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VACCINES	TO	COMBAT	MENINGOCOCCAL	DISEASE	–		
	

DEFINITIVE	VACCINES	FOR	ELUSIVE	PATHOGENS	
	

GEORGE	F.	SANTOS	
	

ABSTRACT	

Neisseria	meningitidis	(Nm)	disease	occurs	worldwide.		Disease	incidence	rates	can	

vary	from	1	to	1000	cases	per	100,000	with	the	highest	incidence	found	in	the	sub-

Saharan	Africa	meningitis	belt.		Nm	has	evolved	a	number	of	mechanisms	to	evade	

host	immunity.		This	includes	the	production	of	genetic	variants	through	re-

combinatorial	events,	which	is	thought	to	have	contributed	to	the	evolution	of	

hyper-invasive	lineages	that	are	largely	responsible	for	meningococcal	disease.		

Antigenic	diversity	of	Nm	surface	proteins	has	been	the	main	limitation	in	the	

design	of	broadly	protective	vaccines,	particularly	against	capsular	serogroup	B	

strains.		To	overcome	this	problem,	several	Nm	genomes	have	been	sequenced	in	an	

effort	to	find	highly	sequence-conserved	surface	antigens	recognized	by	the	human	

immune	system	in	order	to	develop	a	vaccine,	which	would	be	broadly	protective	

against	disease.		Nm	genomes	contain	over	2	million	base	pairs	that	contain	

between	2000	and	2500	open	reading	frames.		Add	to	this	the	difficulty	of	

identifying	highly	conserved	recombinant	antigens	with	strong	intrinsic	

immunostimulatory	properties,	makes	vaccine	design	and	development	a	daunting	

task.		Recent	advances	in	our	understanding	of	the	interactions	between	innate	and	

acquired	immunity,	and	the	discovery	of	pattern	recognition	receptors,	including	
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Toll-like	receptors	(TLRs),	have	ushered	in	a	new	set	of	adjuvant	compounds,	TLR	

agonists,	which	invoke	strong	humoral	and	cellular	responses	with	nominal	toxicity	

and	adverse	reactions.		These	insights	have	opened	up	new	areas	of	vaccine	

research	to	combat	invasive	Nm	disease.		 	
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Epidemiology	of	Neisseria	meningitidis	Disease	

Disease	 caused	 by	Neisseria	meningitidis	 (Nm)	 is	 a	 global	 health	 problem.	 Nm	 is	

pathogenic	 only	 in	 humans.	 	Nm	 infection	 can	 result	 in	mortality	within	 24	 to	 48	

hours	 from	 the	 onset	 of	 disease	 symptoms.	 The	 mortality	 rates	 associated	 with	

meningococcal	infection	are	10–20%,	which	can	vary	by	causative	strain.	 	Of	those	

individuals	 that	 survive	 infection,	 approximately	 20%	 experience	 significant	

sequelae	 including	 limb	 loss,	 hearing	 loss,	 chronic	 pain,	 and	 loss	 of	 neurological	

function	(Pace	&	Pollard,	2012;	Stein-Zamir	et	al.,	2014).	 	Disease	incidence	occurs	

mostly	within	three	age	groups	(Figure	1):	the	highest	rate	in	infants	under	the	age	

of	 1	 years,	 with	 approximately	 two-thirds	 of	 Nm	 disease	 occurring	 in	 the	 first	 6	

Figure 1: Estimated Annual Disease Rate in the United States, 1998-2007 
(adapted from Cohn, 2010)  
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months	 due	 to	 absences	 or	 loss	 of	maternal	 antibodies;	 a	 2nd	 peak	 in	 adolescents	

and	young	adults	between	15	and	24	years	old;	and,	a	3rd	peak	seen	in	the	elderly	at	

65	years	and	older	 shown	 (Thompson	et	 al.,	 2006;	Cohn	et	 al.,	 2010;	Chang	et	 al.,	

2012).		

Classification	of	Nm	is	historically	based	upon	the	immunochemistry	of	its	capsular	

polysaccharide	(serogroup).	 	There	are	13	serogroups	that	have	been	 identified	to	

date,	 with	 most	 disease	 occurrences	 resulting	 from	 serogroups	 A,	 B,	 C,	 W-135,	

X,	and	 Y.	 	 Meningococci	 are	 further	 classified	 on	 the	 basis	 of	 their	 class	 1	 outer-

membrane	 proteins	 (PorA,	 serosubtype),	 class	 2	 or	 3	 outer-membrane	 proteins	

(PorB,serotype),	and	lipo-oligosaccharides	(immunotype).	Molecular	subtyping	with	

the	 use	 of	 pulsed-field	 gel	 electrophoresis,	 or	 DNA-sequence	 analysis	 has	 been	

helpful	 in	 identifying	 closely	 related	 strains	 responsible	 for	 disease	 outbreaks	

(Frasch	 et	 al.,	 1985;	Maiden	 et	 al.,	 1998).	 	 Globally,	 Nm	 disease	 cases	 are	 caused	

primarily	 by	 serogroups	 A,	 B,	 and	 C.	 The	 geographical	 variations	 observed	 likely	

result	from	differences	in	regional	population	immunity,	and	environmental	factors.	

The	 incidence	 of	 disease	 can	 vary	 from	between	 0.5	 and	 1000	 cases	 per	 100,000	

depending	on	geographical	 region	of	occurrence	(Stephens	et	al.,	2007;	Caugant	&	

Maiden	 2009).	 	 The	 majority	 of	 cases	 in	 Europe	 and	 North	 America	 involve	

serogroups	B,	 C	 and	Y,	while	 Serogroups	A	 and	C	 predominating	 throughout	Asia	

and	Africa	(Connolly	&	Noah,	1999;	Cohn	et	al.,	2010;	Jafri	et	al.,	2013).		Fluctuations	

in	 disease	 dynamics	 have	 been	 observed	 recently	 in	 the	 Sub-Saharan	 "meningitis	



	

	 3	

belt",	where	serogroup	A	was	historically	the	cause	of	seasonal	epidemics,	however	

serogroup	W-135	predominated	in	2010	and	2011	(Halperin	et	al.,	2012).	 	In	order	

to	 better	 understand	 the	 mechanisms	 underlying	 outbreaks,	 a	 genetics	 based	

characterization	 scheme	 referred	 to	 as	 Multi-locus	 Sequence	 Typing	 (MLST)	 was	

developed	 in	 which	 the	 sequences	 of	 seven	 housekeeping	 genes	 are	 analyzed	 to	

group	disease-related	isolates	into	sequence	types	and	then	larger	clonal	complexes.		

This	strain	typing	system	has	allowed	researchers	and	clinicians	to	better	determine	

if	 local	 outbreaks	 and	 regional	 epidemics	 are	 due	 to	 a	 single	 strain	 or	 multiple	

unrelated	strains	circulating	within	 the	affected	population	(Brehony	et	al.,	2007).		

This	typing	system	has	advanced	the	identification	of	disease-causing	hypervirulent	

strains.	

	

Neisseria	meningitidis	Disease	Mechanisms	

Colonization	and	Carriage	

Nm	related	invasive	disease	is	a	multi-step	process,	which	involves	colonization	and	

carriage	 in	 the	 nasopharynx,	 invasion	 of	 the	 respiratory	 tract	 epithelia	 and	

migration	 of	 the	 underlying	 endothelia,	 entry	 into	 the	microvasculature,	 and	 then	

systemic	 dissemination	 via	 the	 bloodstream.	 Nm	 colonization	 and	 subsequent	

carriage	in	the	human	nasopharynx	is	typically	asymptomatic	and	can	be	detected	in	

up	 to	40%	of	 the	population	at	any	particular	 time.	 	Carriage	 is	 transient,	 can	 last	
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from	days	to	months	depending	on	the	bacterial	strain,	and	varies	by	season	and	age	

group	 (Caugant	 et	 al.,	 2007;	 Caugant	 &	 Maiden	 2009).	 	 The	 first	 steps	 to	

nasopharyngeal	 colonization	 involves	 the	 initial	 adhesion	 of	 meningococci	 to	 the	

exposed	epithelium	which	 is	mediated	by	Type	 IV	pili,	 a	multimeric	 scaffold/pore	

protein	 complex	 that	 spans	 the	 inner	 and	 outer	 membranes	 of	 Nm	 strains	

(Carbonnelle	 et	 al.,	 2006;	 Brown	 et	 al.,	 2010).	 	 The	 type	 IV	 pilus	 has	 also	 been	

reported	in	other	infection	related	processes	including	adhesion	to	endothelial	cells,	

bacterial	aggregation,	and	migration,	and	natural	transformation	of	exogenous	DNA	

(Bernard	et	al.,	2014;	 Imhaus	&	Dumenil,	2014).	 	Adhesion	 is	 further	mediated	by	

additional	meningococcal	surface	receptors	such	as:	the	opacity	proteins,	Opa,	and	

Opc;	the	trimeric	autotransporter	NhhA;	the	Adhesion	and	penetration	protein,	App;	

and	NadA,	which	collectively	bind	to	extracellular	receptors	and	matrix	components,	

including	 carcinoembryonic	 antigen	 cell	 adhesion	molecules	 (CEACAMs),	 heparan	

sulfate,	and	laminin	(Virji,	2000;	Hadi	et	al.,	2001;	Comanducci	et	al.	2002;	Serruto	et	

al.,	 2003;	 Capecchi,	 et	 al.,	 2005;	 Scarselli	 et	 al.,	 2006;	 Coureuil	 et	 al.,	 2010).	 	 The	

assortment	of	adhesion	receptors	with	different	specificities	suggests	a	high	level	of	

binding	cooperatively	when	targeting	the	same	cell	type,	as	well	as	at	other	stages	of	

infection	 when	 binding	 endothelium,	 and	 other	 cells	 types	 for	 entry	 into	 various	

host	 tissues.	 	 Many	 of	 these	 membrane	 structures	 are	 possible	 target	 for	 the	

development	 of	 a	 vaccine	 to	 protect	 against	 meningococcal	 disease	 (Figure	 2),	

however	Nm	strain	diversity	and	an	inclination	to	circumvent	immune	surveillance	

has	made	use	of	most	of	these	antigens	impractical	(Sadarangani	&	Pollard,	2010).		
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Immune	Evasion	by	Neisseria	meningitidis	

Several	 strategies	 are	 used	 by	Nm	 to	 generate	 genetic	 variants	 in	 order	 to	 evade	

immunity	 by	 altering	 antigenic	 structure,	 or	 acquire	 and	 maintain	 antibiotic	

resistance	when	selective	pressures	are	exerted	in	this	manner	(Spratt	et	al.,	1992;	

Swartley	 et	 al.,	 1997).	 	 One	 such	 mechanism	 is	 horizontal	 gene	 transfer,	 which	

allows	 Nm	 to	 obtain	 large	 segments	 of	 DNA	 from	 other	 commensal	 and	 invasive	

Neisseria	strains	or	unrelated	species	(Feil	et	al.,	1999;	Linz	et	al.,	2000).	 	Capsule	

switching	 is	 an	 example	of	 this	whereby	 the	original	 infectious	 strain	 can	 achieve	

Figure 2: Nm surface structures. Membrane components that are relevant to 
invasion and immunological resistance as possible vaccine components. 
(taken from Sadarangani & Pollard, 2010)  
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immunologic	 escape	 from	 natural	 immunity,	 or	 acquired	 immunity	 via	

immunization,	while	maintaining	in	essence	the	same	genetic	lineage.		In	the	United	

States,	a	 large	percentage	of	disease-causing	Nm	strains	appear	 to	have	arisen	via	

capsule	 switching	 including	 an	 outbreak	 of	 serogroup	 B	 disease	 in	 Oregon	 in	 the	

1990s	 where	 serogroup	 C	 isolates	 were	 found	 to	 be	 otherwise	 genetically	

indistinguishable	 from	 the	 serogroup	 B	 outbreak	 strain	 (Diermayer	 et	 al.,	 1999;	

Harrison	et	al.,	2010).		Capsule	switching	was	also	likely	the	cause	of	a	serogroup	W-

135	outbreak	in	the	year	2000	at	the	Hajj	in	Mecca,	Saudi	Arabia	(Mayer	et	al.,	2002;	

Mustapha	et	al.,	2016).	

The	importance	of	the	capsule	and	lipo-oligosaccharide	structures	on	the	surface	of	

meningococci	 for	 immune	 evasion	 and	 resistance	 to	 complement-mediated	 lysis	

was	demonstrated	by	a	large	scale	gene	disruption	study	which	suggested	that	these	

two	components	were	major	contributors	to	serum	resistance	during	invasion	and	

widespread	dissemination	in	the	blood	stream	(Geoffroy	et	al.,	2003).		Additionally,	

it	 was	 shown	 that	 Nm	 have	 three	 independent	 RNA	 thermo-sensors	 that	 are	

activated	 by	 an	 increase	 in	 temperature,	 such	 as	 during	 invasion	 from	 the	 naso-

pharynx	 into	 the	 blood	 stream,	 or	 during	 the	 fever	 response	 in	 humans.	 	 The	

thermo-sensors	 are	 in	 the	 5'	 untranslated	 regions	 (UTR)	 of	 genes	 necessary	 for	

capsule	 biosynthesis,	 sialylation	 of	 lipopolysaccharide,	 and	 the	 expression	 of	 the	

complement	 inhibitor	 factor	 H	 binding	 protein	 (fHBP).	 	 All	 three	 products	 are	

essential	 for	 resistance	 to	 host	 bactericidal	 responses	 (Loh	 et	 al.,	 2013).	 	 These	
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thermo-sensors	 form	 stem	 loop	 structures	 at	 the	 lower	 permissive	 temperatures,	

which	 obscures	 the	 ribosome-binding	 site	 (RBS)	 contained	 within	 the	 loop,	 and	

interferes	with	translation.		When	these	loops	are	unwound	at	higher	temperatures,	

the	 RBS	 becomes	 more	 accessible	 allowing	 increased	 expression	 of	 relevant	

proteins.			

Recombinant	 gene	 conversion	 is	 employed	 by	 Nm	 to	 achieve	 antigenic	 variants	

allowing	 Nm	 to	 escape	 host	 immune	 detection	 without	 the	 acquisition	 of	 foreign	

DNA.	 	 	 Over	 100	 phase-variable	 genes	 have	 been	 identified	 (Moxon	 et	 al.,	 1994;	

Snyder	 et	 al.,	 2001)	 with	 the	 majority	 associated	 with	 meningococcal	 surface	

antigens	including:	the	capsule	(Hammerschmidt	et	al.,	1996b);	 lipopolysaccharide	

(Jennings	 et	 al.,	 1995);	 the	 PilE	 component	 in	 Type	 IV	 pili	 which	 has	 in	 close	

proximity	8	truncated	pseudogenes	available	for	recombination	with	the	pilE	gene	

(Howell-Adams	&	Seifert,	 2000;	 Saunders	 et	 al.,	 2000;	Andrews	&	Gojobori,	 2004;	

and,	 other	 outer	membrane	 proteins,	 such	 as	 the	 porins	 and	 the	 opacity	 proteins	

(Sarkari	et	al.,	1994;	van	der	Ende	et	al.,	2000).	 	Moreover,	antigenic	variation	has	

been	shown	to	arise	from	a	variety	of	insertion	sequences,	transposons,	and	Correia	

elements	(Hammerschmidt	et	al.,	1996a;	Packiam	et	al.,	2006;	Elias	&	Vogel,		2007).		

Nm	has	been	shown	to	also	bind	complement	negative	regulators	to	its	surface	as	an	

immune	evasion	 strategy,	which	allows	Nm	 to	 further	mask	 itself	 and	 increase	 its	

resistance	to	lysis	by	the	complement	(Madico,	et	al.,	2006).		This	propensity	toward	

the	production	of	genetic	variants	through	re-combinatorial	events	is	thought	to	be	
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a	primary	mechanism	underlying	Nm	evasion	of	host	protective	 immunity,	as	well	

as	 the	 evolution	 of	 hyper-invasive	 lineages	 that	 are	 largely	 responsible	 for	

meningococcal	disease.			

	

Host	Defenses	against	Neisseria	meningitidis	

Innate	immune	responses	are	the	first	line	of	defense	against	Nm,	especially	in	the	

immature	 immune	 systems	 in	 human	 infants	 and	 toddlers,	 who	 are	 particularly	

susceptible	 to	 infection	 following	 the	 loss	 of	maternal	 antibodies.	 	 Central	 to	 this	

innate	 protective	 response	 is	 the	 complement	 system,	 consisting	 of	 over	 30	 fluid	

phase	 factors,	 and	 membrane-bound	 regulators	 of	 complement,	 which	 plays	 a	

significant	role	 in	defense	against	meningococcal	 infection.	 	The	 importance	of	 the	

complement	 system	 in	 combating	 Nm	 disease	 is	 highlighted	 by	 the	 increased	

susceptibility	of	patients	with	complement	deficiencies	to	Nm,	 in	particular	 loss	of	

terminal	 complement	 components,	 reduction	 in	 levels	 of	 circulating	 C3,	 and	

alterations	 in	 complement	 regulators	 (Figueroa	 et	 al.,	 1993;	 Garty	 et	 al.,	 1993;	

Schneider	et	al.,	2007;	Hellerud	et	al.,	2010).		

Three	complement	activation	pathways	have	been	identified	to	date	in	humans:	the	

alternative	 pathway,	 which	 is	 activated	 by	 the	 binding	 of	 the	 complement	

component	 C3b	 covalently	 to	 the	 hydroxyl	 or	 amino	 groups	 of	 microbial	 surface	

structures	that	then	recruits	additional	complement	components,	factor	B,	factor	D	
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and	properdin	(P)	to	further	activation;	the	lectin	pathway,	which	is	triggered	when	

mannose-binding	 lectin	 (MBL)	 or	 ficolins	 bind	 to	 carbohydrates	 on	 microbial	

surfaces	and	recruit	two	MBL-associated	serine	protease	(MASP1	and.	MASP2);	and,	

the	 classical	 pathway	 (C1q,	 C1r,	 C1s,	 C4,	 and	 C2	 components),	 which	 is	 activated	

primarily	 by	 antibody–antigen	 interactions	 (Nesargikar	 et	 al.,	 2012).	 	 When	

triggered,	 all	 three	 converge	 to	 further	 produce	 C3b	 via	 two	 different	 C3-

convertases,	 which	 catalyze	 the	 formation	 of	 C5-convertases,	 and	 sets	 off	 the	

subsequent	cascade	of	downstream	activation	events	(Figure	3).	The	end	product	of	

this	cascade	is	the	formation	of	the	membrane	attack	complex	(MAC)	involving	C5b,	

C6,	 C7,	 C8	 and	 C9,	which	 inserts	 pores	 into	 the	 surface	 of	 pathogens	 resulting	 in	

membrane	 disruption	 and	 pathogen	 lysis	 (Morgan	 et	 al.,	 1999;	 Nesargikar	 et	 al.,	

2012).	 	 Additional	 complement	 cleavage	 products,	 such	 as	 C3a,	 C4a,	 and	 C5a,	 are	

known	to	chemotactically	recruit	immune	cells	to	sites	of	infections,	as	well	as	bind	

and	opsonize	microbial	targets	for	clearance	by	phagocytic	cells	(Gasque,	2004).			

In	 the	 case	of	Nm,	 the	 insertion	of	MACs	 into	 surface	membranes	and	subsequent	

cell	lysis	has	been	established	as	the	primary	method	of	protection	against	disease.		

This	was	determined	 in	a	 landmark	study	of	Army	recruits	 in	 the	United	States	 in	

the	1960s	where	the	presence	of	serum	bactericidal	antibodies	was	shown	to	be	the	

most	 important	 protective	 host	 factor	 against	 Nm	 infection	 (Goldschneider	 et	 al.,	

1969).	 	These	bactericidal	antibodies	are	thought	to	be	naturally	acquired	through	

carriage	of	commensal	species,	such	as	Neisseria	lactamica,	that	express	on	their	
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surface	 cross-reacting	 epitopes,	 as	 well	 as	 from	 colonization	 of	 non-invasive	

meningococci.	 	 This	 acquisition	 then	 provides	 increased	 protection	 against	

meningococcal	infection	through	early	childhood	and	adolescence	(Gold	et	al.,	1978;	

Pollard	&	 Frasch,	 2001;	 Sanchez	 S,	 et	 al.,	 2002;	 Troncoso	 et	 al.,	 2002).	 	 Given	 the	

high	 rate	 of	 Nm	 disease	 in	 infants	 however,	 the	 need	 to	 induce	 via	 vaccination	 a	

strong	adaptive	immune	response	in	this	population	is	clear	and	apparent.				

	 	

Figure 3: Complement activation. Key: C1q, antibody-antigen binding component;  MASP, MBL-associated 
serine protease, MASP-1 and MASP-2 
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Correlates	of	Protection	

In	 the	 seminal	 study	 in	 the	 1960s,	 the	 importance	 of	 bactericidal	 antibody	 for	

protection	 against	 Nm	 disease	 was	 shown	 using	 baseline	 serum	 samples	 from	

military	 recruits	 who	 were	 at	 high	 risk	 of	 acquiring	 serogroup	 C	 disease	 during	

training	camp.		A	baseline	serum	bactericidal	titer	of	≥1:4	was	a	strong	predictor	of	

protection	 whereas	 individuals	 with	 baseline	 titers	 <1:4	 were	 at	 highest	 risk	 to	

contract	disease.	 	A	titer	of	1:4	 indicates	that	a	dilution	of	serum	down	to	25%	by	

volume,	for	use	in	the	standard	bactericidal	assay,	will	result	in	a	≥50%	reduction	in	

bacterial	 colonies	 compared	 to	 the	 number	 of	 colonies	 measured	 at	 time	 zero.			

Furthering	this	link	was	data	on	age-specific	incidence	of	meningococcal	disease	in	

the	 United	 States,	 which	 demonstrated	 that	 the	 proportion	 of	 individuals	 lacking	

serum	bactericidal	 activity	 to	 serogroups	A,	 B,	 and	C	was	 inversely	 related	 to	 the	

incidence	 of	 disease	 (Goldschneider	 et	 al.,	 1969;	 Frasch	 CE,	 2009).	 	 These	 data	

established	 the	 bactericidal	 assay,	 with	 normal	 human	 serum	 as	 the	 complement	

source,	 as	 the	 immunologic	 correlate	of	protection	against	meningococcal	disease.		

For	serogroup	B,	a	correlation	between	protection	after	vaccination	and	the	level	of	

bactericidal	antibody	was	reported	following	the	use	of	an	Outer	Membrane	Vesicle	

(OMV)	vaccine	during	a	meningococcal	epidemic	in	Norway	(Holst	et	al.,	2003).			

Finding	 normal	 human	 serum	 lacking	 naturally	 acquired	 antibodies	 to	 Nm	 from	

adults	 is	 not	 trivial,	 as	 sera	 from	many	healthy	 adults	 often	 contain	 antibodies	 to	

group-specific	polysaccharide,	lipopolysaccharide,	or	outer	membrane	proteins	that	
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can	 activate	 complement	 and	 interfere	with	 assay	 results.	 	 In	 order	 to	 accurately	

model	 these	 early	 studies,	 serum	 complement	 from	 an	 untreated	

agammaglobulinemia	patient,	which	 is	 now	 rare	 in	 the	population	due	 to	medical	

management,	or	from	healthy	adults	who	lacks	intrinsic	bactericidal	activity	against	

specific	strains	of	interest,	would	be	required.		Because	of	the	perceived	challenges	

in	 obtaining	 human	 complement,	 infant	 rabbit	 sera	 that	 lack	 intrinsic	 bactericidal	

activity	was	selected	for	use	in	the	standardization	of	the	bactericidal	assay	(World	

Health	 Organization,	 1976;	Wong	 et	 al.,	 1977;	Maslanka	 et	 al.,	 1997).65–67	 	 It	 was	

later	 reported	 that	 the	 use	 of	 rabbit	 complement	 resulted	 in	 much	 higher	

bactericidal	 titers	 for	 serogroup	 B	 and	 C	 meningococcal	 strains	 than	 the	 use	 of	

human	complement	(Zollinger	&	Mandrell,	1983;	Mandrell,	et	al.,	1995).	 	Since	the	

clinical	relevance	of	higher	bactericidal	titers	as	measured	in	the	standardized	assay	

with	rabbit	complement	was	unknown,	a	direct	comparison	of	the	two	complement	

sources	 using	 serogroup	 C	 post	 vaccination	 human	 sera	 after	 1	 dose	 determined	

that	 a	 threshold	 titer	 of	 approximately	 1:128	when	using	 rabbit	 complement	was	

equivalent	 to	 1:4	 when	 using	 human	 complement	 (Santos	 et	 al.,	 2001).70	 	 This	

observation	was	confirmed	and	extended	to	serogroups	A,	W-135,	and	Y	in	a	follow-

up	study	(Gill	et	al.,	2011).			

The	apparent	difference	in	titer	when	using	the	two	complement	sources	has	been	

attributed	at	 least	 in	part	to	the	species	specificity	of	binding	of	human	factor	H,	a	

complement	 regulatory	molecule	 that	 down-regulates	 complement	 activation.	 Nm	
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binds	human	 factor	H	 to	 its	 surface	 as	 an	 immune	 evasion	 strategy,	which	 allows	

Nm	to	mask	itself	and	increase	its	resistance	to	bactericidal	activity.		Rabbit	factor	H	

does	not	bind	Nm	allowing	unrestricted	complement	deposition	onto	its	surface	and	

bacteriolysis	 at	 significantly	 lower	 anti-Nm	antibody	 concentrations	 (Schneider	 et	

al.,	2007;	Granoff	et	al.,	2009).		For	serogroup	B	strains,	species	specificity	regarding	

the	source	of	exogenous	complement	for	clinical	assay	use	was	not	an	issue	because	

the	lack	of	compatibility	of	baby	rabbit	complement	in	the	assay	system	eliminated	

it	as	a	viable	option.		Despite	the	perceived	limitations,	sufficient	volumes	of	human	

complement	 were	 obtained	 for	 a	 four-site	 interlaboratory	 standardization	 of	 the	

bactericidal	 assay	 for	 Nm	 serogroup	 B	 (Borrow	 et	 al.,	 2005),	 as	 well	 as	 ongoing	

clinical	trials.	

As	a	correlate	of	protection,	the	utility	of	the	bactericidal	assay	in	assessing	vaccine	

responses	to	new	and	novel	antigen-adjuvant	combinations	is	evident.	 	There	is	an	

ongoing	 need	 however,	 to	 better	 understand	 the	 mechanisms	 underlying	

meningococcal	disease,	and	develop	additional	laboratory	correlates	for	testing	the	

effectiveness	 of	 meningococcal	 vaccines	 in	 both	 pre-clinical	 studies	 and	 future	

human	clinical	trials.		Among	the	model	systems	that	have	come	forward,	the	ex	vivo	

human	 blood	 bacteremia	 model,	 the	 infant	 rat	 model,	 the	 humanized	 mouse	

infection	assay,	and	 the	meningococcal	antigen	 typing	system	(MATS)	are	some	of	

the	 in	 vitro	 systems	 showing	 early	 promise	 for	 the	 evaluation	 of	 protective	

immunity	against	Nm	(Granoff	et	al.,	1998;	Toropainen	et	al.,	1999;	Gorringe	et	al.,	
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2005;	Plested	et	al.,	2009,	Donnelly	et	al.,	2010).	 	The	need	for	streamlined	assays	

for	 use	 during	 clinical	 trials	 is	 especially	 apparent	 given	 that	 volumes	 of	 test	

samples	 are	 limiting,	 particularly	 in	 infants,	 and	breadth	of	 bacterial	 strains	 to	be	

tested	 are	 large.	 	 Many	 normal	 human	 donors	 have	 intrinsic	 bactericidal	 activity	

that	 is	 strain	 specific,	 hence	 a	 specific	 complement	 donor	 or	 donor	 set	 must	 be	

found	 for	 each	 isolate.	 	 Assay	miniaturization	 is	 an	 important	 issue	 for	 both	 trial	

specimen	 and	 complement	 reagent	 conservation	with	 the	 aim	 of	maintaining	 the	

established	protective	 correlation	 (Mountzouros	&	Howell,	 2000;	Rodríguez	 et	 al.,	

2003;	Mak	et	al.,	2011).		

	

Developments	in	Neisseria	meningitidis	Capsular	Antigen	Vaccines	

Despite	 the	 prompt	 use	 of	 antibiotic	 to	 combat	 meningococcal	 infection	 upon	

clinical	 presentation,	 vaccination	 is	 clearly	 the	 best	 strategy	 to	 prevent	 the	 high	

fatality	rate	and	significant	sequelae	associated	with	meningococcal	disease.		This	is	

primarily	due	to	the	rapid	onset	of	disease	with	death	occurring	often	within	24	to	

48	hours.		Early	vaccines	developed	against	Nm	were	based	upon	purified	capsular	

polysaccharide	antigens	targeting	serogroups	A	and	C	(Gotschlich	et	al.,	1969).		This	

was	 subsequently	 followed	 by	 a	 four-component	 polysaccharide	 vaccine,	 which	

covered	serogroups	A,	C,	W-135,	and	Y	vaccine,	licensed	in	the	United	States	in	the	

1980s.		Although	these	vaccines	were	safe	and	immunogenic	and	greater	than	85%	

efficacious	 for	 the	 A	 and	 C	 components,	 polysaccharide	 vaccines	 in	 general	 were	
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largely	 ineffective	 in	 the	 population	 most	 susceptible	 to	 Nm	 disease,	 namely	

children	 under	 2	 years	 of	 age	 (Cadoz,	 1998).	 	 Because	 polysaccharides	 are	 T-cell	

independent	 antigens	 that	 induce	 only	 short-lived	 humoral	 immunity	 with	 no	

memory	response,	a	new	generation	of	protein-conjugated	polysaccharide	vaccines	

emerged	 that	 largely	 remedied	 these	 limitations	 (Bilukha	 &	 Rosenstein,	 2005;	

Pollard	et	al.,	2009).		Protein-conjugated	polysaccharides	elicit	both	B-cell	and	T-cell	

responses	 along	 with	 immunologic	 memory	 in	 all	 age	 groups	 including	 children	

under	2	years	of	age	(Harrison,	2006).	 	Polysaccharide–protein	conjugate	vaccines	

were	 first	 introduced	 into	 the	 United	 Kingdom	 in	 1999	 to	 protect	 against	 Nm	

serogroup	C	strains	in	the	ST11	clonal	complex	(ET37	complex	C2a)	that	had	spread	

there	following	appearances	in	Canada,	Spain,	and	the	Czech	Republic	(Miller	et	al.,	

2001).		These	vaccines	were	shown	to	elicit	bactericidal	antibodies	in	all	age	groups	

including	 infants	 under	 2	 years	 old,	 and	 resulted	 in	 a	 significant	 decline	 in	 the	

incidence	 of	 serogroup	 C	 disease	 in	 the	 UK	 (Borrow	 et	 al.,	 2013).	 	 Serogroup	 C	

polysaccharide–protein	 conjugate	 vaccines	 were	 subsequently	 included	 into	 the	

schedule	 for	 routine	 infant	 immunizations.	 	 The	 success	 of	 this	 campaign	 later	

resulted	 in	 the	 development	 of	 quadrivalent	 polysaccharide–protein	 conjugate	

vaccines	 that	 protected	 against	 serogroups	 A,	 C,	 W-135,	 and	 Y	 by	 also	 inducing	

serum	 bactericidal	 antibodies,	 interrupting	 carriage	 transmission,	 and	 providing	

herd	immunity	against	strains	in	the	other	3	serogroups	(Baltimore,	2006).		Because	

of	the	high	cost	of	the	quadrivalent	conjugate	vaccine	in	the	developed	countries,	to	

combat	serogroup	A	disease	in	the	meningitis	belt	in	sub-Saharan	Africa	a	low	cost	
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conjugated	serogroup	A	vaccine	was	developed	 in	 India.	 	The	serogroup	A	vaccine	

was	 launched	 in	 Burkina	 Faso	 and	 Chad	 starting	 in	 2010,	 and	 resulted	 in	 a	

significant	reduction	of	the	incidence	of	disease	along	with	a	concurrent	decline	in	

serogroup	 A	 carriage	 (Daugla	 et	al.,	 2013;	 Kupferschmidt,	 2014;	 Gamougam	 et	al.,	

2015;	Meyer	et	al.,	2015).		

	

The	Challenges	of	Vaccines	Development	against	Serogroup	B		

Capsular	 polysaccharide	 conjugation	 to	 protein	 carriers	 has	 greatly	 improved	 the	

overall	 effectiveness	 of	 meningococcal	 vaccines	 against	 disease	 caused	 by	

serogroups	 A,	 C,	 W-135,	 and	 Y.	 	 The	 development	 of	 capsule	 based	 vaccines	 to	

protect	against	Nm	serogroup	B	disease	did	not	move	forward	however,	due	to	the	

structural	identity	between	the	serogroup	B	capsule,	an	α2-8–linked	polysialic	acid,	

and	 the	 human	 neural-cell	 adhesion	molecules	 NCAM,	 particularly	 the	 embryonic	

form	(Finne	et	al.,	1983;	Finne	et	al.,	1987;	Nedelec	et	al.,	1990).			

A	 different	 strategy	 was	 undertaken	 to	 confront	 this	 problem,	 which	 led	 to	 the	

development	of	outer	membrane	vesicles		(OMVs)	as	an	antigen	vehicle	for	vaccines	

against	 serogroup	 B	 disease.	 	 OMVs	 were	 used	 to	 control	 outbreaks	 of	 group	 B	

disease	for	many	years	however,	the	breadth	of	protection	they	offered	was	limited	

(Bjune	et	al.,	1991;	Sierra	et	al.,	1991;	de	Moraes	et	al.,	1992;	Boslego	et	al.,	1995;	

O'Hallahan	et	al.,	2009).			
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OMVs	 contain	 a	mixture	 of	 immunogenic	 outer-membrane	 antigens	 including	 the	

porins,	 PorA	 and	 porB,	 and	 the	 iron-regulated	membrane	 protein,	 FetA,	 in	 a	 lipid	

based	structure	derived	 from	deoxycholate	detergent	preparations	of	Nm	cultures	

(van	der	Ley	et	al.,	1991;	Feavers	et	al.,	1996;	Thompson	et	al.,	2003).		The	primary	

protein	component	that	drives	the	initial	immune	response	to	OMVs,	PorA,	contains	

two	 immunodominant	 hyper-variable	 loops	 VR1	 and	 VR2,	 which	 effectively	 limit	

protective	 immunity	 mainly	 to	 the	 epidemic/outbreak,	 strain	 PorA-type.	 	 By	 one	

estimate,	a	vaccine	would	have	to	contain	20	different	PorA	types	in	order	to	cover	

80%	of	strains	that	cause	endemic	disease	in	the	United	States	alone	(Sacchi	et	al.,	

2000).	 	 Although	 OMV	 vaccines	 have	 been	 effective	 in	 outbreak	 type	 situations	

caused	by	a	single	PorA-type	strain,	the	number	of	PorA	variants	globally	makes	this	

approach	 impractical	 in	 the	 long-term	 against	 a	 pathogen	 with	 an	 inherent	

propensity	towards	antigenic	diversity	(Harrison	et	al.,	2006).106		

Reverse	Vaccinology	and	Serogroup	B		

Traditional	 biochemical	 methods	 of	 purifying	 and	 identifying	 membrane	 bound	

antigens	 for	 the	 purposes	 of	 developing	 a	 broadly	 protective	 vaccine	 against	 Nm	

serogroup	B	had	been	largely	unsuccessful.		An	alternative	strategy	coined	“reverse	

vaccinology”	 was	 launched	 in	 2000	 which	 involved	 the	 sequencing	 of	 the	 entire	

genome	of	the	disease	causing	serogroup	B	strain,	MC-58,	in	order	to	identify	highly	

conserved	 outer	 membranes	 bound	 antigens	 for	 use	 in	 the	 next	 generation	

serogroup	B	vaccine.			From	the	sequencing	of	a	2,272,351-base	pair	genome,	2158	
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predicted	coding	regions	were	identified	(Tettelin	et	al.,	2000).		Over	300	candidate	

antigen	 sequences	 were	 expressed	 in	 E.	 coli	 and	 used	 to	 immunize	 mice,	 which	

resulted	 in	 the	 identification	 of	 proteins	 that	 were	 surface	 exposed,	 sequence	

conserved	 across	 a	 diverse	 collection	 of	 disease	 causing	 strains,	 and	 induced	 a	

bactericidal	 antibody	 response	 (Pizza	 et	 al.,	 2000).	 	 From	 this	work	 five	 antigens	

were	 formulated:	 two	 protein–protein	 fusions,	 fHbp(GNA2091)-GNA1870	 and	

NHBA(GNA2132)-GNA1030;	and;	NadA	for	use	in	human	clinical	trials.			

The	three	target	antigens	fHbp,	NHBA,	and	NadA,	were	selected	due	to	their	ability	

induced	serum	bactericidal	antibodies	against	a	diverse	strain	set.		The	two	carrier	

proteins,	 GNA	 2091	 and	GNA	 1030,	 improved	 the	 immunogenicity	 of	 the	 coupled	

target	 antigens	when	 fused	with	 them.	When	 tested	 in	mice,	 this	 vaccine	 induced	

bactericidal	antibodies	against	78%	of	a	globally	diverse	panel	of	85	meningococcal	

strains.	 	 Interestingly,	 the	 addition	 of	 CpG	 oligonucleotides	 to	 an	 aluminum	

hydroxide	 based	 formulation,	 known	 to	 stimulate	 immune	 responses	 via	 toll-like	

receptor	(TLR)	activation,	increased	strain	coverage	to	90%	(Giuliani	et	al.,	2006).			

The	antigen	 fHbp,	 is	 an	 important	virulence	 factor	 that	allows	Nm	to	bind	soluble	

human	factor	H,	down-regulate	the	complement	amplification	loop,	and	inhibit	the	

insertion	 of	 the	 membrane	 attack	 complex	 on	 its	 surface.	 	 This	 makes	 fHbp	 a	

significant	vaccine	target	given	that	antibodies	raised	against	it	can	potentially	block	

the	binding	of	human	 factor	H	rendering	strains	more	susceptible	 to	 the	action	of	

complement.			The	2nd	vaccine	antigen	is	NadA	which	is	an	important	target	given	its	
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role	 in	 Nm	 adhesion	 and	 invasion.	 	 Though	 highly	 sequence	 conserved,	 it	 is	 not	

universally	 expressed	 on	 all	 strains.	 	 Expression	 of	 NadA	 is	 known	 to	 be	 phase	

variable,	 and	 completely	 absent	 from	 the	 disease	 causing	 sequence	 type	 41/44	

serogroup	 B	 lineage.	 	 The	 3rd	 vaccine	 antigen,	 NHBA,	 is	 expressed	 by	 most	

meningococcal	 strains,	 and	 shown	 to	 bind	 heparin,	 which	 is	 thought	 to	 aid	 the	

adhesion/invasion	 process.	 	 The	 vaccine	 includes	 the	 most	 common	 variant	 of	

NHBA,	 which	 induce	 antibodies	 that	 results	 in	 cross-reactivity	 with	 many	 of	 the	

other	variants	(Wang	et	al.,	2011).	

This	 set	 of	 antigens	were	 taken	 into	 human	 trials,	 alone	 and	 also	 in	 combination	

with	 a	 PorA	 serosubtype	 P1.4	 OMV,	 successfully	 used	 to	 combat	 an	 epidemic	

outbreak	in	New	Zealand	(Toneatto	et	al.,	2011;	Gossger	et	al.,	2012).		Concurrent	to	

this	work,	a	second	research	and	development	effort	using	more	traditional	antigen	

identification	methods,	 independently	 identified	 fHbp	as	 a	potent	 antigen.	 	 In	 this	

case,	 a	 bivalent	 vaccine	 was	 developed	 containing	 elements	 of	 two	 Nm	 fHbp	

subfamilies	 shown	 to	 be	 effective	 in	 animal	 studies	 against	 87%	 of	 strains	 tested	

(Jiang	et	al.,	2010).		Currently,	both	of	these	vaccines	are	independently	licensed	for	

use	 around	 the	world	 including	 the	 United	 States,	 Europe,	 Canada,	 and	 Australia,	

selectively	for	infant	through	adults	in	varying	countries.		
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Tweaking	What’s	Innate	-	Toll-like	Receptor	Agonists	as	Adjuvants			

Vertebrates	have	evolved	an	immune	defense	with	two	interacting	branches,	innate	

and	acquired	immunity,	that	function	cooperatively	to	eliminate	invasive	pathogens.		

Innate	 immunity	 is	 an	 evolutionarily	 conserved	 system	 consisting	 of	 complement,	

chemokines,	 cytokines,	 and	 a	 variety	 of	 immune	 cells	 including	 neutrophils,	

phagocytes,	 natural	 killer	 cells,	 and	 dendritic	 cells	 that	 all	 act	 as	 a	 first	 line	 of	

defense	 against	 microbial	 organisms.	 	 Acquired	 immunity	 is	 characterized	 by	 an	

exquisite	diversity	of	epitope	recognition	and	specificity.	 	This	 is	made	possible	by	

somatic	gene	rearrangement,	and	subsequent	clonal	expansion	of	lymphocytes	that	

express	receptors	to	the	vast	array	of	epitopes	in	the	environment.		Innate	immunity	

was	 long	 regarded	 as	 an	 ancient	 and	 relatively	 nonspecific	 system	 of	 immunity	

whose	 central	 function	 was	 the	 direct	 destruction	 of	 infectious	 microorganisms.		

The	underlying	complexity	of	the	innate	immune	system	was	uncovered	recently,	in	

studies	 that	 revealed	 an	 intricate	 system	 of	 specific	 receptors	 coupled	 to	 signal	

transduction	 mechanisms.	 	 These	 innate	 pathways	 are	 responsible	 for	 initiating	

early	 danger	 signals	 that	 function	 to	 launch	 the	 cascade	 of	 initial	 host	 defenses	

against	 foreign	 substances,	 in	 particular	 invasive	pathogens.	 	 A	 key	 component	 to	

this	 system	 are	 pattern-recognition	 receptors	 (PRRs),	 such	 as	 Toll-like	 receptors	

(TLRs),	that	detect	pathogen-associated	molecular	patterns	(PAMPs),	and	are	found	

on	a	variety	of	immune	cells	including	macrophages,	dendritic	cells,	B	and	T	cells,	as	
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well	 as	 non-immune	 cells	 such	 as	 fibroblasts	 and	 epithelial	 cells	 (Janeway	 Jr	 &	

Medzhitov,	2002).			

To	 date,	 10	 human	 and	 13	 mouse	 TLRs	 have	 been	 identified.	 	 Each	 TLR	 detects	

distinct	 PAMPs	 derived	 from	 viruses,	 bacteria,	 mycobacteria,	 fungi,	 and	 parasites	

(Table	 1),	which	 include:	 peptidoglycans	 (TLR1	 and	 TLR2),	 viral	 double-stranded	

RNA	 (TLR3),	 lipopolysaccharides	 (TLR4),	 flagellin	 (TLR5),	 bacterial	 lipoproteins	

(TLR2	 and	 TLR6),	 viral	 single-stranded	 RNA	 (TLR7	 and	 TLR8),	 and	 bacterial	 and	

viral	CpG	(cytosine-phosphate-guanine	dinucleotide)	oligodeoxynucleotides	(TLR9)	

(Akira	 et	 al.,	 2006).	 	 Meningocccal	 porB	 was	 also	 identified	 as	 having	 MyD88-

dependent	TLR2	stimulatory	effects	(Massari	et	al.,	2002).		Many	TLRs	are	localized	

to	the	cell	surface	and	associated	with	the	extracellular	membrane,	such	as	TLRs	1,	2,	

4,	5,	and	6.		However	several	that	are	localized	internally,	TLRs	3,	7,	8,	and	9,	require	

internalization	 of	 associated	 ligand	 before	 signal	 transduction	 events	 will	 occur	

(Akira	et	al.,	2006).							
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TLRs	 are	 classified	 as	 type	1	 integral	membrane	glycoproteins,	which	 consist	 of	 a	

leucine-repeat	rich	extracellular	N-terminal	domain,	and	an	intracellular	C-terminal	

Toll/interleukin	1	receptor	(TIR)	domain.		Upon	dimerization,	TLR	monomers	take	

on	a	M-shaped	structure	(Choe	et	al.,	2005;	Jin	et	al.,	2007;	Kang	et	al.,	2009;	Park	et	

al.,	 2009),	 which	 then	 allows	 the	 intracellular	 TIR	 domains	 to	 recruit	 adaptor	

molecules	 that	 activate	 signaling	 pathways	 that	 up-regulate	 transcription	 factors,	

such	 as	 nuclear	 factor-kB	 and	 interferon	 regulatory	 factors.	 	 Known	 adaptor	

Table 1: Recognition of Microorganisms by TLRs	

Bacteria Species Associated TLR  
LPS Gram-negative bacteria TLR4 
Peptidoglycans Gram-positive bacteria TLR1/TLR2 
Porins Neisseria TLR2 
Flagellin Flagellated bacteria TLR5 
CpG-DNA Bacteria and mycobacteria TLR9 
 
Viruses 
DNA Viruses TLR9 
dsRNA Viruses TLR3 
ssRNA RNA viruses TLR7 and TLR8 
Envelope proteins RSV, MMTV TLR4 
Hemagglutinin protein Measles virus TLR2 
   
Fungus 
Zymosan Saccharomyces cerevisiae TLR6/TLR2 
Mannan Candida albicans TLR4 
 
Parasites 
Glycoinositolphospholipids Trypanosoma TLR4 
Hemozoin Plasmodium TLR9 
Profilin-like molecule Toxoplasma gondii TLR11 
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molecules	 include	 myeloid	 differentiation	 primary	 response	 protein	 88	 (MyD88),	

TIR	 domain-containing	 adaptor	 protein	 (TIRAP),	 TIRAP	 inducing	 interferon	 β	

(TRIF),	 and	 TRIF-related	 adaptor	 molecule	 (TRAM)	 (Akira	 &	 Takeda,	 2004).		

Current	 evidence	 provides	 support	 for	 the	 requirement	 of	 activation	 of	 innate	

immunity	 for	 the	 induction	of	acquired	 immunity.	 	Transfection	of	a	constitutively	

active	mutant	 of	 a	 human	 Toll	 into	 human	 cell	 lines	was	 shown	 to	 induce	NF-kB	

expression	 and	 the	 genes	 controlled	 by	 NF-kB.	 	 TLR	 activation	 stimulates	 the	

production	 of	 the	 inflammatory	 cytokines	 IL-1,	 IL-6	 and	 IL-8,	 along	 with	 the	 co-

stimulatory	molecule	B7.1,	required	for	the	activation	of	naive	T	cells	(Medzhitov	et	

al.,	1997;	Akira	et	al.,	2001;	Medzhitov,	2001).			

Recent	advances	in	the	identification	of	pattern-recognition	receptors	have	opened	

up	 a	 new	 line	 of	 study	 on	 the	 therapeutic	 possibilities	 of	 PRR	 activation	 in	 the	

treatment	of	infectious,	allergic,	and	immune	diseases,	as	well	as	cancer.		In	the	field	

of	 vaccine	 research,	 a	 growing	 number	 of	 compounds	 with	 immunopotentiation	

properties	 have	 been	 brought	 into	 use	 in	 an	 effort	 to	 exploit	 the	 variety	 of	 TLRs	

discovered	in	recent	years.		This	has	allowed	for	the	development	of	safe	and	potent	

vaccine	adjuvants	and	delivery	systems	for	both	prophylactic	and	therapeutic	uses.		

This	advance	is	particularly	important	as	the	use	of	recombinant	protein	subunits	in	

vaccines,	 which	 may	 lack	 inherent	 immunostimulatory	 properties,	 continues	 to	

move	 forward.	 	 Investigations	 continue	 into	 novel	 TLR	 stimulating	 compounds	

alone	 or	 in	 combination	 with	 aluminum	 salts	 (alum),	 the	 vaccine	 adjuvant	 first	
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approved	 for	 human	 use	 (Lindblad,	 2004).	 	 Alum	 itself	 principally	 stimulates	 T	

helper	 type	2	 (Th2)	biased	 immunity	and	 is	 thought	 to	dampen	 the	production	of	

protective	 immunity	 when	 using	 recombinant	 antigens	 against	 pathogenic	

microorganisms.	 	 The	 success	 of	 these	 compounds	 is	 based	 largely	 upon	 their	

abilities	 to	 skew	 immune	 responses	more	 toward	 a	 T	 helper	 type	 1	 (Th1)	 biased	

response,	and	promote	the	interaction	of	the	innate	and	adaptive	immune	pathways	

without	raising	serious	adverse	events	(Lahiri	et	al.,	2008).			

Some	of	the	compounds	developed	to	date	include:	Monophosphoryl	lipid	A	(MPL),	

a	detoxified	 lipid	A	derivative	of	 lipopolysaccharide	 from	Salmonella	enterica,	 and	

the	 AS04	 adjuvant	 system	 consisting	 of	 MPL	 adsorbed	 on	 either	 aluminium	

hydroxide	or	aluminium	phosphate,	which	minimizes	the	proinflammatory	MyD88-

dependent	 signalling	 pathway	while	 stimulating	 Th1	 and	 cell-mediated	 responses	

(Garcon,	 et	 al.,	 2007;	 Mata-Haro,	 et	 al.,	 2007;	 Casella	 &	 Mitchell,	 2008);	 RC-529	

(Ribi.529;	Corixa,	Seattle,	WA,	USA),	a	fully	synthetic	MPL	mimetic	and	TLR4	agonist	

that	 has	 been	 used	 as	 a	 potent	 adjuvant	 in	 both	 preclinical	 and	 clinical	 studies	

(Mason	 et	 al.,	 2004;	 Dupont	 et	 al.,	 2006;	 Zhu	 et	 al.,	 2006);	 E6020,	 a	 synthetic	

molecule	with	 a	 hexa-acylated	 acyclic	 backbone	with	 the	 ability	 to	 promote	 Th1-

biased	 antibody	 production	 (Hawkins	 et	 al.,	 2002;	 Przetak,	 et	 al.,	 2003;		

unmethylated	 CpG	 oligodeoxynucleotides,	 which	 elicit	 potent	 immunostimulatory	

responses	 through	 TLR9,	 primarily	 expressed	 on	 B	 cells	 and	 dendritic	 cells,	 and	

induce	antigen-specific	humoral	and	Th1-mediated	cellular	responses	(Krieg	et	al.,	
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1995;	Vabulas	et	al.,	2000;	Hornung,	et	al.,	2002);	polyriboinosinic	polyribocytidylic	

acid	 (poly[I:C])	 which	 is	 a	 synthetic	 analogue	 of	 viral	 double-stranded	 RNA	

molecules	 and	 targets	 TLR3	 (Asahi-Ozaki	 et	 al.,	 2006);	 	 the	 imidazoquinolines,	

imiquimod	 (R-837)	 and	 resiquimod	 (R-848),	which	 are	 synthetic	 small	molecules	

recognized	by	TLR7,	and	TLR7	and	TLR8,	respectively,	both	shown	to	be	potent	Th1	

adjuvants	 in	 mice	 and	 non-human	 primates	 (Vasilakos	 et	 al.,	 2000;	 Zuber	 et	 al.,	

2004;	Wille-Reece	et	al.,	2005);	and,	the	protein	Flagellin,	a	potent	activator	of	the	

NF-kB	 signaling	pathway	 through	TLR5	which	 induces	 robust	 antibody	 responses	

even	 without	 supplemental	 adjuvants	 against	 a	 variety	 pathogens	 including	

influenza,	 Yersinia	 pestis,	 Plasmodium	 vivax,	 and	 L	 monocytogenes	 antigens	

(Tallant	 et	 al.,	 2004;	Honko	 et	 al.,	 2006;	Huleatt	 et	 al.,	 2007;	Bargieri	 et	 al.,	 2008;	

Huleatt	et	al.,	2008;	Mizel	et	al.,	2009;	Skountzou	et	al.,	2010).			

Alternative	 approaches	 to	 this	 problem	 involved	 the	 use	 of	 an	 OMV	 vaccine	

prepared	from	recombinant	strains	that	over-express	recombinant	factor	H	binding	

protein	 (fHbp)	as	 the	 target	antigen,	and	attenuated	endotoxin,	designed	 to	 target	

TLR4,	 was	 shown	 to	 stimulate	 broad	 serum	 bactericidal	 antibody	 responses	

(Koeberling	et	al.,	2011);	and	the	direct	coupling	of	a	TLR7	agonist	to	a	serogroup	C	

polysaccharide-conjugate	vaccine	(Donadei	et	al.,	2016).		Efforts	to	engage	multiple	

TLR	 receptors	 and/or	 other	 pattern-recognition	 receptors	 in	 order	 to	 gain	

synergistic	 immune	 responses	 with	 little	 or	 no	 reactogenicity	 are	 of	 continuing	

interest	 (Lahiri	 et	 al.,	 2008;	 Chen	 et	 al.,	 2010;	 Hajishengallis	 &	 Lambris,	 2016).		
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Similar	approaches,	 such	as	 combining	 immune	evasion	surface	proteins	as	 target	

antigens	with	 compounds	 that	possess	 strong	 immune	agonist	properties,	may	be	

instrumental	 in	 the	 eradication	 of	 other	 difficult	 to	 treat	 infections	 including	

gonorrhea,	tuberculosis,	HCV,	and	potentially	HIV.	 	
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