1 for further details). Since the
acceptance probability of any d-query randomized algorithm is a polynomial of degree at most d,
we have that if PPdt(F ) ≤ d, then d̃egε(F ) ≤ d for ε = 1−2−d. So to prove a PPdt lower bound, it
is enough to prove an approximate degree lower bound for an error parameter that is exponentially
close to 1.

Recall from Section 2.2 that the Permutation Testing Problem (PTP) is a partial function that
interprets its input x as a list of (the binary representations of) N = Θ(n/ log n) numbers from
range [N ]. The list can itself be interpreted as a function π : [N ] → [N ]. The function PTP(x) = −1
if π is a permutation and PTP(x) = −1 if π is “far” from every permutation.

As we show in Section 8.5, PTP has large (1/3)-approximate degree, namely Ω(N1/3) [Aar12,
AS04]. Meanwhile, Permutation Testing has a zero-knowledge protocol with logarithmic cost: A
common random string samples a range item i ∈ [N ], and the prover is required to provide a
pre-image j of i under π. The verifier can confirm that π(j) = i by querying logN bits of x. This
protocol is perfectly complete, because if π is one-to-one, then any range element j has some pre-
image i. And it has soundness error bounded away from 1, because if π is far from any permutation,
then a constant fraction of range elements j ∈ [R] have no pre-image under π, and if the common
random string selects such a range element, there is no possible response the prover can send that
would convince the verifier to accept.

The protocol is also perfect zero knowledge because, when the input is a permutation, the verifier
learns only a random pair (i, j) such that π(j) = i; the verifier could compute this information on
its own by picking j at random from [N ] and making O(logN) queries to learn i = π(j).

To get a PPdt lower bound, we need a function with low SZK query complexity, yet with
high ε-approximate degree even for ε exponentially close to 1. PTP itself does not have high

20The precise definition of statistical zero-knowledge proof systems is beyond the scope of this survey. Roughly
speaking, these are interactive proof systems satisfying standard notions of completeness and soundness, such that
the verifier runs in polynomial time and moreover learns nothing from the prover beyond the validity of the statement
being proven.
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ε-approximate degree if ε is larger than 1 − 1/n2 (see Footnote 6 of Section 2.2). However, we
can transform PTP into such a function by composing it with a function that preserves SZK
query complexity, yet amplifies hardness against polynomial approximation. Specifically, let F =
GAPMAJn1/4 ◦PTPn3/4 . One can show that composition with GAPMAJ preserves logarithmic SZK

query complexity. Meanwhile, Theorem 49 implies that d̃eg
1−2−n1/4 (F ) = Ω(n1/4).

7.3 Some Unexpected Applications of Dual Block Composition

While dual block composition was introduced as a way to understand how approximate degree
behaves under function composition, it has found applications to lower bounding the approximate
degree even of “non-block-composed” functions. In this section, we describe two initial such ap-
plications. The first is a clean proof of the tight lower bound on the ε-approximate of OR. The
second is a clean proof of the tight lower bound on the (1/3)-approximate degree of any symmetric
Boolean function.

Roughly speaking, the first result exploits that ORn can in fact be written in as a block-composed
function ORn = ORt ◦ ORn/t. The second result exploits that for any symmetric Boolean function
f , there is a block-composed function g = MAJ2t ◦ ORn/(2t) for some integer t such that g “agrees
with” f on all of the inputs that “are responsible for” the large approximate degree of g. Hence, f
“inherits” the hardness of g.

Section 8 describes much more sophisticated applications of dual block composition to non-
block-composed functions.

7.3.1 Lower bound on the vanishing-error approximate degree of OR

Recall that in Theorem 14 of Section 4.2.1 we showed that the ε-approximate degree of OR is
O(
√
n log(1/ε)). We now establish a matching lower bound. This result was originally proved by

[BCDWZ99] using the theorem of Coppersmith and Rivlin (Theorem 24). We prove it via a clean
application of dual block composition due to Sherstov and Thaler [ST19].

Theorem 51. For any ε ∈ [2−n, 1/3], d̃egε(ORn) ≥ Ω
(√

n log(1/ε)
)
.

Proof. Let t = log2(1/ε)/3, and let ϕ be a dual witness for d̃eg(ORn/t) ≥ Ω(
√
n/t). Let ψ = 2−t ·⊕t,

which we interpret as a dual witness for the fact that the exact (i.e., (ε = 0)-approximate degree)
of ORt is t. Clearly ψ has pure high degree t and ℓ1-norm 1. Consider ψ ⋆ ϕ.

By Lemmas 39 and 40, ψ ⋆ ϕ has pure high degree at least Ω
(
t ·
√
n/t
)

= Ω(
√
nt), and

∥ψ ⋆ ϕ∥1 = 1. It remains to show that ⟨ψ ⋆ ϕ,ORn⟩ > ε. By Fact 32, ⟨ψ ⋆ ϕ,ORn⟩ = 2 |(ψ ⋆ ϕ)(1n)|.
Let w = 2|ϕ(1n/t)| > 1/3. Then

|(ψ ⋆ ϕ)(1n)| = 2−t · wt > 2−t · 3−t ≥ 2−3t ≥ ε.

7.3.2 Lower bound on the approximate degree of symmetric functions

Recall from Section 5.2 that if THRtn : {−1, 1}n → {−1, 1} denotes the function for which THRtn(x) =

−1 if and only if |x| ≥ t, then d̃eg(f) = Θ(
√
nt). Here, we present a proof of the Ω(

√
nt) lower
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bound using dual block composition, which we find to be cleaner than the symmetrization-based
analysis sketched in Section 5.2 (we believe this dual witness is also cleaner than the only previous
dual witness for symmetric Boolean functions in the literature [BT15a]). The proof does take for

granted that d̃eg(MAJ2t) ≥ Ω(t); a reasonably simple dual witness for this fact is given in [BT15a,
Section 4.3]. A similar argument was used in [BBGK18] to show a lower bound on the approximate
degree of composed functions when the outer function is symmetric.

Lower bound via dual block composition. Unless t = 0 or t = n, THRtn cannot itself be
written as a composition of two functions defined on smaller domains, so it may seem strange that
we plan to use dual block composition to analyze its approximate degree. The idea is to identify
a partial function F that is a composed function, such that F (x) = THRtn(x) for all inputs x in
the domain of F . We then prove (via an explicit construction of a dual polynomial for F ) that
F requires degree Ω(

√
nt) to approximate over its domain, and thereby conclude that THRtn(x)

requires the same degree to approximate.

Approximate degree of partial functions. To give the details of the proof, we must introduce
a natural notion of the ε-approximate degree of a partial function fn defined over some strict
subdomain S of {−1, 1}n. Specifically, the notion relevant to this section requires the approximating
polynomial p for f to be bounded even at inputs in {−1, 1}n outside of the promise S:

• |p(x)− fn(x)| ≤ ε for all x ∈ S.

• |p(x)| ≤ 1 + ε for all x ∈ {−1, 1}n \ S.

We stress that this a different notion of approximate degree for partial functions than the one that
is relevant to Section 8. That section relates the approximate degree of a total function such as
SURJR,N to that of a partial function such as ANDR ◦ ORN under the promise that the input has
Hamming weight at most N ; the notion of approximation relevant there places no restrictions on
p’s behavior outside of the promise set. That notion would not suffice in the setting of this section
(see Footnote 21).

An application of LP duality similar to Section 6 reveals that a partial function fn defined
over domain S has ε-approximate degree at least d if and only if there exists a dual polynomial
ϕ : {−1, 1}n → R of pure high degree at least d and ℓ1-norm equal to 1, such that ⟨ϕ, fn⟩ ≥ ε. Here,
for a partial function fn, we define

⟨ϕ, fn⟩ :=
∑
x∈S

f(x)ϕ(x)−
∑

x∈{−1,1}n\S

|ϕ(x)|.

That is, any mass that ϕ places on inputs x ̸∈ S automatically count against the correlation ⟨ϕ, fn⟩
of ϕ with fn.

Let PrORn be the partial function obtained by restricting the domain of ORn to inputs of
Hamming weight zero or one. It is known that the Ω(

√
n) lower bound on the approximate degree

of ORn holds even for PrORn. One way to see this is by inspecting the proof of Theorem 23 via
Minsky-Papert-symmetrization in Section 5.1.21 It can also be easily checked that the dual witness

21The requirement that the approximating polynomial p(x) be bounded in magnitude even at inputs outside of
the promise is essential for this lower bound to hold. Indeed, x 7→ 1 − 2|x| is a degree-one polynomial that exactly
computes ORn on inputs of Hamming weight 0 and 1, but can take values of magnitude Ω(n) at inputs of larger
Hamming weight.
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ψ for d̃eg(ORn) ≥ Ω(
√
n) constructed in Section 6.1 is a dual witness for this fact (i.e., ψ places

at least an ε fraction of its ℓ1-mass on inputs of Hamming 0 and 1, where ε can be a constant
arbitrarily close to 1).

Recall that Theorem 44 asserts that for any Boolean functions f : {−1, 1}m → {−1, 1} and g,

if d = d̃eg(f) and D = d̃eg1−d/(16m)(g), then

d̃eg(f ◦ g) ≥ Ω (d ·D) .

The theorem was stated for total functions f, g, but the proof applies directly even when g is
partial. Specifically, for a total function f and partial function g, let f ◦ g denotes the partial
function defined over the domain of all (x1, . . . , xm) ∈

(
{−1, 1}b

)m
such that each xi is in the

domain of g. Then the dual witness constructed in the proof of Theorem 44 establishes that
d̃eg(f ◦ g) ≥ Ω(d̃eg(f) · d̃eg1−d/(16m)(g)).

22 The claimed lower bound d̃eg(THRtn) ≥ Ω(
√
nt) then

follows from Theorem 44 applied with f = MAJ2t and g = PrORn/(2t), together with the fact that
(MAJ2t ◦ PrORn/(2t))(x) = THRt(x) for all x in the domain of f ◦ g.

In fact, by exploiting slightly more specific properties of the dual witness for the fact that
d̃eg(MAJ2t) = Ω(t), one can show that the dual polynomial constructed above implies an Ω(

√
nt)

approximate degree lower bound for any symmetric function with a “jump” between Hamming
weights t − 1 and t for t ≤ n/2. Specifically, the dual witness for MAJ2t places almost all of its
mass on inputs of Hamming weight t− 1 and t, i.e., it is in fact a lower bound for MAJ2t under the
promise that the Hamming weight is either t− 1 or t.

8 Beyond Block-Composed Functions

Section 7 showed that dual block composition can yield tight lower bounds for the approximate
degree of a variety of block-composed functions. In Section 7.3 we, also saw a few examples of
how dual block composition can help us understand the approximate degree of functions that
are not (obviously) block composed. Many functions of great interest in quantum computing and
complexity theory are not block compositions. Can we systematically apply dual block composition
to understand the approximate degree of these functions?

This turns out to be possible. For many non-block-composed functions fn on n-bit inputs,
the approximate degree of fn is equivalent to the approximate degree of a related block-composed
function Fm defined over inputs of size m ≫ n, but under the promise that the input to F has
Hamming weight at most n.23 That is, approximating f to error ε by a degree d polynomial is
equivalent to constructing a degree d polynomial p over domain {−1, 1}m such that

|p(x)− F (x)| ≤ ε for all |x| ≤ n. (32)

Note, crucially, that p is allowed to behave arbitrarily on inputs of Hamming weight larger than n.
Let us denote by F≤n the partial function obtained by restricting the domain of F to inputs

of Hamming weight at most n, and by d̃egε(F
≤n) the least degree of a polynomial p satisfying

Condition (32). As we will see, if F = f ◦ g is a block composition of two functions whose

22Within the proof of the theorem, if g is a partial function, then the “error set” Eϕ for ϕ should be defined as
{y : sgn(ϕ(y)) ̸= g(y)} ∪ {y : y ̸∈ S}, where S is the domain of g.

23This contrasts with the constructions in Section 7.3, where we identified related block-composed functions over
the same domain as the original function.
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x1 x2 x3 x4 x5 x6

y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26 y31 y32 y33 y34 y35 y36

AND

OR OR OR

Each xj in {−1,1}⌈'() *⌉.
Each xj is interpreted as an element in [.].

(a) Depiction of the right hand side of
Equation (33) for SURJ with domain size
N = 6 and range size R = 3.

AND

OR OR OR

List of elements in ! = {1,2,3}.

2 1 2 1 3 3

1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1

(b) Specific example of the right hand size
of Equation (33).

approximate degree is understood, then dual block composition can sometimes prove tight lower
bounds on d̃egε(F

≤n).

8.1 Surjectivity: A Case Study

The above connection between a non-block-composed function f and a block composed function
F is best demonstrated with an example. Recall from Section 2.2 that the Surjectivity function
(SURJ) takes as input a vector in x ∈ {−1, 1}n with n = N log2R. It interprets the vector as a
list of (the binary representations of) N numbers (k1, . . . , kN ) from range [R] = {1, . . . , R}, and it
outputs −1 if and only if for every i ∈ [R], there is at least one index j such that kj = i.

8.1.1 Approximate degree upper bound

We now relate SURJ to the block composition ANDR ◦ORN . A natural way to do this is to consider
representing the list (k1, . . . , kN ) ∈ [R]N via a set of N ·R variables y(x) = {yi,j : i ∈ [R], j ∈ [N ]}
in which yi,j = −1 if kj = i and yi,j = 1 otherwise. Observe that each variable yi,j depends on only
log2R bits of x, and moreover

SURJ(x) = (ANDR ◦ ORN ) (y(x)). (33)

One can think of the input x to SURJ as a compressed representation of the input y(x) to ANDR ◦
ORN , in that y(x) consists of N ·R bits while x consists of just N log2R bits. See Figures 4a and
4b for a depiction and example.

A key observation is that for any input x to SURJ, the Hamming weight of the corresponding
vector y(x) is exactly N . This means that if p approximates (ANDR ◦ ORN )≤N to error ε then
p(y(x)) approximates SURJ to error ε, and has degree at most deg(p) · log2R. Crucially, this holds
regardless of how p behaves on inputs in {−1, 1}R·N of Hamming weight more than N .

Observation 52. d̃egε(SURJ) ≤ d̃egε

(
(ANDR ◦ ORN )≤N

)
· log2(R).

We’ve already seen that d̃eg(ANDR ◦ORN ) = Θ(
√
RN) (see Theorems 11 and 42). It turns out

that ANDR ◦ORN is substantially easier to approximate when the approximation only needs to be
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accurate on inputs of Hamming weight at most N . Multiple proofs of this upper bound are known
[She18a, BKT18]. Here we describe the approximating polynomial from [She18a].

Theorem 53. d̃eg
(
(ANDR ◦ ORN )≤N

)
≤ O(R1/4 ·N1/2).

Proof. Let q be a polynomial over domain {−1, 1}R of degree O(
√
R) that approximates ANDR to

error 1/4. A change of basis argument allows us to express q as a linear combination of disjunctions,
i.e, terms of the form ORS(x) = ∨i∈Sxi for some subset S ⊆ [R].24 Moreover, the sum of the

magnitudes of the coefficients in the linear combination is at most 2O(
√
R).

Clearly |q ◦ ORN − ANDR ◦ ORN | ≤ 1/4. Because the composition of any two disjunctions is
itself a disjunction, q ◦ ORN is itself a linear combination of disjunctions over domain {−1, 1}RN

in which the sum of the magnitudes of the coefficients is at most W ≤ 2O(
√
R). Let us write this

linear combination as
(q ◦ ORN )(y) =

∑
S⊆{−1,1}RN

cS · ORS(y). (34)

Here is where we exploit the fact that we only require our final approximation to accurately
approximate ANDR ◦ ORN on inputs of Hamming weight at most N . A generalization of the

construction in Theorem 14 shows that d̃egε(OR
≤N
R·N ) ≤ O

(√
N log(1/ε)

)
for any ε > 0 regardless

of R ·N . Note that the approximating polynomial may take values that are exponentially large in
its degree when evaluated at inputs x of Hamming weight more than N .

Now set ε = 1/(12W ), and let us replace each disjunction ORS on the right hand side of Equation
(34) with an ε-approximation to OR≤N

S . The resulting polynomial p has degree O(
√
N logW ) =

O(R1/4N1/2). On any input y of Hamming weight at most N , we have | (q ◦ ORN ) (y)−p(y)| ≤ 1/12
and hence | (ANDR ◦ ORN ) (y)− p(y)| ≤ 1/12 + 1/4 = 1/3.

8.1.2 Approximate degree lower bound

One might suspect that the approximation for SURJ constructed above is unnecessarily tying its
own hands by ignoring all structure in the vector y(x) besides the fact that y(x) has Hamming
weight at most N . For example, it is ignoring the fact that for each j ∈ [N ], yi,j = −1 for exactly
one index i ∈ [R]. It turns out that this additional structure in the vector y(x) cannot be leveraged
by low-degree polynomials. That is, the approximate degree of SURJ is not just upper bounded by
that of (ANDR ◦ ORN )≤N , but in fact is equivalent to it.

Lemma 54. d̃egε(SURJ) ≥ Ω̃
(
d̃egε((ANDR ◦ ORN )≤N )

)
.

Lemma 54 was shown in [BT19b] using a symmetrization argument due to Ambainis [Amb05].
We defer a proof until Section 8.4. A tight lower bound on the approximate degree of SURJ now
follows from one for d̃eg((ANDR ◦ ORN )≤N ), which can be proved by dual block composition.

Theorem 55 ([BKT18]). d̃eg((ANDR ◦ ORN )≤N ) ≥ Ω̃(R1/4 ·N1/2).

24That is, the set of disjunctions over {−1, 1}n form a basis for the 2n-dimensional vector space of functions
f : {−1, 1}n → R. This is because there are 2n disjunctions which we can see to be linearly independent, inductively,
as follows. Suppose instead that we could write some ORS =

∑
T∈T aTORT where T \ S ̸= ∅ for every T ∈ T . Then

on input y ∈ {−1, 1}n where yi = −1 ⇐⇒ i /∈ S, we have ORS(y) = 1 while ORT (y) = −1 for every T ∈ T , proving
that

∑
T∈T aT < 0. Meanwhile, ORS(1n) = 1 = ORT (1n) for every T , so

∑
T∈T aT < 0, a contradiction.
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Proof sketch. Let ψ be any dual polynomial for the fact that d̃eg7/8(ANDR) ≥ Ω(R1/2), and let

N ′ := N/R1/2. It turns out to be useful to focus on the function (ANDR ◦ ORN ′)≤N rather than
(ANDR ◦ ORN )≤N (the former is a subfunction of the latter, so a lower bound for the former will
imply our desired lower bound for the latter).

Let ϕ be the dual polynomial for deg7/8(ORN ′) ≥ Ω(
√
N ′) constructed in Section 6.1. Lemmas

39-41 show that ψ ⋆ ϕ is a dual polynomial for the fact that d̃eg(ANDR ◦ ORN ′) ≥ Ω(
√
R ·N ′) ≥

Ω(R1/4 · N1/2). Unfortunately, this is not enough, as we need our degree lower bound to hold
against polynomials that can behave arbitrarily on inputs of Hamming weight larger than N , i.e.,
we must lower bound d̃eg((ANDR ◦ ORN ′)≤N ).

The property making this possible is that |ψ ⋆ ϕ| places very little mass on inputs of Hamming
weight larger than N . Quantitatively,∑

y∈{−1,1}R·N′ : |y|>N

|(ψ ⋆ ϕ)(y)| ≤ 2−Ω(N/
√
N ′) = 2−Ω(R1/4N1/2). (35)

At a high level, this bound arises as follows. Theorem 34 shows that |ϕ| places most of its mass
on inputs of very low Hamming weight. In particular, an exponentially small fraction of its mass
lies on inputs of Hamming weight more than

√
N ′. Recall that the probability distribution |ψ ⋆ ϕ|

can be thought of as first choosing z according to the distribution |ψ|, and then choosing y =

(y1, . . . , yR) ∈
(
{−1, 1}N ′

)R
from the product distribution ⊗R

i=1ϕzi . Because |ϕ| (and hence also

ϕ+1 and ϕ−1) places such little mass on inputs of Hamming weight more
√
N ′, it turns out that

for y = (y1, . . . , yR) ∼ ⊗R
i=1ϕzi , the probability that y has Hamming weight greater than N is

dominated by the probability of the following event: there are at least ℓ := N/
√
N ′ values of i for

which |yi| ≈
√
N ′. And this probability is exponentially small in ℓ.

We now explain how Condition (35) implies that d̃eg((ANDR ◦ ORN ′)≤N ) ≥ d for

d = R1/4 ·N1/2/ logN.

Suppose p approximates ANDR ◦ ORN ′ for all inputs of Hamming weight at most N . Then in
particular, |p(y)| ≤ 4/3 for all |y| ≤ d < N . An interpolation argument of Razborov and Sherstov
shows that this implies p is bounded in magnitude by exp(Õ(d)) for all inputs, even those of very
large Hamming weight.

Lemma 56 ([RS10]). Let p : {−1, 1}R·N → R be a polynomial of degree at most d. If |p(y)| ≤ O(1)
for all |y| ≤ N , then |p(y)| ≤ (RN)O(d) for all y ∈ {−1, 1}RN .

Hence, we conclude that |p(y)| ≤ (RN)O(d) = 2O(R1/4N1/4) for all y ∈ {−1, 1}RN , where we have
used that d = R1/4 ·N1/2/ logN . Now recall that, as captured in Claim 37, if a dual polynomial for
a function F places mass at most δ on a set S, then it in fact lower bounds the degree of polynomial
approximations p to F that are permitted to be as large as roughly 1/δ at inputs in S. Taking S to

be the set of all inputs of Hamming weight greater than N and δ = 2−Ω(R1/4N1/2), Condition (35)
thus implies that p requires degree at least d. This completes the proof.

8.1.3 Threshold degree of SURJ

The facts that Observation 52 and Lemma 54 hold for every ε > 0 imply that, up to logarithmic
factors, deg±(SURJ) is equivalent to deg±(ANDR◦ORN )≤N ). As explained next, this latter quantity
is Θ̃(n1/2), where recall that n = N · log2R.
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For the upper bound, observe that, even without the promise that the input has Hamming
weight at most N , the threshold degree upper bound for CNFs given in Lemma 8 guarantees that
deg± (ANDR ◦ ORN ) is at most O(

√
N logR) = Õ(

√
N).

To prove a matching lower bound, observe that if R = N1/2, then ANDR ◦ ORN is sim-
ply the Minsky-Papert CNF defined over N3/2 input bits. This function has threshold degree
Ω
(
(N3/2)1/3

)
= Ω

(
N1/2

)
(Theorem 26).

By itself, this does not yield the lower bound we require: we need to show that ANDN1/2 ◦ORN
has threshold degree Ω(N1/2) even under the promise that that the input has Hamming weight at
most N . Note that, here, N is much less than the maximal possible Hamming weight, of N3/2.

Fortunately, more recent and general proofs of Minsky and Papert’s lower bound, which are
based on dual block composition (see Theorems 48 or the proof of Theorem 92), can be extended to
prove that deg±

(
(ANDN1/2 ◦ ORN )≤N )

)
≥ Ω(N1/2). One simply combines the known constructions

of dual witnesses for the high threshold degree of the Minsky-Papert CNF with with the analysis
used to prove Theorem 55. The interested reader is directed to [BT19a] for details.

Theorem 57 ([BT19a]). The threshold degree of SURJ is Θ̃(n1/2).

8.2 Other Functions and Applications to Quantum Query Complexity

A number of other problems that arise in quantum query complexity can be related to block-
composed functions under a Hamming weight promise. Recall from Section 2.2 that the k-distinctness
function k-ED interprets its input as a list of N numbers from a range of size R and outputs 1 if
and only if there is some range item that appears at least k times in the list. It is easy to see that
k-ED(x) = (NORR ◦ THRkN )(y(x)) where THRk denotes the symmetric k-threshold function that
outputs −1 iff its input has Hamming weight at least k. Analogously to Theorem 55, we have:

Lemma 58. For k ≥ 2, d̃eg (k-ED) = Θ̃
(
d̃eg

((
NOR ◦ THRkN

)≤N))
.

Dual block composition can be used to show that d̃eg(
(
NOR ◦ THRkN

)≤N
) ≥ Ω(N3/4−1/(4k)) for

any constant k ≥ 2 [BKT18, MTZ20]. For large k, this nearly matches a known upper bound of

O
(
n
3/4− 1

2k+2−4

)
on the quantum query complexity, and hence also approximate degree, of k-ED

[Bel12]. Similar connections give tight lower bounds (up to logarithmic factors) on both the approx-
imate degree and quantum query complexity of various property testing problems, including junta
testing, statistical distance estimation, entropy approximation, and image size testing [BKT18].

Converses to the polynomial method in quantum query complexity. Recall that while
approximate degree lower bounds imply quantum query lower bounds (Theorem 70), the converse

is not true [Amb06, She18a]. For example, we have seen that d̃eg(SURJ) = Θ̃(n3/4), but it is
known that its quantum query complexity is Θ(n) [BM12, She18d]. However, partial converses are
possible. This means that if one proves an approximate degree upper bound for a function, and the
approximating polynomial satisfies additional properties, then in fact an efficient quantum query
algorithm may be implied. For example, Arunachalam, Briët, and Palazuelos [ABP19] showed
that quantum query complexity is characterized by one of these variants, called approximation
by completely-bounded forms. The characterization has so far been used primarily to study fine-
grained relationships between constant-query quantum algorithms and constant-degree polynomials
(see [BG22] and the references therein)—no one has yet been able to use this characterization to
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give a new quantum algorithm for any natural problem. Can known constructions of approximating
polynomials be modified to yield completely-bounded forms? If so, this has the potential to offer a
new paradigm in quantum algorithm design.

8.3 Approximate Degree of AC0

One of our favorite open questions in the study of approximate degree is to ascertain whether
there are AC0 circuits of approximate degree Ω(n). The Parity and Majority functions have linear
approximate degree, but they are not in AC0. For a long time, the best known lower bound on the
approximate degree of an AC0 function was Ω(n2/3), proved by Aaronson and Shi [AS04]. Analyzing
non-block-composed functions, as described above, brings us a lot closer to answering this question.
In particular, SURJ is in AC0 and has approximate degree Θ̃(n3/4). In fact, the key to the SURJ
lower bound (Theorem 55) can be seen as another hardness amplification theorem, showing that
the function (ANDR ◦ORN )≤N requires higher degree to approximate than does ANDR itself. The
main property of ANDR used in Theorem 55 is that it has approximate degree Ω(

√
R). Simplifying

the actual construction slightly, replacing ANDR with SURJR yields a function (SURJR ◦ ORN )≤N
that has even larger approximate degree Ω̃(n7/8).25

By iteratively applying this hardness amplification technique, for any δ > 0, one can obtain a
family of AC0 circuits with approximate degree Ω(n1−δ) [BT19b, BKT18]. This was further im-

proved by the authors from (1/3)-approximate degree to (1−2−n
1−δ

)-approximate degree [BT19a],
and finally by Sherstov and Wu [SW19] to a Ω(n1−δ) lower bound on the threshold degree of AC0.
Recent work of Sherstov [She22] establishes that the Ω(n1−δ) approximate degree lower bound holds
even for DNFs and CNFs of constant width.

Open problems. As indicated above, several problems in this research direction remain open.
One is to ascertain whether the Ω(n1−δ) threshold degree lower bound holds for depth-three AC0

circuits, as current lower bound constructions require the circuit depth to grow with 1/δ. Another
is to close the gap between the lower bounds above, which are all of the form Ω(n1−δ), and the
known approximate degree upper bounds for AC0, which are all trivial (i.e., O(n)).

This gap may appear inconsequential—is there really a major difference between approximate
degree Θ(n0.999) and Θ(n)? However, we will see (Section 11.3) that even “barely sublinear”
approximate degree upper bounds have important implications in circuit complexity. Hence, in our
view, the gap between the known (sublinear) approximate degree lower bounds for AC0 and the
(trivial) linear upper bound is significant.

Open Problem 59. Exhibit a function in AC0 with approximate degree Ω(n) or Ω(n/ log n), or
prove that no such function exists.

8.4 Proof of Lemma 54

Let d̃egε
(
(ANDR ◦ ORN )=N

)
denote the least degree of a real polynomial p : {−1, 1}R·N → {−1, 1}

such that |p(x) − (ANDR ◦ ORN )(x)| ≤ ε for all x of Hamming weight exactly N . Note that p

25The function in the actual construction is SURJR ◦ ANDO(logR) ◦ ORN . The “middle gadget” ANDO(logR) is

included in the function definition because d̃egε(ANDO(logR)◦ORN ) is large even for ε ≥ 1−1/(3R) (see Theorem 47).
This enables the use of dual block composition (see Theorem 44) to prove a lower bound on the approximate degree
of SURJR ◦ ANDO(logR) ◦ ORN .
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may behave arbitrarily on inputs of Hamming weight strictly less than or strictly greater than
N . To begin, rather than proving Lemma 54 itself, we prove the weaker result that d̃egε(SURJ) ·
logR ≥ d̃egε

(
(ANDR ◦ ORN )=N

)
, as this contains the main ideas. At the very end of the section

(Section 8.4.1), we sketch how to prove Lemma 54 in full.
Recall that the Surjectivity function (SURJ) takes as input a vector in x ∈ {−1, 1}n with

n = N log2R and interprets the vector as a list of (the binary representations of) N num-
bers (k1, . . . , kN ) from range [R] = {1, . . . , R}. Our approximate degree upper bound for SURJ
(Theorem 53) introduced a different representation of the list (k1, . . . , kN ) via N · R variables
y(x) = {yi,j : i ∈ [R], j ∈ [N ]} in which yi,j = −1 if kj = i and yi,j = 1 otherwise.

Up to a log2R factor, these two representations of the list, namely x and y, are equivalent from
the perspective of low-degree polynomial approximations, as formalized by the following proposi-
tion.

Claim 60. Let F : {−1, 1}n → {−1, 1} be any function. For any ε > 0, let p : {−1, 1}n → R be the
lowest degree polynomial such that |p(x)− F (x)| ≤ ε for all x ∈ {−1, 1}n, and q : {−1, 1}N ·R → R
be the lowest degree polynomial such that |q(y(x))− F (x)| ≤ ε for all x ∈ {−1, 1}n. Then

deg(p) ≤ deg(q) · logR (36)

and
deg(q) ≤ deg(p). (37)

Proof. Equation (36) holds because each bit yi,j of y depends on only logR bits of x; hence, given
any q such that |q(y(x))−F (x)| ≤ ε, p(x) := q(y(x)) is a polynomial of degree at most deg(q)·log(R)
that approximates F to error ε. The second claim holds because each bit of x is a degree-1 function
in entries (y1,1, . . . , yR,N ) of y(x). That is, if we express a string x ∈ {−1, 1}n as x = (x1, . . . , xN )
where each xj ∈ {−1, 1}logR, then using y as shorthand for y(x), it holds that

xj,k = 1−
∑

i : bin(i)k=−1

(1− yi,j). (38)

Here, bin(i) denotes the logR-bit binary representation of range element i ∈ [R].
Hence, if |p(x) − F (x)| ≤ ε for all x ∈ {−1, 1}n, let q(y) : {−1, 1}N ·R → R be the polynomial

that replaces each input xi,j to p with the right hand side of Equation (38). Since the right hand
side of Equation (38) is a degree-1 polynomial in y, deg(q) ≤ deg(p) as claimed.

Claim 60 shows that constructing a low-degree approximating polynomial for the total function

F (x) = SURJ(x) : {−1, 1}n → {−1, 1}

is equivalent (up to a logarithmic factor in the degree) to approximating the partial function defined
over the yi,j variables (in which the approximating polynomial is allowed to behave arbitrarily on
inputs in {−1, 1}N ·R that do not equal y(x) for some x ∈ {−1, 1}n). That is, from the perspec-
tive of low-degree polynomials, the “x ∈ {−1, 1}n representation” of the input is equivalent to
the “y ∈ {−1, 1}N ·R representation” of the same input. Henceforth, we refer to these respective
representations of the input to SURJ simply as the “x-representation” and the “y-representation”.

The crux of Lemma 54 is to identify a third equivalent representation of the input. This
representation is not a bit-vector like the x-representation or y-representation, but rather a “fre-
quency vector”, meaning a vector of non-negative integers summing to N . Specifically, given an
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x ∈ {−1, 1}n interpreted as a list of N numbers (k1, . . . , kN ) from range [R] = {1, . . . , R}, define
z(x) = (z1, . . . , zR) ∈ ([N ]∗)R where zi is the number of times range item i ∈ [R] appears in the
list specified by x. For instance, in the example of Figure 4b, the associated frequency vector
z = (2, 2, 2), because each of the three range items appears twice in the input list.

Claim 61 below shows that for purposes of constructing an approximating polynomial for
SURJ(x), it is without loss of generality to represent the input list via its frequency vector z.
The only property of SURJ used in the claim is that SURJ(x) depends only on the frequency vector
z(x).

In conclusion, we can summarize Claim 60 and Claim 61 as follows: Let n = N logR and
F : {−1, 1}n → {−1, 1} be any function that interprets its input x as a list of N numbers from a
range of size R, such that F (x) depends only on the frequency vector z(x) of the input x ∈ {−1, 1}n.
Then approximating F in its “x-representation” and its “y-representation” are equivalent up to a
factor of logR in degree, while approximating F in its “y-representation” and “z-representation”
are perfectly equivalent (with no change whatsoever in the degree).

Claim 61 (Ambainis [Amb05]). Let F : {−1, 1}n → {−1, 1} be any function such that F (x) de-
pends only on the frequency vector z(x). For any ε > 0, let q : {−1, 1}N ·R → R be the lowest degree
polynomial such that

|q(y(x))− F (x)| ≤ ε for all x ∈ {−1, 1}n, (39)

and let P : ([N ]∗)R → R be the lowest degree polynomial such that

|P (z(x))− F (x)| ≤ ε for all x ∈ {−1, 1}n. (40)

Then deg(q) = deg(P ).

We clarify that, in Claim 61, while it is without loss of generality to assume that q is multilinear
owing to its domain being {−1, 1}R·N , the polynomial P may not be multilinear.

Before proving the claim, we explain why it implies the desired result that d̃egε(SURJ) · logR ≥
d̃egε

(
(ANDR ◦ ORN )=N

)
. By Claims 60 and 61, if d̃egε(SURJ) ≤ d, then there is a polynomial P

of degree at most d · logR such that

|P (z(x))− SURJ(x)| ≤ ε for all x ∈ {−1, 1}n. (41)

We now use P to construct an approximation Q to (ANDR ◦ ORN )
=N . Let w = (w1, . . . , wR) ∈

{−1, 1}R·N , and define Q(w) = P (|w1|, . . . , |wR|). Since P has total degree at most d, and |wi| is a
linear function of wi, Q has total degree d as well. If |w| = N , then |w1|, . . . , |wR| are non-negative
integers summing to N and hence w = y(x) for some x ∈ {−1, 1}n. By Equation (41), this implies
that |Q(w)− (ANDR ◦ ORN )=N (w)| ≤ ε.

Proof of Claim 61. The fact that deg(q) ≤ deg(P ) holds because if y = y(x) and z = z(x), then

zi =
∑
j∈[N ]

1− yi,j
2

. (42)

That is, each entry of zi is a degree-1 function of y. Hence, if P (z) satisfies Equation (40), then
replacing each input zi to P with the right hand size of Equation (42) yields a polynomial q
satisfying Equation (39) with deg(q) ≤ deg(p).
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The fact that deg(P ) ≤ deg(q) is far less straightforward. Let q(y) be a multilinear polynomial
satisfying Equation (39) for a vector z ∈ ([N ]∗)R of non-negative integers summing to N , and
define P (z) to be the expected value of q(y(x)) over all inputs x such that z = z(x). Clearly, since
q satisfies Equation (39), P satisfies Equation (40). All that remains is to show that P (z) can be
written as a polynomial of degree at most d := deg(q).

We begin by mimicking the analysis of Minsky-Papert symmetrization (Lemma 22): by linearity
of expectation, it is enough to assume that q(y(x)) consists of a single monomial. Applying the
variable transformation yi,j 7→ (1− yi,j) does not alter the degree of q, and hence it is also without
loss of generality to assume that q has the form:

q(y) = 2−d · (1− yi1,j1) · (1− yi2,j2) · · · (1− yid,jd), (43)

where each ik ∈ [R] and jk ∈ [N ], and i1 ≤ i2 ≤ · · · ≤ id. Note that in this case q(y) equals 1 if
yi1,j1 = yi2,j2 = · · · = yid,jd = −1 and otherwise q(y) = 0.

Some intuition. Before completing the calculation, let us give some intuition as to why deg(P (z)) ≤
d. Fix a z ∈ ([N ]∗)R of non-negative integers summing to N , and let us define X as the set of all
x such that z(x) = z. Note that if x ∼ X, then x is a random input with frequency vector z. Let
us define

Y = {y(x) : x ∈ X}. (44)

Recall that P (z) is defined to equal the expected value of q(y), where y ∼ Y . For each i ∈ [R]
and j ∈ [N ], Pry∼Y [yi,j = −1] = zi/N . This is because yi,j = −1 if and only if that j’th entry of
the input list equals range item i, and every y ∼ Y represents an input with exactly zi occurrences
of range item i. This immediately implies that if q(y) has degree 1 then P (z) does as well.

Imagine (counterfactually) that the entries of y were all independent. Then the probability
that yi1,j1 = yi2,j2 = · · · = yid,jd = −1 would equal 1

Nd zi1 · zi2 · · · · zid , and hence the claim that
deg(P (z)) ≤ deg(q(y)) would be clear. This calculation is analogous to t-biased symmetrization
(Lemma 21), in which an n-variate polynomial q(y) was transformed into a univariate polynomial
P (t) by taking the expected value of q(y) under a distribution in which each coordinate of y was
chosen independently to have expected value t.

However, when y ∼ Y , the entries of y are not independent. For example, if z1 = 1, then
conditioned upon y1,1 = −1, we know with certainty that y1,j = 1 for all j ̸= 1. This is analogous to
how, in Minsky-Papert symmetrization (Lemma 22), an n-variate polynomial q(y) was transformed
into a univariate polynomial P (t) by taking the expected value of q(y) under a distribution in
which y was chosen to have Hamming weight exactly t, and hence the coordinates of y were not
independent. Fortunately, just as with Lemma 22, the dependencies introduced turn out not to
increase the degree of P relative to the independent case.

Completing the calculation. For notational convenience, let us express q(y) as

2−d
∏
i∈[R]

∏
j∈Ai

(1− yi,j)

where Ai ⊆ [d] is the set of all j such that variable yi,j appears in the right hand side of Equation
(43). If the Ai sets are not pairwise disjoint, then q(y(x)) = 0 for all x ∈ {−1, 1}N , meaning that
P has degree 0 ≤ deg(q) as desired. This is because for each j ∈ [N ], y(x)i,j can only equal −1 for
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exactly one value of i, as the jth item of the input list can only equal one range item. For example,
if q(y) = (1/4) · (1− y1,1) · (1− y2,1), then q(y(x)) will equal 0 for all x ∈ {−1, 1}n.

So henceforth let us assume that the Ai’s are pairwise disjoint. Fix a vector z = (z1, . . . , zN ) of
nonnegative integers summing to N . Then:

Ey∼Y [q(y)] = Pr[yik,jk = −1 for all k = 1, . . . , d]

= Pr[yi1,j1 = −1] · Pr[yi2,j2 = −1|yi1,j1 = −1] · · · · · Pr[yid,jd = −1], (45)

where the expectation is taken over y ∼ Y (see Equation (44)).
The calculation of the right hand side of Equation (45) in terms of the entries of z is best

illustrated with an example. Suppose that q(y) = 1
8(1−y1,1)(1−y1,2)(1−y2,3). Then Pr[y1,1 = −1]

is the probability that, out of the z1 occurrences of range item 1, one of them is at index 1 of the
input list. This probability is exactly z1/N . Then, conditioned on y1,1 = −1, the probability that
y1,2 = −1 is the probability that, out of the remaining z1 − 1 occurrences of range item 1 in the
input list, one of them is at index 2 of the input list. This probability is exactly (z1 − 1)/(N − 1).
This is because, once we condition on the first item of the list equalling range item 1, there are
z1−1 remaining occurrences of range item 1 elsewhere in the list, and N −1 indices at which those
z1 − 1 occurrences may reside, namely indices {2, 3, . . . , N}.

Then, conditioned on both y1,1 = −1 and y1,2 = −1, the probability that y2,3 = −1 is the
probability that, out of the z2 occurrences of range item 2 in the input list, one of them is at
index 3 of the input list. This probability is exactly z2/(N − 2). Hence, the right hand side of
Equation (45) equals 1

N(N−1)(N−2) · z1(z1 − 1)z2, which is polynomial in z = (z1, . . . , zR) of total

degree 3 = deg(q).
In general, letting A<i = ∪i−1

k=1Ai, the right hand size of Equation (45) equals:

∏
i∈[R]

Ci · zi · (zi − 1) . . . (zi − |Ai|+ 1)

where
Ci = (N − |A<i|)(N − |A<i| − 1) · · · · · (N − |A<i| − |Ai|+ 1).

Each factor in this expression is of the form zi · (zi − 1) . . . (zi − |Ai|+ 1) times some factor Ci
that is independent of z. Hence, this is a polynomial in z = (z1, . . . , zR) of total degree at most∑

i∈[R] |Ai| = d.

8.4.1 Obtaining the full lemma

Above, we proved that

d̃egε(SURJ) · logR ≥ d̃egε

(
(ANDR ◦ ORN )=N

)
,

while Lemma 54 had ≤ N rather than =N as the superscript on the right hand side of the inequality.
To prove the full lemma, we need to introduce a slight variant of SURJ, that we call dSURJ. This
variant extends the range of SURJ by one, by adding a “dummy range element” whose presence
or absence in the input list does not affect the output. That is, dSURJ tests whether each range
element other than the designated dummy range element appears at least once in the input list.
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One then proceeds in a two-step analysis. First, one shows that approximating dSURJ is no
harder than approximating SURJ itself. That is, any degree-d ε-approximating polynomial for SURJ
can be transformed into one for dSURJ. Essentially, the transformation “hard-codes” in one copy
of the dummy range element into the input list to SURJ, so that the presence or lack of the dummy
range element in the “real” input list to SURJ no longer affects its output.

Second, one shows that, up to a logarithmic factor, any approximating polynomial for dSURJ
yields an approximating polynomial for (ANDR ◦ ORN )≤N . The two steps together then imply as
desired that

d̃egε(SURJ) ≥ d̃egε(dSURJ) ≥ Ω̃
(
d̃egε

(
(ANDR ◦ ORN )≤N

))
.

To prove the second step, one applies the argument we already covered to conclude that any
approximating polynomial for dSURJ (with R non-dummy range elements) implies an approxima-
tion for the following slight modification of (ANDR ◦ ORN )=N , which we denote by F=N . In F=N ,
there are R + 1 rather than R copies of ORN , but the final copy of ORN is simply ignored by the
function. This corresponds to how the dummy range element is ignored by dSURJ.

The final piece of the argument is to show that d̃egε(F
=N ) ≥ d̃egε

(
(ANDR ◦ ORN )≤N

)
. To

see this, let p : {−1, 1}N ·(R+1) → R be a polynomial of total degree d that ε-approximates F=N .
We transform p into an ε-approximation of the same degree for (ANDR ◦ ORN )≤N .

To accomplish this, consider the block-wise Minsky-Papert symmetrization of p. By this, we
mean the polynomial q(z1, . . . , zR+1) : ([N ]∗)R → R of total degree at most d that, on input
z1, . . . , zR+1 ∈ ([N ]∗)R, outputs the average value of p across all inputs in which the ith copy
of ORN is fed an input of Hamming weight i (see Lemma 27).

Let x = (x1, . . . , xR) ∈
(
{−1, 1}N

)R
be an input to (ANDR ◦ ORN )≤N . Let zi = |xi| and

zR+1 = N−
∑R

i=1 zi be the “unused” Hamming weight of x, i.e., the amount by which the Hamming
weight of x is below the maximum allowable quantity N . Consider the polynomial q(z1, . . . , zR+1).

Observe that each zi is a degree-1 polynomial in x, and hence q(z1, . . . , zR+1) is a polynomial
in x total degree at most d. Next, observe that zR+1 ≥ 0 and that, by construction,

∑R+1
i=1 zi = N .

Combined with the fact that p ε-approximates F=N , this means that q(z1, . . . , zR+1) approximates
ANDR ◦ ORN at all inputs of Hamming weight at most N , as desired.

8.5 Collision and PTP Lower Bound

Let n = N logR where N is even and R is a power of 2. Recall from Section 2.2 that the Collision
problem and PTP take as input (the binary specification of) a list of N numbers from a range of
size R. The Collision problem is to distinguish 1-to-1 lists from 2-to-1 lists. Thus, the approximate
degree of the Collision problem26 is the least degree of a polynomial p : {−1, 1}n → R such that:

• p(x) ∈ [2/3, 4/3] for inputs x that are 1-to-1.

• p(x) ∈ [−4/3,−2/3] for inputs x that are 2-to-1.

• |p(x)| ≤ 4/3 otherwise.

26Here, Collision and PTP are partial functions, and we are using the notion of approximate degree of partial
functions relevant to Section 7.3.2, whereby the approximating polynomial is required to be bounded even at inputs
outside of the promise.
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It is often helpful to think of Collision and polynomial approximations to it as working directly
with the “frequency vector” representation of the input. Recall from Section 8.4 that, given an
x ∈ {−1, 1}n interpreted as a list of N numbers (k1, . . . , kN ) from range [R] = {1, . . . , R}, we define
z(x) = (z1, . . . , zR) ∈ ([N ]∗)R where zi is the number of times range item i ∈ [R] appears in the
list specified by x. Claims 60 and 61 together show that, up to a factor of logR, the approximate
degree of the Collision problem is exactly the least degree of a polynomial P : ([N ]∗)R → R such
that:

• P (z) ∈ [2/3, 4/3] when there exist distinct indices i1, . . . , iN such that zi1 = · · · = ziN = 1,
and zi = 0 otherwise.

• P (z) ∈ [−4/3,−2/3] when there exist distinct i1, . . . , iN/2 such that zi1 = · · · = ziN/2
= 2,

and zi = 0 otherwise.

• |P (z)| ≤ 4/3 whenever z1 + · · ·+ zR = N .

Define a list of numbers (k1, . . . , kN ) ∈ [R]N to be “far” from all 1-to-1 lists if its Hamming
distance from any 1-to-1 list is at least N/10, i.e., if at least N/10 of the ki’s would have to be
changed to yield a 1-to-1 input. Note that any 2-to-1 input is far from any 1-to-1 input.

An equivalent definition of what it means for a list in [R]N to be “far” from all 1-to-1 lists is
that at most N − N/10 range elements appear one or more times in the list (this is in fact the
definition we gave in Section 2.2). The following fact gives yet another equivalent definition.

Fact 62. A list (k1, . . . , kN ) ∈ [R]N is far from all 1-to-1 lists if and only if the number of ki that
“collide” with another kj , i.e., ki = kj for some j ̸= i, is at least N/10.

Recall that the Permutation Testing problem, PTP, asks to distinguish 1-to-1 inputs from those
that are far from any 1-to-1 input.27 In the frequency-vector formulation, the approximate degree
of PTP is the least degree of a polynomial P : ([N ]∗)R → R such that:

• P (z) ∈ [2/3, 4/3] when z is the frequency vector for a 1-to-1 list.

• P (z) ∈ [−4/3,−2/3] when z is the frequency vector for a list that is far from any 1-to-1 input.

• |P (z)| ≤ 4/3 whenever z1 + · · ·+ zR = N .

The study of the approximate degree and quantum query complexity of the Collision problem
and PTP were originally motivated by connections to collision-resistant hashing, a central primitive
in cryptography. However, as we have already seen (Section 7.2.2), this study has led to unexpected
results such as oracle separations for statistical zero-knowledge.

Observe that both the Collision problem and PTP have approximate degree 0 if the range size
R is strictly less than the domain size N , because there are no 1-to-1 inputs in this degenerate case.
In the non-degenerate case that R ≥ N , Section 4.4.1 gives a degree upper bound of O(N1/3). It
turns out that this upper bound is tight. The key to proving this is the following lemma showing
how to symmetrize the frequency-vector representation of a polynomial. While our presentation of
its proof is somewhat novel, the lemma is due to Aaronson [Aar02].

27Typically, the PTP problem is only defined when the “range size” R equals the “domain size” N , so that 1-to-1
lists represent permutations. For convenience, in this section we define PTP for arbitrary positive integers N and R.
In this more general setting, the problem really should be called injectivity testing rather than permutation testing.
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Lemma 63. Let P (z) : ([N ]∗)R → R be any polynomial of total degree at most d. For any positive
integer ℓ that divides N , let µℓ denote the distribution over z(x) where x is a uniformly random
ℓ-to-1 input. Then there is a univariate polynomial Q of degree at most d such that, for all positive
integers ℓ that divide N , we have Q(ℓ) = Ez∼µℓ [P (z)].

Proof. By linearity of expectation, it suffices to consider a polynomial P consisting of a single
monomial

∏R
i=1 z

di
i where

∑
i di = d and z0i is interpreted as the constant 1. If a frequency vector

z ∈ ([N ]∗)R represents an ℓ-to-1 input, then it has has N/ℓ entries equal to ℓ, and R−N/ℓ entries
equal to 0.

For intuition, suppose for a moment (counterfactually) that z instead had all R entries equal
to ℓ. Then clearly Ez∼µℓ [P (z)] =

∏R
i=1 ℓ

di = ℓd is a degree-d polynomial in ℓ as desired. This is
analogous to the t-biased symmetrization for symmetric functions (Lemma 21).

The actual calculation of Q is as follows. For a random ℓ-to-1 input x, its frequency vector z(x)
is distributed according to the following random process: first, choose a set R of N/ℓ range items
at random. Second, set zi = ℓ for all i ∈ R and set zi = 0 for all i ̸∈ R. Consequently, we can
express:

Ez∼µℓ [P (z)] = Pr[{i : di > 0} ⊆ R] · ℓd, (46)

where the probability is over the random choice of R. Letting D = |{i : di > 0}|,

Pr[{i : di > 0} ⊆ R] =

(
R−D

N/ℓ−D

)
/

(
R

N/ℓ

)
=

(R−D)!

(N/ℓ−D)!(R−N/ℓ)!
· (N/ℓ)!(R−N/ℓ)!

R!

=
(N/ℓ)(N/ℓ− 1) · . . . · (N/ℓ−D + 1)

R · (R− 1) · . . . · (R−D + 1)

=
1

R · (R− 1) · . . . · (R−D + 1)
· 1

ℓD
· (N · (N − ℓ) · (N − 2ℓ) · . . . · (N − (D − 1)ℓ))

Hence, Equation (46) equals

1

R · (R− 1) · . . . · (R−D + 1)
ℓd−D · (N · (N − ℓ) · (N − 2ℓ) · . . . · (N − (D − 1)ℓ)),

which is a polynomial in ℓ of degree at most d.

Completing the Ω(N1/3) lower bound for Collision and PTP when R ≥ N . If N were
somehow divisible by every integer between 1 and N2/3, we could prove an Ω(N1/3) approximate
degree lower bound for the Collision problem as follows. Let P be an approximating polynomial
for the frequency-vector representation of this problem. By Lemma 63, there exists a univariate
polynomial Q of degree at most deg(P ) such that Q(1) ∈ [2/3, 4/3], Q(2) ∈ [−2/3,−4/3], and
|Q(ℓ)| ≤ 4/3 for all integers ℓ ∈ [N2/3]. The reasoning used in the Minsky-Papert-symmetrization-
based lower bound for OR (Section 5.1) then implies that deg(Q) ≥ Ω(N1/3), and hence deg(P ) ≥
Ω(N1/3) as well.

Unfortunately, it is not the case that N is divisible by all integers in [N2/3]. Aaronson and
Shi [AS04] side-stepped this complication with a yet-more-sophisticated symmetrization calcula-
tion, transforming a multivariate approximation to the Collision problem into a certain trivariate
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polynomial Q of degree at most deg(p), and such that they could prove deg(Q) ≥ Ω(N1/3). We do
not cover their more sophisticated symmetrization in this survey. However, we do give a detailed
proof sketch of an Ω(N1/3) lower bound for the closely related PTP problem, for which (as we now
show) Lemma 63 is sufficient.

Proof outline. The idea is to first invoke Lemma 63 with the domain size set to some enormous
number Ñ , so big that it is divisible by all integers in [N ] (say, Ñ = N !). This allows us to directly
prove the desired Ω(N1/3) lower bound on the degree required to distinguish 1-to-1 inputs from
(Ñ/N)-to-1 inputs when the domain and range size size are huge (namely Ñ). We then show
how one could take any degree-d approximating polynomial for PTPN,Ñ and use it to solve the
aforementioned problem with the same degree. Note that here, the domain size equals N which is
small, but the range size remains Ñ which is very large. In the final step, we reduce the range size
by showing how an approximating polynomial for PTPN,N can be used to approximate PTPN,Ñ .

Together, these steps imply that d ≥ Ω(N1/3) as claimed.

Details of the first step. Suppose P̃ (z) :
(
[Ñ ]∗

)Ñ
→ R is a polynomial satisfying:

(a) P̃ (z) ∈ [2/3, 4/3] when z is the frequency vector of a 1-to-1 input.

(b) P̃ (z) ∈ [−4/3,−2/3] when z is the frequency vector of an (Ñ/N)-to-1 input.

(c) |P̃ (z)| ≤ 4/3 for all other inputs z that represent an (Ñ/r)-to-1 input for some r ∈ [N ].

Conditions (b) and (c) above are well-defined because we have ensured that Ñ is divisible by all
integers in [N ], i.e., Ñ/r is an integer for all r ∈ [N ]. Clearly, Ñ/r divides Ñ . Hence, Lemma 63
allows us to conclude that there is a univariate polynomial Q̃ of degree at most deg(P̃ ) such that
Q̃(1) ∈ [2/3, 4/3], Q̃(Ñ/N) ∈ [−4/3,−2/3], and |Q̃(Ñ/r)| ≤ 4/3 for all r ∈ [N ].

Let Q(t) = Q̃( ÑN · t). Then deg(Q) = deg(Q̃) ≤ deg(P̃ ). Reformulating the conditions of the

previous paragraph, we know that Q(N/Ñ) ∈ [2/3, 4/3], Q(1) ∈ [−4/3,−2/3], and |Q(N/r)| ≤ 4/3
for all integers r ∈ [N ] (note that this last condition applies even to integers r ∈ [N ] that do
not divide N). We chose Ñ to be so much larger than N that the first condition is essentially
equivalent to requiring that Q(0) ∈ [2/3, 4/3], so from now on let us replace the N/Ñ appearing in
that condition with 0.

The question then becomes: what is the least degree of a univariate polynomial Q with these
properties? Before answering this question, observe that it has a similar flavor to the question
arising in the Minsky-Papert-symmetrization lower bound for ORN (Section 5.1). There, we needed
to lower bound the degree of any univariate polynomial q satisfying q(0) ∈ [2/3, 4/3], q(1) ∈
[−4/3,−2/3], and |q(t)| ≤ 4/3 for all t ∈ [N ]∗. Both the polynomial Q considered in this section
and the polynomial q from Section 5.1 have a “jump” between input 0 and input 1. The key
difference is that q is bounded at all integers between 0 and N while here Q is bounded at inputs
of the form N/r where r is an integer.

It turns out that the minimum degree Q satisfying the above conditions is Θ(N1/3) (contrast
this with the minimum degree of the polynomial q arising the analysis of ORN , which was Θ(N1/2)).
This result was first proved by Zhandry [Zha15]. For brevity, we will only give a very sketchy outline
of how to prove this, following a dual polynomial construction from [AKKT20]. Specifically, the
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idea is to modify the dual polynomial for OR given in Section 6.1. That dual (see Equation
(22)) relied on a univariate function qS that evaluated to zero everywhere except at integers in
S = {0, 1} ∪ {ci2 : i = 1, 2, . . . , ⌊

√
N/c⌋} for a large enough constant c. We saw that the resulting

univariate function qS was uncorrelated with any polynomial of degree less than |S|, and was well-
correlated with the appropriate univariate function (that which maps 0 to 1 and all integers between
1 and N to −1). This was enough to conclude that there is no univariate polynomial q of degree
at most |S| ≈

√
N/c = Θ(

√
N) satisfying the three conditions of the previous paragraph.

In order to lower bound the degree of Q, it turns out to be necessary and sufficient to tweak qS
so that the inputs at which it is non-zero are not integers, but rather of the form N/r for positive
integer r. The natural way to do this is to take each integer ci2 in S, and round it to the nearest
quantity of the form N/r for an integer r.

One can show that, so long as ci2 ≤ N2/3, the rounding does not significantly affect the
correlation of the dual witness with the relevant target function. Intuitively, this is because every
integer less than N2/3 is “pretty close” (additive distance at most O(N1/3)) to some point of the
form N/r for an integer r. That is, to lower bound the degree of Q, we set S to be

{0, 1} ∪
{
round(ci2) : 1 ≤ i ≤

√
N2/3/c

}
,

where round(j) denotes the closest rational number to j of the form N/r for integer r and c > 0 is
a sufficiently large constant.

In summary, the above construction yields a univariate function that is uncorrelated with poly-
nomials of degree at most

√
N2/3/c = Θ(N1/3), is non-zero only at inputs of the form N/r for a

positive integer r, and is well-correlated with the relevant target function. This turns out to be a
dual witness to the fact that any polynomial of Ω(N1/3) lower bound on the degree of Q. Details
of the dual construction and calculation can be found in [AKKT20].

From a lower bound on the degree of P̃ to a lower bound for PTP. Now let P approximate
PTPN,Ñ . That is, let P : ([N ]∗)Ñ → R be such that

(d) P (z) ∈ [2/3, 4/3] for frequency vectors z representing 1-to-1 inputs.

(e) P (z) ∈ [−4/3,−2/3] when z represents an input that is far from 1-to-1.

(f) |P (z)| ≤ 4/3 when z represents any other input.

We will show how to use P to construct a polynomial P̃ of degree at most deg(P ) with properties
(a)-(c) defined earlier in Step 1. That analysis showed that P̃ requires degree Ω(N1/3), and hence
P does as well, proving the claimed lower bound for PTPN,Ñ .

We construct P̃ : ([Ñ ]∗)Ñ as follows. Given an input z̃ = (z̃1, . . . , z̃Ñ ) to P̃ where z̃1+ · · ·+ z̃Ñ =

Ñ , consider the following random process. Sample a list S of N numbers (k1, . . . , kN ), where for
each i ∈ [Ñ ], we set kj = i with probability z̃i/Ñ . Then define z = (z1, . . . , zÑ ) where each zi is the
count of the number of samples kj that are equal to i. For random S, the vector z exactly follows
the multinomial distribution µ(z̃) := Mult(N ; z̃1/Ñ, . . . , z̃Ñ/Ñ): We take N independent samples,

each of which lands in one of Ñ categories with probability z̃i/Ñ . Each entry of the vector z then
counts the number of samples in that category.
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Now define P̃ (z̃) = Ez∼µ(z̃)[P (z)]. If z̃ represents a 1-to-1 input (i.e., all frequencies are either

0 or 1), then so does z with probability at least 1−N2/Ñ . Hence,

P̃ (z̃) ∈ [2/3− o(1), 4/3].

If z̃ represents a (Ñ/N)-to-1 input, then let R be the N range elements in [Ñ ] with non-zero
frequency and observe that each element of the sampled list S is a random member of R. A
simple probabilistic calculation shows that with overwhelming probability, there are at least N/10
elements of S that collide, and hence z represents an input list that is far from 1-to-1—see Fact 62.
Accordingly,

P̃ (z̃) ∈ [−4/3,−2/3 + o(1)].

Finally, it is easy to check that |P̃ (z̃)| ≤ 4/3 as it outputs an average of P ’s evaluations, all of
which are assumed to have magnitude at most 4/3.

Finally, we now argue that deg(P̃ ) ≤ deg(P ). It is possible to do this by a direct calculation as
in the proof of Claim 61, but for the sake of variety, let us give a different argument using prop-
erties of the multinomial distribution. By linearity of expectation, it suffices to show this when

P (z) is a single monomial
∏Ñ
i=1 z

di
i . When this is the case, we have that P̃ (z̃) = Ez∼µ(z̃)

[∏Ñ
i=1 z

di
i

]
is a moment of the multinomial distribution µ(z̃). Using the fact that a draw from the distribu-
tion Mult(N ; p1, . . . , pÑ ) is distributed as the sum of N independent draws from the distribution
Mult(1; p1, . . . , pÑ ), we have that the moment generating function (MGF) of z is given by

Mz(t1, . . . , tÑ ) := Ez∼µ(z̃)
[
e⟨t,z⟩

]
=

 Ñ∑
i=1

z̃i

Ñ
· eti

N

.

Each moment of z is obtained by taking an appropriate derivative of this MGF evaluated at zero:

P̃ (z̃) =
∂d1+···+dÑ

∂td11 . . . ∂t
dÑ
Ñ

∣∣∣∣∣∣
t1=0,...,tÑ=0

 Ñ∑
i=1

z̃i

Ñ
· eti

N

.

Every time this MGF is differentiated with respect to some variable ti, it results in an additional
factor of z̃ie

ti/Ñ being “brought out” of the product. For example, if d1 = 2, d2 = 1, and di = 0
for all other i, we would get

∂3

∂t21∂t
1
2

 Ñ∑
i=1

z̃i

Ñ
· eti

N

=

(
N(N − 1)(N − 2)

Ñ3
z̃21e

2t1 z̃2e
t2 +

N(N − 1)

Ñ2
z̃1e

t1 z̃2e
t2

)
·

 Ñ∑
i=1

z̃i

Ñ
· eti

N

Evaluating this at t1 = · · · = tÑ = 0 makes the first factor a degree-3 polynomial in z̃. Mean-

while, the fact that z̃1 + · · ·+ z̃Ñ = Ñ implies that the second factor always evaluates to 1. So the

product is a degree-3 polynomial in z̃ overall. An inductive argument reveals that, in general, P̃ (z̃)
is a polynomial of total degree at most d1 + · · ·+ dÑ = deg(P ).

In summary, we have shown that, given a polynomial P with properties (d)-(f) above, we can
obtain a polynomial P̃ of degree at most deg(P ) with properties (a)-(c) above. We previously
argued that such a polynomial P̃ requires degree Ω(N1/3) and hence deg(P ) must also be Ω(N1/3).
This yields a lower bound for PTPN,Ñ when the domain size is N and the range size is Ñ .
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From a large-range lower bound to a small-range lower bound. Finally, we explain why
the approximate degree of PTPN,R is the same for any range size R ≥ N [Amb05]. Hence, the
lower bound established above for PTPN,Ñ implies the same lower bound for PTPN,N .

Let Q : ([N ]∗)N → R approximate PTPN,N in the frequency-vector representation when the
domain size is N and the range size is N . We may assume without loss of generality that Q is
invariant under permutations of its input, as if not we may replace Q with its expectation under a
random permutation. Since PTPN,N itself is invariant under permutations of the frequency vector
z, the resulting symmetric polynomial also approximates PTP and has the same degree as Q. We
will show how to use Q to construct a polynomial P : ([N ]∗)R → R approximating PTPN,R for any
range size R ≥ N (in particular, R = Ñ) without increasing its degree.

Since Q is invariant under permutations of its inputs, it is a linear combination of elementary
symmetric polynomials, each of the form

∑
i1,...,ik∈[N ]

k∏
j=1

z
dj
ij

(47)

for some non-negative integers d1, . . . , dk summing to at most deg(Q), where z0i is interpreted as the
constant 1. Let us obtain a polynomial P by replacing each such elementary symmetric polynomial
from Q with: ∑

i1,...,ik∈[R]

k∏
j=1

z
dj
ij
. (48)

To clarify, the sums in Equations (47) and (48) are over distinct elements i1, . . . , ik in [N ] and
[R] respectively.

Clearly P has degree at most deg(Q). We claim that P approximates PTPN,R with domain size
N and range size R. To see this, observe that if z ∈ ([N ]∗)R is the frequency vector of some input
list, then it has at most N nonzero entries. Suppose these nonzero entries are zi1 , zi2 , . . . , zik > 0
for some k ≤ N . Then define the new frequency vector z by setting zj = zij for every j = 1, . . . , k
and zj = 0 for j = k + 1, . . . , N . Intuitively, z removes the 0-entries from z until at most N
entries remain and shifts the nonzero entries to the “front” of the vector. It is immediate from the
definition that P (z) = Q(z).

This means that P approximates PTPN,R with domain size N and range size R. This is because
if z is the frequency vector for a 1-to-1 input, then z is the all-ones vector. On the other hand, if z
represents a list that is far from any 1-to-1 input, then z is also the frequency vector of a list that
is far from any 1-to-1 input.

The proof sketched in this section shows that any polynomial approximating PTPN,N in the
frequency vector or “z-representation” has degree Ω(N1/3). Recall that Claim 61 shows that ap-
proximability in the “z-representation” is equivalent to approximability in the “y-representation”.
Thus, we also have that every polynomial p : {−1, 1}N ·N → R such that:

• p(y(x)) ∈ [2/3, 4/3] for inputs x that are 1-to-1,

• p(y(x)) ∈ [−4/3,−2/3] for inputs x that are far from any 1-to-1 input, and

• |p(y(x))| ≤ 4/3 otherwise

requires degree Ω(N1/3).
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8.6 Element Distinctness Lower Bound

Recall from Section 8.2 that the k-distinctness function k-ED (for constant k) interprets its input
as a list of N numbers from a range of size R and outputs 1 if and only if there is some range
item that appears at least k times in the list. 2-ED is a particularly natural special case that is
referred to as Element Distinctness, or ED for short. In Section 8.2, we sketched a lower bound
of Ω(N3/4−1/(4k)) on the approximate degree of k-ED. This lower bound is proved using variants
of dual block composition. This bound is close to tight for large constants k, as there is an upper
bound known that is (strictly better than) O(N3/4) for all constants k. However, it is not tight for
k = 2. As we now explain, the Ω(N1/3) approximate degree lower bound for PTP in fact implies
an Ω(N2/3) approximate degree lower bound for ED with domain size and range size equal to N .
This lower bound is optimal (we give a matching upper bound in Section 4.4.2).

Given a polynomial P of degree d for approximating ED with domain size N ′ and range size
(N ′/100)2, we show below that one can obtain a polynomial Q of the same degree approximating
PTP over domain size N := (N ′/100)2 and range size R = N . Since the approximate degree of
PTP is Ω(N1/3), it follows that the approximate degree of ED with this domain and range size
is Ω((N ′)2/3). The lower bound can be extended to the “small range” case (range size equal to
domain size) using the same reasoning as for PTP (Section 8.5).

Here is how to use P to construct Q. Q(x) outputs the expected value of the following random
process: select a set S of N ′ = 100

√
N list elements from x at random, and feed them into P . That

is, Q equals:
1( N

100
√
N

) ∑
S⊆[N ] : |S|=100

√
N

P (x|S).

Clearly, deg(Q) ≤ deg(P ). We now explain why Q approximates PTP. If x is 1-to-1 then
with probability 1 over the choice of S, x|S is as well, and hence ED(x|S) = −1. Hence, Q(x) ∈
[−4/3,−2/3]. Meanwhile, if x is far from any 1-to-1 function, then by the birthday paradox, with
probability at least 9/10 over the random choice of S, x|S will not be 1-to-1, i.e., ED(x|S) = 1.
Hence, Q(x) ∈ [1/2, 4/3]. It follows that Q approximates PTP to error at most 1/2.

9 Spectral Sensitivity

A breakthrough result of Huang [Hua19] resolved the so-called sensitivity conjecture in the analysis
of Boolean functions. The sensitivity conjecture itself is not directly relevant to our discussion of
approximate degree. However, follow-on work by Aaronson et al. [ABDK+21] builds on Huang’s
analysis to derive a variety of important consequences for approximate degree. This includes a
powerful new technique for proving degree and approximate degree lower bounds. The technique
is based on a quantity called spectral sensitivity.

In order to define spectral sensitivity, we remind the reader of the definition of the spectral
norm. Any symmetric N ×N matrix M ∈ RN×N has N real eigenvalues, say, λ1, . . . , λN . Let us
sort the magnitudes of the eigenvalues such that |λ1| ≥ |λ2| · · · ≥ |λN |.

Definition 64. The spectral norm of a symmetric matrix M , denoted ∥M∥, is its largest absolute
eigenvalue

∥M∥ := |λ1|.
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The spectral sensitivity of a Boolean function is the spectral norm of a certain sensitivity matrix
associated to it.

Definition 65. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Define the matrix Af =

[Afx,y]x∈{−1,1}n,y∈{−1,1}n ∈ {0, 1}2n×2n by Afx,y = 1 if x and y differ in exactly one coordinate and

f(x) ̸= f(y), and Afx,y = 0 otherwise. The spectral sensitivity of f is λ(f) = ∥Af∥, the spectral
norm of Af .

One can think of Af as the adjacency matrix of the graph on vertex set V = {−1, 1}n, where
two vertices x, y are connected by an edge iff they differ in one index and induce different values
of f . Since this graph is bipartite, whenever λ is an eigenvalue of Af , we have that −λ is an
eigenvalue as well. Hence λ(f) is simply the maximum eigenvalue of Af . Another basic fact from
matrix analysis is that this eigenvalue equals the maximum of vTAfv where v ranges over all all
vectors in R2n of Euclidean norm 1.28

The main step in Huang’s 2-page proof of the sensitivity conjecture was to show that the degree
of a Boolean function is always at most its spectral sensitivity.

Theorem 66 ([Hua19, ABDK+21]). For every Boolean function f : {−1, 1}n → {−1, 1}, we have
deg(f) ≤ λ(f)2.

Aaronson et al. proved a converse relationship, not only between spectral sensitivity and exact
degree, but to approximate degree. Specifically, they showed that, up to a constant factor, spectral
sensitivity lower bounds approximate degree.

Theorem 67 ([ABDK+21]). For every Boolean function f : {−1, 1}n → {−1, 1}, λ(f) ≤ O(d̃eg(f)).

Aaronson et al., in fact, gave two proofs of Theorem 67. The first, which we sketch below,
argues that if f is approximated by a low-degree polynomial, then Af is similar to a matrix with
an approximate sparsity property that ensures low spectral norm. The second proof bounds λ(f)
by the spectral norm of a different matrix derived from an approximating polynomial, in turn
controlling this using an approximate factorization norm. This second proof is more self-contained
and obtains a better constant, but in our opinion is less intuitive to describe.

Proof sketch of Theorem 67. We first sketch the weaker bound λ(f) ≤ O(d̃eg(f) log n). Then we
explain how to use a “tensor power trick” to automatically improve this to the stated bound.

The proof of the weaker bound uses several intermediate 2n×2n matrices with rows and columns
each indexed by {−1, 1}n.

• Let H be the normalized Walsh-Hadamard matrix defined by Hx,y = 2−n/2
∏n
i=1(xi ∧ yi).

This is a symmetric, orthogonal matrix, and hence an involution (HH = I).

A useful interpretation of H is that it implements the Fourier (and inverse-Fourier) transform
of a function g : {−1, 1}n → R. Specifically, if we let vg ∈ R2n be the vector with (vg)x = g(x),
then (Hvg)y = 2n/2ĝ(S) where S = {i ∈ [n] | yi = −1} is the set of indices indicated by y.

• Let W be the diagonal matrix with Wx,x = |x|, the Hamming weight of x.

28The spectral sensitivity of f is a distinct notion from the “sensitivity” s(f) often studied in the analysis of
Boolean functions, which is the maximum over all x of the number of inputs y such that y differs from x in exactly
one coordinate and f(x) ̸= f(y). The relationship λ(f) ≤ s(f) follows from the fact that the spectral norm of an
adjacency matrix is at most the maximum vertex degree of the associated graph, which for Af is exactly s(f).
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• For any function g : {−1, 1}n → R, let diag(g) be the diagonal matrix with diag(g)x,x = g(x).

• Let Rg be the symmetric, orthogonal matrix obtained by conjugating diag(g) by H, i.e.,
Rg = H diag(g)H. Explicitly, Rgx,y = ĝ(S) where S = {i ∈ [n] | xi ⊕ yi = −1}. In particular,
this means that if deg(g) ≤ d, then Rgx,y = 0 whenever |x⊕ y| > d.

This transformation is particularly nice (and useful) when applied to the function w(x) = |x|.
Note that w(x) = n

2 − 1
2(x1 + · · · + xn) is a degree-1 polynomial, with Fourier coefficients

ŵ(∅) = n/2, ŵ({i}) = −1/2 for all i ∈ [n], and ŵ(S) = 0 otherwise. Thus, Rw = HWH is
the matrix where

Rwx,y =


n/2 if x = y

−1/2 if x, y differ in exactly one coordinate

0 otherwise.

With these matrices in hand, the key idea is to use H to perform the following change of basis:

λ(f) = max
v:∥v∥=1

v⊤Afv = max
v:∥v∥=1

v⊤HAfHv = max
v:∥v∥=1

v⊤(RfWRf −W )v. (49)

To see why the identity on the right of Equation 49 is true, note that by using the factHH = I, it
is equivalent to the statement that Af = diag(f)HWH diag(f)−HWH = diag(f)Rw diag(f)−Rw.
If x = y ∈ {−1, 1}n, then the (x, y)’th entry of the matrix on the right evaluates to f(x)·n2 ·f(x)−

n
2 =

0. If x, y ∈ {−1, 1}n differ in exactly one coordinate, it evaluates to f(x) ·
(
−1

2

)
· f(y)− 1/2, which

is 1 if f(x) ̸= f(y) and 0 otherwise. Finally, if x, y differ in more than one coordinate, then the
relevant matrix entry is zero. So indeed we see that these matrices are equivalent entrywise.

Now let p : {−1, 1}n → R be a degree-d polynomial that ε-approximates f for some ε to be
chosen later. By taking an affine transformation of p and increasing ε by a factor of at most 2, we
can assume that p : {−1, 1}n → [−1, 1]. This implies that ∥ diag(p)∥ ≤ 1 and ∥ diag(f − p)∥ ≤ ε.
Since ∥H∥ = 1, it follows that ∥Rp −Rf∥ ≤ ε. And since ∥W∥ = n, we have from (49) that

λ(f) ≤ max
v:∥v∥=1

v⊤(RpWRp −W )v + 3εn.

As a consequence of the facts that ∥Rp∥ ≤ 1 and that Rp is supported only on entries (x, y)
for which |x⊕ y| ≤ d, one can show ([ABDK+21, Lemma 14]) that v⊤(RpWRp −W )v ≤ d for all

unit vectors v. Therefore, λ(f) ≤ d + 3εn. Now taking ε = 1/n and d = O(d̃eg(f) log(1/ε)) =

O(d̃eg(f) log n) (Theorem 10) reveals that λ(f) ≤ O(d̃eg(f) log n).

With this weaker bound in place, we now explain how to improve it to the stated bound of
λ(f) ≤ O(d̃eg(f)). We have seen that there exists a constant C such that λ(f) ≤ Cd̃eg(f) log n for
every f : {−1, 1}n → {−1, 1}. Applying this to the k-fold composition of f with itself, denoted by

fk : {−1, 1}nk → {−1, 1}, yields

λ(fk) ≤ Cd̃eg(fk) log(nk)

for every k ≥ 1.
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Now on the left-hand side, spectral sensitivity obeys a perfect composition theorem: λ(f ◦ g) =
λ(f)λ(g) for all functions f, g [ABDK+21, Theorem 29], so λ(fk) = λ(f)k. Meanwhile on the right-
hand side, Sherstov’s robust composition theorem (Theorem 11) shows that there is a constant r

for which d̃eg(fk) ≤ (rd̃eg(f))k. Putting these together shows that

λ(f) ≤ r(Ck log n)1/kd̃eg(f).

Since this holds for arbitrarily large k, it follows that λ(f) ≤ rd̃eg(f).

The following paragraphs detail important implications of Theorems 66 and 67.

Symmetric functions. To gain familiarity with spectral sensitivity, we begin by explaining that
Theorem 67 implies a particularly simple proof of a tight lower bound on the approximate degree
of any symmetric Boolean function. Recall (Sections 5.2 and 7.3.2) that if f : {−1, 1}n → {−1, 1}
is a symmetric function with f(x) = 1 for |x| = t− 1 and f(x) = −1 for |x| = t and t ≤ n/2, then

d̃eg(f) = Ω(
√
nt). (Recall also the matching upper bound in Section 4.3.) Define the unit vector

u ∈ R2n , indexed by strings x ∈ {−1, 1}n, by

ux =


1√

2( n
t−1)

if |x| = t− 1

1√
2(nt)

if |x| = t

0 otherwise,

Let x ∼ y if they differ in exactly one coordinate. Then we have

λ(f) = ∥Af∥
≥ u⊤Afu

=
∑

x,y∈{−1,1}n
Ax,yuxuy

≥
∑

(x,y):|x|=t−1,|y|=t,x∼y

1√(
n
t−1

)
·
(
n
t

)
≥
(
n
t−1

)
· (n− t+ 1)√(
n
t−1

)
·
(
n
t

)
=

√
t

n− t+ 1
· (n− t+ 1)

=
√
t(n− t+ 1).

Hence, Theorem 67 implies that d̃eg(f) ≥ λ(f) ≥ Ω(
√
nt).

Readers familiar with the quantum adversary method in quantum query complexity may recog-
nize the similarity between this argument and the (positive-weights) adversary lower bound on the
query complexity of symmetric functions. This is not a coincidence. Aaronson et al. [ABDK+21]
showed that the spectral sensitivity of a function f exactly matches the best lower bounds that
can be proved by “single-bit” adversary methods, wherein the adversary matrix is restricted to be
supported on pairs (x, y) for which x and y differ in exactly one index. The classic adversary bound
for symmetric functions, in particular, meets this single-bit restriction.
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Maximum separation between exact and approximate degree. Theorems 66 and 67 to-
gether imply that for every Boolean function f , the exact and approximate degrees are quadratically
related. That is, up to constant factors, the following two inequalities hold:√

deg(f) ≤ d̃eg(f) ≤ deg(f).

This is a tight result, as the OR function exhibits a quadratic separation between these two quan-
tities (its exact degree is n, while its approximate degree is O(

√
n) by Lemma 7).

Read-once formulas. A consequence of the above is a tight lower bound on the approximate
degree of any read-once Boolean formulas. Let f : {−1, 1}n → {−1, 1} be a De Morgan formula
(over the basis AND,OR,NOT) in which every variable appears exactly once.29 It is not hard
to show via induction over the depth of the formula that f has (exact) degree exactly n, i.e.,
deg(f) = n. Theorems 66 and 67 together then imply that

d̃eg(f) ≥ Ω(λ(f)) ≥ Ω
(√

deg(f)
)
= Ω(

√
n).

Meanwhile, a deep result of Reichardt [Rei11] (closing a long line of work) establishes that
the quantum query complexity of read-once De Morgan formulas over n inputs is O(

√
n). Since

quantum query upper bounds imply approximate degree upper bounds (Theorem 70), these results
characterize the approximate degree of read-once formulas.

Theorem 68. If f : {−1, 1}n → {−1, 1} is any read-once De Morgan formula, then d̃eg(f) =
Θ(

√
n).

Bipartite perfect matching. Toward understanding the ability of combinatorial algorithms
to quickly solve graph problems, Beniamini and Nisan [BN21, Ben20] studied the exact and
approximate degree of the bipartite perfect matching problem, BPM. The Boolean function
BPMn2(x1,1, . . . , xn,n) evaluates to −1 iff the bipartite graph whose adjacency matrix is encoded
by (x1,1, . . . , xn,n) has a perfect matching.

Theorem 69. Bipartite perfect matching satisfies d̃eg(BPMn2) = Θ̃(n3/2).

To obtain the upper bound, Beniamini and Nisan showed that the Boolean dual of BPM, i.e.,
the function that outputs −1 iff the complement of its input graph does not contain a perfect
matching, can be expressed as a low-weight linear combination of 2O(n logn) conjunctions. The
approximate degree upper bound then follows from the same technique described for symmetric
functions (Section 4.3), Element Distinctness (Section 4.4.2), and Surjectivity (Section 8.1), wherein
the target function is represented as a linear combination of more easily analyzed functions.

As for the lower bound, Beniamini [Ben20] determined the spectral sensitivity of bipartite
perfect matching to be λ(BPMn2) = Θ(n3/2). This implies the lower bound of Theorem 69 by
Theorem 67.

29A De Morgan formula is essentially a Boolean circuit in which each gate is required to have fan-out only one.
In more detail, a De Morgan formula over input variables x1, . . . , xn ∈ {−1, 1}n is a binary tree in which each leaf is
labeled with a variable xi or its negation, and each internal node computes either than AND or OR of its two children.
The size of a De Morgan formula is the number of leaves of the tree.
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Additional discussion. Recall that Aaronson et al. [ABDK+21] showed that λ(f) also lower
bounds a quantity called the positive weights adversary method, a popular technique for lower
bounding quantum query complexity. Accordingly, proving approximate degree lower bounds via
spectral sensitivity is unlikely to yield new quantum query lower bounds: any quantum query lower
bound that could be established via spectral sensitivity would likely already have been established
via the easier-to-apply positive weights adversary technique. This also means that spectral sen-
sitivity is subject to various limitations, such as the so-called certificate complexity barrier, that
imply that the method cannot yield tight approximate degree lower bounds for many functions.

Nonetheless, the results described above on read-once formulas and BPM provide examples
whereby spectral sensitivity was used to “strengthen” a known quantum query lower bound to an
approximate degree lower bound. That is, prior to the results described above, it was already known
that the quantum query complexity of read-once De Morgan formulas and BPM were Ω(n1/2) and
Ω(n3/2) respectively. The new works used spectral sensitivity to show that these lower bounds hold
for approximate degree as well.

10 Approximate Rank Lower Bounds from Approximate Degree

Section 7.2 proved a variety of hardness amplification theorems for approximate degree under block
composition. Specifically, it showed that for many pairs of functions f, g, the composed function
F := f ◦ g is harder to approximate by low-degree polynomials than are f and g individually. The
main technical tool used to prove these theorems was dual block composition, a powerful technique
for combining dual witnesses ψ for f and ϕ for g to obtain a dual witness ψ ⋆ ϕ for f ◦ g.

This section considers a different type of hardness amplification theorem for approximate degree.
We view the composed function F = f ◦g as a matrix MF in a natural way, and consider a matrix-
analytic analog of ε-approximate degree that is known as ε-approximate rank. Analogously to how
ε-approximate degree considers pointwise ε-approximations to real-valued functions via low-degree
polynomials, ε-approximate rank studies pointwise ε-approximations to real-valued matrices via
low-rank matrices.

Roughly speaking, the key technical theorems (Theorems 77 and 89) in this section show that
if f has ε-approximate degree at least d and g is “sufficiently complicated”, then MF has ε-
approximate rank at least 2Ω(d). The way we prove these results is largely analogous to the approach
in Section 7.2: we take a dual witness ψ to the fact that d̃egε(f) is large, and a dual witness ϕ for
the fact that g is “sufficiently complicated”, and show that their dual block composition ψ ⋆ ϕ is a
dual witness to the high ε-approximate rank of the matrix MF .

Query-to-communication-lifting perspective. As we explain shortly, (the logarithm of) ε-
rank is a lower bound on (and in some cases actually characterizes) three important communication
models, known as BQPcc, PPcc, and UPPcc. Similarly, ε-approximate degree lower bounds or
characterizes the query analogs of these models. Accordingly, an alternative perspective on the
results in this section is that they translate query lower bounds for BQP, PP, and UPP into
communication lower bounds. These communication lower bounds are a principle motivation for
the results in this section. With this perspective in mind, we begin this section by introducing the
relevant notions in query complexity, followed by communication complexity.
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10.1 A Query Complexity Zoo

Recall from Section 4.1 that in query complexity, an algorithm wishes to evaluate a (known)
function f at an (unknown) input x while querying as few bits of x as possible. Just as complexity
theorists study many different models of computation (deterministic, randomized, quantum, non-
deterministic, space-bounded, etc.), query complexity comes in many variants.

In deterministic query complexity, denoted Pdt, a query algorithm is a deterministic procedure
that must output f(x) on every input x, and the query cost of the algorithm is the maximum over
all inputs x of the number of bits queried by the algorithm before outputting f(x).30 We refer to
the algorithm outputting −1 as accepting input x and outputting +1 as rejecting x.

In randomized query complexity, denoted BPPdt, the query algorithm begins by tossing a
sequence r of random coins, after which it executes a deterministic communication protocol (which
may depend on r); the algorithm is only required to output the correct answer f(x) with probability
at least 2/3 over the choice of r. The quantum analog of BPPdt, denoted BQPdt, was briefly
discussed in Sections 4.1 and 8.2.31

We are also interested in two powerful variants of randomized query complexity, denoted PPdt

and UPPdt, which both capture randomized protocols that do only slightly better than random
guessing. By random guessing, we mean the algorithm that on any input x, ignores x and outputs
a random bit. This has query cost 0 and success probability exactly 1/2. PPdt and UPPdt

are so-named because they are query analogs of the classical complexity class PP that captures
decision problems solvable by efficient randomized algorithms that output the correct answer with
probability strictly greater than 1/2.32

Specifically, the PPdt complexity of a Boolean function f is the least d for which there is a
randomized algorithm querying at most d bits that, on any input x, outputs f(x) with probability
at least 1/2 + 2−d. The UPPdt cost is defined identically, except the advantage over random
guessing is only required to be strictly positive, rather than at least 2−d.

Relationship between query complexity and approximate degree. We have already seen
(Section 4.1) that approximate degree lower bounds quantum query complexity.

Theorem 70 ([BBC+01]). For any function f : {−1, 1}n → {−1, 1}, BQPdt(f) ≥ Ω(d̃eg(f)).

We now show that PPdt and UPPdt are characterized by ε-approximate degree, for ε very
close to 1 (these results appear to be folklore).

Fact 71. Let f : {−1, 1}n → {−1, 1} be any function. Then UPPdt(f) = deg±(f).

Proof. As shown by Beals et al. [BBC+01] when they proved Theorem 70, the acceptance proba-
bility of any T -query quantum algorithm is computed by a polynomial of degree at most 2T . An
even more basic fact is that for any classical (randomized) algorithm A making at most T queries
to x, there is a degree T polynomial p such that p(x) = Pr[A(x) = −1]. If UPPdt(f) ≤ d, then

30The dt in Pdt stands for decision tree, which is a synonym for a query algorithm.
31BPP stands for Bounded-Error Probabilistic Polynomial Time while BQP stands for Bounded-Error Quantum

Polynomial Time. See Footnote 32 below for additional details.
32PP and BPP were both introduced in a paper by Gill [Gil77]. PP stands for Probabilistic Polynomial Time,

while BPP stands for Bounded-Error Probabilistic Polynomial-Time. Despite its longer name, BPP proved to be a
more-commonly studied class than PP, as practical algorithms should output the correct answer with high probability
rather than with probability slightly better than 1/2.
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there is a d-query algorithm A such that, for some δ > 0, f(x) = 1 =⇒ Pr[A(x) = 1] ≥ 1/2 + δ
and f(x) = −1 =⇒ Pr[A(x) = 1] ≤ 1/2 − δ. Hence, there is a degree d polynomial p such that:
f(x) = 1 =⇒ p(x)− 1/2 ∈ [δ, 1], and f(x) = −1 =⇒ p(x)− 1/2 ∈ [−1,−δ]. Hence, p− 1/2 is the
desired approximation to f .

For the converse, suppose there is a degree-d polynomial p(x) =
∑

|S|≤d cSχS(x) satisfying
|f(x)−p(x)| ≤ 1−δ for some δ > 0, where recall that χS is the parity function over the variables in S.
Consider the query algorithm that randomly selects a parity S with probability proportional to |cS |
and accepts if sgn(cS)χS(x) < 0. The acceptance probability of this algorithm is 1

2(1−
p(x)∑

|S|≤d |cS |).

Since p(x)·f(x) > 0 for all x ∈ {−1, 1}n, this acceptance probability is greater than 1/2 if f(x) = −1
and less than 1/2 if f(x) = 1.

Fact 72. Let f : {−1, 1}n → {−1, 1} be any function. If PPdt(f) ≤ d then d̃egε(f) ≤ d for some

ε = 1− 2−d. Conversely, if d̃eg1−2−d(f) ≤ d, then PPdt(f) ≤ O(d log n).

Proof. The first claim follows by the same reasoning as in Fact 71, using that if A is a PPdt

algorithm rather than a UPPdt algorithm, then δ is not merely positive, but is in fact at least 2−d.
For the converse, suppose there is a degree-d polynomial p(x) =

∑
|S|≤d cSχS(x) satisfying

|f(x)−p(x)| ≤ 1−2−d. Since |p(x)| ≤ 2 for all x ∈ {−1, 1}n, Fact 1 implies that
∑

|S|≤d |cS | ≤ 2
(
n
d

)
.

As in Fact 71, consider the query algorithm that randomly selects a parity S with probability
proportional to |cS | and accepts if sgn(cS)χS(x) < 0. The acceptance probability of this algorithm

is 1
2(1 − p(x)∑

|S|≤d |cS |). Since p(x) · f(x) ≥ 2−d and
∑

|S|≤d |cS | ≤ 2
(
n
≤d
)
≤ nO(d), this acceptance

probability is greater than 1/2+n−O(d) if f(x) = −1 and less than 1/2−n−O(d) if f(x) = 1. Hence,
PPdt(f) ≤ O(d log n).

10.2 Communication Complexity

In communication complexity, there are two parties, Alice and Bob, who wish to work together to
compute a function of their inputs. Specifically, Alice has input x, Bob has input y, and their goal
is to compute some function f(x, y) of their inputs, while exchanging as few bits as possible. Here,
both Alice and Bob know the function f , but Bob does not know x and Alice does not know y.
The cost of a communication protocol is the maximum number of bits exchanged over any pair of
inputs, and the communication complexity of f is the least cost of any communication protocol
computing f .

As with query complexity, there are many variant models of interest. In the most basic setting,
deterministic communication complexity (denoted Pcc), Alice and Bob must always output f(x, y).
In ε-error randomized communication complexity, Alice and Bob begin the protocol by tossing
a sequence r of random coins, after which they execute a deterministic communication protocol
(which may depend on r), and they are only required to output the correct answer f(x, y) with
probability at least 1 − ε over the choice of r. If ε = 1/3, the communication model is denoted
BPPcc.

In this survey, we will only consider private random coins, meaning that Alice and Bob both
have access to their own random coins, but Bob can’t see Alice’s coins unless she sends them to
him (which counts toward the communication cost) or vice versa.
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Randomized vs. deterministic communication, and the Equality function. Randomized
communication protocols can be far more efficient than deterministic ones for some functions. The
prototypical example is the Equality function EQ, which takes as input two n-bit strings x and
y, and evaluates to −1 if and only if x = y. It is known that the deterministic communication
complexity of this problem is n (or n+ 1 if Alice and Bob are both required to know the output).
But its ε-error randomized communication complexity is just O(log(1/ε)+ log n), and in particular
its BPPcc complexity is just logarithmic in n.

The idea is that the random string can be used to select a hash function h, and then Alice can
send h(x) to Bob, who will output −1 if and only if h(x) = h(y). Suppose h is a random function
with domain {−1, 1}n and range {1, 2, . . . , 1/ε}. If x = y, then the probability (over the random
choice of h) of this event is 1. On the other hand, if x ̸= y, then the probability h(x) = h(y) is
ε.33 In the private coin setting, the communication cost is what is required for Alice to send both
h(x) and a description of the hash function h to Bob, as this lets Bob compute h(y) and compare
it to h(x). Clearly, specifying h(x) requires just ⌈log2(1/ε)⌉ bits. Unfortunately, h does not have
a short description if it is a random hash function. However, it turns out that h need not be a
uniform random function; there are ways to choose h such that the above protocol works and Alice
only needs to send O(log(1/ε) + log n) bits to Bob to specify h.

Even more powerful communication models. The above example demonstrates that ran-
domized communication protocols can be quite powerful, at least relative to deterministic ones.
This means that we might expect proving lower bounds against randomized communication proto-
cols to be difficult. Yet in this section, we are interested in proving lower bounds against even more
powerful communication models. We are particularly interested in the following settings. First is
quantum communication complexity (denoted BQPcc). Roughly speaking, in a BQPcc protocol,
Alice and Bob are allowed to exchange quantum bits rather than just classical bits, and must output
f(x, y) with probability at least 2/3. As with BQPdt, the precise details of the BQPcc model will
not be relevant to this survey.

Second are the communication analogs of PPdt and UPPdt. PPcc(f) is the least d for which a
randomized communication protocol in which Alice and Bob exchange at most d bits, and output
f(x) with probability at least 1/2 + 2−d. UPPcc(f) is defined identically, except the advantage
over random guessing is only required to be strictly positive.

10.3 Lifting Theorems: Communication Lower Bounds from Query Lower Bounds

A powerful approach to constructing hard communication problems is called “query-to-communication
lifting”. In this approach, one starts with a function f : {−1, 1}n → {−1, 1} that is hard in the cor-
responding query model, and transforms f into a communication problem by composing it with a
simple communication problem g : {−1, 1}m×{−1, 1}m → {−1, 1} (g is typically called a “gadget”
function). Specifically, in the communication problem F = f ◦ g, Alice and Bob are respectively
given inputs x = (x1, . . . , xn) ∈ ({−1, 1}m)n and y = (y1, . . . , yn) ∈ ({−1, 1}m)n, and their goal is
to compute F (x, y) = f(g(x1, y1), . . . , g(xn, yn)). That is, Alice’s and Bob’s inputs define n inde-
pendent copies of the communication problem g, and the outputs of these copies of g are fed into
f to determine the function value F (x, y).

33To see this, observe that since h is a random function with range R = {1, 2, . . . , 1/ε}, then h(x) and h(y) are
random range elements. Hence, h(x) = h(y) with probability 1/|R| = 1/(1/ϵ) = ϵ.
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The communication complexity of the lifted function F is always at most the query complexity
of f times the deterministic communication complexity of g [BCW98]. This is because Alice and
Bob can “work together” to run a query algorithm A for f , and each time A queries an input i to
f , Alice and Bob can “answer” the query with g(xi, yi). The communication cost of this protocol
is the number of queries made by A, times the deterministic communication cost of g 34

Lifting theorems show that for many communication models, if g is a “sufficiently complicated”
gadget, then this is essentially the best that Alice and Bob can do. That is, the communication
complexity of F is at least the query complexity of f . The term lifting refers to the fact that the
theorem takes a weak lower bound (i.e., one that applies only in a query complexity setting) and
lifts it up, or strengthens it, into a stronger lower bound (i.e., one that applies to a richer model,
namely the corresponding communication model).

In this chapter, we prove lifting theorems for PPcc and UPPcc. We will also show that an
approximate degree lower bound for f “lifts” to a quantum communication lower bound for F . All
of these results go through a matrix-analytic notion called approximate rank.

Making sure the gadget is not “too simple”. If the gadget function g is too simple, then
there will often be much better communication protocols for f ◦ g than the one described above in
which Alice and Bob simulate a query protocol for f . That is, lifting theorems will fail to hold for
f ◦ g.

For example, if f = ⊕n is the parity function on n bits, and g = ⊕2 is the parity function on two
bits, then f ◦ g = ⊕n ◦ ⊕2 = ⊕2n is simply the parity function on 2n bits. There is a deterministic
communication protocol for this function of constant cost: Alice sends Bob a single bit indicating
whether the parity of x is even or odd. If the parity of x is even, then Bob outputs the parity of
his input y; otherwise, Bob outputs the negation of the parity of y.

In contrast, a consequence of the fact that deg±(⊕n) = n is that any query protocol for f = ⊕n

requires Ω(n) queries (this holds even for UPP query protocols, see Fact 71).
Similar examples hold for other two-bit gadgets. For example, if f = ANDn and g = AND2,

then f ◦ g = AND2n. It is easily seen that there is a constant-cost deterministic communication
protocol for AND2n. In contrast, since d̃eg(f) = Ω(

√
n) (Theorem 23), there is no bounded-error

query protocol protocol for f (not even a quantum one) of cost less than Ω(
√
n) (see Theorem 70).

Because of these examples, the gadget g appearing in the lifting theorems we establish in this
chapter are necessarily defined over inputs consisting of more than 2 bits, but the input size to g
is still constant (specifically, our g takes six bits as input).

10.4 Communication Lower Bounds via Approximate Rank

Given a matrix M ∈ {−1, 1}m×n, the ε-approximate rank of M , denoted r̃ankε(M) is the smallest
r such that there exists a rank-r matrix R satisfying |Mi,j − Ri,j | ≤ ε for all (i, j) ∈ [m] × [n].
Conceptually, ε-approximate rank can be thought of as a matrix-analytic analog of approximate
degree: It is asking for the “lowest-complexity” matrix (as measured by rank) that approximates
M entry-wise up to error ε, just as the ε-approximate degree of f asks for the “lowest-complexity
polynomials” (as measured by degree) that approximates f point-wise up to error ε.35 As with

34If the query algorithm for f is randomized, and the communication model is private coin, then Alice will also
have to choose the random coins to use within the query algorithm, and send them to Bob.

35A more apt analogy is that ε-approximate rank is a matrix analog of ε-approximate sparsity, meaning the least
number of monomials in an ε-approximation for the target function. This is because a rank-1 matrix can be thought
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approximate degree, if ε is not specified, its value is interpreted as 1/3 by convention.
Similarly, the sign-rank ofM , denoted rank±(M) is the least rank r of a matrix R that agrees in

sign withM entry-wise. Just as the threshold degree of f equals the limit of its ε-approximate degree
as ε approaches 1 from below, so too does the sign-rank of M equal the limit of its approximate
rank as ε approaches 1 from below.

Communication problems as matrices. Any communication problem f(x, y) can be viewed
as a matrix. Specifically, if x ∈ {−1, 1}n and y ∈ {−1, 1}m, consider the 2n× 2m matrix Mf whose
(x, y)’th entry is f(x, y) (here, we are using x to index the rows of M and y to index the columns).

Communication lower bounds via matrix analysis. It turns out that the complexity of
f(x, y) in various communication models is closely related to the matrix-analytic notion of ap-
proximate rank. To illustrate why variants of matrix rank and communication complexity are
often related, the following fact spells out the details of such a relationship between deterministic
communication complexity and exact matrix rank.

Fact 73. The deterministic communication complexity of f : {−1, 1}n × {−1, 1}n → {−1, 1} is
lower bounded by the logarithm of the rank (over the real numbers) of the communication matrix
Mf .

Proof. In communication complexity, the term rectangle refers to any subset of the inputs with a
product structure, i.e. any set of the form A×B for A,B ⊆ {−1, 1}n.

A basic fact regarding deterministic communication protocols is the so-called rectangle property.
This states that any protocol with communication cost c for a function f partitions the input set
{−1, 1}n×{−1, 1}n into at most 2c rectangles R1, . . . , R2c such that f is constant on each rectangle
in the partition. That is, if (x, y) and (x′, y′) lie in the same rectangle Ri then f(x, y) = f(x′, y′).
Each rectangle Ri is referred to as monochromatic for f .

To see why the rectangle property holds, let us refer to a record of all bits exchanged by Alice
and Bob during the execution of the communication protocol as a transcript. Say that an input
(x, y) to f is consistent with a transcript if Alice and Bob produce that transcript when they run
the communication protocol on (x, y). It is easily shown by induction on the number of rounds of
the communication protocol that if (x, y) and (x′, y′) are both consistent with a given transcript,
then so is (x, y′) and (x′, y). That is, the set of inputs consistent with any particular transcript
form a rectangle. Intuitively, this means that if Alice has input x or x′, then the protocol does not
permit her to tell the difference between Bob holding input y vs. holding input y′. And similarly
Bob cannot tell the difference between Alice holding x vs. holding x′. This is compatible with the
protocol computing the function f only if f(x, y) = f(x, y′) = f(x′, y′) = f(x′, y′).

The rectangle property then follows from the observation that there are at most 2c distinct
transcripts that can be generated by a communication protocol of cost c.

With the rectangle property in hand, Fact 73 is derived via the following analysis. For a
rectangle R = A×B, define the matrix MR via:

(MR)x,y =

{
1 if (x, y) ∈ A×B

0 otherwise.

of as a matrix-analog of a monomial: just as an s-sparse polynomial can be written as a linear combination of s
monomials, a rank-r matrix can be written as a linear combination of r rank-1 matrices. This analogy is described
in detail in Section 10.4.2.
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It is easy to see that MR has rank 1, because its row space is spanned by the indicator vector of
B (and similarly its column space is spanned by the indicator vector of A). That is, every row x of
MR is either all-0s (if x is not in A) or equal to the indicator vector of B (if x is in A). Similarly,
every column of MR is either the all-0s vector, or equal to the indicator vector of A.

If f has deterministic communication complexity at most c, let R1, . . . , R2c be the partition
of {−1, 1}n × {−1, 1}n into at most 2c monochromatic rectangles as guaranteed by the rectangle
property above. Then Mf =

∑2c

i=1MRi expresses Mf as a sum of at most 2c matrices of rank one.
By sub-additivity of matrix rank, this implies that the rank of Mf is at most 2c.

Fact 73 is a communication analog of the fact (see Section 10.1) that Fourier degree lower
bounds deterministic query complexity. In turn, the following facts are communication analogs of
Theorem 70, Fact 71, and Fact 72. Specifically, just as these earlier results show that ε-approximate
degree lower bounds quantum, UPP, and PP query complexity, the following results show that
(the logarithm of) ε-approximate rank lower bounds quantum, UPP, and PP communication
complexity. The more powerful the communication model, the closer the relevant value of ε is to 1.

Fact 74 ([Kre95, Yao93, BdW01, LS09a]). For any Boolean function f(x, y),

BQPcc(f) ≥ Ω(log(r̃ank(Mf ))).

We do not prove Fact 74, as this would require us to formally define BQPcc, which we prefer
to avoid in this survey.36 As indicated above, it can be interpreted as the “communication analog”
of the query-complexity result that BQPdt(f) ≥ Ω(d̃eg(f)) (Theorem 70).

The next two facts show that UPPcc and PPcc are characterized by log(r̃ankε(Mf )) for appro-
priate values of ε. These results are communication analogs of Facts 71 and 72.

Fact 75 (Paturi and Simon [PS86]). For any Boolean function f(x, y) : {−1, 1}n × {−1, 1}n →
{−1, 1}, UPPcc(f) = log(rank±(Mf ))±Θ(1).

Fact 76. For any Boolean function f(x, y),

1. If PPcc(f) ≤ d, then log(r̃ank1−2−d(Mf )) ≤ O(d+ log n).

2. If log(r̃ank1−2−d(Mf )) ≤ O(d), then PPcc(f) ≤ O(d+ log n).

Proof. Lee and Shraibman [LS09a, Theorem 1] showed the following relationship between approxi-
mate rank and another matrix analytic quantity, an “approximate factorization norm” denoted γα2
for a parameter α ∈ [1,∞]:

δ2 · γ1/δ2 (M)2 ≤ r̃ank1−δ(M) ≤ O

((
1

1− δ

)6

· n3 · γ1/δ2 (M)6

)
. (50)

When M is the communication matrix of a function f , the quantity γα2 (M) provides a lower bound
on its randomized communication complexity. Specifically [LS09d, Theorem 10] shows that if there

36Fact 74 holds even if BQPcc is defined to allow prior entanglement, i.e., Alice and Bob may share an unlimited
number of entangled qubits prior to learning their inputs x and y.
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is a randomized communication protocol for f with error probability ε = 1−δ
2 and using c bits of

communication, then c ≥ 2 log γ
1/δ
2 (Mf )−2 log(1/δ). Thus, if PPcc(f) ≤ d, we have log γ2

−d

2 (Mf ) ≤
O(d), which by the right-hand inequality of (50) implies that log(r̃ank1−2−d(Mf )) ≤ O(d+ log n).

Conversely, the quantity γα2 is related to a combinatorial measure of a sign matrix called
its discrepancy, via γα2 (M) ≥ γ∞2 (M) ≥ 1

8 disc(M) [LS09c, Theorem 3.1]. The discrepancy of a

communication matrix is known to tightly capture its PPcc communication complexity [Kla03]:

log(1/ disc(Mf )) ≤ PPcc(f) ≤ O(log(n/ disc(Mf ))). Thus, if log(r̃ank1−2−d(Mf )) ≤ O(d), then

the left-hand inequality of (50) implies γ2
−d

2 (Mf ) ≤ 2O(d), which implies that disc(Mf ) ≥ 2−O(d),
and hence PPcc(f) ≤ O(d+ log n).

With Facts 74-76 in hand, we turn to the following task. Given a function f : {−1, 1}n → {−1, 1}
of ε-approximate degree at least d, identify a communication problem F := f ◦ g for a function
g(x, y) on O(1) bits such that r̃ankε(MF ) is at least 2d. In this manner, we “lift” approximate
degree lower bounds for f (which on their own suffice to establish query lower bounds) to BQPcc,
UPPcc, and PPcc communication lower bounds for F .

Approximate rank lower bounds for composed functions. In Section 7.2, we used dual
block composition to establish hardness-amplification results via block-composition. That is, we
showed that f ◦ g is harder to approximate by low-degree polynomials than f or g alone. In this
section we will use dual block composition to show that f ◦ g is harder in a different sense: whereas
f is hard for query algorithms and ε-approximation via low-degree polynomials, f ◦ g will be hard
for communication protocols and ε-approximation via low-rank matrices.

Theorem 77. Let f : {−1, 1}n to {−1, 1} satisfy d̃egε(f) ≥ d. There is a function g : {−1, 1}6 →
{−1, 1} such that the following holds. For every δ ∈ (0, ε− 2−d/2], F := f ◦ g satisfies r̃ankδ(MF ) ≥
(2d/2+ε−2−d/2−δ)2/(1+δ)2. In particular, setting δ = ε−2−d/2 yields: r̃ankε−2−d/2(MF ) ≥ 2Ω(d).

We will prove this result in two steps.

• First, we will show that composing f with a certain 3-bit gadget idx : {−1, 1}3 → {−1, 1},
called the indexing gadget, yields a function f◦idx with large ε-approximate weight, specifically
weight at least 2d. By approximate weight, we mean the minimum-weight polynomial that
ε-approximates f , where the weight of a polynomial is the sum of its coefficients over the
parity basis (see Section 2.1).

• Second, we will show that composing f ◦ idx with the two-bit XOR gadget, ⊕2, yields a
function F with the claimed approximate rank lower bound.

Hence, the 6-bit gadget g in Theorem 77 is simply the block-composition 3-bit indexing gadget
and the two-bit XOR gadget. Theorem 77 is highly similar to [She11, Theorem 8.1] in Sherstov’s
paper introducing the so-called pattern matrix method, and indeed many of the calculations and
notions that we use to prove Theorem 77 closely follow Sherstov’s analysis. Still, we believe that
our two-step presentation to proving Theorem 77 is subtantially simpler and more intuitive than
prior treatments in the literature [She11, SZ09, Lok09, LS09b].37

37A minor downside of our two-step approach is that we obtain a 6-bit gadget g, which is slightly larger than the
4-bit gadget in Sherstov’s pattern-matrix method [She11]. Still, any constant-sized gadget suffices for all applications
we cover in this survey. Other works have attempted to characterize the class of gadgets g for which Theorem 77
holds [LZ10], which is not a focus in this survey.
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Both Step 1 and Step 2 above can be understood as proving optimality of simple and natural
techniques for ε-approximating h := f ◦ idx by a low-weight or sparse polynomial, and for ε-
approximating F = h ◦ ⊕2 by a low-rank matrix. For both steps, we present details of the optimal
approximation technique before delving into the proof of optimality.

10.4.1 Step 1: From high approximate degree to high approximate weight

In this section, define idx : {−1, 1}2 × {−1, 1} → {−1, 1} via idx(x, y, z) = (z ∧ x) ∨ (z ∧ y). That
is, if z = −1, then idx outputs x, while if z = +1, then idx outputs y. idx is referred to as the 3-bit
indexing gadget.

Recall (Section 2.1) that for any real-valued function p : {−1, 1}n → R, weight(p) is the ℓ1-norm
of the Fourier coefficients of p.

Lemma 78. Let f : {−1, 1}n → {−1, 1} be a Boolean function and suppose that f satisfies

d̃egε(f) ≥ d. Then w̃eightε−2−d/2(f ◦ idx) ≥ 2d/2.

The optimal approximation technique. Lemma 78 shows that the following approach to
constructing a low-weight ε-approximation to f ◦ idx is essentially optimal: take the lowest degree
ε-approximation p to f , and let q be the multilinear polynomial that exactly computes idx, and
consider the polynomial obtained by composing p and q. Clearly, p ◦ q ε-approximates f ◦ idx, and
since idx is a Boolean function on only 3 bits, weight(q) ≤ 3. Thus, weight(p◦q) ≤ weight(p)·3deg(p).
If weight(p) ≤ 2O(d), Lemma 78 proves a matching lower bound up to a constant factor in the
exponent, and with an additive 2−d/2 loss in the error for which the lower bound holds.

Before proving Lemma 78, we introduce a dual formulation of approximate weight. Recall
(Section 6) that a dual polynomial ψ : {−1, 1}n → R showing that d̃egε(f) ≥ d must satisfy: (1)
ε-correlated with f , i.e., ⟨f, ψ⟩ > ε·∥ψ∥1 and (2) uncorrelated with polynomials of degree at most d.
The dual formulation below shows that, in order to witness the lower bound weightε−2−d/2(f) ≥ 2d/2,
it is enough for the dual witness to satisfy (1), while (2) becomes: the correlation of ψ with all
parities (regardless of degree) is at most 2−d.

Dual formulation of approximate weight. Fix a function f : {−1, 1}n → {−1, 1} of interest
and a weight bound W . What is the smallest error to which any polynomial (regardless of its
degree) of weight at most W over the parity basis can approximate f? The answer to this question
is the value of the following linear program [BT15b, Theorem 17]. It has 2n + 1 variables, one
for each coefficient of p over the parity basis and one for the error parameter ε, and 2 · 2n linear
constraints that force p to approximate f to error at most ε at each input x ∈ {−1, 1}n.

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

weight(p) < W

Taking the dual yields the following.
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maxψ : {−1,1}n→R,γ∈R −W · γ +
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∣∣∣∣∣∣
∑

x∈{−1,1}n
ψ(x)χS(x)

∣∣∣∣∣∣ ≤ γ for all parity functions χS

γ ≥ 0

Suppose ⟨ψ, f⟩ = ε and let M = maxS⊆[n]

∣∣∣∑x∈{−1,1}n ψ(x)χS(x)
∣∣∣. Then by setting γ = M ,

we obtain a feasible solution to the above dual program with objective value ε −W ·M , thereby
witnessing that d̃egε−W ·M (f) ≥ W . Setting W = 2d/2 in the linear program above, weak LP

duality implies the following. In order to prove that w̃eightε−2−d/2(f) ≥ 2d/2, it suffices to identify
a function ψ : {−1, 1}n → R satisfying the following three conditions.∑

x∈{−1,1}n
|ψ(x)| = 1 (51)

∑
x∈{−1,1}n

ψ(x)f(x) > ε, (52)

∣∣∣∣∣∣
∑

x∈{−1,1}n
ψ(x)χS(x)

∣∣∣∣∣∣ ≤ 2−d/2/W = 2−d for all parities χS . (53)

With this dual formulation in hand, we now prove Lemma 78.

Proof of Lemma 78. Let ψ be a dual witness for d̃egε(f) ≥ d. As we typically do for composed
functions, we can build a dual witness ν for f ◦ idx as the dual block composition (Definition 38
in Section 7) of ψ with a suitable dual witness ϕ for idx. Specifically, let ϕ : {−1, 1}3 → R be the
natural dual witness for the fact that deg±(idx) ≥ 1. Note that ϕ is just h itself, suitably scaled to
have ℓ1-norm 1, i.e.,

ϕ(xi, yi, zi) = (1/8)·idx(xi, yi, zi) = (1/8)

(
xi(1− zi)

2
+
yi(1 + zi)

2

)
=

1

16
(xi−xizi+yi+yizi). (54)

It is easy to see that ∥ϕ∥ = 1, ϕ is perfectly correlated with idx, and ϕ has pure high degree 1, as
required by a dual witness for the fact that deg±(idx) ≥ 1. Then we define ν := ψ ⋆ ϕ. Concretely,

if we write the input to f ◦ idx as (x, y, z) ∈ ({−1, 1}n)3, then ν(x, y, z) = 4−n · (ψ ◦ idx)(x, y, z).
Lemma 40 implies that ∥ν∥1 = 1, while Theorem 43 shows that ⟨ν, f ◦ idx⟩ = ⟨f, ψ⟩ > ε. It

remains to show that for all S ⊆ [3n],∣∣∣∣∣∣
∑

(x,y,z)∈{−1,1}3n
ν(x, y, z)χS(x, y, z)

∣∣∣∣∣∣ ≤ 2−d. (55)
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Recall that ν̂(S) denotes the S’th Fourier coefficient of ν, i.e., ν =
∑

S⊆[3n] ν̂(S) · χS(x), and note
that the left hand side of Equation (55) is

8n · ν̂(S). (56)

Hence, we establish Equation (55) by explicitly writing out the Fourier coefficients of ν in terms of
those of ψ. Writing out ψ in terms of its Fourier coefficients yields:

ψ(w) =
∑
T⊆[n]

ψ̂(T ) · χT (w). (57)

Since ∥ψ∥1 = 1, |ψ̂(T )| ≤ 2−n for all T . Moreover, since ψ has pure high degree d, we know that
ψ̂(T ) = 0 for all |T | ≤ d. Because ν = 4−n (ψ ◦ idx) and idx(xi, yi, zi) = 1

2 (xi − xizi + yi + yizi),
each non-zero term in Equation (57), when composed with idx and expanded out via the distributive
law, turns into a sum of 4|T | parities, each with coefficient 4−n ·2−|T | ≤ 4−n ·2−d. Moreover, for any
two distinct sets S, S′ ⊆ [n], the set of parities appearing in the expansion of χS ◦ idx is disjoint from
the set of parities appearing in the expansion of χS′ ◦ idx. This is because each term in Equation
(54) involves xi or yi, and hence if i ∈ S \S′, then each parity in the expansion of (χS ◦ idx)(x, y, z)
involves (exactly one of) xi or yi while no parity in the expansion of (χS′ ◦ idx)(x, y, z) involves
xi or yi. We conclude that the maximum magnitude of any Fourier coefficient of ν is at most
maxT⊆[n] |ψ̂(T )| · 4−n · 2−|T | ≤ 2−n · 4−n · 2−d = 8−n · 2−d. Equation (55) follows by combining this
with Equation (56).

Discussion. It is worth reflecting upon what properties of the 3-bit indexing gadget idx we
exploited in the proof of Lemma 78, to ensure that f ◦ idx had large ε-approximate weight. We
use just two properties of idx(xi, yi, zi) =

1
2 (xi − xizi + yi + yizi). First, that it is balanced, i.e., its

degree-0 Fourier coefficient is 0, and second, that all of its Fourier coefficients have magnitude at
most 1/2.

The balanced property ensured that idx (suitably scaled to have ℓ1-norm 1) is self-dual, in the
sense of witnessing that its own threshold degree is at least 1. This meant that the dual block
composition ψ ⋆ ϕ of ψ with ϕ = 1

8 idx is just a scaled version of the literal block composition ψ ◦ ϕ.
This in turn enabled us to compute the Fourier coefficients of ψ ⋆ ϕ. We exploited the second
property (that all of idx’s Fourier coefficients are 1/2) to conclude that the Fourier coefficients of
ψ ⋆ ϕ itself are exponentially small as required for any approximate-weight dual witness.

Some simpler gadgets and why they fail. There are two natural gadgets that are even simpler
than idx, namely the two-bit ⊕ and AND gadgets. As discussed at the end of Section 10.3, our
lifting theorems such as Theorem 77 do not hold for these gadgets, and indeed they both fail to
satisfy one of the two properties above. In the former case, x ⊕ y = x · y is balanced, but has a
Fourier coefficient of magnitude 1. In the latter case,

AND(x, y) =
1

2
(1 + x+ y − xy)

is not balanced.
It is not just that the proof of Lemma 78 breaks down for these gadgets: the lemma is false in

general if we replace idx with ⊕2 or AND2. To see this for ⊕2, consider letting f = ⊕n, which has
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threshold degree n. As discussed in Section 10.3, f ◦ ⊕2 = ⊕2n, which is computed exactly by a
polynomial of weight just 1. Similarly, as in Section 10.3, for AND2, consider letting f = ANDn,
which has d̃eg(f) ≥ Ω(

√
n). Then f ◦AND2 = AND2n, which is computed exactly by a polynomial

of weight O(1), namely 1− 2−n+1 +
∑

S⊆[n](−1)|S|+1 · 2−n+1 · χS(x).

10.4.2 Step 2: From high approximate weight to high approximate rank

Let h : {−1, 1}m → {−1, 1} be any Boolean function and define F : {−1, 1}m×{−1, 1}m → {−1, 1}
via F = h◦⊕2, i.e., F (x, y) = h(x⊕y). Recall thatMF denotes the 2m×2m matrix whose (x, y)’th
entry is F (x, y) (here, we are indexing the 2m rows and columns of MF by bit-vectors in {−1, 1}m
in the natural way). In this section, our goal is to show that if h has large approximate weight,
then MF has large approximate rank.

Lemma 79. Suppose w̃eightε(h) ≥ 2d and let F = h ◦ ⊕2. Then for any δ ∈ [0, ε], r̃ankδ(MF ) ≥(
(2d + ε− δ)/(1 + δ)

)2
.

Theorem 77 will follow by combining this result with Lemma 78.

The optimal approximation technique. Lemma 78 shows that the following approach to
constructing a low-rank ε-approximation to the matrix MF is essentially optimal: take the sparsest
polynomial p (over the parity basis) that ε-approximates h, let P (x, y) = p(x⊕y), and approximate
MF with the matrix MP . Since p is an ε-approximation to h, clearly, |(MF )x,y − (MP )x,y| ≤ ε for
all x, y ∈ {−1, 1}m.

Moreover, rank(MP ) is at most sparsity(p) (recall from Section 2.1 that the sparsity of p is
the number of non-zero Fourier coefficients of p). To see this, for any subset S ⊆ [m], let us
abuse notation and view χS as a column vector of length 2m whose y’th entry is χS(y). Then
clearly χS · χTS is a rank-1 matrix with 2m rows and 2m columns, and with (x, y)’th entry equal to
χS(x) · χS(y) = χS(x⊕ y). Hence, we can write

MP =
∑
S⊆[n]

p̂(S) ·
(
χS · χTS

)
as a sum of at most sparsity(p)-many rank-1 matrices. Since matrix rank is subadditive, we conclude
that the rank of MP is at most the Fourier sparsity of p.

Discussion and intuition. In this section, we show that this technique for approximating
F (x, y) = h ◦ ⊕2 by a low-rank matrix function P is essentially optimal. That is, we show that for
MF to be ε′-approximated by a rank-r matrix, h must be ε-approximated by a sparse polynomial
p for some ε that is very close to ε′. Here, the sparsity of p is roughly proportional to r, the rank
of the approximation to MF .

To be more precise, our analysis directly shows that if MF is ε′-approximated by a rank-r ma-
trix where r ≈ 2d, then h can be ε′ +2−Θ(d) approximated by a polynomial q whose Fourier weight
weight(q) is not much larger than r. In turn, any weight-W polynomial q can be ε′′-approximated
by a polynomial p of sparsity at most ℓ := 100 · Wm/(ε′′)2. This follows from a probabilis-
tic construction due to Bruck and Smolensky [BS92]: randomly sample ℓ Fourier basis functions
χS1 , . . . , χSℓ

with replacement, where χS is chosen with probability proportional to |q̂(S)|, and let

p(x) = 1
ℓ

∑ℓ
i=1 χSi . Chernoff bounds imply that, for each input x ∈ {−1, 1}m, with probability at
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least 1 − 2−2m, |p(x) − q(x)| ≤ ε′′. Hence, a union bound over all x ∈ {−1, 1}m guarantees that
with non-zero probability, |p(x) − q(x)| ≤ ε′′ for all x ∈ {−1, 1}m. Putting everything together,
we conclude as claimed that if MF has (ε′)-approximate rank at most r ≈ 2d, then h can be
(ε+ 2−Θ(d))-approximated by a polynomial of sparsity 2Θ(d).

Overview of the proof. Recall that our goal is to show that if F (x, y) = h(x ⊕ y) and h has
large approximate weight, then MF has large approximate rank. Let ν : {−1, 1}m → R be the
dual witness for the fact that h has large approximate weight, as per Section 10.4.1. Then ν is
well-correlated with h but has tiny Fourier coefficients, meaning it is poorly correlated with any
parity function χS (regardless of the degree of χS). Letting η(x, y) = ν(x ⊕ y), this means that η
is poorly correlated with the rank-1 matrix χS · χTS .

The rest of the analysis essentially shows that η is effectively a dual witness for the high
approximate rank of MF . This proceeds as follows.

The first thing we do is show that Mν has small spectral norm (i.e., all of its eigenvalues have
small magnitude). We show this by establishing that the eigenvalues of Mν are exactly given by
the Fourier coefficients of ν (up to scaling), with the corresponding eigenspaces precisely given by
the rank-1 matrices χS · χTS . Intuitively, this result means that not only is Mν poorly correlated
with the “special” rank-1 matrices of the form χS ·χTS , but in fact Mν is poorly correlated with all
rank-1 matrices.

With the above spectral norm bound in hand, the remainder of the analysis mimics the fol-
lowing first-principles proof that a dual polynomial ψ : {−1, 1}n → R indeed lower bounds the
ε-approximate degree of f .

First-principles proof that a dual polynomial lower bounds approximate degree. If
ψ has pure high degree d, ℓ1-norm 1, and

∑
x∈{−1,1}n ψ(x)f(x) > ε, then ψ rules out a degree-d

ε-approximation p for f via the following calculation. On the one hand, since p has degree at most
d and ψ has pure high degree d, we know that

⟨ψ, p⟩ =
∑

x∈{−1,1}n
ψ(x)p(x) = 0. (58)

On the other hand, since p approximates f and ψ is strictly greater than ε-correlated with f ,

⟨ψ, p⟩ =
∑

x∈{−1,1}n
ψ(x)f(x)−

∑
x∈{−1,1}n

ψ(x)(f(x)− p(x))

> ε−
∑

x∈{−1,1}n
|ψ(x)| · |f(x)− p(x)| ≥ ε− ∥ψ∥1 · ε = 0. (59)

This contradicts Equation (58).
Our proof in this section ports this argument to the matrix setting, with the matrixMF in place

of f and η in place of the dual polynomial ψ for f . The spectral norm bound of Equation (66) for
Mη will mimic the effect of ψ being uncorrelated with low-degree polynomials, as it implies that
Mη is only very weakly correlated with low-rank matrices. Meanwhile, since ν is well-correlated
with h, we can show that Mη is well-correlated with MF (our proof of this exploits the fact that
η can be expressed as the dual block composition of ν with a dual polynomial for the fact that
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deg±(⊕2) ≥ 2). Together, these two facts imply thatMF cannot be approximated well by low-rank
matrices, via a calculation analogous to Equation (59).

The formal analysis follows.

Bounding the spectral norm of Mη. Recall that the spectral norm of a symmetric matrix M
(Definition 64) is its largest eigenvalue in absolute value. The following lemma bounds the spectral
norm of Mη in terms of the Fourier spectrum of ν. This lemma is folklore; we present a proof given
in Mande’s thesis [Man18, Lemma 2.2.3].

Lemma 80. Let ν : {−1, 1}m → R be a real-valued function, let η(x, y) = 2−m ·ν(x⊕y), and recall
that Mη is the 2m × 2m matrix with (x, y)’th entry equal to η(x, y). Then ∥Mη∥ = maxS⊆[m] ν̂(S),
where recall that ν̂(S) denotes the S’th Fourier coefficient of ν.

Proof. In fact, the proof will identify all 2m eigenvalues of Mη, revealing them to be

{ν̂(S) : S ⊆ [m]}.

Recall from the discussion in the overview of this proof that for any subset S ⊆ [m], we abuse
notation and view χS as a vector of length 2m whose y’th entry is χS(y). We show that χS is an
eigenvector of Mη with eigenvalue ν̂(S).

Note that

(Mη)x,y = 2−m
∑
T⊆[m]

ν̂(T ) · χT (x⊕ y) = 2−m
∑
T⊆[m]

ν̂(T ) · χT (x) · χT (y).

Hence, for each x ∈ {−1, 1}m,

(Mη · χS)x =
∑

y∈{−1,1}m
(Mη)x,y · χS(y) = 2−m

∑
y∈{−1,1}m

∑
T⊆[m]

ν̂(T ) · χT (x) · χT (y) · χS(y)

= 2−m
∑
T⊆[m]

ν̂(T ) · χT (x) ·
∑

y∈{−1,1}m
χT (y) · χS(y).

Let S∆T denote the symmetric difference between sets S and T , the above equals:

2−m
∑
T⊆[m]

ν̂(T ) · χT (x) ·

 ∑
y∈{−1,1}m

χS∆T (y)

 .

The sum in parenthesis is 0 if S ̸= T , and otherwise is 2m. Hence, the above equals:

ν̂(S) · χS(x).

This establishes that χS is an eigenvector of Mη with eigenvalue ν̂(S) as claimed.

Before completing the proof of Theorem 77, we introduce some additional matrix-analytic no-
tions.
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Matrix norms. Let M be a symmetric N ×N matrix M ∈ RN×N and recall that M has N real
eigenvalues, say, λ1, . . . , λ2m , where we order the eigenvalues so that |λ1| ≥ |λ2| · · · ≥ |λ2m |. The
trace norm of M , denoted ∥M∥Σ, is

∥M∥Σ =
N∑
i=1

|λi|,

while the Frobenius norm is

∥M∥F :=

√√√√ N∑
i=1

λ2i . (60)

That is, if λ is the vector of eigenvalues of M , then the spectral norm is the ℓ∞-norm of λ, the
trace norm is the ℓ1-norm, and the Frobenius norm is the ℓ2-norm.

A basic property of the Frobenius norm is that it also equals√ ∑
1≤i,j≤N

M2
i,j . (61)

This holds by the following reasoning. Thinking of the rows of the matrix M as a collection of
N vectors each of length N , Equation (61) is the sum of the ℓ2-norms of the vectors. Meanwhile,
Equation (60) is the ℓ2-norm of the matrix with λ along the diagonal, which is simply a representa-
tion of the same collection of N vectors in a different orthonormal basis (given by the eigenvectors
of M). And an orthornormal change of basis preserves the ℓ2-norm of each vector in the collection.

For two N × N matrices, A,B, we let ⟨A,B⟩ =
∑

1≤i,j≤N Ai,j · Bi,j . That is, viewing the

matrices as length-N2 vectors, ⟨A,B⟩ denotes their correlation exactly as in Section 6. The final
property of the above matrix norms that we will need is:

⟨A,B⟩ ≤ ∥A∥ · ∥B∥Σ. (62)

This is a matrix-analog of the fact that for any two vectors a, b, their inner product ⟨a, b⟩ is at most
∥a∥∞ · ∥b∥1.

Completing the proof of Lemma 79. Recall that Lemma 79 states that if w̃eightε(h) ≥ 2d,

then F = h ◦ ⊕2 has large approximate rank. Specifically, we must show that r̃ankδ(MF ) ≥(
(2d + ε− δ)/(1 + δ)

)2
.

Proof. Appealing to strong duality in the LP characterizing approximate weight in the proof of
Lemma 78, we have that there exists a function ν and parameter γ ∈ (0, 1] such that

∥ν∥1 = 1, (63)

⟨ν, h⟩ ≥ ε+ 2dγ (64)

and ∣∣∣∣∣∣
∑

x∈{−1,1}m
ν(x)χS(x)

∣∣∣∣∣∣ ≤ γ for all S ⊆ [m],
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or equivalently that
ν̂(S) ≤ 2−m · γ for all S ⊆ [m]. (65)

Define µ : {−1, 1}2 → R as µ(a, b) = 1
4a · b. That is, µ is the natural dual polynomial for the fact

that deg±(⊕2) = 2. Define η : {−1, 1}m×{−1, 1}m → R via η = ν ⋆µ. That is, for x, y ∈ {−1, 1}m,

η(x, y) = 2−mν(x⊕ y).

Recall that Mη ∈ R2m×2m is the matrix whose (x, y)’th entry equals η(x, y). By Equation (65) and
Lemma 80, we conclude that

∥Mη∥ ≤ 2−m · γ. (66)

Meanwhile, by Equations (63) and (64), we have:∑
x,y∈{−1,1}m

(Mη)x,y · (MF )x,y = ⟨η, F ⟩ = ⟨ν, h⟩ ≥ ε+ 2dγ. (67)

Here, the second equality follows from Theorem 43 and the fact that the dual witness η = ν ⋆ µ
for F = h◦⊕2 is the dual block composition of ν and a dual witness µ for the fact that deg±(⊕2) ≥ 2.

Suppose R is a 2m × 2m matrix of rank-r that entry-wise approximates MF to error at most
δ.38 Then the absolute value of each entry of R is at most 1 + δ, and hence by Equation (61),
∥R∥F ≤ (1 + δ) · 2m. We have:

⟨Mη, R⟩ ≤ ∥Mη∥ · ∥R∥Σ ≤ ∥Mη∥ · ∥R∥F ·
√
r ≤ ∥Mη∥ · (1 + δ)

√
r · 2m

≤ 2−mγ
√
r2m(1 + δ) = γ

√
r(1 + δ). (68)

Here, the first inequality follows from Equation (62), while the second holds by the following
reasoning. Since R has rank r, its vector of eigenvalues has at most r non-zero entries. By the
Cauchy-Schwarz inequality the ℓ1 norm of this vector (which equals the trace norm of R) is at most√
r times the ℓ2-norm (which equals the Frobenius norm of R).
On the other hand,

⟨Mη, R⟩ =
∑

x,y∈{−1,1}m×{−1,1}m
Rx,y · (Mη)x,y

≥

 ∑
x,y∈{−1,1}m×{−1,1}m

(MF )x,y · (Mη)x,y

−
∑

x,y∈{−1,1}m×{−1,1}m
|Rx,y − (MF )x,y| · |(Mη)x,y|

> ε+ 2dγ − δ · ∥η∥1 = ε+ 2dγ − δ. (69)

Here, the final inequality uses Equation (67), and the final equality follows from ∥η∥1 = 1.
We conclude that γ

√
r(1 + δ) ≥ ε + 2dγ − δ. Hence, using the fact that 0 < γ ≤ 1, we get

r ≥ (2d + ε− δ)2/(1 + δ)2.

38Since MF = [F (x⊕ y)]x,y is a symmetric matrix, we may assume R is as well without loss of generality. Indeed,
if R is not symmetric then we can replace it with 1

2
(R + RT ), which will still be an ε-approximation to MF and at

most double the rank of R.
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Putting everything together: Proof of Theorem 77. Our goal now is to complete the proof
of Theorem 77, which states that if d̃egε(f) ≥ d, then F = f ◦ idx ◦⊕2 has large approximate rank,
where idx is the 3-bit indexing gadget.

Proof. Lemma 78 tells us that the function h = f ◦idx has approximate weight w̃eightε−2−d/2 ≥ 2d/2.

Letting F = h ◦ ⊕2, Lemma 79 then shows that r̃ankδ(MF ) ≥ (2d/2 + ε− 2−d/2 − δ)2/(1 + δ)2.

10.4.3 Communication applications

Let g be the 6-bit gadget from Theorem 77. Suppose that we know that d̃egε(f) ≥ d. Theorem 77
gives a δ-approximate rank lower bound for f ◦g of 2Ω(d) where δ = ε−2−O(d). This additive loss of
2−O(d) in the error parameter is typically irrelevant when ε ∈ (0, 1− 2−d), which is the appropriate
parameter regime for applications to BQPcc and PPcc. Specifically, we can generically transform
any (1/3)-approximate degree lower bound for f into a quantum communication lower bounds for
f ◦ g, and generically transform any PP query lower for f into a PPcc lower bound for f ◦ g.

Corollary 81. If d̃eg1/3(f) ≥ d, then BQPcc(f ◦ g) ≥ Ω(d).

Proof. Combine Theorem 77 with Fact 74.

We can use Corollary 81 to recover Razborov’s celebrated result [Raz03] that the quantum
communication complexity of the Disjointness function, DISJ, is Ω(

√
n). Here, for x, y ∈ {−1, 1}n,

DISJ(x, y) = NOR(x∧y) is the “lift” (i.e., composition) of the NORn function with the two-bit AND
gadget. One can interpret x and y as the indicator vectors of two sets X and Y over a universe of
size n, with xi = −1 (yi = −1) interpreted as indicating that i ∈ X (i ∈ Y ), and DISJ evaluates to
−1 if and only if the two sets are disjoint.

Corollary 82. BQPcc(DISJn) ≥ Ω(
√
n).

Proof. Since d̃eg(NORn) ≥ Ω(
√
n), Corollary 81 implies that BQPcc(NORn◦g) ≥ Ω(

√
n) where g is

the 6-bit gadget from Theorem 77. We now explain that NOR◦g can be embedded into an instance
of DISJ on O(n) bits. That is, Alice and Bob can reduce the task of computing (NOR ◦ g) (x, y) to
the task of evaluating DISJN (x

′, y′) where N = O(n), x′ depends only on x, and y′ depends only
on y. Hence, any communication protocol for DISJN of cost o(

√
N) would imply a communication

protocol for NOR ◦ g of cost o(
√
n).

First, observe that for any gadget function g defined on a constant number of bits, OR ◦ g is
computed by a DNF formula of size O(n). This is because any function g on O(1) bits is computable
by a DNF of size O(1). Hence, OR ◦ g is computed by a depth-three circuit of size O(n), where the
top two layers are OR gates. By collapsing the adjacent layers of OR gates into a single OR gate,
we obtain a DNF of size O(n).

Next, we explain that for any DNF F (x, y) of size N , computing F (x, y) can be reduced to
an instance of DISJN (x

′, y′) where x′ depends only x and y′ depends only on y. Write F (x, y) =
OR(C1(x, y), . . . , CN (x, y)) where each Ci is a conjunction (i.e., an AND of literals). We can par-
tition the inputs to Ci into two halves, say, A and B: those literals fed into Ci that depend on
x, and those that depend on y. Define x′i = −1 if and only all literals in A evaluate to true, and
define y′i = −1 if and only if all literals in B evaluate to true. Then F (x, y) = 1 if and only if
DISJ(x′, y′) = −1.
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Hence, Alice and Bob can determine whether (NORn ◦ g)(x, y) = 1 by representing NOR ◦ g as
a DNF of size N = O(n), transforming the DNF into an equivalent instance (x′, y′) of DISJN as
per the previous paragraph, applying a BQPcc protocol for DISJN on input (x′, y′), and negating
the output. If the BQPcc protocol for DISJN has communication cost c, then so does the resulting
protocol for NORn ◦ g.

Our next corollaries focus on PP communication complexity rather than BQPcc.

Corollary 83. If d̃eg1−2−d(f) ≥ d for some d = ω(log n), then PPcc(f ◦ g) ≥ Ω(d). Hence, if
PPdt(f) ≥ d, then PPcc(f ◦ g) ≥ Ω(d/ log n).

Proof. Theorem 77 shows that if d̃eg1−2−d(f) ≥ d, then r̃ank1−2−d−2−d/2(Mf◦g) ≥ 2Ω(d). Fact 76

then yields the lower bound PPcc(f ◦ g) ≥ Ω(d). The statement relating PPdt(f) to PPcc(f ◦ g)
follows from Fact 72, which says that if PPdt(f) ≥ d, then d̃eg1−2−d′ (f) ≥ d′ for some d′ =
Ω(d/ log n).

One example application of Corollary 83 yields a tight PPcc lower bound for the well-known
inner-product-mod-two function IP2n : {−1, 1}n × {−1, 1}n → {−1, 1}, where

IP2n(x, y) = ⊕n(x ∧ y).

Corollary 84. PPcc(IP2) ≥ Ω(n)

Proof. Apply Corollary 83 with f = ⊕n. Since deg±(f) = n, we conclude that PPcc(f ◦ g) ≥ Ω(n).
Now analogously to Corollary 82, one can show that the task of computing (f ◦ g) (x, y) reduces to
the task of evaluating IP2N (x

′, y′) where N = O(n).

For reasons discussed shortly (Section 10.4.4), it is of interest to obtain large PPcc lower bounds
for functions in AC0, and unfortunately the IP2 function from Corollary 84 is not. Recall that
Minsky and Papert proved an Ω(n1/3) threshold degree lower bound for the Minsky-Papert CNF
f = ANDn1/3 ◦ORn2/3 (Theorem 26), and hence as per Fact 72, PPdt(f) ≥ Ω(n1/3). Observe that if
f is in AC0, then so is f ◦g (this is because, as mentioned in the proof of Corollary 82, any function
g defined on a constant number of bits is itself computed by a constant-sized DNF or CNF). Hence,
applying Corollary 83 to f yields an AC0 function F = f ◦ g (in fact, a depth-three circuit) with
PPcc(F ) ≥ Ω(n1/3).

Corollary 85. There is an AC0 function F with PPcc(F ) ≥ Ω(n1/3).

There are now AC0 functions F known with PPcc(F ) ≥ Ω(n1−δ) for any constant δ > 0 (in
fact, even UPPcc(F ) ≥ Ω(n1−δ) [BT19a, SW19]). See Section 8.3 for further details. We remark
that we will prove results in Section 10.5 that strengthen the PPcc lower bounds of Corollaries 84
and 85 to UPPcc lower bounds.

Separating PPcc and UPPcc. Another application of Corollary 83 is a separation between
PPcc(F ) and UPPcc(F ) for an explicit function F . Specifically, Beigel [Bei94] separated these
classes in the query complexity setting, identifying a function f with threshold degree just 1 (hence
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UPPdt(f) ≤ O(1), see Fact 71) for which PPdt(f) ≥ Ω(n1/3).39 Corollary 83 lifts the separation
to the communication setting. That is, it implies that for F = f ◦ g, PPcc(F ) ≥ Ω(n1/3), while
UPPcc(F ) ≤ O(log n) by standard communication simulation of the UPPdt query protocol for
f (Section 10.3). Such a separation between UPPcc and PPcc was first given by Buhrman et
al. [BVdW07] and independently by Sherstov for a different function [She08]. Subsequent works
[She13c, Tha16, BT18b, She21] have obtained improved separations, yielding the following result.

Corollary 86. There is an explicit function F : {−1, 1}n×{−1, 1}n → {−1, 1} such thatUPPcc(F ) ≤
O(log n) and PPcc(F ) ≥ Ω(n).

Lower bounds for other communication classes. In characterizing the PPcc complexity of
f ◦ g in terms of approximate degree of f , Fact 72 has applications to additional communication
complexity classes, notably QMAcc, where QMA is the quantum analog of NP. This is because it
is known that any QMAcc protocol can be simulated by a PPcc protocol with at most a quadratic
blowup in cost [Vya03, MW05]. Hence, any PPcc lower bound for a function also implies a QMAcc

lower bound. For example, combined with Corollary 84, this yields an Ω(
√
n) QMAcc lower bound

for the inner product function, which is tight up to a logarithmic factor by a well-known result
of Aaronson and Wigderson [AW09]. Other works have used approximate degree to prove tight
or nearly tight QMA lower bounds for the Disjointness function [Kla11], the permutation testing
problem [ST19], and a problem called approximate counting [AKKT20].

10.4.4 MAJ ◦ LTF circuit lower bounds

Recall that the Majority function MAJ, takes as input a bit-vector in {−1, 1}n and outputs −1 if
and only if at least n/2 of the bits are −1. Meanwhile, a linear threshold function (LTF) is any
Boolean function f of threshold degree at most 1. That is, there are real weights w0, . . . , wn ∈ R
such that f(x1, . . . , xn) = sgn(w0 +

∑n
i=1wixi). An LTF is also called a halfspace.

A MAJ ◦ LTF circuit is any depth-two circuit of size s + 1 that outputs the majority vote of s
LTFs. In this section, we will see that a PPcc lower bound for a function F implies a lower bound
on the size of MAJ ◦ LTF circuits computing F .

Here are two reasons to care about such lower bounds. First, a notorious open problem in circuit
complexity is to identify an explicit Boolean function f that cannot be computed by LTF ◦ LTF
circuits of polynomial size. MAJ ◦ LTF is a natural subclass of such circuits, so proving lower
bounds against such circuits is a natural step toward resolving the LTF ◦ LTF question. Second,
as discussed in Section 5.3, Allender [All89] showed that quasipolynomial-size depth-3 majority
circuits can compute all of AC0, and for a long time it was open whether the same is true of
depth-2 majority circuits. The lower bounds in this section show that this is not the case, even for
MAJ ◦ LTF circuits.

Theorem 87 ([Nis93]). Suppose the function F (x, y) is computable by a MAJ ◦ LTF circuit C of
size s+ 1 ≥ n. Then PPcc(F ) ≤ O(log2 s).

Combining Theorem 87 with Corollary 85 yields an AC0 function that cannot be computed by
MAJ ◦ LTF circuits of size smaller than 2Ω(n1/3).

39Beigel’s function f , called ODDMAXBIT, is in fact a very special kind of halfspace known as a decision list.

Beigel showed that degε(f) ≥ d for ε = 1 − 2−Ω(n/d2). In particular, deg
1−2−n1/3 (f) ≥ Ω(n1/3), implying that

PPdt(f) ≥ Ω(n1/3) by Fact 72.
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Proof. Assume for simplicity that s is odd. In the PPcc protocol for F , Alice uses her private
randomness to select a random LTF gate of C and send the identity of this gate to Bob. This costs
log s bits of communication. Letting ε = 1/s2, Alice and Bob then execute an ε-error randomized
communication protocol (described below) to evaluate the LTF gate at (x, y) and output the re-
sult. As we will show, they can accomplish this with communication just O(log2 s). The success
probability of this protocol is at least 1/2+1/(2s)− 1/s2 > 1/2+1/(3s). This is because on input
(x, y), at least (s+ 1)/2 out of the s LTF gates in C output F (x, y). Accordingly, the PPcc cost of
this communication protocol is O(log2 s).

Let x, y ∈ {−1, 1}n and let

G(x, y) = sgn

w0 +
n∑
i=1

wixi +
n∑
j=1

wn+jyj

 (70)

be any LTF; here is the randomized communication protocol for evaluating G(x, y). A basic fact
about LTFs is that it can be guaranteed that the wi’s are integers such that

∑2n
i=0 |wi| ≤ nO(n)

[MTT61], so we will assume this for the remainder of the protocol description.
Clearly, to compute G(x, y), it is enough to determine whether

w0 +

n∑
i=1

wixi ≥ −

 n∑
j=1

wn+j · yj

 . (71)

Let X and Y denote the left hand and right hand size of Equation (71) respectively, and observe
that X and Y are integers of magnitude nO(n), and hence can be represented in binary with
ℓ ≤ O(n log n) bits. Let X∗, Y ∗ ∈ {−1, 1}ℓ denote these binary representations. Since X∗ is
independent of y and Y ∗ is independent of x, Alice knows X∗ and Bob knows Y ∗.

We saw in Section 10.2 that there is an ε-error private-coin randomized communication protocol
for the Equality function on n bits with cost O(log(n) + log(1/ε)). First, Alice and Bob can run
the Equality protocol on input (X∗, Y ∗) to determine whether X∗ = Y ∗. If so, they know whether
or not Equation (71) holds. If not, the idea is to set ε ≤ 1/(s2 · n) and to use this subroutine to
perform a binary search to determine the highest-order bit at which X∗ and Y ∗ disagree. This
is sufficient information for Bob to determine whether or not Equation (71) holds, and hence to
determine G(x, y).

That is, first Alice and Bob run the Equality protocol on input the first half of X∗ and Y ∗ to
determine if X∗ and Y ∗ agree on their first ℓ/2 bits; if no, they recurse on the first half of X∗ and
Y ∗; if yes, they recurse on the second half. They continue this process until they have found a bit
i such that X∗

i ̸= Y ∗
i , yet X

∗ and Y ∗ agree on their first i− 1 bits.
The total number of invocations of the Equality protocol during this binary search procedure

is at most O(log ℓ) = O(log n). Since each invocation of the Equality protocol errs with probability
at most 1/(s2 ·n), the probability that any of the invocations fail is at most O(log n/(s2n)). Hence
Alice and Bob successfully output G(x, y) with probability at least 1 − o(1/s2) as desired. The
total communication cost of the protocol is O(log(ℓ) · log(1/ε)) = O(log(n) · log(s2 ·n)) = O(log2 s),
where the final equality holds because we assumed s+ 1 ≥ n.

10.5 Sign-Rank Lower Bounds

Unfortunately, the additive loss of 2−O(d) in the error parameter of Theorem 77 is devastating if
our goal is to obtain sign-rank lower bounds on f ◦ g. This is because a sign-rank lower bound
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requires an ε-approximate rank lower bound for any ε < 1, including values of ε that might be
(significantly) closer to 1 than 1 − 2−O(d). Yet the loss of 2−Θ(d) in the error parameter prevents
proving an ε-approximate rank lower bound for ε > 1− 2−Θ(d).

Here is our dream theorem in this context, which unfortunately remains an unproven conjecture:

Conjecture 88. Let g be the six-bit gadget from Theorem 77, and let f : {−1, 1}n → {−1, 1} be
any Boolean function with deg±(f) ≥ d. Then rank±(f ◦ g) ≥ 2d.

Unfortunately, we only know how to prove Conjecture 88 if deg±(f) ≥ d is witnessed by a
dual polynomial ψ satisfying an additional smoothness condition. This condition requires that ψ is
“reasonably large” on all inputs in {−1, 1}n. Specifically, |ψ(x)| needs to be at least 2−d/2 · 2−n for
all x ∈ {−1, 1}n. Fortunately, as we will see later (Section 10.5.1), threshold degree lower bounds
for many important functions can be proven via such smooth dual witnesses.

Theorem 89. Let g be the six-bit gadget from Theorem 77, and let f : {−1, 1}n → {−1, 1}
be any Boolean function with deg±(f) ≥ d and such that there is a dual witness ψ for this
fact (see Section 6) satisfying |ψ(x)| ≥ 2−d/2 · 2−n for all x ∈ {−1, 1}n. Let F = f ◦ g. Then
rank±(MF ) ≥ 2d/3.

Overview of the proof. Let p : {−1, 1}n → R be a polynomial that agrees in sign with f and
assume that |p(x)| ≤ 1 for all x ∈ {−1, 1}n. Then minx∈{−1,1}n |p(x)| is called the margin of f : it
is essentially the “closest” p gets to disagreeing in sign with f at any input.

There are known Boolean functions that have threshold degree d but any degree-d polynomial
agreeing in sign with f has margin 2−n

d
, which is doubly-exponentially small (in d) [Pod08, Pod09,

BT18a]. A key lemma of Forster [For02] shows that, nonetheless, any function f of threshold
degree at most d is sign-represented by a polynomial p with large average margin (by large, we
mean “only” singly-exponentially small in d, rather than doubly). That is, if deg±(f) ≤ d, then40

there exists a degree d polynomial p such that

(sign-agreement) p(x) · f(x) > 0 for all x ∈ {−1, 1}n (72)

(large average margin) 2−n ·
∑
x

p(x)f(x) ≥ 2−d. (73)

As we now explain, a threshold degree dual witness ψ (see Section 6) for f that is smooth
rules out the existence not only of a degree-d sign-representing polynomial p for f , but also any
polynomial p that satisfies Equation (73), even those that disagree in sign with f in a limited way.
Specifically, suppose p has degree at most d, |p(x)| ≤ 1 for all x ∈ {−1, 1}n, p satisfies Equation
(73) and, in place of Equation (72), we have:

(bounded sign errors) |p(x)− f(x)| ≤ 1 + 2−3d for all x ∈ {−1, 1}n. (74)

We show that this contradicts the existence of a dual polynomial ψ for deg±(f) ≥ d satisfying the
smoothness condition

|ψ(x)| ≥ 2−d/2 · 2−n for all x ∈ {−1, 1}n. (75)

40Equation (73) is not quite accurate; Forster’s analysis only implies 2−n ·
∑

x p(x)f(x) ≥ n−d. We pretend the
n−d is 2−d in this intuitive overview for expository reasons.
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This can be seen by the following first-principles analysis. On the one hand, since ψ has pure
high degree at least d and p has degree at most d, ⟨ψ, p⟩ = 0. On the other hand, since p satisfies
Equations (73) and (74),

⟨ψ, p⟩ ≥
∑

x : f(x)·p(x)≥0

|ψ(x)||p(x)| −
∑

x : f(x)·p(x)<0

|ψ(x)||p(x)| (76)

≥ 2−d/2 · 2−n ·
∑

x : f(x)·p(x)≥0

|p(x)| −
∑

x : f(x)·p(x)<0

|ψ(x)| · 2−3d (77)

≥ 2−d/22−d − 2−3d > 2−2d > 0. (78)

Here, Equation (76) follows from the fact that sgn(ψ(x)) · f(x) > 0 for all x ∈ {−1, 1}n, as
ψ is a threshold degree dual witness for f . Equation (77) follows from Equations (74) and (75).
Equation (78) follows from Equation (73) and the fact that ∥ψ∥1 ≤ 1.

To prove Theorem 89, we essentially perform the above analysis in the matrix setting, whereby
f is replaced by F = f ◦ g, and ψ is replaced with η (the “approximate-rank dual witness” from
the proof of Theorem 77).

Why this analysis overcomes the 2−Θ(d) loss in the error parameter of Theorem 77.
Intuitively, if the dual witness for f is smooth, then the analysis above establishes a lower bound
on the degree of ε-approximating polynomials p even when ε can be as large as 1 + 2−Θ(d) (see
Equation (74)), so long as p has average margin at least 2−d. And the assumption that p has this
large an average margin is without loss of generality by Forster’s lemma.

Put another way, the analysis above does not actually avoid the 2−Θ(d) loss in the error param-
eter ε incurred in Theorem 77, but it does render the loss innocuous. Because the smooth dual
witness ψ lower bounds the degree of polynomials even if they make errors as large as ε = 1+2−Θ(d)

(so long as the average margin is large), a 2−Θ(d) degradation in the error parameter does not pre-
vent the “degraded” error from being arbitrarily close to 1.

Digging deeper, we can pinpoint the reason that Theorem 77 experiences an additive loss of
2−Θ(d) in the error parameter, and see why our analysis here circumvents the issue if ψ is smooth.
A threshold degree dual witness ψ for f rules out the existence of a degree-d sign-representation of
f because ψ is uncorrelated with all degree d polynomials, but by virtue of agreeing in sign with
f at all inputs, ψ is positively correlated with any sign-representation p of f . The reason for the
additive 2−d loss in the error parameter of Theorem 77 is that, when porting this style of analysis
to the matrix-analytic setting, we cannot show that the “matrix dual witness” η = ψ⋆ϕ⋆µ has zero
correlation with rank-r matrices. Rather, we can only show that η has very low correlation with
rank-r matrices (correlation roughly bounded by 2−d/

√
r). Fortunately, the smoothness condition

on the dual witness ψ turns out to guarantee that η’s correlation with any sign-representation of F
with large average margin is not only positive, but is in fact noticeably so (roughly, at least 2−d/2

times the average margin, which in turn is at least 1/r by Forster’s lemma). This is enough to
conclude that any sign-representation for F must have large rank (at least 2Ω(d)).

Proof of Theorem 89. The following lemma is implicit in work of Forster and was explicitly distilled
by Razborov and Sherstov [RS10]. We omit the proof from this survey, directing the interested
reader to [RS10, Appendix B].
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Lemma 90. Let X,Y be finite sets and M = [Mx,y]x∈X,y∈Y ∈ {−1, 1}|X|×|Y | a Boolean matrix.
Let r = rank±(M). Then there is a matrix R of rank r that sign-represents M , and moreover:

|Rx,y| ≤ 1 for all x ∈ X, y ∈ Y, (79)

and
∥R∥F =

√
|X||Y |/r. (80)

Equations (79) and (80) guarantee that R not only sign-represents M , but does so with average
margin at least 1/r. Indeed, these equations guarantee that

1

|X| · |Y |
∑

x∈X,y∈Y
|Rx,y| ≥

1

|X| · |Y |
∑

x∈X,y∈Y
R2
x,y = 1/r. (81)

Let ψ be a dual witness for deg±(f) ≥ d satisfying |ψ(x)| ≥ 2d/2 · 2−n for all x ∈ {−1, 1}n. Let
η = ψ ⋆ϕ⋆µ be the dual witness for deg±(f ◦ idx ◦⊕2) ≥ d constructed in the proof of Theorem 77.
Analogous to Equation (68), we have that:

⟨Mη, R⟩ ≤ ∥Mη∥ · ∥R∥Σ ≤ ∥Mη∥ · ∥R∥F ·
√
r ≤ ∥Mη∥ ·

√
26n

≤ 2−3n2−d23n = 2−d. (82)

On the other hand,

⟨Mη, R⟩ = (83)∑
x,y∈{−1,1}3n

|(Mη)x,y| · |Rx,y| (84)

≥ 2−d/22−6n
∑

x,y∈{−1,1}3n
|Rx,y| (85)

≥ 2−d/2/r. (86)

Here, Equation (84) follows from the fact that Rx,y · (Mη)x,y ≥ 0 for all x, y ∈ {−1, 1}3n.
Equation (85) holds because the smoothness of ψ implies that |η(x, y)| ≥ 2−d · 2−6n for all x, y ∈
{−1, 1}3n. Equation (86) follows from the large average margin of R (Equation (81)).

Combining Equation (86) with Equation (82), we conclude that r ≥ 2d/2.

10.5.1 Communication applications

Since the parity function f = ⊕n on n has threshold degree n, and this is witnessed by the dual
polynomial 2−n ·⊕n, which is perfectly smooth, we obtain an explicit communication problem f ◦ g
with linear UPPcc complexity.

Corollary 91. Let f = ⊕n and F = f ◦ g be the composition of f with the 6-bit gadget from
Theorem 89. The rank±(MF ) ≥ 2Ω(n) and hence UPPcc(F ) ≥ Ω(n).

In fact, as per the proof of Corollary 84, the above lower bound also holds for the inner product
function, recovering Forster’s breakthrough result [For02].
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UPPcc lower bounds for AC0. The function ⊕n ◦ g in Corollary 91 is not in AC0. It was open
for several decades whether there is an AC0 function F with UPPcc(F ) ≥ nΩ(1). This question was
originally posed by Babai, Frankl, and Simon [BFS86] in a different but equivalent form; specifically,
they asked for a function F solvable by PHcc protocols of polylogarithmic cost but not by UPPcc

protocols of polylogarithmic cost. Here, PHcc denotes the communication analog of the polynomial
hierarchy.

As described in Section 5.3, the question was resolved by Razborov and Sherstov [RS10]. They
established the existence of a smooth dual witness for the fact that Minsky-Papert CNF ANDn1/3 ◦
ORn2/3 has threshold degree Ω(n1/3) (see Theorem 26).

We wish to cover an explicit construction of a smooth dual witness for an AC0 function. While
such a construction is known for the Minsky-Papert DNF [SW19], we present one (based on tech-
niques in [BT19a]) that we feel is somewhat easier to understand. Unfortunately, our dual witness
Λ falls (very) slightly short of providing the necessary smoothness to apply Theorem 89. But we
are able to obtain a dual witness ζ for the AC0 function ANDn1/3 ◦ORn2/3 ◦ ⊕log2 n that is smooth
enough to yield a UPPcc lower bound. This detailed proof sketch is particularly technical and may
be skipped with no loss of continuity in this survey.

Theorem 92. Let f = ANDn1/3 ◦ ORn2/3 ◦ ⊕log2 n, which is defined over N = n log2 n variables.

Then deg±(f) ≥ D for some D = Ω(n1/3 log n). Moreover, there is a dual polynomial ζ for this
fact, such that |ζ(x)| ≥ 2−D · 2−N for al x ∈ {−1, 1}N .

Proof. We will first construct a smooth dual witness Λ for the fact that deg±(ANDn1/3 ◦ORn2/3) ≥ d
for some d ≥ Ω(n1/3/ log n). Unfortunately, Λ is not quite smooth enough for Theorem 89: it
satisfies |Λ(x)| ≥ n−2d · 2−n for all x, whereas Theorem 89 requires |Λ(x)| ≥ 2−d/22−n. We rectify
this issue by giving a dual witness ζ for f that is just as smooth as Λ, but ζ witnesses a slightly
larger degree lower bound of D = d log2 n. Thus, ζ is smooth enough relative to the degree bound
it witnesses to apply Theorem 89.

Smooth dual polynomial for the Minsky-Papert CNF. Let m = n1/3. We are going to
start with the dual witness constructed in Theorem 47 with g = ORn2/3 , and F = ANDm ◦ g. As
reviewed below, the proof of this theorem constructs a dual polynomial, let’s call it µ(m), witnessing

d̃eg1−8−m(F ) ≥ d1 where d1 = õdeg7/8(g). Unfortunately, µ(m) is insufficient to establish our
desired result for two reasons. First, it makes some sign-errors, i.e., there are some inputs x for
which sgn(µ(m)(x)) ̸= F (x). Second, µ(m) is not smooth. We are going modify the witness so as to
both eliminate the sign errors and render it smooth.

Recall that µ(m) equals the dual block composition ψm ⋆ ϕ (Definition 38). Here, ϕ is any

dual witness for õdeg7/8(ORn2/3) ≥ d1 where d1 = Ω(n1/3), and ψm : {−1, 1}m → R is such that:
ψm(1m) = 1/2, ψm(−1m) = −1/2, and ψm(x) = 0 otherwise. Note that |ϕ(1n2/3)| ≥ 7/16 (see
Fact 32). Hence,

|µ(m)(1m·n2/3)| ≥
1

2
· (7/8)m. (87)

For the remainder of the proof, set m = n1/3. We are going to construct our smooth dual for
F in a three-step process. First, we will use it to build a dual witness γ such that |γ(x)| ≥ 2−m for
all inputs x of Hamming weight at most w, where we choose w = Ω(m/ logm) such that

nw ≤ 2m/4. (88)
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Note that this implies that w ≤ m/2. Second, we are going to “zero out” any sign errors that it
makes (without introducing any new ones). Third, we are going to render it smooth.

Step 1: Achieving largeness on inputs of small Hamming weight. Let x∗ = (x∗1, . . . , x
∗
m) ∈

({−1, 1}n2/3
)m be an input of Hamming weight at most w ≤ m/2. We are going to construct a

dual witness µx∗ satisfying
µx∗(x

∗) > (7/8)m, (89)

µx∗(x) ≥ 0 for all x with |x| ≤ m, and, (90)

µx∗ witnesses that d̃eg1−4−m(F ) ≥ d. (91)

Before constructing µx∗ , we explain how to use it to achieve our goal in Step 1. Let M =(
n
≤w
)
≤ nw denote the number of inputs in {−1, 1}n of Hamming weight at most w. Our final dual

witness in Step 1 will be

γ =
1

M

∑
x∗ : |x∗|≤w

µx∗ .

This dual polynomial itself witnesses that d̃eg1−4−m(F ) ≥ d (since it is an average of dual witnesses
for this statement), and for all x∗ of Hamming weight at most w, γ satisfies:

γ(x∗) ≥ 1

M
· µx∗(x∗) ≥ (1/M) · (1/2) · (7/8)m.

By Equation (88), this last expression is at least (1/2)m.
We now turn to constructing µx∗ . Let S be the set of i ∈ [m] such that |x∗i | > 0, and let

ℓ = m− |S| be the number of i such that |x∗i | = 0. Since |x∗i | > 0 for at most w ≤ m/2 values of i,
ℓ ≥ m/2. Consider the restriction of F obtained by fixing the bits in each block i ∈ S to x∗i . This

restricted function equals ANDℓ ◦ ORm2 . That is, for y ∈
(
{−1, 1}m2

)ℓ
, let y ∪ x∗|S denote the

input x = (x1, . . . , xm) for which xi = x∗i for all i ∈ S, and for which y is interpreted as specifying
{xj : j ̸∈ S}. Then F (y ∪ x∗|S) = (ANDℓ ◦ ORm2)(y).

Define µx∗ : {−1, 1}m3 → R via

µx∗(x) =

{
0 if x|S ̸= x∗|S
µ(ℓ)(x|S̄) otherwise.

.

Effectively, µx∗ is a dual witness for F that treats x∗ exactly the way µ(ℓ) treats input 1ℓ·n2/3 . By
Equation (87), this implies that µx∗(x

∗) ≥ 1
2(7/8)

ℓ, i.e., Equation (89) above holds. Clearly, µx∗

has the same pure high degree and ℓ1-norm as µ(ℓ), and since F (y∪x∗|S) = (ANDℓ ◦ORm2)(y), µx∗

has the same correlation with F as µ(ℓ) does with ANDℓ ◦ORm2 , namely 1−8−ℓ ≥ 1−4−m. That is,
Equation (91) above holds. Finally, it can be checked that all inputs x on which sgn(µx∗(x)) ̸= F (x)
have Hamming weight strictly greater than m, and also that F (x) = 1 for all inputs x of Hamming
weight strictly less than m. This ensures that Equation (90) above holds.
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Step 2: Correcting errors. The dual witness γ constructed in Step 1 suffers the following two
issues: it makes some sign-errors, i.e., it does not witness deg±(F ) ≥ d, and it is not smooth. We
now correct these issues. Our tool to accomplish this is the following object (whose existence can
be interpreted as a dual formulation of Lemma 56, though we do not explain this interpretation as
it will not be necessary for our proof).

Lemma 93. Let w < n be any integer. For any input x ∈ {−1, 1}n of Hamming weight greater
than w, there is a function βx : {−1, 1}n → R such that (1) β has pure high degree at least w, (2)
βx(x) = 1, (3) βx(x

′) = 0 for all x′ with Hamming weight greater than w, and (4) |βx(x′)| ≤
(
n
w

)
for all x′.

Proof. We will prove this for x = −1n and assuming n is even; the proof for other inputs x and
for odd n is similar. Let p(t) =

∏n−1
i=w+1

t−i
n−i , and define β−1n(x) = ⊕n(x) · p(|x|). Property (1)

follows from the same analysis as Lemma 31. Properties (2)-(3) are simple calculations. Property
(4) follows from observing that |p(t)| is maximized at t = 0 amongst all t ∈ [n]∗, and that p(0) =

(n−1)!
w!(n−(w+1))! =

(
n−1
w

)
<
(
n
w

)
.

Let E = {x′ : sgn(γ(x′)) ̸= F (x′)}. Apply Lemma 93 (with w set as in Step 1) to each input
x′ ∈ E (we observed in Step 1 that all x′ ∈ E have Hamming weight at least m > w, so that
Lemma 93 applies to each such x′). We next use βx′ to “zero-out” γ at x′ as follows. Define a
new witness Γ(x) := γ(x) +

∑
x′∈E |γ(x′)| · βx′(x). Since the pure high degree of the sum of two

functions is at least the minimum of their individual pure high degrees, Γ has pure high degree at
least d := min(d1, w) = w ≥ Ω(m/ logm). We now show that Γ has perfect sign-agreement with
F . By design, Γ(x) = 0 for all x ∈ E, and Γ(x) = γ(x) for all |x| > w. It remains to analyze Γ(x)
for |x| ≤ w. Since

∑
x′∈E |γ(x′)| ≤ 4−m, and |βx′(x)| ≤

(
n
w

)
for all x ∈ {−1, 1}n, we have that for

any x with |x| ≤ w,

Γ(x) ≥ γ(x)−
∑
x′∈E

|γ(x′)| · βx′(x) ≥ (1/2)m − 4−m ·
(
n

w

)
.

As per Equation (88), we chose w = Ω(m/ logm) to be small enough that
(
n
w

)
≤ 2m/2, and hence

the above expression is at least (1/2)m−1.

Step 3: Ensuring smoothness. We have shown that Γ is a dual witness for deg±(F ) ≥
Ω(m/ logm), but Γ is not smooth. We render it smooth using the same technique above to “add
mass” as necessary to each input in {−1, 1}n. Since Γ is already “big” on inputs of Hamming
weight at most w, it suffices to add mass only to inputs of larger Hamming weight. To do so, we
again use the object from Lemma 93.

Specifically, consider the dual witness

τ(x) = Γ(x) +
∑

x′∈{−1,1}n : |x′|>w

(n−2w · 2−n · F (x))βx′(x).

Then phd(τ) ≥ w, as τ is a sum of dual witnesses all of which have pure high degree at least w.
A similar analysis to Step 2 shows that for all x with |x| > w, τ(x) · F (x) > n−2w · 2−nβx(x) >
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n−2w · 2−n. Also similar to Step 2, for x with |x| ≤ w, we have

τ(x) ≥ Γ(x)−
∑

x′∈{−1,1}n : |x′|>w

n−2w2−n · |βx′(x)|

≥ (1/2)m−1 − n−2w ·
(
n

w

)
≥ (1/2)m−1 − n−w ≥ (1/2)m−2.

Hence, we have shown that τ witness deg±(F ) ≥ Ω(m/ logm), and moreover τ satisfies

|τ(x)| ≥ n−2w · 2−n for all x ∈ {−1, 1}n. (92)

Final Step. Let t = log2 n, and let α = 2−t · ⊕t denote the natural dual witness for the fact that
deg±(⊕t) ≥ t. Define ζ = τ ⋆α. Then ζ witnesses the fact that deg±(F ◦⊕t) ≥ d · t = Ω(n1/3 log n).
Moreover, Equation (92) implies that |ζ(x)| ≥ n−2w ·2−N as desired, where recall from the statement
of the theorem that N = n log2 n is the number of variables over which f = ANDn1/3◦ORn2/3◦⊕log2 n

is defined.
A detail that is suppressed in this proof sketch is that the ℓ1-norms of the corrected dual

witnesses Γ and τ are not exactly 1, so we need to normalize ζ to ensure this property. Fortunately,
this does not ruin its smoothness because the calculations above imply that the total mass of the
correction terms is o(1).

10.5.2 LTF ◦MAJ circuit lower bounds

We saw in Section 10.4.4 that a PPcc lower bound for F implies F cannot be computed by small
MAJ ◦ LTF circuits. Here, we show that a UPPcc lower bound for F implies that F cannot be
computed by small LTF ◦MAJ circuits.

Theorem 94. Suppose F (x, y) is computed by a LTF ◦ MAJ circuit C of size s + 1 ≥ n. Then
UPPcc(F ) ≤ O(log(s)).

Proof. Write the output of the circuit as sgn(w0+
∑s

i=1wi ·MAJi(x, y)), where MAJi(x, y) denotes
the output of the ith MAJ gate in C (here, by a majority gate, we mean a gate that takes as input
a subset of the variables of (x, y), each possibiy negated, and outputs −1 if the majority of those
inputs equal −1). By perturbing weights if necessary, we may assume without loss of generality that
w0+

∑s
i=1wiMAJi(x, y) ̸= 0 for any input pair (x, y). In the UPPcc protocol for F , Alice randomly

chooses an i ∈ [s] with probability proportional to |wi| and sends i to Bob, which costs O(log s)
bits. Alice and Bob then output sgn

(
wi ·MAJi(x, y)

)
. Note that this costs O(log n) additional bits

of communication. This is because it suffices for Alice to send to Bob the number of variables in x
that are equal to −1 and connected by a wire to MAJi, as this enables Bob to determine the exact
number of inputs to MAJi that are equal to −1.

Similar to the proof of Fact 71, this protocol outputs F (x, y) with probability at least

1

2

(
1 +

F (x, y) ·
∑s

i=1wi∑s
i=1 |wi|

)
> 1/2.

Combining Theorem 94 with Theorem 92 and Theorem 89 reveals that an AC0 function that
cannot be computed by LTF ◦MAJ circuits of size less than 2n

1/3
.

98



Extending to LTF ◦ LTF circuits? Theorem 94 shows that every function F computable by a
polynomial size LTF ◦ MAJ circuit has a UPPcc protocol of logarithmic cost. One may wonder
whether the same is true for LTF◦LTF circuits. If so, one would resolve the notorious open problem
of obtaining superpolynomial LTF◦LTF lower bounds for an explicit function. Unfortunately, this is
not the case. Chattopadhyay and Mande [CM18] showed that there is a polynomial size LTF ◦ LTF
circuit computing a function F over n bits with UPPcc(F ) ≥ Ω(n1/4).

We briefly sketch their construction of F and a way one can prove that UPPcc(F ) ≥ Ω(n1/4).
Section 10.4.3 (see Footnote 39) mentioned a function called ODDMAXBIT (OMB for short) that
is a linear threshold function, yet has large PP complexity. Since OMB itself has threshold degree
1, it obviously does not by itself have large UPP complexity. But they show that by composing
OMB with AND and lifting with the two-bit ⊕ gadget, one does obtain such a function, namely
F = OMBn3/4 ◦ ANDn1/4 ◦ ⊕2.

Let us explain why this function is computable by small LTF ◦ LTF circuits. As previously
mentioned, OMB has threshold degree 1 and hence is computable by a single LTF gate. Meanwhile,
letting N = n1/4, observe that (ANDN ◦ ⊕2)(x, y) evaluates to −1 if and only if x1 ̸= y1, x2 ̸= y2,
. . . , xN ̸= yN . This is equivalent to requiring that

N∑
i=1

3i−1 · (xi + yi) = 0.

Let W (x, y) =
∑N

i=1 3
i−1 · (xi + yi), and consider the following two functions, both of which are

LTFs:

h(x, y) =

{
−1 if W (x, y) ≥ 0

1 otherwise

and

g(x, y) =

{
−1 if W (x, y) ≥ 1/2

1 otherwise.

Then 1−h(x, y)+g(x, y) equals −1 if W (x, y) = 0 and otherwise equals 1. Hence, an LTF◦LTF
circuit for OMBN3 ◦ ANDN ◦ ⊕2 consists of the LTF gate for OMBN3 , but with each input to it
replaced by g(xi, yi) − h(xi, yi), where (xi, yi) is the input to the ith copy of ANDN ◦ ⊕2. Since g
and h are both LTFs, this is an LTF ◦ LTF circuit.

We do not prove the UPPcc lower bound for F = OMBn3/4 ◦ ANDn1/4 ◦ ⊕2, but to give some
idea of how the proof goes, we sketch how to prove the UPPcc lower bound for the slightly more
complicated function G = OMBn3/4 ◦ANDn1/4 ◦g where g = idx◦⊕2 is the gadget from Theorems 77
and 89. Unfortunately, owing to the inclusion of the idx function in the gadget g, G is not (known
to be) computed by an LTF ◦ LTF circuit, so the analysis presented here is not sufficient to recover
the result of Chattopadhyay and Mande [CM18].

Let N = n1/4. To prove that UPPcc(G) ≥ Ω(N), the proof of Theorem 89 implies that it
suffices to give a smooth dual witness for the fact that, for every ε < 1, the ε-approximate degree
of OMBN3 ◦ ANDN is at least 2Ω(N). In more detail, for some d ≥ Ω(N), it is enough to give a
function ψ : {−1, 1}n → R such that that ∥ψ∥1 = 1, ψ has pure high degree at least d ≥ Ω(N),

⟨ψ,OMBN3 ◦ ANDN ⟩ = 1, (93)

and
|ψ(x)| ≥ 2−d/2 · 2−n. (94)
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Actually, the same analysis can be used to conclude that UPPcc(F ) ≥ Ω(n1/4) even if the right
hand side of Equation (93) is 1 − 2−d rather than 1, and even if Equation (94) fails to hold for a
2−d fraction of inputs x ∈ {−1, 1}n.

Here is how to construct a dual witness ψ satisfying these relaxed properties. First, Thaler
[Tha16] gave a dual witness ϕ for the fact that OMBn3/4 satisfies d̃egε(OMBn3/4) ≥ d where d ≥
Ω(n1/4) and ε = 1− 2−d. Moreover, his dual witness satisfies

|ϕ(1n3/4)| ≥ 2−d/2. (95)

Let γ : {−1, 1}N → R be the following function:

γ(x) =

{
−1/2 if x = 1N

1/(2N − 1) otherwise.

It is easy to check that γ is balanced (hence has pure high degree at least 1) and is perfectly
correlated with AND; hence, it is a dual witness for the fact that deg±(ANDN ) ≥ 1. The desired
dual witness for OMBN3 ◦ ANDN is simply the dual block composition ϕ ⋆ γ.

We now sketch why ϕ⋆γ satisfies the requisite properties. First, by Lemma 40, ϕ⋆γ has ℓ1-norm
1, and by Lemma 39, it has pure high degree at least phd(ϕ) · phd(γ) ≥ d · 1 = d. Next, observe
that by Theorem 43,

⟨ϕ ⋆ γ,OMBN3 ◦ ANDN ⟩ = ⟨ϕ,OMBN3⟩ ≥ 1− 2−d,

yielding the required relaxed version of Equation (93). Finally, Equation (95) implies that for any

input x = (x1, . . . , xN3) ∈
(
{−1, 1}N

)N3

with each xi ∈ AND−1(+1), |(ϕ ⋆ γ)(x)| ≥ 2−n · 2−d/2.
Since only a 1− 2−N fraction of inputs in {−1, 1}N are in AND−1(+1), at least a 1− N3

2−N fraction

on inputs x in {−1, 1}n satisfy |(ϕ ⋆ γ)(x)| ≥ 2−n · 2−d/2. This yields the required relaxed version
of Equation (94) so long as N ≥ 2d.

10.5.3 Open problems on threshold degree and sign-rank

It is open whether Theorem 89 holds without the smoothness condition |ψ(x)| ≥ 2−d/2 · 2−n on the
threshold degree dual witness ψ. This may seem like a low-level technical question, but conceptually
it is asking whether there is a generic query-to-communication-lifting theorem for UPP. That is,
the threshold degree of a function f : {−1, 1}n → {−1, 1} characterizes its UPP query complexity
(Fact 71), while the sign-rank of a function F : {−1, 1}n × {−1, 1}n → {−1, 1} characterizes its
UPP communication complexity (Fact 75). If the requirement that |ψ(x)| ≥ 2−d/2 · 2−n could
be removed from Theorem 89, it would generically translate UPP query lower bounds into UPP
communication lower bounds, rather than requiring “extra properties” of the dual object that was
used to prove the query lower bound. It would also drastically simplify known sign-rank lower
bounds (e.g., Theorem 92).

Open Problem 95. Identify a “gadget” function g on a constant number of bits, such that for any
function f : {−1, 1}n → {−1, 1} with deg±(f) ≥ d, the following holds for the composed function
F = f ◦ g: rank±(MF ) ≥ 2d.

100



A potentially easier open question is the following. It is known that UPP query complexity is
not closed under intersection, i.e., there is a function h with threshold degree 1 such that H(x, y) =
h(x) ∧ h(y) has threshold degree Ω(n) [She13b, She13c, She21]. It is open whether a similar result
holds for UPP communication complexity. A generic lifting theorem for UPP would resolve this
question, but so would giving a dual witness ψ for the large threshold degree of H(x, y) such that
ψ has the requisite smoothness properties to invoke Theorem 89. The best-known result in this
direction is that there exists a function F with UPP communication complexity O(log n), such that
computing the AND of two copies of F evaluated over disjoint inputs requires UPP communication
complexity Ω(log2 n) [BMT21].

Open Problem 96. Is the class of problems with polylogarithmicUPP communication complexity
closed under intersection?

10.6 Extensions to multiparty communication complexity

A long line of work has shown that approximate degree lower bounds imply not only two-party ran-
domized and quantum communication lower bounds as covered in this survey, but also state-of-the-
art multi-party number-on-forehead lower bounds. These results have their own set of applications
in circuit complexity and elsewhere. The interested reader is directed to [LS09b, Section 8.3] for a
survey on some early results in this line of work, as well as more recent papers [She14, She18c].

11 Assorted Applications

11.1 Secret Sharing Schemes

Suppose a party, called the dealer, wishes to distribute a secret bit b ∈ {−1, 1} amongst n parties,
in the following sense. The deal will hand the ith party a bit xi, and it is required that all n parties
together can reconstruct b by applying some known “reconstruction” function fn to their shares,
while no “small” coalition of parties (say at most d parties) can guess b with any advantage over
random guessing. This is called a secret-sharing scheme (for a 1-bit secret), and is a fundamental
object of study in cryptography.

As observed by [BIVW16], a dual polynomial ψ for d̃egε(f) ≥ d precisely yields such a se-
cret sharing scheme. Recall (Section 6) that ψ can be decomposed into two distributions ψ−1 =
2max{−ψ(x), 0} and ψ+1 = 2max{ψ(x), 0}. The dealer simply draws x ∼ ψb, and distributes xi
to part i. To reconstruct the secret, the parties output f(x). The fact that ⟨f, ψ⟩ > ε implies that
if the secret bit b itself is chosen at random, then the probability of successful reconstruction is:

1

2

∑
b∈{−1,1}

Pr
x∼ψb

[f(x) = b] =
1

2

∑
b∈{−1,1}

∑
x∈{−1,1}n : sgn(ψ(x))=b

2|ψ(x)| · 1 + sgn(ψ(x))f(x)

2

=
∑

x∈{−1,1}n
|ψ(x)| · 1 + sgn(ψ(x))f(x)

2
=

1

2
+

1

2

∑
x∈{−1,1}n

ψ(x)f(x) =
1 + ⟨f, ψ⟩

2

>
1 + ε

2
.

In particular, if ψ is a dual polynomial for deg±(f) ≥ 1, then reconstruction is successful with
probability 1 (this is referred to as perfect reconstruction). Meanwhile, the fact that ψ has pure
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high degree at least d means that no coalition of size less than d can achieve any advantage over
random guessing at reconstructing the secret b. Indeed, any function of at most d bits of x is
obviously a degree-d polynomial p in x, and hence the calculation above shows that

1

2

∑
b∈{−1,1}

Pr
x∼ψb

[p(x) = b] =
1 + ⟨p, ψ⟩

2
= 1/2.

Cryptographers are often interested in ensuring that the reconstruction function is “simple”,
e.g., computable by a constant-depth circuit. The fact that, for any constant δ > 0, we know
an AC0 function with threshold degree Ω(n1−δ) (see Section 8.3) means that there is a secret
sharing scheme with perfect reconstruction, in which the reconstruction function is in AC0, and no
coalition of fewer than Ω(n1−δ) parties gains any advantage over random guessing in reconstructing
the secret.

Several works [CIL17, BMTW19, BW17, BDF+22] have studied variants of the above, such as
allowing coalitions of size d to have a small but non-zero advantage over random guessing (which is
related to ε-approximate weight (Section 10.4.1)), reconstruction by even simpler functions such as
OR (which yields something called a visual secret sharing scheme), and the simplicity of sampling
from the distribution ψb.

11.2 Learning Algorithms

PAC Learning. Valiant’s Probably Approximately Correct (PAC) model [Val84] is intended to
capture the task of supervised learning. In this model, there is some target function f : {−1, 1}n →
{−1, 1} that is unknown to the learning algorithm, but is assumed to come from some class of
functions C. Here, C is referred to as a concept class. The learning algorithm is given access to
labeled training data. This means the learner is fed some number m of labeled examples (x, f(x))—
here, x is the example, and f(x) is the label. The number of labeled examples m consumed by the
algorithm is referred to as the sample complexity of the learner.

Each example x is assumed to be drawn independently from some fixed distribution D over
{−1, 1}n. We will be interested in distribution-independent PAC learning, which means that D
is unknown to the learning algorithm and could be any distribution over {−1, 1}n. The goal is
for the learning algorithm to manage to predict f ’s labels on as-yet-unseen examples that are
drawn from the same distribution as the training data. This means that the learner must output
a hypothesis h, which is a function mapping {−1, 1}n → {−1, 1}.41 The hypothesis h should be
an ε-approximately correct predictor for f under distribution D. This means that Prx∼D[h(x) ̸=
f(x)] ≤ ε for some desired accuracy parameter ε. The probability Prx∼D[h(x) ̸= f(x)] is referred
to as the generalization error of h, or sometimes as the loss of h (under the so-called zero-one loss
function).42

The learning algorithm is “probably approximately correct” with parameters ε and δ, if, with
probability at least 1 − δ over the random generation of labeled training data (and any internal
randomness of the learning algorithm), the algorithm outputs an ε-approximately correct hypoth-
esis.

41For the learning algorithm to be considered computationally efficient, h should have a polynomial size represen-
tation, and it should be possible to efficiently evaluate h at any desired input x.

42When learning real-valued rather than Boolean-valued functions, other loss functions make sense and often lead
to more tractable learning problems. These include ℓ2-loss, ℓ1-loss, hinge loss, etc. In this survey, we only consider
learning Boolean-valued functions under zero-one loss.
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Prominent examples of concept classes studied in the learning theory literature include disjunc-
tions and conjunctions, in which C consists of all functions of the form OR or AND applied to a
subset of input variables or their negations, DNF formulas of size polynomial in n, and constant-
depth circuits of size polynomial in n (i.e., AC0).

As we will see shortly, another prominent concept class is the set of all halfspaces. This concept
class is both interesting in its own right, and useful for “capturing” other concept classes, including
some of those mentioned above.

Agnostic learning. The PAC learning model described above makes the often-unrealistic as-
sumption that the target function f resides in the concept class C. This is sometimes referred to as
the “realizable case”, referring to the assumption there is some concept in C that “fully realizes” f
by agreeing with f at all inputs x ∈ {−1, 1}n.

In many realistic scenarios, C is merely a good rather than perfect description of structure
within f . In this situation, the optimal concept c∗ from C will itself fail to fit f perfectly, i.e., will
have non-zero loss. This means that Prx∼D[c

∗(x) ̸= f(x)] is small but not zero. Let us refer to
this probability as opt. In the agnostic learning model [KSS94, Hau92], the goal is to output a
hypothesis h such that Prx∼D[h(x) ̸= f(x)] ≤ opt + ε. In words, the algorithm should output a
hypothesis h that fits f nearly as well as the optimal concept from C.

Another way to view the agnostic learning setting is to think of it as equivalent to the realiz-
able setting, but where a small fraction (namely, opt) of adversarially training examples may be
corrupted. In general, agnostic learning of any given concept class is a much more challenging task
than (realizable) PAC learning, because the latter does not require learning in the presence of any
noise in the training data, much less adversarially chosen classification noise.

Bounding sample complexity via VC dimension. A common approach to learning algorithm
design is for the algorithm to find a hypothesis h that “fits” the training data. This means that the
training error, i.e., the fraction of training inputs x such that h(x) ̸= f(x), is small. The algorithm
that identifies a hypothesis h from a class of functions H that best fits the training data is typically
referred to in machine learning as empirical risk minimization (ERM).

There is, however, the risk of “overfitting” to the training data. This means the algorithm finds
an h that fits the training data well, but h has poor generalization error. This means that, although
h describes f well on the training data, h is not actually an accurate predicator under the “true”
data distribution D. Intuitively, this can happen if h “hones in on” artifacts in the training data,
i.e., properties of the specific sample used for training that are not representative of the true data
distribution D.

Suppose that the learning algorithm outputs a hypothesis h that is a member of some hypothesis
class H. It turns out that overfitting to training data is unlikely to occur if H is a “simple” or
“not-very-expressive” class of functions.

One way of formalizing this is via so-called Vapnik-Chervonenkis dimension (VC-dimension).
The definition of VC dimension is outside of the scope of this survey, but the salient point is the
following. If a hypothesis class H has VC dimension at most D, then with sample complexity
polynomial in D, log(1/δ), and 1/ε, the generalization error and test error of all hypotheses differ
by at most ε with probability at least 1 − δ over the random choice of training data. This means
that, if a learning algorithm outputs a hypothesis h that fits the training data well, then h will also
have good generalization error.
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Halfspace learners. Recall that halfspaces (also called linear threshold functions, see Sec-
tion 10.4.4) are functions of the form f(x1, . . . , xn) = sgn(w0 +

∑n
i=1wixi) for some weights

w0, . . . , wn ∈ R. It is known that the VC-dimension of halfspaces over n variables is n+ 1.
A set of labeled training examples is said to be linearly-separable if there is some halfspace f

such that each training example x is assigned label f(x). There are many algorithms known that,
given any set of linearly-separable examples, find a halfspace that correctly labels them. This can
be done, for example, via any linear programming algorithm. But much simpler algorithms are
known. These include the so-called Perceptron [Ros61] and Winnow [Lit88] algorithms.

Both Perceptron and Winnow find some weight vector that is consistent with the training data.
In contrast, so-called support vector machines (SVM) find a particular weight vector, namely the
one that maximizes themargin, which roughly corresponds to the closest to zero that w0+

∑n
i=1wixi

gets across all training examples x (the notion of margin also arose in Section 10.5).
Since the VC dimension of halfspaces is just n+1, to PAC-learn the concept class of all halfspaces

over n variables, it suffices to take a sample of size poly(n) and run any of the above algorithms
to identify a halfspace consistent with the sample. In fact, there are halfspace-learning algorithms
that are known that are robust to random classification noise in the training data. This refers to a
variant of the PAC learning setting in which each training example has its label flipped with some
small probability. Note that it is not known how to agnostically learn halfspaces in sub-exponential
time—halfspace learning algorithms are not known to be robust to adversarial classification noise.

Learning polynomial threshold functions. Given a labeled example x = (x1, . . . , xn) ∈
{−1, 1}n, one can think of each xi as a (binary) feature. For example, if attempting to classify
an email as spam or not spam, each coordinate of x may indicate certain properties of the email
such as “does it contain the word ‘bank’?” or “does it contain spelling errors?” or “has the sender
previously corresponded with the recipient?”

Unfortunately, many natural functions f are not halfspaces—there is no weight vector w =
(w0, . . . , wn) such that f(x) = sgn (w0 +

∑n
i=1wixi) for all x ∈ {−1, 1}n. In such situations, one

can imagine taking such a feature-vector x and expanding it into a larger vector, in which each
coordinate contains a “derived feature” corresponding to a “combination” of the n “basic” features
x1, . . . , xn. Then even if f is not itself a halfspace, it may be one in the higher-dimensional space
of “expanded feature vectors”.

To make this concrete, recall that a degree-d polynomial threshold function f is the sign of a
polynomial p : {−1, 1}n → R of total degree at most d. Any PTF f can be thought of as a halfspace
over an expanded feature space of size

(
n
≤d
)
, whereby each “expanded feature” is a product of at

most d features in x.
The above reframing of degree-d PTFs as halfspaces over expanded feature vectors immediately

yields an algorithm that runs in time nO(d) for PAC learning degree-d PTFs. The algorithm samples
a training set of size nO(d), and for each example x in the training set, it expands x into the size-(
n
≤d
)
vector obtained by evaluating all monomials of degree at most d at x. One then applies a

halfspace-learning algorithm to the resulting sample of expanded vectors. The total runtime of the
algorithm—to expand each example in the sample and then apply the halfspace-learning algorithm
to the expanded samples—is nO(d).43

43If the halfspace-learner used is a support-vector machine, the above algorithm roughly corresponds to running
an SVM using the so-called polynomial kernel. See [KKMS08, Section 3.2] for additional discussion.
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Learning DNFs via PTFs. A famous challenge problem posed in Valiant’s seminal paper
introducing the notion of PAC learning is to learn polynomial size DNF formulas in polynomial
time. Unfortunately, we are very far from achieving this goal. The best-known algorithm currently
runs in time exponential in n1/3.

It is easy to see via the Chebyshev-polynomial-based technique of Lemma 8 that the threshold
degree of any DNF or CNF of size s is at most O(

√
n log s). This immediately yields an DNF

learning algorithm that runs in time exponential in
√
n log s. Klivans and Servedio [KS04] improved

the above degree bound from Õ(n1/2) to Õ(n1/3), and the resulting algorithm remains the fastest
known today.

Limitations on learning algorithms from threshold degree of sign-rank lower bounds.
The fact that Minsky and Papert’s DNF has threshold degree Ω(n1/3) (Theorem 26) means that
Klivans and Servedio’s threshold degree upper bound for DNFs cannot be improved. One may
wonder, though, whether one can improve on their algorithm by applying a halfspace learning
algorithm to a different set of derived features, one that does not consist of all monomials of degree
at most d. Are there any “derived feature sets” of size smaller than

(
n
≤d
)
over which all DNFs are

halfspaces?
It turns out that degree-at-most-d monomials are in fact the optimal feature set for learn-

ing DNFs via the above halfspace-based approach. As we now explain, this follows from the
exp(Ω(n1/3)) sign-rank lower bound of Razoborov and Sherstov [RS10] (Section 10.5.1)for the com-
position of the Minsky-Papert DNF with a constant-sized gadget.

Specifically, Razborov and Sherstov construct a binary matrix M such that each row of M is
the evaluation table of a DNF defined over n variables (more specifically, each row is the evaluation
table of the Minsky-Papert DNF applied to a subset of input variables or their negations) and such

that M has sign-rank r ≥ 2Ω(n1/3).
Let C denote the class of polynomial size DNFs over n-bit inputs. Let M be the matrix whose

rows are indexed by DNFs f ∈ C and whose columns are indexed by inputs x ∈ {−1, 1}n, with
Mf,x = f(x).

Now suppose that F is a set of “feature functions” ϕ : {−1, 1}n → {−1, 1} such that every
f ∈ C can be expressed as a halfspace over the features. In other words, letting s + 1 = |F| and
ϕ0, ϕ1, . . . , ϕs be an enumeration of the feature functions in F , with ϕ0(x) = 1 for all x, suppose
that for each DNF f , there exist weights w0, . . . , ws ∈ R such that

f(x) = sgn

(
s∑
i=0

wiϕi(x)

)
. (96)

This means that the sign-rank of M is at most s. To see this, let A be the |C| × (s+ 1) matrix
with rows indexed by DNFs f in C and columns indexed by feature functions ϕi ∈ F , with Af,ϕi
equal to the coefficient wi of ϕi in Equation (96). Let B be the (s + 1) × 2n matrix, with rows
indexed by ϕi ∈ F and columns indexed by x ∈ {−1, 1}n, with Bϕi,x = ϕi(x). Then Equation
(96) implies that M equals the entry-wise sign of the product matrix A · B. This proves that the
sign-rank ofM is at most s+1. Razborov and Sherstov’s result then implies that s ≥ exp(Ω(n1/3))
as claimed.

Agnostic Learning via Approximate Degree Upper Bounds. We have seen that if every
function f in a concept class C has threshold degree at most d, then C can be PAC-learned in
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time nO(d). However, threshold degree upper bounds are not known to yield learning algorithms
in the more challenging agnostic setting. The fundamental challenge is that the empirical risk
minimization problem is intractable when the hypothesis class consists of all halfspaces. That
is, while there are efficient procedures for finding a halfspace that perfectly fits the training data
under the assumption that such a halfspace exists, without this assumption there is no analogous
procedure to find the best-fitting halfspace (and in fact the problem is known to be NP-hard
[GR09]).

To obtain efficient agnostic learners, we turn to approximate degree upper bounds. Suppose
that every c ∈ C is approximated to error ε/4 by a polynomial of degree at most d. Then C can be
agnostically learned in time nO(d) using the so-called ℓ1-polynomial regression algorithm of Kalai,
Klivans, Mansour, and Servedio (KKMS) [KKMS08].

Conceptually, the algorithm of KKMS solves a convex relaxation of the empirical risk minimiza-
tion problem for degree-d polynomial threshold functions. Whereas finding the degree-d polyno-
mial p that minimizes the zero-one loss of sgn(p(x)) is intractable, the algorithm of KKMS instead
roughly finds the polynomial p minimizing the ℓ1-loss (see Equation (97) below). This minimization
problem can be written as a linear program and hence can be solved in polynomial time. However,
in order to guarantee that an optimal solution to the linear program actually yields an accurate
hypothesis, we will need to require that every function c in the concept class C being learned have
approximate degree at most d (instead of merely requiring threshold degree at most d as in the
realizable case).

In more detail, the algorithm first draws a sample of labeled training data of size nO(d). Then,
using linear programming, the algorithm finds the degree-d polynomial p that best fits the data
under the ℓ1 loss. This means that p minimizes∑

(x,f(x)) in training data

|p(x)− f(x)| (97)

amongst all degree-d polynomials, where recall thatm is the number of training examples consumed
by the algorithm. Finally, the algorithm chooses a threshold t ∈ [−1, 1] in a manner specified
momentarily, and outputs the hypothesis h(x) = sgn (p(x)− t). The threshold t is chosen to
maximize the number of accurate predictions the algorithm makes on the training data, i.e., to
minimize the number of training examples x such that h(x) ̸= f(x).

One may wish to think of p(x) as a kind of weighted prediction for f(x). If p(x) ≥ 1 or
p(x) ≤ −1, then p is indicating, with high confidence, that f(x) = 1 or f(x) = −1 (though p(x)
may make incorrect predictions on a small fraction of inputs x under distribution D, even when it
indicates confidence therein). If p(x) ∈ (−1, 1), then p is “indicating some uncertainty” regarding
its prediction for f(x). The threshold t yields a “cutoff” to turn uncertain predictions into hard
predictions.

Sketch of the accuracy analysis for the algorithm. Following the analysis of [KKMS08],
we first show that for the hypothesis h output by the algorithm, the number of training examples
x such that h(x) ̸= f(x) is at most 1/2 the ℓ1-error in Expression (97). To see this, observe that
h(x) ̸= f(x) only if the threshold t “separates” p(x) and f(x), i.e., only if p(x) < t < f(x) or
f(x) < t < p(x). If t were chosen uniformly at random from the interval [−1, 1] (which has length
2) the probability that t splits p(x) and f(x) is at most |p(x) − f(x)|/2. Hence, if t were chosen
uniformly at random from [−1, 1], the expected number of errors of h on the training set would
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be at most one half of Expression (97). This implies the existence of a threshold t achieving this
training error. Since t is chosen to minimize the training error, the selected threshold does at least
as well as this expectation.

Second, we show that the fact that there exists a degree-d ε/4-approximating polynomial for
every function in C implies that, in expectation over the random sample drawn from D, Expression
(97) is at most m ·(2opt + ε/4) for the polynomial p selected by the algorithm. To see this, let c ∈ C
be the optimal classifier for the target function f , i.e., c minimizes Prx∼S [c(x) ̸= f(x)] amongst all
concepts in C. Let p∗ be an ε/4-approximating polynomial for c. Then∑

(x,f(x)) in training data

|p∗(x)− f(x)| ≤
∑

(x,f(x)) in training data

|p∗(x)− c(x)|+ |c(x)− f(x)|.

Because p∗ is an ε/4-approximation for c, |p∗(x)− c(x)| ≤ ε/4 for all x ∈ {−1, 1}n. Meanwhile,

E

 1

m

∑
(x,f(x)) in training set

|c(x)− f(x)|

 = 2opt,

where the expectation is over the randomly sampled training data. This follows by definition of opt
and the fact that if c(x) = f(x) then |c(x)− f(x)| = 0, while if c(x) ̸= f(x), then |c(x)− f(x)| = 2.
So the expected value of Expression (97) with p = p∗ is at mostm·(2opt + ε/4). Since the algorithm
chooses the polynomial p that minimizes Expression (97) (and hence the p selected by the algorithm
always does at least as well as p∗ in minimizing Expression (97)), the expected value of Equation
(97) is in turn at most m · (2opt + ε/4) as claimed.

Combined with the first step of the analysis, we conclude that the expected number of errors
that the algorithm’s chosen hypothesis h makes on the training set is at most m (opt + ε/8) (again,
the expectation here is taken over the randomly sampled training data). Standard probabilistic
analyses then imply that with noticeable probability, specifically at least ε/4, h achieves training
error at most opt + ε/2, and in this event, VC theory implies that h achieves generalization error
at most opt + ε as desired.

One still needs to reduce the failure probability from 1−ε/4, to δ, where by failure we mean that
the algorithm outputs an h with generalization error more than opt + ε. To achieve this, one can
run the above algorithm O(log(1/δ)/ε) times independently, to ensure that with high probability,
at least one of the runs indeed outputs an h with the desired training error of at most opt + ε/2.

Example applications. Perhaps the most prominent example application of the above agnostic
learning result is to disjunctions and conjunctions (OR or AND applied to a subset of features or
their negations). Since OR and AND have ε-approximate degree Θ(

√
n log(1/ε)), the above yields

an agnostic learning algorithm that runs in time n
O
(√

n log(1/ε)
)
. As another prominent example,

it is known that all De Morgan formulas of size s have approximate degree O(
√
s) [Rei11], which

yields an nO(
√
s)-time agnostic learning algorithm for this class of functions for constant ε > 0.

These are the fastest known agnostic learning algorithms known for the above concept classes.
Moreover, the approximate-rank lower bounds covered in Section 10.4 implies barriers to obtaining
improved algorithms via ℓ1-regression [KS07]. These barriers are analogous to the sign-rank-derived

barriers discussed earlier for improving Klivans and Servedio’s 2Õ(n1/3)-time algorithm for PAC
learning DNFs.
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Figure 5: A depth-2 AC0 circuit with a layer of parity gates at the bottom.

11.3 Circuit Lower Bounds from Approximate Degree Upper Bounds

Let C be a class of circuits, and imagine that for some function s(n) one has managed to prove
that for every circuit C ∈ C of size at most s(n) over n-bit inputs, the function computed by C
has threshold degree at most n − 1 (just one below the maximum possible value, n). One can
immediately conclude that no circuit in C of size s is capable of computing the parity function ⊕n,
as deg±(⊕n) = n. For example, recall that a deep result established by Reichardt [Rei11] states
that any De Morgan formula of size s has approximate degree (and hence also threshold degree)
O(

√
s). This means that no De Morgan formula of size o(n2) can compute the parity function.
If one shows that every C ∈ C of size at most s(n) has approximate degree o(n), then one

can conclude that no C ∈ C can compute the majority function, since d̃eg(MAJ) = Θ(n). So,
for example, by Reichardt’s result, no De Morgan formula of size o(n2) can compute the majority
function.

But many circuit classes of interest are powerful enough to compute parity and majority. For
example, an important circuit class that we will consider shortly is AC0 ◦ MOD2, which denotes
the class of all AC0 circuits augmented with a layer of parity gates above the inputs. Clearly, the
parity function ⊕n is computable with a size-1 circuit in AC0 ◦MOD2 since ⊕n itself is in MOD2.
Since parity has maximal threshold degree, it may seem that approximate degree and threshold
degree are useless for proving lower bounds against such a circuit classes. But it turns out this is
inaccurate.

In Sections 11.3.1 and 11.3.2, we focus on implications for circuits computing the so-called
inner-product-mod-2 function, IP2. The ideas in this section are due to Tal [Tal17].

11.3.1 Worst-case lower bounds from threshold degree upper bounds

For a given circuit class C and given class of functions G, let C ◦ G denote the circuit class in which
circuits from C are augmented with a layer of leaf gates containing functions from G. So for example,
if C is AC0, and G is the set of all parity functions on 2n bits, i.e., G = MOD2 := {χS : S ⊆ [2n]},
then AC0 ◦ G denotes the circuit class AC0 ◦MOD2 discussed above. See Figure 5 for an example.

Henceforth, define G to be the class of all functions on 2n-bit inputs (x, y) with two-party deter-
ministic communication complexity at most O(log n), and note that MOD2 is a subset of G, since
the parity function has constant communication complexity. Let us assume that s(n) = poly(n)
is a function such that every circuit C in C of size O(s(n)) defined over s(n) inputs has threshold
degree d ≤ o(n/ log n). For example, if C is the class of De Morgan formulas, by Reichardt’s result
we may take any s(n) = o((n/ log n)2).
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Then, as explained in the next paragraph, every circuit C ′ ∈ C ◦G of size at most s(n) computes
a function C ′(x, y) with UPPcc complexity o(n). Since UPPcc(IP2) ≥ Ω(n) (see the remark after
Corollary 91), it follows that no C ∈ C of size at most s(n) computes IP2.

The UPPcc protocol for C ′ is analogous to the one in Fact 71, operating as follows. Since
C ′ has size at most s(n), it has at most s(n) leaf gates, say, G1, . . . , Gℓ ∈ G for ℓ ≤ s(n). Let
us write C ′ = C(G1(x, y), . . . , Gℓ(x, y)), where the circuit C ∈ C itself has size at most s(n). Let
z ∈ {−1, 1}ℓ denote the vector (G1(x, y), . . . , Gℓ(x, y)). By assumption, there is some polynomial
p(x) of degree d = o(n/ log n) that sign-represents C, say, p(z) =

∑
S⊆[ℓ] p̂(S) ·χS(z). Alice can use

her private randomness to pick a parity χS with probability proportional to |p̂(S)|. She can send S

to Bob (this costs at most log2(
(s(n)
≤d
)
) ≤ log2(s(n)

d) ≤ o(n) bits), and then Alice and Bob together
can compute zi = Gi(x, y) for each i ∈ S. Since each Gi has communication cost O(log n), this
costs at most O(|S| · log n) = o(n) bits of communication. Bob can then output sgn(p̂(S)) · χS(z).
Exactly as analyzed in Fact 71, this protocol outputs C(z) = C ′(x) with probability strictly greater
than 1/2.

An immediate consequence of the above (along with Reichardt’s result [Rei11]) is that, if C
denotes the class of De Morgan formulas, circuits in C′ = C ◦ G require size at least Ω((n/ log n)2)
to compute IP2 [Tal17]. This answered a question of Jukna [Juk12], and it is essentially tight since
IP2 is computed by quadratic size De Morgan formulas, even without any leaf gates from G.

The next subsection shows that if C has sublinear approximate degree rather than just sublinear
threshold degree, then circuits from C ◦ G cannot compute IP2 even on average.

11.3.2 Average-case lower bounds from approximate degree upper bounds

For simplicity, in this section we describe lower bounds only for circuit classes of the form C ◦
MOD2. It is well-known that IP2 has correlation 2−n under the uniform distribution with any

parity function χS , i.e., 2
−n
∣∣∣∑x,y∈{−1,1}n IP2(x, y) · χS(X, y)

∣∣∣ = 2−n. To see this, explicitly cal-

culate the Fourier coefficients of IP2(x, y) = ⊕n(x ∧ y) by expressing its multilinear extension as∏n
i=1

1
2 (1 + xi + yi − xi · yi) . Applying the distributive law to express this polynomial as a linear

combination of parity functions reveals that each Fourier coefficient has magnitude 2−n. The claim
then follows from the fact that the correlation of IP2 with the parity function χS is precisely the
Fourier coefficient ÎP2(S).44

Let ε > 2−o(n), and let us assume that s(n) is a function such that every circuit C in C of
size O(s(n)) defined over s(n) inputs has ε-approximate degree d ≤ o(n/ log n). Let us assume for
simplicity that s(n) ≤ nc for some constant c > 0. For example, if C is the class of De Morgan
formulas, by the fact that any De Morgan formula of size s has approximate degree O(

√
s·log(1/ε)),

we can take s(n) = o((n/(log(n) · log(1/ε)))2).
Let C ′ : {−1, 1}2n → {−1, 1} be a C ◦MOD2 circuit of size s∗, and let

q = Pr
x,y∈{−1,1}n

[C ′(x, y) = IP2(x, y)].

Suppose that q ≥ 1/2 + ε. Our goal is to show that s∗ > s(n). By way of contradiction, let us
suppose that s∗ ≤ s(n) and show that this would imply that IP2 is impossibly well-correlated with
some parity function.

44In fact, IP2(x, y) has correlation 2−Ω(n) under the uniform distribution with any function f(x, y) computed by
a two-party deterministic communication protocol of cost O(1). We do not cover the proof of this fact in this survey,
but it can be used to extend the results of this section from C ◦MOD2 to C ◦ G.
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Analogous to the previous section, let ℓ ≤ s∗ denote the number of parity gates in C, with the ith
parity gate denoted byGi(x) : {−1, 1}n → {−1, 1}. Let us write C ′(x, y) = C(G1(x, y), . . . , Gℓ(x, y)),
where C ∈ C is a circuit of size at most s∗ defined over ℓ ≤ s∗ inputs. By assumption, there exists
a polynomial p of degree at most d = o(n/ log n) such that, for all w ∈ {−1, 1}ℓ, |p(w)−C(w)| ≤ ε.

Next, we show that under the uniform distribution, IP2(x, y) correlates well with p(G1(x), . . . , Gℓ(x)).
We decompose the expectationEx,y∈{−1,1}n [p(x, y)·IP2(x, y)] according to whether or not IP2(x, y) =
C ′(x, y):

Ex,y∈{−1,1}n [p(G1(x, y), . . . , Gℓ(x, y)) · IP2(x, y)] =
Ex,y∈{−1,1}n [p(G1(x, y), . . . , Gℓ(x, y)) · IP2(x, y)|IP2(x, y) = C ′(x, y)] · Pr[IP2(x, y) = C ′(x, y)]+

Ex,y∈{−1,1}n [p(G1(x, y), . . . , Gℓ(x, y)) · IP2(x, y)|IP2(x, y) ̸= C ′(x, y)] · Pr[IP2(x, y) ̸= C ′(x, y)]

≥ (1− ε) · q + (−1− ε) · (1− q)

= 2q − 1− ε ≥ 2 · (1/2 + ε)− 1− ε = ε. (98)

Next, we write p(z) as a multilinear polynomial: p(z) =
∑

S⊆[ℓ],|S|≤d p̂(S) ·
∏
i∈S zi. Since

p̂(S) = Ez∈{−1,1}ℓ [p(z) ·
∏
i∈S zi], we have that |p̂(S)| ≤ 1 + ε for every S. Note that there are at

most
(
ℓ
≤d
)
monomials in p. Invoking Equation (98), we have:

ε ≤ Ex,y∈{−1,1}n [p(G1(x, y), . . . , Gℓ(x, y)) · IP2(x, y)]

= Ex,y∈{−1,1}n

 ∑
S⊆[ℓ],|S|≤d

p̂(S)
∏
i∈S

Gi(x, y) · IP2(x, y)


=

∑
S⊆[ℓ],|S|≤d

p̂(S) ·Ex,y∈{−1,1}n

[∏
i∈S

Gi(x, y) · IP2(x, y)

]

≤
∑

S⊆[ℓ],|S|≤d

(1 + ε)

∣∣∣∣∣Ex,y∈{−1,1}n

[∏
i∈S

Gi(x, y) · IP2(x, y)

]∣∣∣∣∣ .
Hence there must exist a set S ⊆ [ℓ] with size at most d such that∣∣∣∣∣Ex,y∈{−1,1}n

[∏
i∈S

Gi(x, y) · IP2(x, y)

]∣∣∣∣∣ ≥ ε(
ℓ
≤d
)
(1 + ε)

≥ (ε/2) · (s∗)−d ≥ ε · 2o(n) ≥ 2o(n).

Here, the final two inequalities exploited the assumptions that ε ≥ 2−o(n) and s∗ ≤ nc for
some constant c > 0. Since

∏
i∈S Gi(x, y) is a product of parity functions and hence is itself a

parity function, this contradicts the fact that IP2 has correlation 2−n with any parity function. We
conclude that s∗ must be greater than s(n).

Instantiations of the average-case lower bound. A first instantiation was previously indi-
cated, namely if C denotes the class of De Morgan formulas, then we can set s(n) = o(n2/(log2(n) log2(1/ε)))
to conclude that any C ◦MOD2 circuit computing IP2 on a 1/2 + ε fraction of inputs requires size
at least Ω(n2/(log2(n) log2(1/ε))) [Tal17].
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A second application is to a well-known frontier problem in circuit complexity, which is to prove
superpolynomial lower bounds for the size of AC0◦MOD2 circuits computing the IP2 function. This
question has been related to a variety of frontier open problems in communication complexity and
pseudorandomness, see for example [ER21].45 Unfortunately, the best lower bound on the size of
AC0 ◦ MOD2 circuits computing IP2 are only slightly superlinear. Superlinear worst-case lower
bounds were first proved in [CGJ+18], while Bun, Kothari, and Thaler [BKT21] extended the
bounds to hold in the average case, as follows.

If D ≥ 1 is a constant and C denotes the class of depth-D AC0 circuits, then [BKT21] proved
that the approximate degree of any linear-sized circuit over n inputs in C has ε-approximate degree

at most O(n1−2−D
log2

−D
(1/ε)). Hence, can set s(n) = o

(
n/
(
log(n) · log2−D

(1/ε)
))1/(1−2−D)

. In

particular, if ε = n− logn, then we can set s(n) =
(
n/ log3 n

)1/(1−2−D)
> Ω(n1+2−D

). We conclude
that any depth-D AC0 circuit with a layer of parity gates at the bottom that computes IP2 on
more than a 1/2 + n− logn fraction of inputs requires (slightly) superlinear size Ω(n1+2−D

).
Additional applications of these techniques for proving average-case lower bounds were consid-

ered by Kabanets et al. [KKL+20].

11.4 Parity is not in LTF ◦ AC0

A famous result in circuit complexity is that parity, ⊕n, is not in AC0 [FSS84a], i.e., constant-depth
circuits of unbounded fan-in that compute parity require exponential size. We cover one such proof
of this result, due to [ABFR94], which is based on threshold degree. In fact, the analysis establishes
the stronger result that parity is not in LTF ◦ AC0, the class of polynomial size AC0 circuits with a
threshold gate at the top (i.e., the output gate computes a linear threshold function).

The proof proceeds in two steps. First, show that any polynomial p of degree o(
√
n) disagrees

in sign with parity on at least a 1/2− o(1) fraction of inputs. That is, p(x) · ⊕n(x) < 0 for at least
(1/2− o(1)) · 2n inputs x in {−1, 1}n.

Second, show that for any LTF◦AC0 circuit C, there is a polynomial p of polylogarithmic degree
that agrees in sign with C on 99% of inputs.46 Together, these two results imply that parity cannot
be computed by any LTF ◦AC0 circuit of polynomial size (in fact, LTF ◦AC0 circuits require size at
least exp

(
n1/O(d)

)
to compute parity).

Step 1. Before proving the first step, let us first explain that the bound is tight: one can exactly
compute parity on, say, 99% of all inputs by “interpolating” the middle O(

√
n) Hamming layers

of the Boolean hypercube. That is, standard bounds on the Binomial coefficients imply that there
is some constant c > 0 such that 99% of the 2n inputs in {−1, 1}n have Hamming weight between
n/2− c

√
n and n/2 + c

√
n. Define P (t) via interpolation to be the unique polynomial of degree at

most 2c
√
n that evaluates to (−1)t at all integers t ∈ [n/2 − c

√
n, n/2 + c

√
n]. Let p(x) = P (|x|).

Then p sign-represents (in fact, exactly computes) parity on 99% of all inputs.
This construction turns out to be exactly optimal in terms of the number of inputs at which it

agrees in sign with parity. It can be checked that p is a degree-d polynomial that disagrees in sign

45Superpolynomial lower bounds against AC0 ◦MOD2 circuits computing other functions such as MAJ are known,
but the techniques used to prove these lower bounds totally break down for IP2.

46More precisely, for any LTF◦AC0 circuit of size s and depth d, there is a polynomial p of degree (log s)O(d) ·log(1/δ)
that agrees with C on a 1− δ fraction of inputs [HS19].
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with parity on
(
n
≤k
)
inputs where k = (n− d)/2.47 If d = o(

√
n), then

(
n
≤k
)
≥ (1/2− o(1)) · 2n.

To prove that this is optimal, it suffices to show that for any set S ⊆ {−1, 1}n of size at most(
n
≤k
)
, any degree d = n − 2k polynomial p must disagree in sign with parity on at least one input

outside of S. This turns out to be equivalent to constructing a dual polynomial ψ : {−1, 1}n → R
of pure high degree at least d = n− 2k such that:

(a) ψ(x) = 0 for all x ∈ S, i.e., ψ vanishes on S.

(b) ψ has perfect correlation with parity, i.e., ψ(x) · ⊕n(x) ≥ 0 for all x ∈ {−1, 1}n.

Intuitively, such a ψ is a dual witness to the high threshold degree of ⊕n that “ignores” inputs
outside of S. Hence, ψ witnesses that any PTF p for parity must have degree at least d, regardless
of how p behaves at inputs in S.

Here is the construction of the dual polynomial ψ. Let S be any subset of size at most
(
n
≤k
)
.

Note that
(
n
≤k
)
is the number of parities of degree at most k. By elementary linear algebra, there

exists a non-zero polynomial q of degree at most k that vanishes on S. That is, since there are
(
n
≤k
)

coefficients of q, we can choose them so as to ensure that q(x) = 0 for all x ∈ S. The polynomial q2

then has degree at most 2k, and q(x) ≥ 0 for all x ∈ {−1, 1}n. The function ψ(x) := ⊕n(x) · q2(x)
is a non-zero dual polynomial with pure high degree n − 2k (see the proof of Lemma 31) that is
perfectly correlated with parity, as required.

Step 2. The key is to show that for any AC0 circuit C of depth d and size s, there is a polynomial
p of degree (log s/δ)O(d) that exactly computes C on a 1 − δ fraction of inputs. One then obtains
a polynomial that sign-represents any LTF ◦ AC0 circuit of size by s on 99% of inputs by, first,
exactly computing each constituent AC0 circuit on all but a 1/(100s) fraction of inputs—which
requires degree just (log s)O(d)—and then taking the appropriate linear combination of the resulting
polynomials, i.e., with the coefficients of the linear combination given by the weights of the LTF
gate.

Probabilistic Degree. The technical core of the key result is an upper bound of O(log(n) ·
log(1/δ)) on the so-called δ-error probabilistic degree of OR. Here, a δ-error probabilistic polynomial
of degree d over the reals for a circuit C(x1, . . . , xn) is a random polynomial P (x1, . . . , xn) such that
for any x ∈ {−1, 1}n, PrP [C(x) ̸= P (x)] ≤ δ. That is, P is drawn at random from some distribution
over degree-d polynomials, and the requirement is that for every fixed input x, P (x) is very likely
to exactly equal C(x). Before proving the upper bound of O(log(n) · log(1/δ)) on the probabilistic
degree of OR, we explain why it implies an upper bound of O(logO(d)(n)) on the probabilistic degree
of any AC0 circuit of depth d.

From Probabilistic Polynomials for OR and AND to AC0. Let C be an AC0 circuit of size
s. Each AND and OR gate of C has a 1/(100s)-error probabilistic polynomial of degree O(log2(s)).
For each gate, draw such a polynomial at random and consider the gate-by-gate composition of the
resulting polynomials. This composed polynomial p has degree log(s)O(d). For each input x, by a
union bound over all s gates of C, the probability that p(x) ̸= C(x) is at most s ·(1/(100s)) ≤ 1/100.
Hence, the expected number of inputs x at which p(x) = C(x) is at least .99 · 2n. By averaging,

47Recall from Section 2.1 that
(

n
≤k

)
denotes

∑k
i=0

(
n
i

)
.
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there exists some polynomial p of degree at most log(s)O(d) that agrees with C on at least 99% of
all inputs.

Probabilistic Polynomial for OR. The δ-error probabilistic polynomial for OR that we cover is
due to [BRS+90]. The construction is reminiscent of an earlier one over finite fields due to Razborov
[Raz87].

We begin with a construction that achieves δ = 1/(2e). Let F be a random collection of 1+log n
subsets of [n] generated as follows. For i = 0, 1, . . . , log n, the i’th subset, Si, of F is generated by
independently including each j ∈ [n] in Si with probability 2−i. Then define

P (x1, . . . , xn) = −1 + 2
∏
S∈F

1 +
∑
j∈S

(xj − 1)/2

 .

Observe that P has degree |F| = 1 + log n. Showing that this indeed yields a (1/(2e))-error
probabilistic polynomial for OR relies on the following two observations. First, if x ∈ OR−1(1), so
that x = 1n, then P (x) = 1 with probability 1 over the choice of P . This holds because (xj − 1)/2
will equal 0 for every j. Hence, P always has the desired behavior on x = 1n.

Second, so long as there is at least one set S ∈ F such that there is exactly one j ∈ S with
xj = −1, then P (x) = −1. We now show that this occurs with probability at least 1/(2e) over the
random choice of subsets in F . This guarantees that the resulting distribution over polynomials P
has the desired behavior on any x ∈ OR−1(−1).

Specifically, fix an x ∈ {−1, 1}n with |x| ≥ 1, and let T denote the set of coordinates of x that
are equal to −1. Let 2i be the smallest power of 2 greater than or equal to |x|. The probability
that exactly one coordinate j from T is in Si is∑

j∈T
Pr[j ∈ Si] · Pr[no other elements of T are in Si] = |x| · 2−i · (1− 2−i)|x|−1.

This probability is at least 1/(2e). To see this, observe that |x| · 2−i > 1/2, while

(1− 2−i)|x|−1 ≥ (1− 2−|x|)|x|−1 ≥ 1/e,

where the final inequality invokes Fact 2.
To drive the error down from 1/(2e) to δ, one generates ℓ = O(log(1/δ)) independent “copies”

of each set Si and adds all of the copies to F . That is, for each copy of Si, each coordinate
j ∈ [n] is included independently with probability 2−i. The probability that none of the copies of
Si contain exactly one element of T is at most 1/(2e)ℓ. Hence, for a suitable ℓ = O(log(1/δ)), this
probability is at most δ. Hence, P is a δ-error probabilistic approximation for OR of degree at most
O(log(n) · log(1/δ)).
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