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Abstract 

ARTMAP neural network cla.c=;sifiers arc considered for the identification of radar emitter types 
from their waveform parameters. These classifiers can represent radar emitter type classes \vith one 
or more prototypes, perform on-line incremental learning to account for novelty encountered in the 
field, and process radar pulse streams at high speed, making them attractive for real-time applica­
tions such a ... s electronic support measures (ESM). The performance of four ARTMAP variants- ART­
EMAP (Stage 1), ARTMAP~IC 1 fuzzy ARTMAP and Gaussian ARTMAP - is assessed with radar 
data gathered in the field. The k nearest neighbor (kNN) and radial basis function (RDF) cla.<;Si­
fi.ers are used for reference. Simulation results indicate that fuzzy ARTl\·'lAP and Gaussian ARTMAP 
achieve an average classification rate consistently higher than that of the other ARTMAP cla.<>sifiers 1 

and comparable to that of kNN and RBF. ART-EMAP1 ARTMAP-IC and fuzzy ARTMAP require 
fewer training epochs than Gaussian ARTMAP and RBF, and substantially fewer prototype vectors 
(thus, smaller physical memory requirements and faster fielded performance) than Gaussian ARTMAP, 
RI3F and kNN. Overall, fuzzy ART MAP performs at lca.<;t as well a.<;; the other classifiers in both ac­
curacy and computational complexity, and better than each of them in at least one of these aspects of 
performance. Incorporation into fuzzy ARTMAP of the MT- feature of ARTMAP-IC is found to be 
essential for convergence during on-line training with this data set. 

1 Introduction 

Radar electronic support measures (ESM) involve the search for, interception, location, analysis and iden­
tification of radiated electromagnetic energy for military purposes. This provides valuable information for 
real-time threat. detection, threat avoidance, and for timely deployment of counter-measures [1] [2] [3]. 

A critical function of radar ESlvl is the real-time identification of the radar type associated with each 
pulse train, or continuous wave signal 1 that is intercepted. This tac;;k is exceedingly challenging owing to 
increases in environment density (e.g., pulse Doppler radars can transmit hundreds of thousands of pulses 
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per second); dynamically changing environments; multiplication and dispersion of the modes for military 
radars; agility in parameters like pulse repetition interval, radio frequency and scan; unknown and reserve 
modes for which no ESM library entry exists; overlap between the parameters of different radar types in the 
ESM library; and noise and propagation effects that lead to erroneous or incomplete signal characterization. 
New classification algorithms to perform radar type identification are thus sought. 

In this paper, artificial neural networks are examined using computer simulations. Since artificial neural 
network classifiers are trained on samples of the data that they are intended to identify, radar data collected 
in the field were used in the simulations. From an ESM standpoint, training a system directly on radar 
data is a radical departure from current practice. At present, data are collected, analyzed, and distilled 
into ESM libraries off-line by skilled analysts. New libraries arc disseminated to the field as needed. One 
inconvenience of the current approach is that it is time-consuming and does not allow rapid learning of 
new radar modes in the field. The neural network approach may thus constitute an interesting addition to 
radar ESM. 

An attractive feature of ARTMAP [4] neural network classifier~ \s that new classes can be learned 
incrementally without retraining on the whole data set. ARTl\1AP networks can also learn one or more 
prototypes to represent a radar type class, and lend themselves well to high speed processing of radar 
pulses. Four networks based on ARTMAP are compared in this paper. They are ART-EMAP (Stage 1) [5], 
ARTMAP-IC [6], fuzzy ARTMAP [7] and Gaussian ARTMAP [8] [9]. The k nearest neighbor (kNN) [10] 
and radial basis function (RBF) [11] cla ... ssifiers are used as non-parametric and parametric references, 
respectively. Parameters used for classifkation are radio frequency, pulse repetition interval: and pulse 
width. The performance of the classifiers is assessed in terms of classification rate and computational 
complexity. 

The ARTlvlAP neural network classifier and the four variants in this study are briefly reviewed in the 
next section. The radar data set used to train and test the cla ... "lsiHers is presented in Section 3. Simulation 
results are then presented and analyzed in Section 4. 

2 ARTMAP neural network classifiers 

ARTMAP refers to a family of neural network architectures for self-organizing recognition and predic­
tion (4] (7]. They perform incremental supervised learning of multi-dimensional mappings of an arbitrary 
sequence from the input space to a binary output space. 

A simplified ARTlvlAP architecture is built by combining an ART [12] neural network with a map 
field. The ART network consists of two fully connected layers of nodes: an A1' node input layer, F1, 
and anN node competitive layer, F'2. A set of weights W = {WJi: j = 1,2 1 ••• ,N; i = 1,2,.,.,/1.1'} is 
associated with the Fl - F2 layer connections. Each F2 node j represents a category in the input space, 
and stores a prototype vector w J ;::;;:: ( w11 , w12 , ... , WJM' ). The F2 layer is connected, through associative 
links, to an L node map field pab, where L is the number of classes in the output space. A set of binary 
weights wab = {wj%: j = 1,2, ... ,N; k = 1,2, ... ,£} is associated with the F2- pab connections. The 

vector wjb = ( wjf, wj~, ... , wj£) relates F2 node j to one of the L output cla..sses. Fl, F2 and Fab activity 
patterns are denoted by x, y, and xab, respectively, 

During training, an ARTMAP classifier learns the association between training set patterns a = 
(a 1 , '"'' ..• ,aM) (fed to the F1 layer) and respective supervision patterns b = (b, b2, ... ,h) (fed to the 
map field pab). The bina.ry supervision patterns are coded to have unit value bK = 1 correspond to the 
target class label J( for a, and zero elsewhere. The following algorithm describes the operation of an 
ARTl\:IAP classifier in learning modQ. 

1. Initialize weights and parameters: Initially, all the neurons of F2 are uncommitted, all weight 
values'wji arc initialized to 1, and all weight values wJZ arc set to 0. Values of parameters such as 
the vigilance baseline p E [0, 1] arc set. 

2. Input pattern coding: \Vhcn a training pair (a, b) is presented to the network, a undergoes 
preprocessing, and yields pattern A = (A 1 , A 2 , •.. ,AM'). The vigilance parameter p is reset to its 
baseline value p. The components of field activity patterns x, y and xab are reset to zero. 
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3. Prototype selection: Pattern A activates layer F1 (x = A) and is propagated through weighted 
connections W to layer F2. Each F2 node j activates according to the choice fnnction. The F2 layer 
produces a binary, winner-take-all pattern of activity y = (Yr, y,, ... , YN ), where only node j = J with 
the greatest activation value remains active (YJ = 1). Node J propagates its prototype vector w J 
onto F1 and the vigilance test is performed. This test compares the degree of match between w J and 
A to a vigilance parameter p E [0, 1]. If this test is satisfied, node J remains active and resonance 
is said to occur. Otherwise, the network inhibits the active F2 node and searches for another node 
J that passes the vigilance test. If such a node does not exist, an uncommitted F2 node becomes 
active and undergoes learning (go to Step 5). 

4. Class prediction: Pattern b is fed to the map field, while the F2 activity pattern y is propagated via 
associative connections wab to the map field Fab. The latter input activates pab nodes according to 
a pr·ediction fnnction and the most active F"' node J( yields the class prediction (I(= k(J)). If node 
I< constitutes an incorrect class prediction, a match tracking signal raises vigilance just enough to 
induce another search among F2 nodes (Step 3). This search continues until either an uncommitted 
F2 node becomes active (learning ensues at Step 5), or a node J that has previously learned the 
correct class prediction J{ becomes active. 

5. Learning: Prototype vector w J is updated, and, if J corresponds to a newly-committed node, a 
permanent associative link to pab is created. A new association between F2 node J and pab node 
K (k(J) = K) is learned by setting w~% = 1 for k =[(,where J( is the target class label for a. 

Once the. weights (W and W"") have converged for the training set patterns, ARTMAP can predict a class 
label for an input pattern by performing Steps 2, 3 and 4 without any testing. A pattern a that activates 
node J is predicted to belong to the class J( = k(J). 

Although the first ARTMAP cl;Lssifier [4] is limited to processing binary-valued input. patters, the ART­
EMAP, ARTMAP-IC, fuzzy ART1dAP (FAM) and Gaussian ARTMAP (GAM) classifiers can process both 
analog and binary-valued input patterns. The rest of this section highlights the main differences between 
these four ARTMAP variants. (Refer to Table 1 for algorithmic differences.) 

2.1 ART-EMAP, ARTMAP-IC and fuzzy ARTMAP 

ART-EMAP, ARTMAP-IC and FAM variants employ fuzzy ART [13] as the ART network. With fuzzy 
ART, a transformation called eomplement coding doubles the number of components in the input pattern 
(111 1 = 2Af), which becomes A= (a,ac) = (a 1,a2, ... ,aM;af,a~, ... ,aAI), where aj = (1- ai)· VVith 
complement coding and fast learning (13 = lL fuzzy ART represents category j as hyperreetangle Rj that 
just encloses all the training set patterns a to which it has been a<Jsigned. That is, a 2111-dimensional 
prototype vector w j :;:;:; (wjl, Wj2, ... , Wj2M) records the largest and smallest component values of training 
set patterns a placed in the jl'h category. 

AR.T-EMAP (Stage 1) and ARTMAP-IC are extensions of FAM that produce a binary winner-take-all 
pattern y when training, but usc distributed activation of coded F2 nodes when testing. ARTMAP-IC 
is further extended in two ways. First, it biases distributed test set predictions according to the number 
of times F2 nodes are assigned to training set patterns. Second, it uses negative match tracking (MT-) 
(i.e., negative c values) to address the problem of inconsistent cases 1 whereby identical training set patterns 
correspond to different classes labels. 

2.2 Gaussian ARTMAP 

GAJ:v1 dHfen; significantly from the other three. It represents category j as a Gaussian density function
1 

defined by two vectors: its mean /-lj :;:;:; (Pjl, /-Lj2 1 ... , P-J M) and its standard deviation a J = (a jl, a j 2 , ... , a j M) 

(they replace prototype vector Wj)· A scalar, nj, accumulates the amount of relative activation obtained 
by F2 node j on training set patterns. 

During training, the number of committed F2 nodes 1 Nc, is initially set to 0. Newly-committed F2 
nodes increment N" and undergo the initialization step (instead of the learning step). The committed F2 
nodes that pass the vigilance test for pattern a are allowed to activate, and distribute a pattern of activity 
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y = (y1,y2, ... ,yNJ· Match tracking and learning are performed according to the relative activation over 
the "ensemble'' EK of F2 nodes linked to the predicted pab node K. The relative activation over Eg is 
defined by the distributed pattern y• = (y;, Y2, ... , y;,J, where Yj = Yi / L!EE" Yl only if j E EK, and 
v; = 0 otherwise. 

Table 1: Distinctive equations used by the ARTMAP networks. With ART-EMAP, ARTMAP-IC and FAM, 
1·1 is the norm operator (lw i I = "Li~i lxd), A is the fuzzy AND operator ((A A w; ); = min( A,, Wji) ), a is 
the choice parameter, and f3 is the learning rate parameter. \Vith GAM, 1 is the initial standard deviation 
assigned to newly-committed F2 nodes. 

ARTMAP classifier 
Algorithmic step ART-EIIMP, ARTMAP-IC & FAM : GAM 

!.Initialization: e<>O,(JE IO,l] }U =A, a1; = 1 (/' > 0), w)~.; = 1, nJ = 1 

Z.Input coding: A= (a, a') (M' =2M) A =a (M' = M) 

3.Prototype selection: 

w(A) = { 

n G1 (A) if GJ(A) > p fl" - choice function T1 (A) = lA /1 WJI/(e< + lw!l) i""l oJ; 

0 otherwise 

- vigilance test lA /1 Wj! 2: pM G (A)= { _l LM 1·'·-~·;d} > J exp 2 io::l erN P ,, 
-·· F2 activation Y; = 1 only if j = J )/j = 9!/(0.01 + 2:,;'·, !}l) 

4. Class prediction: 

··· prediction function S"'( ) LN nb S"'( ) LN, nb k y = }""I Y;W;!.· .. k y = }""1 Y;W;k 

·- match track p 
, 

= (lA /1 WJI/M) +' '- '. { l L . LM (A,.,,,;)'} p -· cxp -2 }EE,, Y} i:o:o! cr"1 +t 
5.Learning: 

·- prototype update w~ = fl(A /1 WJ) + (1 -- (3)w1 nj = n} + v; 
I ~~~ y• 

/l;i = (1- ;;- )/1}; + ~Ai 

' (J;; = 
y• y ~ 

(1 - ~ )aj; + ~(A; - JLji )2 
----· ··-·· 

3 Radar pulse data 

The data set used to evaluate the classifiers contains approximately 100,000 consecutive radar pulses 
gathered over 16 seconds during a field trial by the Defense Research Establishment Ottawa. After the 
trial, an ESM analyst manually separated trains of pulses coming frorn different emitters. Each pulse wa.'3 
then tagged with two numbers: a radar type number and a mode number. A single type of radar can usc 
several modes to perform various functions. Since ES!vl trials are complex and never totally controlled, 
not all pulses can be tagged and a residue is obtained. Residue pulses were discarded for this study. 

The patterns used for this study contain 3 parameters: radio frequency (RF), pulse repetition interval 
(PRI) and pulse width (PW). The RF and PW parameters are measured on each individual pulse, whereas 
PRI is derived from the time-of-arrival (TOA) of pulses from a single emitter. For simplicity, a TOA 
deinterleaver was assumed to be capable of correctly sorting the nk pulses belonging to each active emitter 
mode k, and then computing: PRh(i) = TOAk(i) ·· TOAk(i- 1) fori= 2, 3, ... , nk. Note that the first 
pattern from each active emitter mode is omitted from the comparison. Also, due to the circular scanning 
action of some radar emitters, pulses are recorded in bursts. The first pulse of each scan (or burst) is also 
omitted. Finally, the parameters were linearly normalized so that ai E [0, 1 L i = 1, 2, 3. 

Once deinterleaved and tagged, the data used to train and test the classifiers contain 52,192 radar 
pulses from 34 modes, each one belonging to one of 15 different radar types. The data feature bursts of 
high pulse densities, multiple emitters of a same type, modes with overlapping parametric ranges, radars 
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transmitting at different pulse rates, and emitters switching modes. The sophistication of the radar types 
range from simple (constant RF and PRI) to fairly complex (pulse-to-pulse RF and PRI agility). The data 
also contain direction of arrival (DOA), but this parameter is not used here. 

4 Simulation results and discussion 

iviatlab code was written for all the classifiers. Prior to each simulation trial, the data set described in 
Section 3 was partitioned into training and test subsets. 50% of the data from each radar type was selected 
at random to form the training subset. Then, training subset patterns a were repeatedly presented to 
each classifier along with their supervision patterns b (coding radar types) until convergence was reached 
- when the sum-squared-error (SSE) of prototype weights was less that 0.001 for two successive epochs. 
An epoch is defined as a presentation of the training subset to a classifier in a TOA sequence. Finally, the 
test subset (the complete set less the training data) was presented to' ihe trained classifiers for prediction. 

The performance of the classifiers was compared in terms 6f the amount of resources they require 
during training, and their predictive accuracy on the test subset. The amount of resources required while 
training is measured in the 3 following ways. Compression refers to the average ratio of training patterns 
to committed F2 node. Memory is the number of normalized registers 1 needed to store the set of learned 
prototype vectors. The conver-gence time is the number of epochs required for the classifier to converge 
(SSE< 0.001). Predictive accuracy is measured with the classification rate·- the ratio of correctly classified 
patterns over all test patterns. 

Table 2 presents the average results (with corresponding standard deviations) of each classifier, from 
20 independent simulation trials. The parameter settings were selected to achieve the best classification 
rate for the least amount of memory and convergence time during training. 

Results in Table 2 indicate~ that FAM and GA:tvl yield the highest average classification rates for the 
data set, followed by ARTMAP-IC and ART-EMAP. These classification rates me comparable to those 
obtained with the wference kNN and RBF classifiers. ART-EMAP, ARTMAP-IC 'md FAI'vl attain their 
cl<:tssification rates with greater compression (thus less memory requirement to store prototype vectors) 
than the other classifiers, and significantly fewer training epochs to converge than GAt\'1 and RBF. 

4.1 Training set convergence 

A convergence problem occurs with ART-ElviAP, FAI'vl and GAM whenever the training subset contains 
identical patterns (i.e., pulses in the same resolution cell) that belong to different radar types. The problem 
is aggravated since ARTMAP tends to segment the overlapping/scattered parts of classes into several very 
tiny, often minimum-sized prototypes. The effect is a proliferation of identical prototypes for certain 
training set patterns. 

Consider the following example. Assume that on the first training epoch, FA:tvl learns two completely 
overlapping, minimum-sized prototypes, WA.l (linked to class A) and wa. 1 (linked to class B), for two 
identical pulse patterns, a1 and a2. In a subsequent epoch, WA.l is initially selected to learn a 2 , since 
TA.l :::::. Tn.1 c::::: 1, and WA.l was created prior to wn. 1 (index A.l is smaller than B.l). Since WA.l is 
not linked to chLss B, mismatch reset raises the vigilance parameter p to (IA2 II WA. 11/M) + E, where 
jA2 1\ WA.ll = jA2 1\ WB.ll· As a result, Wf3.l can no longer pass the vigilance test required to become 
selected for a2, and FAM must create another minimum-sized prototype WIJ. 2 = w 13 .1 . From epoch to 
epoch, the same phenomenon repeats itself, yielding ever more prototypes w B.n = w H.l for n = 3, 4, ... , oo. 

ART-EMAP, FAM and GAM failed to converge while training on the radar data set. Results in Table 2 
\\:ere obtained through manual termination by: (1) detecting, from epoch to epoch, the repeated creation of 
identical prqtotypes for the same training pulses, (2) pruning non-unique prototypes from memory, and (3) 
defining the convergence time as the number of epochs leading to the creation of non-duplicate prototypes 
only. Clearly this approach is cumbersome, and a better way of handling the problem was examined. 

ARTMAP-IC was capable of converging incrementally on-line for the radar data. The featuro of 
ARTMAP-IC that allows it to avoid the convergence problem is MT-; that is, the use of a negative E 

1 A normalized register is a fixed-size register, with the number of bits equal to that needed to store the classifier's rea! 
values such as ai, Wji, p, etc. 
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Table 2: Average classification results for the radar data. The * indicates that the classifier was unable to 
converge for the training set on each trial (refer to Subsection 4.1). 

Evaluation criteria (std. deviation) 
Classifier Accuracy Resources 

Classification rate Compression Memory Conv. time 

kNN 0.996 (0.001) I (0) 80311 (0) N/A 
(k = 1, dcilyblock) 

kNN 0.996 (0.001) 1 (0) 80311 (0) N/A 
( k = 1, dr::udidcnn) 

RBF 0.997 (0.001) 4.1 (0.1) 6367.9 (65.1) 2123.6 (21.7) 
(spread = 0.05) 

: 

ART-EMAP• (Stage 1) 0. 784 (0.074) 216.0 (27.1) 735.3 (89.4) stopped at 

(c = 10- 4
, "= .001, (3 = 1, jj = 0) 3.9 (0.4) 

ARTMAP-IC (complete) 0.840 (0.039) 217.2 (20.5) 727.5 (66.4) 3.8 (0.4) 

(E = 10- 4
' "= .001, (3 =I, p = 0) 

FAM· 0.996 (0.001) 216.0 (27.1) 735.3 (89.4) stopped at 

(c = 10- 4
, o = .001, (3= 1, p=O) 3.9 (0.4) 

GAM· 0.997 (0.001) 102.1 (4.3) 1536.0 (65.8) stopped at 

(c=l0-3 ,/= .0025, p = 0) 6.0 (1.1) 
-· . - -

FAM with MT- 0.996 (0.001) 211.8 (32.1) 751.8 (90.6)) 3.7 (0.5) 
(E = 10- 6

, "= .001, (3 =I, p = 0) 
----·· .. 

FAM with MT- and limited IC 0.996 (0.001) 217.0 (22.5) 727.5 (66.4) 3.8 (0.4) 
(c = 10- 4

, "= .001, (3 =I, p = 0) 

value (6]. In the example above, mismatch reset would raise p but wn. 1 would still pass the vigilance 
test. This allows ARTMAP-IC to learn fully overlapping prototypes for training set patterns that belong 
to different classes. As is seen from Table 2, and as is discussed further in Subsection 4.4, the complete 
ARTMAP-IC algorithm ··· MT-, distributed activation and instance counting - perfonus comparatively 
poorly on this data. This suggests that the best approach is AH.TivlAP-IC with rv1T- onlJ\ or, equivalently, 
FAM plus MT-. 

4.2 Distributing and biasing test set activation 

Simulation trials showed that the Q-max rule [6] for distributing F'2 layer activation in ART-EMAP and 
ARTMAP-IC classifiers gives better results than both power or threshold rules [5] with the radar data. 
However, a priori choice of the Q parameter for this rule is critical for performance. The following choice 
of Q was found to give good results for the radar data: Q = min{ ["N,f2L l, 2L}, where L is the number of 
classes (15 in this study) and Nc is the number of committed F2 nodes. In particular, bounding Q to the 
low maximal value of 2£ appears to reduce wild performance fluctuations. 

Regardless of distributed activation, FA1v1 performs better than its two extensions, ART-E?viAP and 
AllTMAP-IC, on the radar data. Careful observation revealed that distributed activation for the test 
patterns makes more prediction errors because some radar type classes in the data set are very dispersed, 
are fragmented, and overlap one another. This is incompatible with class predictions that are based on 
the distribution of strongly activated F2 nodes among radar type classes (rather than on the most active 
F2 node). Indeed, an pab class node k that receives a very strong activation from one F2 node may have 
weaker overall activation than a pab class node h that receives a moderately strong activation from several 
F'2 nodes. Perhaps this explains why kNN gives its best performance fork= 1, and degrades slowly as k 
grows. (For instance, its classification rate is 0.992 for k = 9 and dc;tyblock·) 
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GAM involves training and testing with a distributed pattern of activity. F2 layer activation is dis­
tributed among nodes that pass the vigilance test. When training, each category j E EK learns according 
to its relative activation for a. F2 nodes learn a Gaussian mixture model of the input space. Although 
computationally intensive, them-learning strategy allows GAM to achieve very high classification rates. 

ARTMAP-IC and GAM accumulate weighting factors that depend on the quantity of training subset. 
patterns assigned to each F2 node. This frequency information is used to bias predictions towards classes 
assigned the most training patterns. This constitutes an issue in radar ESM since some critical radars 
transmit very few pulses, while others transmit hundreds of thousands of pulses per second. Biasing 
prototype choices according to patterns in the time of arrival of pulses would be more appropriate. 

4.3 Prototype representations 

Given the quantization of parameter measurements, intercepted radar pulses fall into resolution cells. Since 
the measurement uncertainty of the three parameters used (RF, PRf and PW) arc independent of each 
other, the radar type definitions are essentially rectangular. ART-EMAP, ARTMAP-IC and FAM usc 
hyperrectangles to represent prototypes in the input space, and appear to be a better match for this type 
of data. GAM and RBF, on the other hand, represent prototypes with Gaussian density functions. This 
results in substantial segmentation of radar type classes, and in low compression for these two classifiers. 

4.4 Enhancements to fuzzy ARTMAP 

The bottom of Table 2 shows the results of two modified versions of FAfvL The first version augments 
FAM with the MT- component. of ARTMAP-IC. This results in a version of FAM that learns non-unique 
prototypes linked to different classes (thus converges for the radar data). As shown in Table 2, FAM with 
:rviT- performs as well, to within standard (~lTOr, as kNN, with much less use of rnemory and \vithout the 
convergence problem. As pointed out in (6] MT- is a better algorithmic approximation to the eontinuous­
time version of the FAfvi neural net\vork. 

Figure 1 shows the average misclassification rate for FAl'vi with fv'IT- over the 16 second time span of 
tlw radar data. Each point on the figure represents the number of classification errors divided by the pulse 
count for the previous 0.25 seconds. The misclassification rate appears to be fluctuating, exceeding 2% on 
many occasions, and reaching a maximum value at 6% . 

... . . 

Figure 1: Average misclassification rate of FAM with MT- over time. 

Although weighting predictions according to the number of training set patterns is not appropriate in 
our context, it may be useful on other data sets for FAM with MT- to produce better than a random guess 
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for test patterns that activate the same F2 node2 . This could result from using instance-weighted outputs 
only in the case where winning nodes are "inconsistent-case siblings/' since in this ca<:>e the only basis on 
which to choose one of the winning nodes over another may be the frequency with which they were winning 
nodes during training. Table 2 presents the results for FArvl with MT- and "limited instance counting." 
\Vith this variant, instances are still counted for all F2 nodes. However, it distributes activation weighted 
by the instance counts if and only if nodes J are a set that code for the same test pattern but map to 
different classes. Limited IC does not harm accuracy on the radar data set. 

5 Conclusion 

This paper presents a comparison of four neural network classifiers - ART-ErvL\P (Stage 1), ARTMAP­
IC, fuzzy ARTMAP and Gaussian ARTMAP for the identification of radar emitter types associated with 
intercepted radar pulse trains. Their performance is measured in tcnns:of resource allocation and accuracy. 

In computer simulations using a radar data set collected in the field, FA?vl \vith negative 1natch tracking 
(MT-) has performed consistently well. It gives one of the best classification rates, yet requires among the 
least amount of resources (shortest convergence time and least storage for prototypes) among ART!v1AP 
classifiers. The MT- feature allows it to converge on-line despite the presence of training set categories 
that overlap completely yet belong to different classes. 
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