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Abstract

It is becoming increasingly important that physics educators equip their students with the skills

to work with data effectively. However, many educators may lack the necessary training and

expertise in data science to teach these skills. To address this gap, we created the Data Science

Education Community of Practice (DSECOP), bringing together graduate students and physics

educators from different institutions and backgrounds to share best practices and lessons learned

from integrating data science into undergraduate physics education. In this article, we present

insights and experiences from this community of practice, highlighting key strategies and challenges

in incorporating data science into the introductory physics curriculum. Our goal is to provide

guidance and inspiration to educators who seek to integrate data science into their teaching, helping

to prepare the next generation of physicists for a data-driven world.
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I. INTRODUCTION

Data analysis has always been an essential component of the scientific method. From the

derivation of Kepler’s laws of planetary motion by analysis of Brahe’s astronomical observa-

tions to the detection of the Higgs boson, data analysis has played a crucial role in advancing

our understanding of the natural world. Traditionally, data analysis in physics primarily fo-

cused on applying theoretical concepts to structured datasets derived from experiments or

simulations. In the current age of big data, physicists have access to an unprecedented

volume and variety of data, enabling new discoveries that would have been impossible with-

out advanced data analysis techniques. These discoveries require not just analytical skills

but also proficiency in advanced data management, statistical modeling, and computational

techniques, skills that are not traditionally taught in undergraduate physics classes. The

historical focus on theoretical and experimental physics leaves little room for data science

education with physics applications. Additionally, many physics educators lack the training

and expertise to teach data science effectively, often because of the fast-paced evolution of

tools and techniques. As illustrated in Figure 1, the frequency of discussion of data science

in physics research has been growing rapidly. Integrating data science into undergraduate

physics curricula will prepare students for the changing demands of the future.

FIG. 1. Percentage of academic papers per year uploaded to arXiv’s physics section that mention

“machine learning” anywhere in the article. The red star represents the inception of the American

Physical Society’s Topical Group on Data Science (GDS) in 2018.

It is difficult to define data science comprehensively, partly because many definitions tend

to emphasize the specific activities of practitioners within their respective fields1. However,

we will provide an operational definition. The term was first used in the 1960s in military
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and corporate contexts2. While data science is an umbrella term3, the NIST Big Data

Interoperability Framework4 provides a succinct definition covering various aspects of data

science:

“Data science is the extraction of actionable knowledge directly from data through a

process of discovery, or hypothesis formulation and hypothesis testing.”

Data science uses statistical and computational methods to extract insights from data.

It includes data collection, cleaning, preparation, exploratory data analysis, statistical mod-

eling and inference, machine learning (ML), and data visualization. It has been used to

address questions in various domains, such as biology, education, physics, business, linguis-

tics, and medicine5. Machine Learning (ML) is a subset of data science that involves the

development of algorithms and statistical models that enable computers to automatically

extract patterns from data.6,7.

Data science analyzes large and complex datasets to identify patterns and trends, gain

insights, and make probabilistic predictions. Machine learning models already serve as

faster and more generalizable surrogate models, replacing theory in a variety of domains8,9.

However, a key limitation of many current ML models is their lack of interpretability, often

functioning as ‘black boxes’ that are not readily explainable. In the future, ML models may

represent reality with interpretable models as theoretical physics does10. While we are far

from that future, it is an exciting research direction for physicists.

II. MOTIVATION

In this section, we argue that data science should be part of the undergraduate physics

curriculum. Data science is useful not only for physics research but also for careers in

industry and as a pedagogical tool to improve physics education.

A. Why is data science important, particularly for physics undergraduates?

Physics research is increasingly data-intensive (Data Science for Physics): Many fields

of physics, such as astronomy, particle physics, condensed matter physics, and biophysics,

produce vast amounts of data that require sophisticated data analysis. In addition to theory,
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experiment, and simulations, data science is the “fourth pillar” of science and has a place in

the scientific method11. With the rise of massive data-intensive experiments and simulations,

it has become essential that physicists employ statistical and machine learning techniques in

their workflow. Data science proficiency is needed to write programs for sifting through and

generating insights from experiments and large-scale simulations that generate terabytes of

data. Additionally, these skills can enhance the efficiency of experiments and simulations,

allowing for fewer measurements while still answering physically meaningful questions. Some

domains where data science is used are collider physics12, quantum physics13, the search for

new materials, and the control of fusion reactors14.

The increasing importance of data science in the workforce (Data Science for Future

Careers): In the era of Industry 4.015, where automation, data exchange, and interconnect-

edness shape our global industries, data science skills have become paramount. Physics

undergraduates equipped with these skills are well-positioned to navigate the challenges and

opportunities of this new industrial landscape. It is essential to note that incorporating data

science doesn’t detract from core physics topics. Instead, it provides an enriched framework

to understand and apply these principles using contemporary techniques. As industries pivot

towards data-driven decision-making, grounding physics students in data science amplifies

their analytical prowess and broadens their career horizons.

Data science can enhance physics education (Data Science for Education): Due to cur-

riculum pressure, it is difficult to target parts of physics courses to replace with data science

education. Introducing data science should not take away from the fundamental physics

curriculum but, on the contrary, should make it easier to teach and demonstrate the fun-

damental ideas using modern data science tools. Teaching data science to physics students

should not simply replace the existing physics curriculum with new content but try to en-

hance it using data science as a tool. Data science offers new and innovative ways to teach

physics concepts and engage students in active learning by providing hands-on experience

with physics-relevant data sets.

Growing overlap between physical concepts and machine learning techniques (Physics

for Data Science): Recent research has demonstrated that physical ideas, such as diffu-

sion, symmetry, or relativistic geometry, can be used to develop more powerful and efficient

machine learning algorithms and data analysis techniques8,16,17. By exploring the connec-
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tions between physics and data science, students can gain insights into the fundamental

principles that underlie both fields and develop a more holistic view of the role of data

in scientific discovery and innovation. The relationship between data science and physics

is bidirectional. While data science provides powerful tools for analyzing complex physical

phenomena, physics, in turn, provides a rich context for developing and refining data science

methodologies8. Physics-informed machine learning is a rapidly developing field combining

black-box machine learning models with physics constraints9.

B. Why is it important for physics professors to teach data science (as opposed

to computer scientists)?

Existing undergraduate data science programs focus primarily on theoretical founda-

tions and quantitative skills with very little domain knowledge outside of computer science5.

Graduates of these programs may lack the appropriate context for designing and evaluating

domain-specific data science applications. The National Academies of Sciences, Engineer-

ing & Medicine (NASEM) framework emphasizes the importance of domain knowledge for

effectively applying data science18. Physics professors can provide the substantial domain

knowledge needed to make data science accessible to physics students3,19.

C. Survey Results Suggest Data Science is typically not part of the undergraduate

physics curriculum

In March 2022, we ran two surveys to better understand the data science and under-

graduate physics education landscape. We first surveyed faculty to learn whether they were

teaching data science in their undergraduate physics courses and, if so, in which courses

and what data science skills. Next, we surveyed data scientists in the industry who are

involved with hiring physics bachelors to understand what data science skills and knowledge

they would expect a recent bachelor’s in physics to have for data science jobs. The surveys

were based on the DSECOP leadership’s experience in data science and physics, as well as

a previous local survey20. Each survey was pilot-tested to ensure coherence and inclusion of

important questions. The surveys were sent through American Physical Society (APS) list-
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FIG. 2. Results of data skills survey for faculty who teach data science in their intermedi-

ate/advanced physics courses. Relevant skills are listed on the x-axis, with the different textures

showing the proportion of responses received.

servs (e.g., Forum on Education [FEd], GDS), message boards, and our various professional

networks.

1. Faculty Survey

We had 100 physics faculty responses from 78 US institutions (5 US institutions had two

respondents), 7 international institutions, and 10 unknown21. Of the 30 respondents who

said they had taught data science in undergraduate physics courses in the past five years, 25

are from US institutions and 5 are from international institutions. Those who had taught

data science reported teaching it in introductory, intermediate, and advanced courses, and

in general courses and those focused on data science. Because more instructors reported

teaching it in non-introductory courses, we will focus on those first. For such courses, data

science is taught via in-class activities (N = 8), projects (N = 25), and homework exercises

(N = 19). Some respondents include data science questions on quizzes or exams (N = 8).
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FIG. 3. Results of data skills survey for industry practitioners. Relevant skills are listed on the

x-axis, with the different textures showing the proportion of responses received.

Figure 2 is a plot of the data skills and the statement that the respondents selected (N

= 26). We find that more faculty teach and assess experimental design, data collection,

data manipulation, statistics, and data visualization, and fewer teach data management and

storage.

2. Industry Survey

Twenty-five individuals from 22 different employers responded to this survey. The re-

spondents worked at companies of varying sizes, ranging from one employee to thousands.

Most worked in government scientific research (N = 10) or in tech (N = 7). Others worked

in for-profit research (general), finance, advertising, health care, and social media, with most

working in companies that covered multiple areas. Most (N = 19 or 76%) worked with data

scientists with physics degrees.

Respondents were asked about various technical skills and knowledge they would expect

from an entry-level data scientist with a bachelor’s in physics. Most (N = 20 or 80%)

would expect such an employee to be programming daily, with slightly fewer (N = 18 or

72%) using various data science software packages (e.g., NumPy22, SciPy23, Pandas24) daily.
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Almost all respondents indicated that such employees use Python (N = 22, 88%), though

many (N = 16, 64%) use C/C++ and Matlab (N = 15, 60%). As shown in Figure 3, over

half of the industry respondents indicated that the following were essential for an entry-level

data scientist job: Data Manipulation (e.g., transforming data, gaining insights from data);

Experimental design and scientific method (e.g., designing experiments, data collection);

Statistics (e.g., model selection and uncertainty, A/B testing); and Data Visualization and

Communication (e.g., plotting data, technical writing).

Additionally, some respondents left further clarifying comments. They emphasized that

tools (e.g., programming languages) are less important than understanding how to make

useful plots or understanding the bigger goals. Good collaboration and communication

skills and best practices for software development and error analysis were also mentioned.

III. CHALLENGES

The survey of instructors revealed several challenges in incorporating data science into

the undergraduate physics curriculum. First, many physicists who teach undergraduate

courses are not familiar enough with data science topics to teach them, and preparing such

new content is extremely time-consuming for them.

A second challenge is finding a place for data science in the normal course structure.

Especially for courses taught in sequence over multiple semesters, a well-established flow of

topics leaves little room for new material to be added.

A third challenge is that many universities lack the resources to offer a new class specif-

ically on data science topics, and many students lack the flexibility in their schedules to

take an additional course. This lack of resources is particularly prohibitive in developing

countries, where financial constraints are more limiting. Universities often struggle with the

high cost of hardware infrastructure and proprietary software, which may seem essential for

teaching data science.

The final challenge we wish to discuss is the required background students must have

outside the physics curriculum. To fully understand much of machine learning, high level of

mathematics, statistics, and programming are needed. Some of these skills may be picked

up in mathematics or computer science courses but are not typically taught in the physics
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classroom. While programming knowledge is becoming more common among physics stu-

dents (even becoming a requirement in some departments), this is not necessarily true for

all universities and thus hinders incorporating data science into the physics classroom when

students do not have the necessary background knowledge.

IV. DATA SCIENCE EDUCATION COMMUNITY OF PRACTICE (DSECOP)

Link: https://dsecop.org

The mission of DSECOP25 is to support physics educators who wish to integrate data

science into their existing courses by providing resources as well as a community of like-

minded educators for support. The DSECOP project came to life in 2022 following the

awarding of the competitive Innovation Fund Award from the American Physical Society to

some leaders of the Topical Group of Data Science (GDS)26.

One of the resources provided by the DSECOP organization is a collection of free and

open-source modules created by the group’s fellows who are Ph.D. students and recent Ph.D.

graduates. The modules do not require access to large datasets, run on free software, and

can be executed from a browser. Each module introduces a specific topic in the realm of

data science applied to a physics concept taught in the traditional physics major. The goal

is that these modules are detailed enough to provide instructors and students with a good

understanding of how data science can be used to solve a problem in physics but also short

enough to be incorporated into a pre-existing course without significant alterations. These

modules consist of a lesson plan, exercises, and solutions for the instructor. We adopted

this approach because not all universities will have the resources to develop a full course on

data science. This also allows for the content to be introduced gradually into the curriculum

by individual professors rather than requiring approval for a new course that has to replace

a well-established physics course. It also presents alternative materials to the students for

self-study that build on the parts that are taught in the classroom.

Our fellows present an initial idea for a module and, after refining it with discussion,

send it out for outside feedback from faculty. They then develop a unit, which is later sent

out for testing by other faculty. We also run an annual workshop where the presentation of

work by fellows and faculty is followed by a discussion. We run a webinar series to present
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FIG. 4. This flowchart shows the relationships between the modules and their topic (general data

science or machine learning). The arrows depict suggested prerequisites for the relevant data science

and machine learning topics, starting from the most basic module DSECOP 101: Introduction to

Data Science Libraries. Introductory, intermediate, and advanced-level modules are denoted by

their borders (solid, dashed, and dotted) and also by their module number (1XX, 2XX, 3XX).

different approaches to teaching data science, with topics ranging from ethics to careers in

industry.

DSECOP Modules

Link: https://github.com/GDS-Education-Community-of-Practice/DSECOP27

The DSECOP modules span a wide range of data science concepts; thus, we have sought

to order them regarding the level of data science knowledge. We introduce the DSECOP

numbering system, where a 100-level module is appropriate for new and beginner program-

mers, a 200-level module includes intermediate-level machine learning concepts with 100-

level prerequisites, and a 300-level module introduces advanced machine learning concepts.

A roadmap of the DSECOP modules and their suggested prerequisite modules is shown in

Figure 4. This flowchart breaks the modules up into those that contain general data science

topics and those that contain machine learning topics.

To streamline the usage of modules, we establish workflows and conventions for both

module creators and faculty members. We assume basic Python knowledge and standardize

the list of libraries such as Matplotlib, NumPy, SciPy, Pandas, and TensorFlow. Setting

up Python environments across different machines can be challenging. Additionally, not all

students have access to GPUs, which are integral to modern data science tasks. To address

these issues, all the modules can be run on the Google Colab platform28, allowing students
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General Physics (Lecture
and Lab

Waves and Optics Classical Mechanics

DSECOP 101: Intro to DS
Libraries
DSECOP 110: Intro to
Histograms
DSECOP 120: Exploratory
Data Analysis
DSECOP 140: ML
Workflow

DSECOP 150: Intro to
Classification
DSECOP 160: Outlier
Analysis
DSECOP 170: Error
Reduction

DSECOP 220: Spectral
Clustering
DSECOP 230: Diff Eqs +
NN
DSECOP 290: Time Series
+ RNN

Electricity and
Magnetism

Quantum Mechanics Statistical
Thermodynamics

DSECOP 250: Automatic
Differentiation

DSECOP 235: Schrodinger
+ NN
DSECOP 236: Schrodinger
+ GP

DSECOP 320: Monte
Carlo + NN

Advanced Lab Particle, Nuclear, or
Medical Physics

Any Course

DSECOP 120: Exploratory
Data Analysis
DSECOP 240: Symbolic
Regression
DSECOP 280: Automated
Video Analysis
DSECOP 330: SVD

DSECOP 101: Intro to DS
Libraries
DSECOP 110: Intro to
Histograms
DSECOP 340: NMR + NN

DSECOP 102: The
Professor’s Module
DSECOP 201: Intro to
Deep Learning
DSECOP 210: Intro to
Random Forests

TABLE I. An overview of courses in the undergraduate physics curriculum and existing modules

for each course.

to run the modules in their browsers on a cloud GPU without any extra setup. The module

can also be run in a local environment with the Conda framework for easy setup. Detailed

instructions are provided for both the cloud-based Colab and local Conda methods.

At the time of this paper’s publication, we have 21 posted modules spanning many

common courses in the undergraduate physics curriculum. Table I breaks down the current

modules by their physics content and divides them among the common courses in a physics

curriculum. Note that the modules “DSECOP 201: Introduction to Deep Learning” and

“DSECOP 210: Introduction to Random Forests” do not contain any physics content and

thus may be introduced in any physics course with the proper computational background.

Our most introductory module is “DSECOP 101: Introduction to Data Science Libraries”

(link), which only assumes basic knowledge of Python and guides students through perform-

ing a simple data analysis with the Python libraries Pandas, Seaborn and Matplotlib. This
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module is connected to all other modules in Figure 4. One of the more advanced modules

offered, “DSECOP 235: Schrödinger’s Equation and Neural Networks” (described in detail

later in this paper), uses a complicated neural network to solve Schrödinger’s equation. If

an instructor wanted to use this module in a course but feared their students’ knowledge of

neural networks was not strong enough, the instructor could also assign one or two of the

prerequisite modules such as “DSECOP 230: Differential Equations and Neural Networks”

or “DSECOP 201: Introduction to Deep Learning”.

The next two sections of this paper present two of these DSECOP modules in more detail.

“DSECOP 110: Introduction to Data Processing with Histograms” is one of our introductory

modules giving an overview of creating meaningful graphs with histograms. “DSECOP 235:

Scrödinger’s Equation and Neural Networks” is an example of a more advanced module.

1. Introduction to Data Processing with Histograms

Link: https://github.com/GDS-Education-Community-of-Practice/DSECOP/tree/

main/Intro_to_Data_Processing_with_Histograms

This module, designed for an undergraduate laboratory or a particle physics course,

teaches students the steps involved in a data analysis pipeline. It focuses on key concepts

such as processing datasets, creating histograms, curve fitting, and determining the goodness

of fit for a chosen model and covers the practical use of tools such as NumPy and SciPy for

creating histograms and curve fitting.

The module comprises in-class notebooks, a quiz, a homework assignment, and rele-

vant datasets. Four notebooks guide students through the process of analyzing a dataset,

including the creation of histograms and curve fitting. A short quiz assesses students’ under-

standing. The homework assignment then requires students to undertake a practical data

analysis task drawing from the material presented in the notebooks. Several datasets are

provided for this purpose, along with Jupyter notebooks for instructors to re-generate the

datasets if desired. It is estimated that the completion of each notebook will take approxi-

mately 60 minutes. The quiz is designed to take 30 minutes, and the homework assignment

is anticipated to require less than 90 minutes of commitment.

The module explores the application of histograms as a tool for data visualization, where
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students are expected to create their own histogram from a raw dataset and employ built-in

functions. Students are introduced to the concept of interpreting histograms as probability

distributions. This concept is exemplified using a toy “Uranium-241” dataset. Students are

expected to import the data, create a histogram, and normalize these histograms.

A bonus advanced topic available to students is the utilization of the Kolmogorov-Smirnov

goodness-of-fit test for histograms, providing an additional level of depth for those wishing to

further their understanding. Prerequisites for this module include familiarity with Python,

numpy, and matplotlib.

2. Learning the Schrödinger Equation

Link: https://github.com/GDS-Education-Community-of-Practice/DSECOP/tree/

main/Learning_the_Schrodinger_Equation

This module aims to introduce students to deep learning as applied to the Time-

Dependent Schrödinger Equation (TDSE) through a combination of analytical and ma-

chine learning methods. The module highlights physics-informed neural networks, a class

of machine learning algorithms that facilitate the solution of partial differential equations

by integrating constraints from partial differential equations within deep learning models.

The module is designed for an undergraduate quantum mechanics course, and it guides

students through solving the TDSE with a focus on the quantum harmonic oscillator. The

only prerequisite is an introductory understanding of Python and the basics covered in the

initial weeks of a quantum mechanics course.

The module is divided into three submodules. The first is a gentle, interactive introduc-

tion to deep learning, where students learn to create neural network pipelines through a

simple example involving RGB color mixing. The second part offers an overview of various

ML concepts with an emphasis on physics applications. The third submodule provides an

interactive notebook for solving the TDSE for a 1D quantum harmonic oscillator system for

the time evolution of a superposition of two energy eigenstates.

Supplementing the main content within the notebooks are hands-on lessons, exercises,

homework, and suggested projects. These materials allow students to apply what they have

learned and deepen their understanding of the subject. There are code cells that students
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are expected to fill themselves, references for further study, take-home assignments, and

suggestions for extensions, such as the particle-in-a-box or the double-well potential, that

build on the material and can be used as research projects. The estimated time for students

to complete the module is about six hours, in addition to two hours taught by a professor

in a classroom setting.

V. CONCLUSIONS AND OUTLOOK

In 2022, we introduced DSECOP as a means to address the need for the integration of

data science into the undergraduate physics curriculum. Educators interested in including

data science in their courses are welcome to join the community at https://dsecop.org. They

can choose units based on their teaching subjects and their comfort with the methodology

and are also welcome to engage with the community by contributing modules based on

their use cases. We also hold workshops at conferences where instructors can interact more

directly with the graduate fellows who develop our modules.

The DSECOP initiative represents a significant step toward modernizing physics educa-

tion by embedding essential data science skills within the curriculum. This effort enhances

the relevance of physics education and equips students with the tools necessary for a data-

driven world. By creating a community of practice, we ensure that educators are supported

and can share best practices, thereby continuously improving the integration of data sci-

ence into physics education. The flexibility and accessibility of the modules developed by

DSECOP are crucial for overcoming the challenges identified in our surveys, making data

science education feasible even in resource-constrained environments. Through this initia-

tive, we aim to create a robust foundation for future physicists who are well-versed in data

science, thereby bridging the gap between traditional physics education and the demands of

contemporary scientific research and industry.
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APPENDIX: SURVEY DETAILS

In this section, we describe additional faculty survey details. Of the faculty surveyed, 8%

indicated they teach data science in their introductory and intermediate/advanced physics

courses, 2% indicated they teach data science only in introductory physics, 5% indicated that

their introductory physics course that teaches data science is focused on data science (e.g.,

Data Science for Physicists), 19% indicated they teach data science in only intermediate or

advanced physics, and 12% indicated that their advanced physics course is focused on data

science.

For introductory courses, data science is taught via in-class activities (N = 20), projects

(N = 8), and homework exercises (N = 7). A few respondents include data science on

quizzes or exams (N = 3).

For advanced courses, data science is taught via in-class activities (N = 8), projects (N

= 25), and homework exercises (N = 19). Some respondents include data science questions

on quizzes or exams (N = 8).

The majority of respondents (N = 70) have not taught data science in their physics

courses in the past 5 years. Out of the 70 respondents, 69 answered the question regarding

their interest in teaching data science in their physics courses. Of those who answered,
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Theme Count Example quotes

Not relevant or neces-
sary courses taught

20 “... I have not judged it to be a priority (or even
relevant) in courses I am teaching on topics such as
quantum mechanics, special relativity, and ‘honors’
level mechanics.”

“Students need to learn the conceptual frame-
work of physics first. There is little point in teaching
them to compute if they have nothing to compute.”

Challenges in changing
or adding to an already
full curriculum

18 “Courses are already full. Hard to decide what to
drop to make room”

“No space in the curriculum. Need to focus on
teaching students physics concepts and methods, as
well as some basic computational skills.”

“...not sure how to incorporate since we don’t
have room in the program for a separate course ”

Faculty do not know
how to use data science

13 “I don’t understand machine learning well enough to
teach it. Although, it seems no one does.”

“No background in big data, ML, or AI. ”

Faculty does not know
how to include data in
their physics courses

13 “I don’t know how I would integrate it into courses I
have taught...”

“I have no direct experience, wouldn’t know
where to start or what courses to add it to.”

TABLE II. Thematic coding of faculty response regarding why they do not include data science in

their undergraduate physics courses

40.6% selected they would be interested, 40.6% were maybe, and 18.8% were not interested.

Sixty-one of the respondents answered the free-response question regarding why they do not

teach data science in their physics courses. These responses were thematically coded. The

respondents often gave multiple reasons. The top themes that emerged are in the table II

below.

Most respondents did not see data science as relevant or necessary to the courses they

teach. These respondents were not opposed to data science; some used data science and AI

in their research, but they felt that teaching such skills was part of the core curriculum or
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could be learned elsewhere (e.g., in a computer science department). This is related to the

second most identified theme, that there are challenges in changing or adding to the physics

curriculum. These respondents believed that the curriculum has a lot of material to cover

as is, and some were already engaging in changes. Lastly, some respondents do not have

experience using data science, and others were unsure how to include it in their courses.

Some other themes include students having little experience programming (N = 9), fac-

ulty bandwidth to change the curriculum in their courses (N = 4), and lack of decision-

making power to change the curriculum (N = 3).
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