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FORM AS METER: 

METRIC FORMS THROUGH FOURIER SPACE 

MATTHEW G. CHIU 

ABSTRACT 

The Discrete Fourier Transform, which was initially mentioned in the music theory 

domain by David Lewin, is an analytical tool developed by Ian Quinn, and later expanded by 

theorists such as Jason Yust, William Sethares, and Andrew Milne. Though it was originally 

designed for pitch-class spaces, Emmanuel Amiot has explored the DFT’s implementation 

into the rhythmic domain, and has recently used it to unravel mathematical problems in 

music. An explanation of the DFT model will be made available here to a reader requiring 

only fundamental arithmetic. Throughout this thesis, I intend to explore the DFT in the 

music of various composers to demonstrate applicability, and will argue for a metric 

conception of form.  
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1. INTRODUCTION 

The title Form as Meter is a reference to Christopher Hasty’s seminal work Meter as 

Rhythm, in which he, by rejecting traditional conceptions of meter, avers that meter is an 

ongoing process. The process, as a result, projects complex patterns of periodic groupings 

that configure form from rhythm. In other words, meter is rhythmic in that it too is a 

perceptually creative and ongoing process.  

Several significant music theorists have directly addressed, or alluded to, meter’s 

relationship with form. Among them, was David Lewin, who, in his succinct article “On 

Harmony and Meter in Brahms Op.76, No.8,” proposed a connection between the tonal and 

metric functions within the piece, after which a subsequent line of theorists extended his 

concepts. Lewin’s work inspired metric theories such as Richard Cohn’s in “Complex 

Hemiolas, Ski-Graphs, and Metric Spaces;” Scott Murphy’s in “Metric Cubes in Some Music 

of Brahms;” and Samuel Ng’s in “The Hemiolic Cycle and Metric Dissonance in the First 

Movement of Brahms’s Cello Sonata in F major, Op.99.” Form as Meter provides a renewed 

perspective on meter by addressing epistemological disputes in the rhythmic domain by 

demonstrating a few of the analytical utilities of the Discrete Fourier Transform (DFT) in 

the rhythmic domain. This paper also shows how the DFT can simultaneously incorporate 

and complement metric-formal theories from Lewin, Cohn, Murphy and Ng. 

The DFT, which was initially mentioned in the music theory domain by David 

Lewin, is an analytical tool developed by Ian Quinn, and later expanded by theorists such as 

Jason Yust, William Sethares, and Andrew Milne. Though it was originally designed for 

pitch-class spaces, Emmanuel Amiot has explored the DFT’s implementation into the 

rhythmic domain, and has recently used it to unravel mathematical problems in music (such 
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as tiling). An explanation of the DFT model will be made available here to a reader requiring 

only fundamental arithmetic—I offer “propaedeutic orientation tools in order to make the 

reader understand why certain conceptual mechanisms or definitions are built.”1 Throughout 

this thesis, I intend to explore the DFT in the music of various composers to demonstrate 

applicability, and will argue for a metric conception of form.  

 

1.1 THE DISCRETE FOURIER TRANSFORM 

 The Fourier Transform (FT) is a method of decomposing a waveform into its 

constituent sinusoidal parts—it analyzes the frequency domain and extracts sinusoidal 

parameters. A sinusoid (or sine wave) is a smooth oscillating curve, as shown in Figure 1-1. 

Fundamentally, the FT’s task is to break down and retrieve information from the signal, and 

ours, as interpreters, is to relate these individual elements to the whole.2 The FT can be 

thought of in terms of a painter’s palette: given a mix of colors blended together, the FT has 

the ability to disassemble the mixture into its primary colors and examine the influence of 

those primary colors to the whole. Essentially, the tints and shades that amalgamate into a 

mixture each contribute to the overall color, and by inspecting the respective contribution, 

you can learn how they work in reference to the mixture. (The FT also has the ability to 

reassemble the original mixture, given a collection of color.)3  This paper focuses on the 

Discrete Fourier Transform (DFT), as opposed to the Continuous Fourier Transform (CFT). The 

                                                
1 Guerino Mazzola Stefan Go ̈ller, Stefan Mu ̈ller, and Carlos Agon, The Topos of Music: Geometric Logic of 

Concepts, Theory, and Performance (Basel: Birkha ̈user Verlag, 2002), 3. 
2 For the exact retrieval process, see the script in appendix 1. 
3 One feature of the FT that will not be examined extensively in this paper is the ability to reconstruct 

a whole from a set of given parts. The FT is known as an “invertible, information preserving 
transformation;” It is an automorphism.   
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CFT is a continuous transformation of a continuous signal, while the DFT calculates a 

continuous transformation of a discrete signal—a list of discrete numbers.4  

 
Figure 1-1. Sine Wave 

It was David Lewin, in the closing remarks of his 1959 article “Re: Intervallic 

Relations between Two Collections of Notes,” who first proposed that the DFT be used in 

music theory.5  After Lewin touched on it again in 2001, Ian Quinn further developed the 

DFT’s application in music theory in his dissertation, which he summarizes and expands on 

in two articles published in Perspectives of New Music.6  Since then, the DFT has been applied 

and written about in various contexts, analytical and theoretical alike, including, but not 

limited to, creating harmonic geometries and other spaces (Amiot 2013; Yust, 2015); relating 

                                                
4 Though I do not go into particulars here, the DFT can be seen as a specialization of the FT; the 

DFT deals in sums and is meant to approximate the complex integrals of the FT. Essentially, the DFT is 
taking discrete “samples” of time. In my full thesis, a more elaborate explanation of why I use the DFT is 
included. The actual calculation for the DFT is the following equation (continued on the following 
page…): 

 $ % = 	 ' ( )*
+,-./
0 	1*2

345  n = 0, 1, 2, …, N – 1 

= ' ( , )
+,-./
0 	  (Though the Python code implemented here actually uses a Fast Fourier Transform—

its algorithmic equivalent). 
5 David Lewin, "Re: Intervallic Relations between Two Collections of Notes," Journal of Music Theory 3, 

no. 2 (1959): 298-301.  
6 Ian Quinn, “A Unified Theory of Chord Quality in Equal Temperaments” (PhD Dissertation, 

University of Rochester 2004); Ian Quinn, “General Equal-Tempered Harmony: Introduction and Part I,” 
Perspectives of New Music 44, no. 2 (2006): 114-58; Ian Quinn, “General Equal-Tempered Harmony: Parts 2 
and 3,” Perspectives of New Music 45, no. 1 (2007): 4-63. 
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the Fourier Transform to a voice-leading  approach (Tymoczko, 2008); and 

defining/constructing balanced collections (Milne, et al., 2015).  

Quinn (2006, 2007) confronts disagreements on theories of chord quality by using 

the DFT.  As Quinn defines them, there are two camps, warp and weft, which evaluate chord 

quality by different criteria. Warp prioritizes “distance and taxonomy,” while weft focuses on 

“interval content, subset structure, and transformational symmetries.”7 Quinn uses the DFT 

as a method to interweave both branches, providing a unification of the interval-content- 

and distance-oriented modes of thought.8   

 

1.2 DFT PROCESS 

The DFT in music theory is, in simple terms, a method to parse a collection into 

parts, returning information in its Fourier components. The DFT is a multi-faceted device that 

has functioned as a method of evaluating musical quality, devising musical 

spaces/topologies, measuring similarity between pitch-class sets, determining perfectly 

balanced sets, and more.  The transformation decomposes the interval content of a given 

collection, returning a series of Fourier components—comprised of magnitudes and phases.  

The following section elucidates the DFT’s terminology and methodology. 

The DFT, like any function, needs an input to generate an output. The input is a 

vector and, in return, the DFT outputs the magnitudes and phases of different Fourier 

                                                
7 Quinn, 2007: 120-121. 
8 The details of Quinn’s operationalization will not, for brevity’s sake, be explored in detail here—see 

Quinn’s two articles in Perspective of New Music for a detailed account.  The articles are very accessible; the 
reader can easily grasp the concepts without fully understanding the mathematical premises that 
fundamentally underlie the theory. 
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components fn (all to be explained below). In the following demonstration, we examine the 

“tresillo-timeline.” Timeline refers to a rhythmic pattern—also referred to as a guide pattern. 

The tresillo timeline, seen in Figure 1-2, is an even distribution of 3 notes within an 8-unit 

span.9  The unit refers to the smallest divisional factor (1), and span is the length of the vector 

(8 in this case).10 So, translated to music, the tresillo’s unit-pulse equals an eighth note, and 

its span-pulse equals a whole note. Generally, the length of the span—or vector length—for 

the DFT corresponds to the modular space n of the pitch-class/metric cycle ℤ8. ℤ8 is 

determined by the cyclic space; for example, the vector length of a triad within the diatonic 

scale would be ℤ29 because there are (traditionally) 12 pitch-classes within the octave. 

Pertaining to rhythm, the vector length adapts to different possible subdivisions of a fixed 

metrical unit Thus the metric cycle of a :: meter divided into eighth notes would be		ℤ;; that 

of ::  divided into sixteenth-notes would be 	ℤ2<; and that of =: divided into 32nd notes would 

be 	ℤ9: etc.11 The coding retrieval program I have designed subdivides a given excerpt into 

the largest basic units such that each onset can be accounted for (note the 1s and 0s above 

figure 1-2). In the tresillo pattern, eighth notes subdivide the measure in order to specify 

each onset—therefore, the code detects that the eighth note is the unit-pulse: 

                                                
9 The tresillo is known by many names and has been examined through various analytical lenses by 

music theorists and ethnomusicologists alike. Some of this music-theoretic work includes Euclidean 
algorithms (Godfried Toussaint, 2013), “platonic rhythms” as a result of 3-generation (Richard Cohn), 
non-isochronous meters, and maximal evenness (London, 2004).  

10 Richard Cohn, "Complex Hemiolas, Ski-Hill Graphs and Metric Spaces," Music Analysis 20, no. 3 
(2001): 295-326.  

11 In these examples, the meter restricts the range of activity (a window), and the relationships of 
different subdivisions (made of the smallest unit) comprise the components. 



 

 

6 

 
Figure 1-2. [10010010] Timeline 

Because the tresillo conveys 4/4 meter, an 8-dimensional vector (or, interchangeably, 

an 8-dimensional array) can accommodate all of the onsets: [0, 0, 0, 0, 0, 0, 0, 0]. Each onset 

in the collection—positions [0, 3, 6] in relation to the range [0; 7]—occurs once, so each 

note (shown as ‘1’) is added to the array in its respective position, resulting in the vector [1, 

0, 0, 1, 0, 0, 1, 0].  Because we are dealing with an 8-dimensional array, the full DFT returns 

8 Fourier components fn: f0, f1, f2, … f7.  Each Fourier component fn has a magnitude >8 , and a 

phase ϕn. Given our input (the tresillo, [1, 0, 0, 1, 0, 0, 1, 0]), the DFT returns the following 

output values for the magnitude and phase (Fourier component n = (magnituden, phasen)) ≡ 

(fn = ( >8 , ϕn)):  

f0 ≈ (3.0, 0.0) f1 ≈ (0.414, 0.785) f2 ≈ (1.0, 1.571) f3 ≈ (2.414, -0.785) f4 ≈ (1.0, 0.0) 

 

f5 ≈  (2.414, 0.785) f6 ≈  (1.0, -1.571) f7 ≈ (0.414, -0.785) 

Table 1-1. Tresillo Timeline: Fourier Components, Magnitude and Phase 

The magnitude (x value) of f0 returns the cardinality of the set—the tresillo timeline 

returns 3, a cinquillo timeline returns 5, etc.—so it provides no other information besides the 

number of onsets.12 Also note that f8-n, located in the table across from its mod8 complement, 

indicated by the black arrows, has the same magnitude (x) and the opposite phase (y) as the 

                                                
12 A cinquillo timeline (also known as a bell pattern) is a traditional Cuban timeline, with the following 

timeline:  
[1, 0, 1, 1, 0, 1, 1, 0].) 
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component it pairs with (with the exception of f4, which is its own complement). Therefore, 

given an 8-dimensional array for input, the non-trivial information is in f1-4. The number of 

trivial components (here being 4) changes based on the number of elements in the array; in a 

situation using a 12-dimensional vector, the non-trivial information would be f1-6.13 The 

following bar graphs—or as Amiot calls them, Fourier profiles—visually represent the 

respective magnitudes and phases of the 8 different Fourier components: gray represents f0, 

blue represents f1-4, and red represents the trivial f5-7.14 

 
  

 
Figure 1-3. Tresillo Timeline: Magnitudes and Phase

                                                
13 This is called the Nyquist critical frequency; for any sampling interval Δ, the special frequency ϖn = 81∆. 
14 Emmanuel Amiot, Music Through Fourier Space: Discrete Fourier Transform in Music Theory (Cham: 

Springer International Publishing, 2016), 12. 

Magnitude Phase 
0 3 0 
1 0.414213562 0.785398163 
2 1 1.570796327 
3 2.414213562 -0.785398163 
4 1 0 
5 2.414213562 0.785398163 
6 1 -1.570796327 
7 0.414213562 -0.785398163 

Magnitude Phase 
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1.3 DIFFERENT 3-NOTE RHYTHMS IN AN 8-UNIT SPAN  

 To summarize, the DFT unpacks periodic elements from the given input—in our 

case, it exhaustively measures and expresses periodic elements within a given rhythm. Given 

a rhythm (in the form of onsets), the DFT returns Fourier components (fn) comprised of 

magnitudes ( >8 )and phases (ϕn). The following section demonstrates the benefits of 

viewing rhythms through a periodic perspective. As Sethares says, “Rhythm is one of the 

most basic ways that we understand and interact with time,” 15 and, in a methodological 

sense, viewing it as periodicities triangulates rhythms temporally within those periodicities: in 

other words, does the rhythm “fit” into a specific period or not—if not, why? Are there 

regularities within the rhythm? Thinking about rhythm in terms of periodicity provides, as I 

will attempt to demonstrate, a renewed lens into metric structure, both local and global. 

 If we take the eighth note as the unit-pulse in a 4/4 measure, consider the intuitive 

difference between the rhythms shown in Figure 1-4 and Figure 1-5: [10101000] and 

[01010100]. Both timelines span 8-units and consist of 3 onsets, each separated by 2 units 

(otherwise known as quarter-note durations). The difference between the rhythms is their 

placement within the 8-unit span, so—to put it in set-theoretic terms—while both onsets 

have a (024) prime form (in a modular 8 space), they are separated by T1 in the measure (see 

Figure 1-4 and Figure 1-5) so that they share no onset positions. Because these rhythms are 

transpositionally identical, the magnitudes >8  for both of these timelines are identical as 

well—seen in the left images of both Figure 1-6 and Figure 1-7.  

 

                                                
15 William Arthur Sethares, Rhythm and transforms (Springer-Verlag London, 2014), 1. 
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Figure 1-4. [10101000] Timeline 

 
 

 
Figure 1-5. [01010100] Timeline 

 
 

[10101000] 
Component Magnitude Phase 

0 3 0 
1 1 -1.5707 
2 1 0 
3 1 1.5707 
4 3 0 
5 1 -1.5707 
6 1 0 
7 1 1.5707 

  
Figure 1-6. [10101000] Timeline: Magnitudes and Phases 

  

-3.14

-2.355

-1.57

-0.785

0

0.785

1.57

2.355

3.14

0 1 2 3 4Ph
as

e

Fourier Component

[10101000]
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[01010100] 
Component Magnitude Phase 

0 3 0 
1 1 -2.356 
2 1 -1.5707 
3 1 -0.7853 
4 3 3.14 
5 1 0.7853 
6 1 1.5707 
7 1 2.356 

 
Figure 1-7. [01010100] Timeline: Magnitudes and Phases 

 In both rhythms f0 is 3, meaning that the cardinality of the set is 3 and, by 

association, that the highest possible value for any given component in the span will also be 

3. If a magnitude value is equivalent to the cardinality, I will refer to it as perfectly maximal. 

From that, it follows that both of these rhythms have, given a cardinality of 3, a perfectly-

maximal magnitude value for f4. This means that for each period, each onset lands in the 

same position within f4’s periodic phase. To figure out which subdivisional pulse the specific 

component (fn) corresponds to—otherwise known as the period—one divides the span by 

the respective component. The period of fn equals the span (s) divided by the component (n):  

p = B8 

The span equals 8, and n equals 4, so 2 = ;:; the period is 2 units and is, therefore, 

notationally equivalent to a quarter note (two times the eighth-note pulse unit). In this case, 

the subdivision is a quarter note—splitting the measure into four—meaning that each onset 
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is positioned in the same quarter-note projection (see Figure 1-8). 

 

 
Figure 1-8. [10101000] and [01010100]: f4 

 Though their magnitudes are identical, the two timelines are positioned differently 

within the 8-note span. Phase, a component’s positioning in the span or array, shows how 

these positions differ. The phase value will always be a position that maximizes the 

components magnitude. Figure 1-9 represents each phase as a unit circle. This representation 

is possible because phases are cyclic. (The circumference of the unit circle is, by definition, 

2π.) The spaces in Figure 1-9 are known as phase spaces. Phase spaces (Phn) show the phase of 

a given component; Phn is simply the phase of fn in the form of a circle, ignoring the 

magnitude.16 To produce all phase spaces, one multiplies the integers in Ph1 by n. For 

example, to derive Ph2, multiply each integer in Ph1 by 2 in mod8: (1∗2)mod8, (2∗2)mod8, … 

(7∗2)mod8. This process divides the space into n parts—integers may, and often will, 

superimpose on the same modular position (Figure 1-9—these circles read 

                                                
16 Developed in Yust (2015); each phase space corresponds to one of Quinn’s Fourier Balances—see 

Quinn 2007, 2008. 
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counterclockwise).17 The value of ϕn refers to the rhythm’s orientation/position in the span. 

In ϕ4, the phase returns either 0 (upward) or π (downward), which means an onset will be 

on-the-beat oriented or syncopated; the north position 0, comprised of the onsets [0246], 

corresponds to metric downbeats, while the south position π, comprised of the onsets 

[1357], corresponds to upbeats. Turning back to Figure 1-4’s timeline, since ϕ4 of the 

[10101000] timeline equals zero, the positioning of the onsets is downbeat-oriented. By 

associating magnitude with phase, we can posit that every onset corresponds to a position 

“on the beat:” 

 
>: /Magnitude: We know that every onset lies at the same point in the period because >:  

is perfectly maximal (equivalent to the cardinality). 
ϕ4/Phase: The phase value equals 0, meaning it is downbeat-oriented. 

Magnitude with Phase: If >:  is perfectly-maximal—meaning every onset corresponds to a 
position that divides the span into 4 parts—and ϕ4 equals 0 (downbeat-oriented), then every 

onset must be on a downbeat. 
 

This logic also applies to the [01010100] timeline; because >:  is a perfectly-maximal value, 

everything lies in the same position of the period, and because ϕ4 equals 3.1415 (π), the 

whole timeline is located “off the beat;” the rhythmic pattern is syncopated. While these 

rhythmic examples are strictly pedantic, this example demonstrates how the DFT 

component may qualify syncopated-ness/downbeat-ness.  

                                                
17 If n is coprime with the cycle, then the complete phase spaces in modular space will not have 

superimposed numbers. 
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Figure 1-9. Phase Spaces for Z8 

 Take the timelines [11000001] and [10010010], shown in Figures 1-10 and 1-11. Like 

timelines 1 and 2 (in Figures 1-4 and 1-5), their span and onset cardinalities are equivalent; 

however, the first timeline contains closely packed onsets (012), while the second distributes 

the onsets over the span (036)—i.e., the first rhythm has onsets separated by 1 unit and the 

second has onsets separated by 3. We can also view these rhythms in terms of their 

distribution across the span. If we were trying to generate a maximally-clustered timeline of 

3-units, each with a unique location, within an 8-note span, the resulting timeline would 

include the (012) set; if we were trying to generate a maximally-even timeline of 3-units 

under the same conditions, the resulting timeline would include the (036) set.18 

 

                                                
18 John Clough and Jack Douthett, "Maximally Even Sets," Journal of Music Theory 35, no. 1/2, (1991): 

93-173.  
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Figure 1-10. [11000001] Timeline 

 
Figure 1-11. [10010010] Timeline 

 The magnitudes of the DFT components parallel our intuitive description of the 

timelines; Figures 1-12 and 1-14 show both the magnitudes and phases of Figures 1-10 and 

1-11 respectively. In Figure 1-12, f1 contains the highest magnitude: >2  ≈ 2.414. There is a 

high value for f1 because it approximates the division of the span (8) into n (1) parts, 

represented 8 = ;2, which means that the high magnitude value for f1 represents an onset 

cluster around a single point in the span (Figure 1-13). The tresillo rhythm ([10010010]) in 

Figure 1-11 is distributed maximally-evenly in an 8-note span—this is reflected by the high 

magnitude of f3 in Figure 1-14. The high magnitude of f3 means that this rhythm 

approximately divides the span into 3 parts. When we calculate p = BC for the tresillo timeline 

(p = ;=), the period value approximately equals 2.667—not a discrete value in an 8-span. 

Because the division (3) can not split the span (8) evenly, the highest possible magnitude for 

f3 in Z8 would have to be an approximated division of the space (and not equivalent to the 

cardinality)—hence the terminology maximally even. Figure 1-15 shows how this periodicity 

parses the space, and, given 3 onsets, how the tresillo timeline maximally divides this space 

into 3 parts. Both of these timelines are examples of a magnitude maximization of a specific 

component—this is made clearer when both graphs are compared next to each other (seen 

in Figure 1-16). 



 

 

15 

Component Magnitude Phase 
0 3 0 
1 2.414 0 
2 1 0 
3 0.414 3.14 
4 1 3.14 
5 0.414 3.14 
6 1 0 
7 2.414 0 

 
Figure 1-12. [11000001] Timeline: Magnitudes and Phases 

 

 
Figure 1-13. [11000001] Timeline: f1 

 
Component Magnitude Phase 

0 3 0 
1 0.414213562 0.785398163 
2 1 1.570796327 
3 2.414213562 -0.785398163 
4 1 0 
5 2.414213562 0.785398163 
6 1 -1.570796327 
7 0.414213562 -0.785398163 

 
Figure 1-14. [10010010] Timeline: Magnitudes and Phases 



 

 

16 

 

Figure 1-15. [10010010] Timeline: f3 

 
Figure 1-16. [10000011] and [10010010] Timelines: Magnitudes 

If we embed the topological unit-circle of the phases within a Cartesian plane, we 

can represent phases and the magnitudes of a given profile. Each onset is therefore 

represented in complex space as a vector, which inherently involves magnitude and 

direction. The magnitude of a component is the distance from the center, and the phase is 

the angle. Figure 1-17 demonstrates the process of plotting the tresillo into Ph1.  The onsets 

[0, 3, 6] are charted as vectors in the left diagram, which are combined together in the right 

diagram, resulting in a visual representation which displays both magnitude and phase.19 

Figure 1-18 is a diagram of all components in complex space for the tresillo rhythm 

[10010010]. In the component-3 space, due to the onset positions [0, 3, 6], all vectors extend 

in a similar direction. In fact, this is the farthest distance that any three unique onsets can 

extend in one direction in Ph3. Ph1 for the timeline in Figure 1-10 would also extend the 

                                                
19 “Combination” here means that an order of operations does not apply—any order has the same 

result, in contradistinction to “permutation.” 
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farthest distance that any three unique onsets can extend in one direction. In this way, the 

DFT is able to quantify evenness and clustered-ness for a given collection. 

  
 

Figure 1-17. Tresillo Timeline: Ph1 Tutorial 

 

 
Figure 1-18. Tresillo Timeline: Complex Spaces  

 The timelines in Figure 1-19 and Figure 1-20 appear to be similar. One apparent 

difference between them is that an eighth note is displaced; the voice leading between the 

two timelines—[10001001] and [10001010]—is [0,4,7]5,5,2 [0,4,6].20 We can intuitively 

                                                
20 Dmitri Tymoczko, Geometry of Music Harmony and Counterpoint in the Extended Common Practice (Cary: 

Oxford University Press, USA), 2010. 
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describe Figure 1-19 as a rhythm that evokes half-note impulses, (dividing the space into two 

parts with one onset at the end [7],) and Figure 1-20 as a timeline that conveys quarter-note 

impulses. The magnitude profile for Figure 1-19 correlates with our depiction (shown in 

Figure 1-21). The component with the highest magnitude is f2, which means that the pattern 

closely divides the span into two p = ;9 = 4, the half-note value.21  

 
Figure 1-19. [10001001] Timeline 

 
Figure 1-20. [10001010] Timeline 

 

Component Magnitude Phase 
0 3 0 
1 1 0.785 
2 2.236067977 0.463 
3 1 2.356 
4 1 0 
5 1 -2.356 
6 2.236067977 -0.463 
7 1 -0.785 

 
Figure 1-21. [10001001] Timeline: Magnitude and Phase 

                                                
21 The reason that >9 is not equal to the cardinality >5 is because of the final onset. The onset at 

position [7] is not reflected in the same half-note periodicity which contains [0, 4] (Figure 1-22). However, 
though the magnitude is not equal to the cardinality, for three unique onsets, this rhythm maximizes f2 for 
any three unique onsets in an 8-note span. 
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Figure 1-22. [10001001] Timeline: f2 

 Despite their proximity in voice leading space, the [10001010] timeline has a 

perfectly-maximal magnitude at f4 (Figure 1-23), instead of an approximated maximization of 

f2—such as for [10001001]. The displaced onset changes the rhythm so that f4 is perfectly-

maximized. In other words, with the displaced note’s new position, every onset is accurately 

positioned in terms of the quarter-note periodicity (Figure 1-24) (as opposed to the half 

note). The [10001010] timeline shares the same magnitude profile as the timelines in Figure 

1-4 and Figure 1-5. The difference, again, between this rhythm and the other two is its 

position in the measure. The phase of f4 is 0, which means the rhythm is downbeat-oriented. 

Using our previous proof, we know that, by combining phase and the perfectly maximal 

magnitude, everything lies on a downbeat. Both Figure 1-4 and Figure 1-24 have all onsets 

on the downbeats—hence ϕ4 = 0—however, their downbeat position in the measure is 

different. The phases spaces of f1 shows the phase of each pattern to be different (Figure 1-

25). The [10101000] timeline has the phase of the three onsets at position [2], hence why in 

Figure 1-25, ϕ1 locates the onset-collection at beat-class [2]; the [10001010] timeline has its 

phase at position [6], hence why ϕ1 locates the onset collection at beat-class [6]. 
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Component Magnitude Phase 
0 3 0 
1 1 1.5707 
2 1 0 
3 1 -1.5707 
4 3 0 
5 1 1.5707 
6 1 0 
7 1 -1.5707 

 
Figure 1-23. [10001010] Timeline: Magnitudes and Phases 

 
 
 

 
Figure 1-24. [10001010] Timeline: f4 
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Figure 1-25. [10101000] and [10001010] Timelines: ϕ1 

 

 By using the DFT, we view rhythms in relation to periodic structures. I have 

demonstrated how the Fourier components reflect our intuitive ideas about certain timelines 

while simultaneously qualifying rhythms in terms of certain concepts—such as syncopated-

ness, evenness, and clustered-ness. As I argue here, by examining rhythms through Fourier 

space, we can make analytical claims about rhythm at a local level, and, as I extend the 

approach through the rest of this thesis, to broad metrical structures throughout a piece.  

 

  

[10001010] 

[10001010] 
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CHAPTER 2. ONSET RETRIEVAL WINDOWED DFT SCRIPT 

The following chapter describes a coding procedure I implement in order to use the 

DFT analytically; thus far, we have only examined vectors with 8-unit spans, but in order to 

analyze entire pieces, consisting of thousands of onsets, a computer will expedite the 

process. Rather than count all note-onsets, and calculate the DFT for each piece of music, I 

chose to make a Python script to return the results. Python is a high-leveled program 

language that stresses readability.22 Like any coding language, Python it is a powerful 

resource because it is efficient when dealing with quantities that would be otherwise 

cumbersome to do by hand. Coding languages are double-edged swords in that they perform 

the exact task that was coded; in the retrieval process, there is no leeway—they attempt to 

perform the script indiscriminately, returning either the desired result or an error.  

 ORWDFT: Figure 2-1 shows a flow chart modeling how my code retrieves all the 

onsets, returns a series of overlapping windows throughout a piece, and then calculates the 

DFT on said windows (which will be defined below). Given the task—onset retrieval, 

windowing, and DFT calculation—the code will henceforth be referred to as the initialism 

ORWDFT. 

                                                
22 A high-level language (HLL) is easier to read and write than lower-leveled machine languages; HLLs 

mimic human language more closely. 
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Figure 2-1. Onset-Retrieval/Hanning-Window/DFT Flowchart 
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Retrieval: The code uses the music21 package to unpack a score’s note information, 

checking for “.Chord” or “.Note” types and monitoring the “offset” position of these 

occurrences.23 In other words, it scans for situations where a note sounds and appends the 

“offset” position of where that note occurs in relation to the beginning. It then appends the 

“multisetCardinality”—the amount of notes sounding simultaneously—of each instance to a 

corresponding offset position in a list. The retrieval portion of the code returns an 

isomorphic vector that retains relative positioning of onsets within an XML file. Each onset 

is represented by 1, so for a multiset the onset density located at that position matches the 

cardinality—for a C major triad [C, E, G] the cardinality is 3; for a C major triad [C, E, E, G] 

the cardinality is 4.  

 Subdivisional Accommodation: The code creates windows as a vector space filled 

with zeros that occupy subdivisional positions corresponding to musical events. Therefore, a 

tresillo rhythm, corresponding to the input [10010010], can be padded with twice as many 

zeroes to expand the array to [100000010000001000].24 This zero padding process allows for 

smaller subdivisions, and retains the input’s proportions. The end result is a list comprised of 

proportionally-related onset values referred to as a Discrete Time Series. 

Definition 1. Discrete Time Series: A time series T = t1,…tl is an ordered set of l 
discrete-values variables. 

 
Windowing: To simulate the progression of metric states over the course of a piece, 

and to track the changes of these states, the code proceeds to extract overlapping Windows 

                                                
23 Music21 is a Python package which has been supported by the School of Humanities, Arts, and 

Social Sciences at M.I.T. Michael Scott Cuthbert is the principal investigator. It, in simple terms, is a 
toolkit to aid in computational music studies. To read more about “.Chord,” “.Note,” and “offset” see the 
music21 documentation. 

24 Note that in Python, arrays are technically represented as “lists” of integers. 
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from the overall onset list (the Discrete Time Series). By overlapping the windows, we can see a 

gradual progression from one metric state to the next.  

Definition 2. Windowing: A subsequence Sy of T is of length w < l of adjacent 
positions from T. S = ty,…ty+w-1 for 1<= y <= l-w+1  

 
Snapshots returned from the ORWDFT generate a series of windows with initial onsets 

separated by the notated quarter note. The specified window size could potentially privilege 

certain periodicities, so to prevent this bias I implement a windowing function to weight the 

array towards the middle – a bell curve weighting called the Hanning window. Where N is the 

length of the array, for n in N:  

! " = 	 .5 − .5 cos 2,"
- ,							0 ≤ " ≤ - − 1 

 

Phase Shifter: While the magnitude is unaffected by the ordering of the elements 

within the list, phase is affected. Because phase involves positioning of the component in the 

span, when discussing phase values in music, it is important to distinguish between notated 

measures, and the window.  As the scanning window shifts over through the onset list, the 

resulting phase values will consistently change with each new array because the calculation 

on its own does not account for the scanning movement—this requires a new calculation for 

each window to see where the phase value is positioned in the span. Take Figure 2-2, which 

clearly conveys 44. The vector form of a four-measure group would assign 2’s to all positions 

that have a multiset (two notes sounding simultaneously) and 1’s to positions having just 
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quarter notes, like this: [2111211121112111]. When the window moves over one position—a 

quarter note—and continues to scan starting from the second beat of the notated measure, 

the following vector would appear as: [1112111211121112]. The magnitudes of both of these 

vectors would still be identical, but the phases would vary because of their different 

positioning in the vector. As the window moves through the music, the phase value will be 

aligned indiscriminately to the new window. This is not inherently negative; in fact, we can 

still calculate the same value of phase from this newly situated position, but we would have 

to calculate it for every new shift. Because it is easier to have a consistent reference point, 

rather than recalculating where the phase is in every window, the code preemptively 

implements a phase shifter to compensate for the sliding element of the sliding window. 

 

Figure 2-2. Phase Shifter Example 

To accommodate for the quarter note shifting, if, for each shift, we reposition each 

element in the array “back” one quarter note, then the phase values will remain anchored to 

the original notated barline: [1112111211121112] → [2111211121112111].25 This way the 

phase does not need to be recalculated for every shift the window makes, and we can instead 

reference its position to the notated measure (based on the first scan); if the piece starts on a 

notated downbeat, the phase values will always be calculated in reference to the notated 

downbeat. It is easier to normalize the phase so that the notated downbeat always aligns with 

                                                
25 Where ℤn is a cyclic space of the vector input V, and T is a linear transformation mapping V → W, 

the phase shifter operation is  4 567(9:;5) W. Therefore after the phase shifter, the second notated beat 

is normalized [1112111211121112] 7=67(9:;7=) [2111211121112111].  
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one position, and in this way the phase remains anchored to the notated bar line.26 Note that 

the code does not recognize notated changes in meter and does not reset to new positions 

for the barlines—it behaves as the music was notated in a consistent meter throughout. The 

organization of the notated meter vis-a-vis the sliding window position will be relevant later 

in this paper when examining a piece that has frequent shifts in meter, and resultant shifts in 

phase-values. 

 

2.1 Phase Tracking 

 As an example of how phase tracking works, take the exposition from Mozart’s 

Symphony No.41, K. 551, “Jupiter,” seen in Figure 2-3. The meter is an unmistakable pure 

duple, integrating periodicities at the quarter-note, half-note, and whole-note levels.27 After 

scanning with the ORWDFT, the magnitudes for these components are comparatively high, 

so by isolating one of these components and following the phase, we will be able to track 

how the music “moves” within the span. In other words, does the meter become displaced? 

Are there onset groupings that challenge the previously established phase? By following the 

phase of multiple musical lines, we can discuss theoretical ideas like metric displacement and 

syncopation.28  

                                                
26 As a reminder, the phase shifter this does not affect the magnitude because only the placement in the 

list has changed.  
27 Richard L Cohn, "The Dramatization of Hypermetric Conflicts in the Scherzo of Beethoven's Ninth 

Symphony" (19th-Century Music) 15, no. 3 (1992): 188-206).  
A Pure meter, by Cohn’s definition, refers to when a meter consists of subdivisions that are a power of 

some prime integer. In the case where the complex—analogous to span—is 16, it is pure because it is only 
divisible by 24 (as opposed to a mix of two primes). 

28Note that the phase shifter makes it easier to see all of these features in terms of an absolute 
reference point. Without the phase shifter, it would still be possible to compare DFT results and find 
these theoretical ideas, but each calculation would be isolated; the phase shifter effectively gives a 
reference point for phase values. 
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Figure 2-3. Mozart Symphony No. 41, K. 551 “Jupiter” Exposition, mm. 1-25 
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Figures 2-4 and 2-5, respectively, show the phase and magnitude of f8—the 

component that corresponds to the half-note pulse. Rather than showing a metric profile of 

a single metric state, which visualizes every component at an immediate instance from one 

calculation, I chose to isolate f8 and graph both the phase and magnitude over time. The x-axis 

represents the starting beat of the window, and each point on the phase line-graph 

corresponds to a point on the magnitude graph. To determine what measure the starting 

position of the window corresponds to, divide by 4 and add 1 (because in this example we 

have measures of 4 beats). The window position corresponds to that measure—if there is a 

floating integer remaining, it refers to the exact position within that measure. For the phase 

graph, “0” on the y-axis corresponds to the notated downbeats of the score. A positive value 

is “behind” the beat, and a negative value is “ahead” of the beat. The phase generally stays 

within the same range for the whole exposition. This can be interpreted as the half-note 

value being consistent in its placement in the phase, and, referring to the score in Figure 2-3, 

we realize these results make sense for the notated music; the notated music has strongly 

weighted onset groupings on beats 1 and 3.  The phase in Figure 2-4 lies just above 0, which 

means that the phase is positioned just behind the beat. Given that, the plateau of phase 

values just above zero is pushed positive due to the grouping of sixteenth-note triplets that 

propel the music to the downbeats. Therefore, the phase graph displays how the music is in 

phase with the given downbeats, but also depicts how there is a solid group of onsets just 

before. 
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Figure 2-4. K. 551 “Jupiter” Exposition: f8 Phase 

 
Figure 2-5. 551 “Jupiter” Exposition: f8 Magnitude 

In Figure 2-4, there is a change in phase around measures 60-85, approximately 

corresponding to mm. 15-–20. After a brief examination of the score, it is obvious that these 

alterations are caused by the syncopations in the flute, violin I, oboe and horn. Up until 

measure 15, the half-note projections have primarily been grouped with the notated 

downbeats. It is these syncopations placed on beats 2 and 4 that challenge the previously 

established projection stream—the projection on the off-beats has an opposing phase. By 

positioning themselves in a way that directly opposes the half-note, the magnitude value 
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drops significantly (seen in Figure 2-5), and as a result, destabilizes the phase, making it 

much more malleable.29 What this means musically is that stimuli opposing the established 

magnitude—here the syncopation—makes the phase easier to manipulate. This captures 

what Krebs would call “preparation,” or the more gradual manner of moving from 

consonance to dissonance; drops in magnitude and phase destabilization captures the 

process of introducing dissonance. 

The influence of magnitude on phase can be portrayed in an analogy. Imagine a trip 

through the city: both Achilles (A) and the Tortoise (T) are trying to attend a musical 

performance at Symphony Hall (SH), located on Huntington Avenue (Figure 2-6a). They are 

both on Massachusetts Avenue, which is a street perpendicular to Huntington Avenue. 

Despite Achilles and the Tortoise being on the same perpendicular street, the Tortoise is 

closer to the hall itself. In this analogy, phase represents the streets/angle from the 

intersection, and magnitude is the distance from the intersection. The Tortoise is able to 

change his respective angle in relation to the intersection with relatively little movement. 

Figure 2-6b shows a series of angles from the intersection (which represents phase). The 

distance that each character needs to move to reach a point that shares the same angle from 

the intersection is not equivalent in movement through their pathways—Achilles must move 

significantly more than the Tortoise. A lower magnitude value means that the phase will be 

more susceptible to change.  

 

                                                
29 Because phase is easily influenced without a high magnitude, it is important to use both in 

tandem—a phase that shifts willy-nilly will have an insignificant magnitude.  
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Figure 2-6a A Trip to Symphony  Figure 2-6b. Angles from the 

Intersection 

 As discussed in the DFT walkthrough from the first chapter, we can map the phase 

and magnitude onto a unit circle by translating into its polar form on the complex plane.30 

Figure 2-7a shows the magnitude and phase of f8 of Mozart’s K. 551, visualizing both 

magnitude and phase in a complex plane. The cluster of points near “15” on the x-axis 

represents the average positioning of the phase for the exposition. To navigate the tangled 

paths, Figure 2-7b and Figure 2-7c divide the phase tracking into two visualizations—Figures 

2-4 and 2-5 should be used in conjunction to understand how magnitude and phase interact. 

In Figure 7b, the red triangle corresponds to the first window. As expected, the phase there 

is located in the center of the point-cluster, and of our average phase value overall (as shown 

previously by the plateau in Figure 2-4). The red triangle that marks the ending of the scan 

(in Figure 2-7c) is also positioned in the same area, signifying that both the phase and 

magnitude are similar.  What this means musically is that, after the end of the exposition the 

                                                
30 Given magnitude and phase, to return polar coordinates: 
(> = ?5 ∙ cos	(A5) , B = ?5 ∙ sin	(A5)) 
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phase reverts back to what it was at the beginning—the music returns to a stable 44. 

Yellow squares are farther from the center-point of the circle, and refer to moments 

of high magnitude, while green squares are closer to the center-point and are areas of low 

magnitude. Each point refers to a quarter note in the score.31 The two windows 

corresponding with beats 78–79 (bridging Figures 2-7b and 2-7c) are halfway through 

measure 19. The low magnitude at that moment is due to the reiterated eighth-note 

subdivisions. The even subdivisions flatten the magnitude, and create little preference for 

other components. As a result, these moments visually correspond to positions close to the 

circle in the phase space for f8. The phase remains almost entirely in quadrant I—this is 

representative of a piece that remains consistent in its meter and placement of said meter. 

The sliding window and general changes will inevitably move the phase value around—

hence the movement within quadrant I—but what is mainly relevant is if it clusters around 

the same area in that quadrant. The one point at which the graph dips into quadrant II can 

be explained by our discussion of Achilles and the Tortoise; with the already low magnitude, 

movement in phase is more dramatic—this makes it harder to locate a position of a metrical 

layer. While the phase in the Jupiter is straightforward, I will discuss more complex phase 

interpretations in later analyses.   

                                                
31 If a piece consistently maintains one notated meter, to find the musical beat corresponding to a 

given point, divide the point-number by the measure. The remainder is the beat in that position. In the 
Jupiter Symphony, we have 4 beats per measure. Say we are trying to find which musical position 
corresponds to the 70th window: 70 /4 = 17 with a remainder of 2. The position of the 70th window is 
measure 18 on the second beat. 
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Figure 2-7a. Mozart K. 551, f8 Complex Space 

 

 
Figure 2-7b. Mozart K. 551, Complex Space for f8, part 1 
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Figure 2-7c. Mozart K. 551, Complex Space for f8, part 2 

2.2 GENERAL REMARKS ON METHODOLOGY 

Some aspects of the coding method are unfavorable; in many ways, the computer 

ignores many salient features of the music such as harmony, melody, timbre, dynamics, or 

anything that is not a note onset. The code isolates note-onsets, separating them from other 

musical parameters. This method is idealist in many aspects; 1) it assumes that any musical 

parameter can be isolated from a multitude of others; 2) it takes the notational system of 

note-proportions to be accurate, where, by way of expressive timing/tempo changes, it often 

is not;32 and 3) it may inaccurately model the complex process of music perception involved 

in rhythm because it isolates onsets as its only input. Alternatively, because the code returns 

one parameter of the music, by examining rhythm and the relationship between local and 

global timelines, we can assess its interaction with other parameters. The windowing aspect 

                                                
32 Andreas C. Lehmann, “Expressive variants in the opening of Robert Schumann’s Arlequin (from 

Carnaval, op. 9): 54 pianists’ interpretations of a metrical ambiguity” in Music and the Mind, ed. by Iréne 
Deliège and Jane Davidson (Clarendon Press, 2011), 311-–324.  
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puts the music in terms of a gradual progression—onsets projected through time—which 

means that we have the ability to compare formal aspects of the piece to the Fourier 

components in order to examine how the components relate to form and how the 

components relate to each other.  

In general, the efficiency of Python makes this project possible in the first place; if 

not for the computational aspect of the project, the windowed-onset-retrieval process, and 

DFT calculation would take months. This project is essentially exploratory—a way of testing 

if the DFT is a valid methodology for rhythmic evaluation. Whether the Fourier 

components (with regard to rhythm) parallel our intuitive thoughts about musical rhythm in 

larger formal contexts, or not, I explore the approach in hopes of expanding analytical tools 

for rhythmic/metric discourse.  
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CHAPTER III: BRAHMS, STRING SEXTET NO. 2 – PRESTO GIOCOSO 

This paper implements the analytical instruments established earlier in the previous 

chapters. The analysis examines the relationship of rhythm and meter to the form of the 

Presto Giocoso Trio from the second movement of Brahms’s Second String Sextet, 

comparing different metric models to the DFT’s results. I will show, throughout this 

chapter, how the Discrete Fourier Transform (DFT) represents rhythmic characteristics in 

the music, and how these results are compatible with different metric reifications. 

Figure 3-1 shows the anacrusis of measure 121 to measure 135 of the Presto 

Giocoso—the start of the 16-bar A section. The lowest subdivisional level in this excerpt is a 

quarter note, and everything lands on a quarter-note periodicity. This means that whichever 

Fourier component divides the span into quarter notes will have a perfectly maximum 

magnitude; Figure 3-2 shows the first four-measure span arranged as a DFT metric profile. As 

mentioned in Chapter 2, which discusses the ORWDFT process, the retrieval code will 

return a windowed series of profiles, with many having trivial components just by 

accounting for excessive subdivisions. In Figure 3-2, I exclude all but f0-48, showing some of 

the trivial values (just to visualize how the full profile would repeat). Because the retrieval 

code accounts for lower subdivisions than what occurs in the music, the DFT will return a 

total of 288 components, but after accounting for the smallest subdivisional unit notated, the 

other components will be trivial. If the music contained smaller note values, fewer 

components would be trivial; the only non-trivial components are f0-6, shown in Figure 3-2b.  

For the Brahms piece, the metric profile reads in a four-measure span comprised of 288 

values.  
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The quarter-note periodicity corresponds to f12 because the window is four measures long 

and contains 12 quarters. f12 is perfectly maximal—equivalent to f0—which, as stated in 

chapter 2, means that every onset aligns with the quarter-note subdivision.33 The x-axis of 

Figure 3-2a and 3-2b show the components and which notated subdivision they correspond 

to. 

 
Figure 3-1. Second String Sextet, II, Presto Giocoso: mm. 121-135 

 

 
Figure 3-2a. Presto Giocoso: Magnitude for mm. 121–124 

                                                
33 Note that, due to the weighting of measures, f0 is different than the cardinality of onsets in the four-

measure span. The mathematics behind the DFT/FFT treats the time-domain snapshot as periodic. This 
often causes poor representations at the ends of the snapshot. In order to accommodate for this 
discontinuity, “windowing” functions alter the edges of the snapshot to approach 0—eliminating the 
issue. See chapter 2 for windowing information. 
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Figure 3-2b. Presto Giocoso: Magnitude for mm. 121–124, Non-Trivial 

The Presto Giocoso introduces a metric conflict at the incipit which becomes 

enlarged and manipulated through the development of the piece. The conflict emerges 

between the upper three and lower three string parts; the upper strings iterate half-note 

subdivisions, while the lower strings iterate dotted half-note subdivisions—what Danuta 

Mirka would call a split dissonance—metrically dissonant because it occurs between the two 

lines.34 This direct, grouping dissonance—metric dissonance in which the grouping of units is 

different—is prominently articulated by the opposition of subdivisions at the same metric 

level, between the half note and dotted-half note.35 If the musical lines were separated, the 

upper strings would hypothetically convey a 32 meter, while the lower strings would convey 

6
4.

36 We will examine the piece in DFT space below, but for the moment, let us examine the 

                                                
34 Danuta Mirka, Haydn and Mozart: Chamber Music for Strings, 1787-1791 (Oxford University Press, 

2009). 
35 Harald Krebs, Fantasy Pieces: Metrical Dissonance in the Music of Robert Schumann (New York: Oxford 

University Press, 2003). 
Peter Kaminsky, “Aspects of Harmony, Rhythm and Form in Schumann’s Papillons, Carnaval and 

Davidbündlertänze” (Ph.D. Dissertation, University of Rochester, 1989). 
36 I use “hypothetically” because metric entrainment is far more complex than a series of onsets 

corresponding—this is idealistic. Justin London explores metric entrainment in depth in: Justin 
London, Hearing in Time: Psychological Aspects of Musical Meter (New York: Oxford University Press, 2012). 
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passage through the lens of Richard Cohn’s metric ski-graphs. Subsequently, I will show how 

the DFT accommodates an interpretation compatible with the ski-graphs.37 

In his 1992 article, Cohn describes a metric interpretation as a series of pulses in terms 

of integers that numerically represent their relative duration.38 For example, a meter with a 

quarter note, a half note, and dotted-whole note subdivision is <1, 2, 6>, conventionally 

known as 32 —and which Scott Murphy calls this pulse representation.39 These integers can be 

represented proportionally from largest pulse to smallest; the proportion of a dotted-whole 

note to half note subdivision is =G = 3 and the proportion half note to quarter note 

subdivision is G7 = 2. This is represented as “[32]”—Murphy calls this factor representation. The 

metric conflict in Brahms’s Presto Giocoso is shown in both pulse and factor representation 

below: 

Upper 3 Strings: <1 2 6> or [32] 
Lower 3 Strings: <1 3 6> or [23] 

These relationships are visually depicted by a metric ski-graph in Figure 3-3. In a ski-hill 

graph, each point is a specific, subdivisional pulse. Starting at the top of the graph, any 

pathway down the ski-hill results in a meter, and any pathway down the mountain is viable. 

A different pathway (or a different color) represents a different meter. 

                                                
37 Richard Cohn, "Complex Hemiolas, Ski-Hill Graphs and Metric Spaces," Music Analysis 20, no. 3 

(2001): 295–326.  
38 Richard Cohn, "Metric and Hypermetric Dissonance in the Menuetto of Mozart's Symphony in G 

Minor, K. 550," Intégral 6 (1992): 1-33. 
39 Scott Murphy, "Metric Cubes in Some Music of Brahms," Journal of Music Theory 53, no. 1 (2009): 1-

56.  
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Figure 3-3. Presto Giocoso: Direct Metric Dissonance 

Trained musicians often intuitively assign metric interpretations to excerpts based on 

periodic patterns, harmony, phrase, etc. However, a machine without a previously written 

schema or probabilistic model lacks the referential element that we, through statistical 

learning, naturally bring to the analytical process. So, if a computational or mathematical 

method reaffirms our interpretations, it, in a way, validates the method in part. Our 

interpretations are indeed reaffirmed by the DFT. Figure 3-2b shows both a prominent half-

note subdivision (f6) and a dotted-half-note subdivision (f4). The metric profile also shows a 

prominent dotted-whole note (f2), and a whole-note subdivision (f3). When the code reads in 

the entire score, the dotted-half note pulse will inherently distribute the energy of the half-

note pulse, so the rhythmic conflict is more apparent when the instrumental lines are run 

separately; the magnitudes for the above components are more pronounced when isolating 

the instrumental lines, as shown in Figure 3-4a and 3-4b. My original interpretation of the 

passage omitted a whole-note division because it is incompatible with the harmonic-melodic 

material—particularly the lower string pattern, which articulates the 34  “oom-pah-pah” 

figure—and bar-line division; however, the ORWDFT code, which only takes onsets, 

ignores the harmonic-motivic implications and reports that the passage has an approximated 

whole-note presence. A metric-ski graph signifying the DFT’s reported information looks 
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like Figure 3-5.40 

 
Figure 3-4a: Metric Profile for Upper Strings, mm. 121–124; Figure 3-4b: Metric Profile for 

Lower Strings, mm. 121–124 
 

 
Figure 3-5. Presto Giocoso: Direct Metric Dissonance – DFT 

 The metric ski-graph does not include information about how those subdivisions are 

positioned in the span. But phase, as shown in the introduction and tutorial (in Chapter 1), 

does supply another element to interpret. Figure 3-6 shows the phase for measures 121–

124—trivial components omitted. The half-note subdivision (f6) divides the span into 6 

periods, and since we know from ?7G  that everything occurs on a quarter-note subdivision, 

every onset will be positioned in either one of two positions within ϕ6— either the north or 

                                                
40 One must be careful, however, not to assign components to subdivisions. The FT can distinguish 

higher subdivisional elements if they are differentiated in some manner, but otherwise it does not 
recognize nested structure. For example, a stream of straight quarter notes would return a 0 value for the 
components corresponding to any other subdivision. This will become important later. 
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south hemisphere in phase space. Musically, this means that if ϕ6 = 0, then a majority of 

onsets are occurring an even number of beats from the initial anacrusis; if ϕ6 = π, then the 

majority occur an odd number of beats. Because the periodicity cuts against the notated 

meter, no phase value consistently corresponds to the downbeats.  

The value of ϕ6 is 3.14 (or π), meaning that the majority of half notes occur an odd 

number of beats from the notated onset; that is, the majority of onsets fitting f6 occur on the 

first notated downbeat. Referring to the score, we confirm that more half notes are 

accounted for in a pulse-stream starting on the notated downbeat.  

 
Figure 3-6. Presto Giocoso: Phase, mm. 121–124 

f4 corresponds to a division into 4 parts, so in a span of 4 measures, each period is a 

measure. I have represented Ph4 in Figure 3-7.41 The superimposed numbers are all in the 

same position of their respective period. The results actually oppose our intuition; the phase 

for f4, is close to the top quadrant, which says that the starting onset (the anacrusis to 

measure 121) is a good fit for the division into 4 parts. Without considering harmony, 

register, parallelism, or any other parameter, the DFT has reported that, due solely to onset 

                                                
41 Rather than represent the phase-space offsets with values of 24 (which is equivalent to the quarter 

note because of zero-padding), I have reduced each beat by a factor of 24. This means that 0 is the 
starting onset, 1 is a beat after, 2 is the third beat, etc. 
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information, the approximate start to the projected measure should be the anacrusis. If, say, 

an analyst was presented with the score and asked to label onset values and periodicities with 

those onsets, they would also get the same results. Even though the information seems in 

part counter-intuitive, it shows that the upper strings project a half-note division that goes 

over the barline, often omitting the notated downbeat. Instead, there are more onset values 

towards the pick-up to those bars, thus falling under the jurisdiction of the f4 periodicity 

starting on the anacrusis to measure 121.  

 
Figure 3-7. Presto Giocoso: Ph4 

A major benefit of the ORWDFT code is that it takes snapshots of the onsets and 

calculates a progressive metric profile as the piece proceeds.42 This way, we can trace 

developments in the metric profile or isolate specific moments in the music.43 Figure 3-8 is a 

sequential chart that shows how the metric profile changes (over time) in the passage. The 

following analysis extrapolates from Figure 3-8 by interpreting how these metric profiles 

relate to form, and their connection to other metric theories (such as Cohn’s). 

                                                
42 The ORWDFT code calculates overlapping windows in a piece of music—the specific overlap can 

be changed manually in the code. In this paper, I implement a window value of 24 (the quarter note), 
meaning that the window shifts over by a quarter note for each profile returned.  

43 The overlapping windowing technique is able to show metric progression; however, this technique 
inaccurately portrays a sectional shift when music drastically changes subdivisions. Either way, the results 
need interpretation. 
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Figure 3-8. Presto Giocoso: Metric Form Progression, Magnitudes
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After measures 121–124, the next significant difference in profile occurs from 

measures 132–135, when all strings iterate a quarter-note periodicity (Figure 3-9). The profile 

is flat, aside from f0-1, because it lacks periodic information. The metric ambiguity of the 

rhythm within this window leaves the state of metric conflict open; for a few measures, the 

meter is actively suspended, replaced by a blank canvas onto which we, as listeners, can 

impose our preferred meter.  

 
Figure 3-9. Presto Giocoso: Magnitude for mm. 132–135 

Before measure 153, the metric state toggles between the profiles in Figure 3-2 and 

Figure 3-9. The recurrence of profiles has formal implications. The opening phrase from 

measures 121–136 is a 16-bar nested-sentence: 4 + 4 + 8 (2 + 2 + 4), followed by a parallel 

phrase. The nested continuations of the phrases (133–136 or 149–152) are the shifts in 

metric profile to from Figure 3-2 to Figure 3-9. In context, the metric profile in Figure 3-9 is 

a case of metric liquidation. Liquidation—first mentioned in Schoenberg’s Fundamentals of 

Musical Composition—occurs in the continuation portion of the presentation-continuation 

model of phrases.44 William Caplin defines liquidation as “the systematic elimination of 

                                                
44 Arnold Schoenberg, Fundamentals of Musical Composition (Faber, 1970). 
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characteristic motives.”45 Liquidation is normally a melodically-oriented element, but here 

the metric conflict also dissolves, due to the ambiguity at the end of the phrase.  

 The profile from mm. 153–156—the transition—shows various changes from the 

previous profiles. Most visually apparent is the expansion of non-trivial components from f0-6 

to f0-12. There is a significant reduction in !"# , which, since the start of the piece, has been 

equivalent to !$ ; because of the eighth notes in measure 153, not every note lands on a 

quarter-note periodicity. Figure 3-10 has a high magnitude for the quarter-note, dotted-half-

note, and dotted-whole-note periodicities, while the magnitude of the half-note periodicity 

(f6) is now practically 0. The dotted-quarter-note periodicity (f8) is also significantly larger—

now, non-trivial. The newly surfaced eighth notes add a smaller subdivisional unit, and, 

consequently, occupy another level in the metric ski-hill graph, seen in Figure 3-11.  

 
Figure 3-10. Presto Giocoso: Magnitude for mm. 153–156 

                                                
45 William E. Caplin, Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, 

Mozart, and Beethoven (Oxford: Oxford University Press, 1998), 11. 
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Figure 3-11. Presto Giocoso: Ski-Hill Graph for mm. 153–156 

 The profile for measures 153–156 (Figure 3-10) indicates a metric preference 

towards 64 [232] (the red slope in Figure 3-11) in the metric ski-graph, and also presents 12
8  

[223] (the purple slope) as an option. A dotted-quarter note followed by three consecutive 

eighths may, and often does, convey either 68 or 12
8 ; however, when harmony is factored in, 

the prevailing meter is clearly either 34 or 6/4 (see Figure 3-12). In measure 153, the Bs in the 

second violin and first cello are upper neighbors to the fifth scale degree in the V7 chord 

(D7). 34 (or 64) is further enforced by the quarter note at the end of each 2-measure grouping. 

The phrase structure for the transition is a 12-bar phrase, comprised of two 6-bar 

subphrases—contrasting the normative 4-bar phrases that have been implemented thus far. 

 
Figure 3-12. Presto Giocoso, mm. 151–162 
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 Each pathway down the ski-hill in Figure 3-11 results in a different meter 

(represented in factor notation here): [222], [322], [232], and [223]. The factor notations 

represent the meters 44, 32, 64, and 12
8  respectively. Scott Murphy’s metric cubes represent the 

proportional relationships so that each point on a cube represents a hypothetical meter.46 

Each point on the metric cube shown in Figure 3-13 corresponds to a path down the metric 

ski-graph in Figure 3-11. Though they can both represent meter, proximity in these spaces 

varies: the ski-hill diagram represents meter through a pulse-representation model, 

connecting literal meters that differ by one pulse level; the metric-cube diagram represents 

meter through factor representation, connecting meters whose factors differ by 1. Because the 

factor representation examines the underlying proportional relationships of subdivisions, it 

may show structural connections in a piece differently. For example, in the ski-graph, the 

initial conflict (blue to red) is one pulse-movement away, but in the metric cube they are 

shared by the same cube-face, yet are still two point-adjacencies away. A metric cube 

includes more possibilities because it does not lock top or bottom subdivisional values as the 

ski hills do—direct movement in the cube will always change the top or bottom 

subdivisional values. 

                                                
46 Scott Murphy, "Metric Cubes in Some Music of Brahms," Journal of Music Theory 53, no. 1 (2009): 1-

56.  
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Figure 3-13. Presto Giocoso: Metric Cube for mm. 153–156 

 The music thins in the B section (measure 165), both texturally and rhythmically 

(Figure 3-14). The profiles for mm. 165–168 (Figure 3-15) and mm. 169–172 (Figure 3-16) 

both have significantly lower f0 due to the lower frequency of onsets in this passage.47 While 

the initial conflict in mm. 121-124 directly juxtaposed the dotted-half-note subdivision (f3) 

with the half-note subdivision (f6) in different auditory streams, mm. 165-172 presents these 

durational projections consecutively in the same stream. Because they are in the same 

stream, Mirka considers this a merged dissonance.48 The product is an alternation between two 

4-bar hypermeasures of the two different periodicities f4 and f6. This expresses the hemiolic 

character of the initial conflict in a new way: horizontally (indirectly dissonant)—as opposed 

to vertically (directly dissonant). Even the slur markings in the other lines group 6 quarter 

notes together, a span divisible by both 3 or 2, underscoring the grouping dissonance.  

                                                
47 The y-axis is scaled down. In cases where the magnitudes are relatively low, it may be beneficial to 

normalize the values:  
+,
+$. 

48 Danuta Mirka, Haydn and Mozart: Chamber Music for Strings, 1787-1791 (Oxford University Press, 
2009). 
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Figure 3-14. Presto Giocoso, mm. 163–176 

   

 
Figure 3-15. Presto Giocoso, mm. 165–168 

 
Figure 3-16. Presto Giocoso, mm. 169–172 
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The half-note pulse (f6) that dominates the second 4-bar gesture begins misaligned 

with the upbeat to measure 169, causing one of Krebs’s metrical dissonance types: 

displacement dissonance. Displacement dissonance occurs when the “position of the first unit is 

shifted either forward or back in time.”49 In this case, the displacement dissonance is indirect; 

the dissonance occurs within a single line and, thus inherently, the dissonance exists between 

two consecutive, differing meters. Because displacement has to do with metric positioning, 

phase values will provide us with information. However, with only quarter notes, ϕ6 will only 

have values at π or 0—not very informative for phase tracking. Additionally, because the 

magnitude of f6 is close to 0 for mm. 165–168, the phase value there is essentially 

meaningless. To concentrate on the displacement, I focus strictly on the upper three string 

lines in Figure 3-17 from mm. 165–179. The magnitude/phase values are shown over time in 

Figures 3-18a and 3-18b below; every beat in Figure 3-17 corresponds to a “point” in Figure 

3-18’s graphs. The plateaued phase is locked on 0—corresponding with the upbeat of the 

whole piece. Here, 0 is also the upbeat to measure 165.50 ϕ6 provided us with a steady phase 

throughout the passage because it has two options, but it tells us nothing about the 

displacement dissonance that starts in the upbeat to measure 169.  

                                                
49Nicole Biamonte, “Fomal Functions of Metric Dissonance in Rock Music,” Music Theory Online 20.2. 
50 The spike in measure 24 is related to its negligible magnitude, along with an onset grouping on pi 

(on beat 24).  
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Figure 3-17. Presto Giocoso, measures 165–179 

 
 

Figure 3-18a. and 3-18b. Phase and Magnitude for f6: windows from mm. 165–179 
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By tracking ϕ3, we can build on the information gained from f6. This, at first, seems 

counterintuitive when thinking in terms of the DFT; the DFT on a consistent half-note 

stream would have nothing for the whole-note component, because it would be accounted 

for by the half note’s component.51 I argue that looking at ϕ3 here, in addition to f6, has 

analytical benefits. f6 gives us relatively little information on positioning because it will either 

return 0 or π, but we can locate the position of streams more accurately with the help of f3. 

Though the magnitude for f3 should be relatively low throughout, the phase value, while 

unstable, should still be able to provide us with worthwhile positioning information. The 

following three visuals are used in conjunction to show the phase tracking in this passage:  

Figure 3-17 - Shows a score of the passage. 
 
Figure 3-19 - Phase tracking results for ϕ3. Every beat in Figure 3-17 corresponds to 
a point in Figure 3-19’s graph; the brief plateaus and windows discussed are marked 
with color. 
 
Figure 3-20 - The phase pathway of Figure 3-18 on a circle. The discussed moments 
are marked in color, coordinating with Figure 3-18 as well.   

 
The phase starts at –1.57 (or –π/2), marked by the green circle in Figure 3-19. Remember 

that, because the entire piece starts on an upbeat, the phase value is relative to the first 

window—the anacrusis to the first beat. Therefore, in Figure 3-19b, the value 0 is the 

anacrusis, and –1.57 corresponds with notated downbeat. As the window continues to scan, 

and displacement is introduced, the phase moves clockwise (or upward in Figure 3-19a). The 

windows starting on the sixth beat plateau pick up the half-note pulses in the center of the 

                                                
51 More aspects of how this the DFT epistemologically relates to meter will be taken up later in the 

conclusion. 
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window, returning a value around 1.57.52 The positive value 1.57 is metrically equivalent to 

beats {3, 11, 7} in the 4-bar window. In this way, ϕ3 is showing the displacement dissonance 

starting in the upbeat to measure 165. Starting in the thirteenth window, the phase plateaus 

again at π, this time for a longer string of windows. This point corresponds to measure 169, 

where the whole-note periodicity is maintained for the next (notated) 4 bars. The 

approximate phase value for these windows (π) positions the onsets—which divide the 4-bar 

span into 3 parts—at {2, 6, 10}. A look to the score confirms this as the continuation of 

half-note impulses. The phase returns to its original position as the parallel phrase begins 

again. While ϕ6 told us that the phase is steady throughout this passage, at a larger metric 

level, ϕ3 tells us about the different phase positioning of the “4
4” meter groups. 

 

Figure 3-19. Phase Tracking for f3: Upper String Lines, mm. 165–179 

                                                
52 The center of the window is weighted the highest. 
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Figure 3-19b. Phase Tracking (Circle) for f3: Upper String Lines, mm. 165–179 

 In mm. 181–184, the retransition starts like the previous transition section by 

incorporating eighth notes. In fact, it mirrors the profile of the previous transition section; 

mm. 181–184 and mm. 153–156 have similar metric profiles; both convey 64 despite the a 

dotted-quarter-note periodicity; and both use inverted forms of the same motivic material 

(running eighth notes leading to a quarter at the end of a two-bar gesture), applying the same 

6-bar phrase rhythm. The A section returns, altered, in measure 193 after the retransition. 

The reprise of the A section initiates the expected 8-bar phrase, but quickly deviates from 

our anticipation of a subsequent phrase (mm. 209–212); instead, it uses textural material 

from the transition sections. Despite the clear reminiscence of the transition material, the 

section is manipulated in a way that changes the metric profile (Figure 3-20); f8, which has a 

high magnitude for the previous transition sections, is practically non-existent, and the 

opposite applies for f6. Instead of the usual 6-bar hypermetric phrases accompanying this 

material, the music remains in 4-bar hypermeasures that govern primary thematic sections. 

In other words, the established paradigmatic transitions that have consisted of returning 
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metric states and subdivisions are altered. The profile correlates with the “blue” meter in ski-

hill/metric cube representation 64.53 

 
Figure 3-20. Presto Giocoso: Magnitudes for mm. 209–212 

 The return of the B section (measure 227) is also altered, imbued with the metric 

conflict that has pervaded the movement (see Figure 3-21). This final section rotates its 

material between a grouping of descending quarter notes—drawn from the metric 

liquidation material in the A section—paired in twos that convey 32, and the original B motive 

(from measure 165) conveying 64. The proximity of these conflicting meters concurrently 

utilizing different thematic material highlights the conflict area and heralds the end of the 

formal unit. The formal section concludes after this tension. Disappointingly for this 

analysis, the profile does not exactly reflect the metric conflict, because, for the initial 4-bar 

subphrases (such as mm. 227–231), the metric conflict stems from the melodic parallelism 

and is not reflected in the plain onset information. Thus, even though these metric profiles 

                                                
53 The excerpt begins with a dotted half note, but in mm. 210–212 there are more projections of the 

half-note pulse.  
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show promise for depicting meter and metric phenomena such as metric dissonance, there is 

still a fundamental issue surrounding the model: meter is more than just a series of idealized 

onset values. This point will be addressed later. 

 

Figure 3-21. Presto Giocoso, mm. 215–244 

We can view the form of Brahms’s trio through a phrase-rhythm and metric-formal 

lens. Reflecting on the excerpts here, the music parses into clear A and B sections with 

transition sections between them:  

A - TR - B - TR - A’ - tr - B’ 

Each primary action zone—A and B—incorporates the same fundamental rhythmic 

characteristics: 1) the metric conflict foreshadowed at the incipit; and 2) a consistent 4-bar 
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hypermeter (see Table 3-1 for a phrase-rhythm chart). Although, per section and as 

discussed, the conflict is elaborated differently, there is a constant conflict concerning the 

half-note pulse and dotted-half-note pulse (otherwise known as the “blue”/“red” regions in 

the ski-graph/metric cube) in both the A and the B sections. The A sections present the 

conflict as a split between auditory streams (occurring in more than one part) and as a direct 

opposition, contrasting the subdivisions simultaneously, while the B section decreases onset 

frequency and presents the conflict as an indirect dissonance occurring in a single part. The 

phrase rhythm in the primary thematic sections of the piece consists of 4-bar hypermeasures, 

and phrases are comprised of 2–4-bar subphrases. The primary transition sections counter 

both of these fundamental rhythmic characteristics: the metric profiles preference 64 (the red-

coded slopes/points) and 12
8  (the blue-coded slopes/points) while, hypermetrically, the music 

for these sections hast 6-bar groupings. 

  

 

 

 

 

 



 

 

61 

Table 3-1. Brahms Second String Sextet, II - Trio Presto Giocoso, Op. 36 Phrase Rhythm Form Chart54 
Formal Unit  Measures (length)  Phrase / Grouping     Hypermeasures 
             
A Section:   mm. 121 (120 anacrusis)-152 (32) 
Antecedent   mm. 121–136 (16):  4+4+8 (2+2+4) nested sentence 

mm. 121-128 (8)  8 (4 [2 + 2] + 4 [2 + 2])      1 2 3 4 1 2 3 4 
     mm. 129-136 (8)  8 (4 [2 + 2] + 4)      1 2 3 4 1 2 3 4 

         
Consequent  mm. 137–152 (16)   4+4+8 (2+2+4) nested sentence 

mm. 137-144 (8)  8 (4 [2 + 2] + 4 [2 + 2])     1 2 3 4 1 2 3 4 
    mm. 145-153^ (9) 9^ (4 [2 + 2] +2 + 3^)     1 2 3 4 1 2 3 4 (1)  
 
Transition:   mm. 153–164 (12)  6 (2 + 2 + 2) + 6 (1 + 1 + 2 + 2)    1 2 3 4 5 6 1 2 3 4 5 6 
 
B Section:   mm. 165–180 (16) 
Phrase 1  mm. 165–172 (8)   8 (4 [2+2] + 4)      1 2 3 4 1 2 3 4 
       
Phrase 2     mm. 173–180 (8)  8 (4 + 4)      1 2 3 4 1 2 3 4 
          
 
Transition:   mm. 181–192 (12)  6 (2 + 2 +2) + 6 (3 + 3)     1 2 3 4 5 6 1 2 3 4 5 6 
 
A Section (Reprise):  mm. 193–209^(17^) 
Phrase 1   mm. 193–200 (8)  8 (4 [2 + 2] + 4 [2 + 2])     1 2 3 4 1 2 3 4 
Phrase 2   mm. 201–209^ (9^)  9^(4 [2 + 2] + 2 +3^)     1 2 3 4 1 2 3 4 
 
Transition:   mm. 209–227^   (19^) 4 (2 + 2) + 11^(4 [2 + 2] + 7^) + 5^  1 2 3 4 1 2 3 4 5 6 1 2 3 4  
 
B Section (Return): mm. 227–250 (24) 
Phrase 1  mm. 227–234 (8)   8 (4 [2 + 2] + 4 [2 + 2])      1 2 3 4 1 2 3 4 

mm. 235–243^ (9^)  9^ (4 [2 + 2] + 5^ [2 + 2^])    1 2 3 4 1 2 3 4  
   mm. 243–250 (8)  8 (4 [2 + 2]+ 4)      1 2 3 4 1 2 3

                                                
54 ’^’ represents a phrase overlap. 
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Thus far, I have represented magnitudes in metric profiles that display a single window. 

While this format visually conveys all magnitudes in a straightforward manner, a depiction in 

which symbolic time is represented would better represent how these components tie metric 

profiles to the overarching form. By isolating and tracking the two components that have 

maintained the highest magnitudes—f4 and f6—a visual representation will capture the metric 

conflict discussed. In Figure 3-22, the purple line is f6 and the yellow is f4, while the x-axis 

represents time—as in each individual window moving beat by beat through the piece—and 

the y-axis represents magnitude. The sections running across the graph align the starting 

position of the window with the beginning of the section. It is apparent where the A sections 

and TR sections reappear because they exhibit a similar metric conflict with similar textural 

density. One developmental change in the transition sections is that, from the first TR to the 

Re-TR, and then finally to the third TR, the magnitude for f6  grows until overtaking the 

strength of f4 in the final TR. This can be developmentally described as a metric progress of 

pulse saliency—which pulse is most strongly conveyed through onsets. The dotted-half-note 

pulse initially has a high magnitude for the TR sections, but in the final TR section the half-

note pulse competes for saliency. Turning to the score, we see that in the final TR (measure 

209 in Figure 3-23), the original conflict is inserted into the TR section. The conflict of pulse 

saliency has made its way from the A theme into the TR sections, which, since the final TR, 

have articulated a dotted-half-note pulse; like an infection, the pulse disagreement has 

pervaded the sanctum of the section which once held the highest magnitude for f4 and that 

clearly conveyed triple meter. 
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Figure 3-22. Magnitudes for f4 and f6 over time 

 

Figure 3-23. Presto Giocoso, mm. 202–214, Transition Section (m. 209) 

Because the values of magnitudes are based on cardinality, the graph above is highly 

dependent on textural density. Having a texture-based graph is a double-edged sword: it may 

capture how textural structures relate to form, but for periods of music that have low onset 

density—as in section B—it may, on a glance, disguise which pulse is salient during these 
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sections. Normalizing the magnitudes to !"
!#

 scales everything to the common cardinality of 1, 

and thus accommodates for the cardinality/textural-density issue. In the normalized graph in 

Figure 3-24, whichever magnitude takes precedence in those sections will be pronounced 

regardless of cardinality. From this, the phrasing of the B sections becomes apparent; the tail 

end of each B section emphasizes the half-note pulse. If we refer back to Figures 3-14–3-16, 

we confirm that this is where the pulses are presented horizontally in succession, as opposed 

to how they were originally introduced as directly juxtaposed. Another way to produce 

relevant magnitudes would be to graph the share of a power spectrum showing components 

and their respective share of the overall “power” (Figure 3-25).55 The Perceval-Plancherel 

identity theorem says that, under the FT, the total power is preserve; because power is the 

sum of squared weights, the procedure is similar to normalization by cardinality. The first 

graph omits other magnitudes, so one large difference between the charts is that the power 

spectrum represents the other components. According to the graph, f2 has a large magnitude 

at the retransition section. This is because all parts but Violin 1 play held durations and have 

very little rhythmic activity. The parts that hold the durational values enter again with the 

upbeat and downbeat two measures later. Being that our window is 4 measures long, this 

activity would boost the magnitude for f2. 

                                                
55 Emmanuel Amiot, Music Through Fourier Space (Switzerland: Springer International Pu, 2016), 7. 
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Figure 3-24. Normalized Magnitudes for f4 and f6 over time 

 

Figure 3-25. Presto Giocoso: Power Spectrum 
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Throughout this thesis, I have explored the DFT and how it can be implemented in 

metric analysis. Through my current research, and during the continuation of this project, I 

hope to continue metric-analytical discourse—particularly with regard to formal structures. 

In an attempt to bring form-defining aspects of rhythm to the foreground, I have 

intentionally forgone harmonic analysis. Leaving the other musical parameters in subsidiary 

positions, though unrealistic in terms of perception, isolates a single variable to determine, as 

a result, how it interacts with our intuitive musical analysis. The ORWDFT code I have 

implemented in this paper isolates onsets as the only input, which is idealistic and neglects to 

incorporate other factors that amount to meter as a phenomenon: culture, melody, harmony, 

texture, and innumerable parameters contribute to the concept and effect of meter. In 

applying the DFT to metrical analysis, my goal is, like Gottfried Toussaint’s, exploratory: 

“Exploring the extent to which the comparative analysis … provides insight that can be 

transferred from one modality to the other is a fruitful endeavor… and if some concepts do 

not transfer successfully, these provide us with insight about their differences.”56 Though 

this project is only in its first stages, I have examined features of, and endeavored to 

articulate a renewed perspective on, meter and rhythm, while simultaneously incorporating 

the ideas of previous metric theorists. Metric form is relatively unexplored—only studied by 

a handful of modern music theorists. I can foresee potential for the ORWDFT code to 

incorporate phrase rhythm if different musical parameters were accounted for, or, after 

sufficiently developing the metric profiles, including a probabilistic model of metric states. 

This research, in my opinion, contains significant potential for advancing discourse on 

                                                
56 Godfried T. Toussaint, Geometry of Musical Rhythm: What Makes a “Good” Rhythm Good? (S.1: CRC 

Press, 2017), 54. 
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meter, and in developing it further, I hope to bring more attention to the exploration of the 

DFT, rhythm, and metric form 
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CHAPTER IV. ANALYSIS OF “SHY ONE” BY REBECCA CLARKE 
 
 In the following chapter I analyze “Shy One,” a song by Rebecca Clarke. Thus far, 

our examples have only consisted of music with notated meters that are both regular and 

unchanging. The frequent changes in meter between 54 and 64 in “Shy One” present new 

epistemological and theoretical challenges to the concept of meter. In the last century the 

definition of meter—and, even more polemically, hypermeter—has been disputed in 

academic literature. Scholars organize into various camps; some distinguish grouping from 

meter, while others consider the two concepts under one umbrella. The operationalization 

that Lerdahl and Jackendoff lay out in A Generative Theory of Tonal Music’s metric well-

formedness rule 4 states that “each metrical level of music consist of equally spaced beats.”57 

Therefore, such a definition implies that a meter that has an asymmetrical division, such as 54, is 

demoted to non-metrical. Later in the book, the authors claim that “the resulting metrical 

structure follows the irregularities of local detail.”58 In GTTM, the strict, periodic regularities 

which construct meter are therefore related to the deeper levels of metric organization. 

Initially agreeing with the distinction between meter and grouping, David Huron says: 

“We can see that it is not simply the strict hierarchical metrical frameworks 
that influence a listener’s temporal expectations. In addition to these metric 
expectations, listeners also form distinctly rhythmic expectations, which need 
not employ strictly periodic pulse patterns.”59 

 

He argues further that grouping or rhythmic patterns form expectation—for example, the 

rate at which a bouncing ball hits the ground accelerates as it loses kinetic energy, but 

                                                
57 Fred Lerdahl and Ray Jackendoff, A Generative Theory of Tonal Music (Cambridge, MA: MIT Press, 

1983), 69. 
58 Ibid., 297. 
59 David Huron, Sweet Anticipation: Music and the Psychology of Expectation (Cambridge, MA: MIT Press, 

2008), 187. 
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humans are still able to predict the rate of change. This example is one of many that Huron 

discusses to demonstrate that predictability may play a vital role in meter. Huron says, 

“Periodicity is not necessary for the formation of such expectations… It is important only 

that the listener be experienced with the temporal structure and that some element of the 

temporal pattern be predictable.”60 Expectation is built through statistical learning and a 

subject’s exposure to a stimulus.  As Huron defines it, the periodic case of meter is 

therefore what one could call a predictable half-truth: periods are inherently regular, and 

therefore conform to a predictable norm. Rhythms, however, can still conform to a 

prediction model whether they are periodic or not. Expectation influences meter and 

rhythms alike, but meter will inherently be predictable, while rhythms must conform to a 

template of sorts—an established rhythmic schema. 

 When presented with asymmetrical meters, internal groupings can no longer be 

evenly distributed and are therefore obviously not periodic. Is viewing something that is 

partially non-regular in terms of periodicity—as the DFT does—counterintuitive, or does it 

provide a reliable grounding from which to interpret the rhythms? I analyze the piece “Shy 

One” below with the DFT as an analytical tool, demonstrating how the DFT, an equation 

that deconstructs an input into its purely periodic, sinusoidal components, works equally well 

with music that implements changing, non-regular meters. I later reflect on how a predictive 

definition of rhythmic templates not only reintegrates previous definitions of meter, but also 

integrates “irregular” meters such as 5/4 and 7/8. 

In Yeats’s “To an Isle in the Water” (seen in Figure 4-1), the poetry depicts a woman 

                                                
60 David Huron, Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, 2008), 188. 
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moving around a room in preparation for some sort of ritual. The shy woman sets dishes out 

and lights candles around a “curtained room.” There is no explicit reference to what the 

woman could be doing; the pithy poem is ambiguous in its lack of description, leaving room 

for the reader to interpret the ceremony. Perhaps she is preparing for a pagan ritual, or 

maybe she is simply setting the dinner table. The “Isle” in the poem may refer to Innisfree—

the subject of Yeats’s famous “Lake Isle of Innisfree” (written after “To an Isle in the 

Water”)—or, knowing Yeats’s interest in historic legends, Avalon, an island where King 

Arthur’s wounds were treated after battle. Regardless of the specific reference, the narrator 

longs to go with the woman, seen in the parallel lines: “With her would I go,” and “With her 

would I fly.” The auxiliary function of “would” in both contexts reinforces the narrator’s 

unrequited desire; “would” plays between its two meanings, signifying both “want” and 

conditional. Yeats conjures contrasting imagery involving fire and water—a classic 

antithesis—to capture the underlying passion that the narrator feels on observing the 

woman. Water and fire represent the dichotomy between the characters, the water symbolic 

of the reserved woman and the fire representing the narrator’s passion. The following 

analysis examines the harmonic and rhythmic parameters that Rebecca Clarke manipulated 

when setting the poem in her 1920 musical rendition of Yeats’ poem (“Shy One” score 

attached). 

Shy one, shy one, 
Shy one of my heart, 

She moves in the firelight 
Pensively apart 

 
She carries in the dishes, 
And lays them in a row. 
To an isle in the water 
With her would I go. 
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She carries in the candles, 
And lights the curtained room, 

Shy in the doorway 
And shy in the gloom; 

 
And shy as a rabbit, 

Helpful and shy. 
To an isle in the water, 
With her would I fly. 

 
Figure 4-1. Yeats, “To an Isle in the Water” 

 
 The piece groups the stanzas into higher divisions, splitting the poem into two larger 

sections each comprised of two stanzas—a strophic (AB)(A'B). The modified strophic form 

thereby adheres to the poetic scheme, that recalls “with her would I…”. Subsections A and 

A' do not have any apparent repetitions of text, so the variation also embodies that formal 

layout. The shift in notated meters—fluctuating between 54 and 64 —also bolsters my 

argument in favor of the piece’s formal organization into two large A sections: x represents 

one measure of 54, and y represents one measure of 64 .  The notated-meter scheme is shown 

below: 

Stanza I [mm. 1–4]: (x x x y) // Stanza II [mm. 5–8] (x y x y)  
Stanza III [mm. 9–12]: (x x x y) // Stanza IV [mm. 13–17] (x y x y)  

Figure 4-2. “Shy One”: Formal Organization of Meters 
 
Each 4-line stanza of the poem is set to a corresponding 4-measure phrase comprised of 54 

and 64 -bar units. Harmonically, the music in stanza II (mm. 5–8) is restated again in the 

accompanying music of stanza IV (mm. 13–17), reflecting the poetic structure which 

rearticulates the departure idea: “To an isle in the water.”  

 With the DFT thus far we have only examined examples that use a single notated 

meter. “Shy One” shifts between 54  and 64, posing a problem for the previously selected 
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window size. In the Brahms piece, the ORWDFT code used a window of 288 units, in 

which the quarter note is equivalent to 24 units (f12), the half note is 48 units (f6), the whole 

note is 96 units (f3), etc… This window size privileges subdivisions that are in the duple and 

triple path in the ski-hill graph. It may not be so apparent on first glance, but because the 

span is 12 quarter notes long, there is no Fourier component associated directly with the 54-

measure length—the component which divides the span into 54 lies in between the dotted-

whole note pulse and the whole note pulse (seen in Figure 4-3).61 To accommodate a 5-

quarter-note periodicity (qua 54), we simply change the window to a size which is divisible by 

5. Figure 4-4 shows the opening profile from the ORWDFT with a window expanded to 15 

beats—the disadvantage now lies with the other higher-level divisions (the whole note and 

dotted-whole note), which are now reduced to the subsidiary position between two Fourier 

components (held previously by 54). One explanation is that the “energy” of a particular 

frequency is no longer carried by a single component, but distributed between adjacent 

components. As we switch from a 12-beat window to a 15-beat window, the “energy” from 

the half-note subdivision f6 (in the 12-beat window) is distributed between f7 and f8 (in the 

15-beat window). Regardless of what periodicities we choose to represent between the two 

windows, the nature of the problem is the same. Note that it is possible to accommodate 

both higher-level divisions, but to do so would mean expanding a window to 30 beats. By 

expanding the window, however, the location of the corresponding component becomes less 

certain; there is a tradeoff between window length and temporal resolution. The tradeoff is 

                                                
61 The fact that it lies between the dotted-whole note and whole-note pulse is important and will 

become relevant later. 
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based on the Heisenberg uncertainty principle—inherent in the properties of all wave-like 

systems. Though this may prove to be fruitful exploration of the music, for now I have 

chosen to restrain the window to a smaller span to pinpoint components at local levels. 

When referring to metric profiles, I will use an additional subscript to signify which graph I 

refer to: fn(s), where s is the number of quarter notes in the window. For example, the  third 

component of a window covering 15 beats is: f3(15). 

 

 
Figure 4-3. “Shy One” Magnitudes, beats 1–6: 288 Units 

 

 
Figure 4-4. “Shy One” Magnitudes, beats 1–8: 360 Units 
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 In the first 54 measure, the opening minor third on the words “Shy One” is repeated 

immediately after, with the head of the second gesture extended to create a 2 + 3 tactus 

grouping. Figure 4-5 shows the score for the opening 3 measures/15 beats.  Despite the 

clear parallelism—aurally cued by the starting arpeggiation figures in the low register, or 

melodic contour—the components associated with the length of the full 54 measure (f2(12) and 

f3(12) in Figure 4-3, and f3(15) in Figure 4-4) start relatively low. The profile starts generally 

balanced, but by the time the window span gets to beats 1–12 (or 1–15), the onsets convey a 

strong dotted-half note periodicity—shown by '((*+)  in Figure 4-6. There is also a strong 

'-(*+) , which would correspond to a roughly even division of the 54	 measure—this will be 

addressed later. The organization of the onsets weights the dotted-half note strongly for a 

lower-leveled component because of the internal construction of the measures: the 54		in the 

opening measures group as (2 + 3) (3 + 2) (2 + 3).  

 
Figure 4-5. “Shy One:” mm. 1–3 
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Figure 4-6. “Shy One:” Window from beats 1–12 

 Turning back to '-(*+) : despite not having a subdivisional unit, a component which 

corresponds to an approximately even division of the 54 measure has a high magnitude. One 

potential explanation is that this component is an indication that subdivisions of 3 and 2 are 

present, and the presence of both would boost a roughly even division of 54.  Though an in-

depth study would be required to determine anything conclusive, these results show promise 

that the DFT can fuzzify even divisions of meters that are inherently asymmetric.62 (This 

division corresponds approximately to '/(*-) .) 

For the following analysis, the shifting meters means that there are conflicts at 

multiple subdivisional levels. Relativistic metrical theories discuss metric levels as arbitrary 

relations, in some cases relating pulse levels ad infinitum, but the level at which these metric 

changes occur is very relevant to the metrical organization of the piece. Mirka, on the other 

hand, takes a historical perspective, drawing on previous theorists such as Koch, Riepel and 

                                                
62A cursory study of asymmetrical meters with DFT shows high magnitude levels for divisions into 

roughly even divisions. For more on this discussion, see the conclusion. 
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Türk to define different metrical levels. Mirka discusses meter in terms of absolute levels, as 

opposed to more relativistic metrical theories like Cohn’s, Krebs’s, Murphy’s and Yeston’s. 

She classifies three different absolute levels with the labels takt, takteile, and taktglieder—these 

levels from “the metrical hierarchy form the pulse levels and interpretive level of the primary 

sense of these words.”63 These subdivisions are equivalent to three recursively related values: 

the meter or takte, followed by the next two subdivisional constituents takteile and taktglieder 

respectively. These levels can be reassigned during the course of a piece. For example, a 

piece which originally appointed the whole note to the takte can, at some point, reassign the 

takte value to the half-note pulse depending on subdivisions present.  The underlying notion 

of separating primary interpretive levels implies that metric conflicts or disagreements at 

different levels may also carry different interpretable effect. With recent developments in 

cognitive science, one theory states that humans attend to a periodic pulse based on sonic 

events and, in processing these events, we not only learn when those events occur but also 

predict future onset occurrences. The manner in which we synchronize with a periodic 

stimulus involves “phase-locking”—a physiological concept of neural oscillation matching 

with the stimulus. 64 This is called entrainment.65 Our behavioral entrainment has a bandwidth 

of preferred tempi, meaning that entraining to a pulse is highly dependent on the temporal 

                                                
63 Danuta Mirka, Metric Manipulations in Haydn and Mozart: Chamber Music for Strings, 1787–1791 (New 

York: Oxford University Press, 2009), 134. 
64 Justin London, Hearing in Time: Psychological Aspects of Musical Meter (New York: Oxford University 

Press), 2012. 
65 Other models discuss dynamic rhythmic mechanisms as a trichotomy: (1) “temporally selective 

anticipation in rhythmic streams, mediated by oscillatory entrainment;” (2) “anticipation in nonrhythmic 
streams, which requires sustained vigilance;” and (3) memory-based prediction. 

Assaf Breska, and Leon Y. Deouell, “Neural Mechanisms of Rhythm-based Temporal Prediction: 
Delta Phase-locking Reflects Temporal Predictability but Not Rhythmic Entrainment” (PLOS Biology 15, 
no. 2), 2017.  
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length of timespans (the durations between rhythmic onsets).66 This means that a listener 

might not perceive fractionally equivalent pulses as the same; an eighth-note pulse imbedded 

in a quarter-note pulse is different than a half-note pulse imbedded in a whole-note pulse 

even if they are both 1:2 related. In the case of “Shy One,” acknowledging different levels of 

metrical interpretation provides a profitable and noteworthy approach to metric analysis. In 

“Shy One,” the taktteile, or quarter-note pulse, is consistent throughout. It is the upper 

metrical-level—the takte—that is in constant flux, constantly switching subdivisional values. 

The notated meter 54	is a compound meter comprised of two different subdivisions 

exchanging the takt. Though the DFT says nothing explicit about Mirka’s theories, by 

applying the DFT, the results give us information about pulse saliency—essentially, the degree 

a specific component characterizes a rhythm. In turn, we interpret these results in terms of 

Mirka’s absolute distinctions; the DFT will provide us with a profile describing pulse 

saliency, and from that we identify which absolute level corresponds with which pulse. 

Because the metric organization of the first two measures splits the 5/4 groupings so 

that pairs of “3s” and “2s” are adjacent—alternating 3+2 with 2+3 groupings—we would 

anticipate the resulting f4(12) and f6(12) (in Figure 4-3) to have relatively low magnitudes; a 

stream of “2s” would reduce the magnitude for f4(12), and a stream of “3s” would reduce the 

magnitude for f6(12).67 As a result of the inherent asymmetry in dividing 54, a preference for a 

consistent periodicity is not possible at the takte level - it will shift between f4(12) and f6(12). In 

Figure 4-7, I marked any onset grouping with 5 or more notes coinciding, marked in 

between the staves. With the exception of measure 3’s downbeat, every other strongly 

                                                
66 Jason Yust, Organized Time, (New York: Oxford University Press), forthcoming 2018. 
67 The 3+2 rhythm should correspond most closely with f5(12), as explained.  
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weighted onset-grouping falls into an ongoing dotted-half note projection (illustrated below 

the music). Complementing our previous assertion, which made use of Figure 4-6, there 

appears to be a stronger dotted-half note projection in the 54 setting. In measure 3, the 

dotted-half note projection continues past the downbeat, and reaches beat 2, which also 

contains a high concentration of onsets. To summarize the subdivisional conflict, there is a 

disagreement at the takte level between the half note and the dotted-half note, with a 

preference for the dotted-half note (f4(12)). 

 
Figure 4-7. “Shy One”: mm. 1–3, dotted-half note stream 

 
 The following phrase, starting in the upbeat to measure 3, emphasizes a projection of 

the half note (Figure 4-8.). The emphasized half-note subdivision initiates its stream on the 

second beat which is, interestingly enough, when the dotted half note stops. In other words, 
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there is a metrical adjustment in the takte, substituting the half note for the dotted-half note. 

Figure 4-9 shows a metric profile from beats 9–20, confirming the relevance of f6(12) (the half- 

note pulse).68 (The profiles from now on isolate subdivisional values of interest—the takte 

and compound takte.) Because window positioning is extremely important with regard to 

windowing, “bb” will refer to the beat positions. The convergence and transferal of 

subdivisional pulses embodies a movement forward, a subtly conveyed notated accelerando 

via takte-shift. This junction represents the text “she moves in the firelight,” which occurs 

concurrently; a pulse change subtly increases temporal entrainment, physically capturing an 

increase in movement. Or, perhaps the increase in frequency of the takte symbolically shows 

the psychological state of the narrator—illustrating the narrator’s excitement while observing 

the “shy one.” An increase in the takte pulse might be likened to a quickening of the heart 

rate. Looking back, the initial gesture and its echo (which repeated the descending third) can 

also be interpreted as the narrator’s excitement. Based on Huron’s theories of expectation, 

we would expect a parallel gesture which used the same text to have similar characteristics; 

however, by drawing out the C a beat longer, our initial expectation is denied. Instead, a 

tension response builds in anticipating how long this new event lasts before returning to the 

pitch A.69 This is an irregular rhythmic ebb of expectations built up from aperiodic pulses. 

The consistently irregular pulse is analogous to palpitations; the aperiodicities (quite literally) 

take the narrator’s breath away. 

  

                                                
68 Remember, stated in chapter 2, that because of the windowing procedure, the middle of the window 

is weighted heavier than the farther removed portions—to avoid wraparound aliasing. This means that in 
order to examine measure 3 more accurately, the optimal window begins before the start of the piece.  

69 David Huron, Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, 2008), 9. 
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Figure 4-8. “Shy One”: mm. 2–5, half note stream 

 

 
Figure 4-9. “Shy One”: Metric Profile for bb. 9–20 

 
Similar to the takte level, the alteration between 54	 and 64  adds an additional metrical 

conflict—the pulse which is designated the compound takt fluctuates back and forth. Longer 

timespans are fundamentally more volatile due to the human entrainment capacity; on 
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average, the range of entrainment is between 100 ms and 5–6 seconds.70 Both recordings, by 

Patricia Wright (piano), with Kathron Sturrock (voice), and Philipp Vogler (piano) with 

Hélène Lindqvist (voice), take a tempo of �≈ 60 bpm—both generously expressive for the 

marked moderato grazioso. Both pulse streams, comprised of 5 quarter notes or 6 quarter notes, 

fall within the band of possible entrainment behaviors.71 Therefore, these compound takte 

occupy positions as structural measures, and/or as potential entrainment behaviors. 

 The metrical layer for the dotted-whole note pulse is shown in Figure 4-10, and the 

metric profile in Figure 4-11a. (Figure 4-11b shows the profile for f(15)).72 Figure 4-11a 

corresponds to a 12-unit window spanning beats 4 to 15 in the score. The magnitude for f2(12) 

is large, corresponding to onsets grouping the span into 2—that is, the dotted-whole note. 

So while our original profile (in Figure 4-9) weighed the dotted-whole-note and 5-quarter-

note streams evenly, this window favors f2(12). The two 5-onset clusters grouped next to each 

other at the start of the third measure reinforce the division of the span into two.73 There is a 

reversal in compound takt preference in the window covering beats 12–26. Figure 4-12b 

shows that the 15-beat window contains a high magnitude for f3(15), meaning that the 

compound takt switches from the dotted-whole-note to the 5-quarter-note pulse. By beat 4, 

the dotted-whole-note pulse—f2(12)—is more prominent. The 5-quarter-note onset groupings 

start on beat 14 (Figure 4-13). 

                                                
70 Justin London, Hearing in Time: Psychological Aspects of Musical Meter (New York: Oxford University 

Press), 2012. 
71 Ibid., 46. 
Though Justin London reports that metric entrainment can occur within a range from “about 100 ms 

to about 5 or 6 seconds,” we do have a preference for periodicities around 600 ms (or .6 seconds).  
72 I have only visualized components of immediate importance to make things more clear. 
73 Clustering on a point will increase the magnitude of that division—review chapter 1 on 

clustering/maximally even sets. 
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Figure 4-10. “Shy One”: mm. 1–3, 6-quarter-note stream 

 

 
Figure 4-11a. “Shy One”: Metric Profile, Window Size 12 quarter notes for bb. 4–15; 

and 4-11b. Window Size 15 quarter notes for bb. 4–18 
 

 
Figure 4-12a. Shy One”: Metric Profile, Window Size 12 for bb. 12–23; 

and 4-12b. Window Size 15 for bb. 12–26 
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Figure 4-13. “Shy One”: mm. 2-5, 5-quarter-note stream 

  
The following section, which switches between 54		and 64 (xyxy in measures 5-8), is 

primarily governed by the dotted-half-note pulse. Because 64  groupings pair into <3+3>, and 

the 54 are <2+3> (or <3+2>), music that groups onsets at meter-defining beats would 

emphasize the dotted-half-note pulse. This is not to say that the half-note subdivision is 

absent—it intrudes in 54 measures, constantly denying the dotted-half-note projection, to 

destabilize the meter briefly—it is just less frequent in the ‘b’ sections (of the A(ab)A'(a'b) 

form). The magnitudes of f412) and f6(12) can be normalized and plotted across the whole piece, 

as shown in Figure 4-14, to demonstrate the constantly changing state of the takte. Figure 4-

14 are normalized (fn/f0) so as to discount the effect of overall number of onsets on the 

magnitude values.74 Each number on the x-axis corresponds to the center of the window, so 

                                                
74 The first and last six windows are cut from the profiles because, as the sliding window moves into 

the beginning of the piece, the onset number will be significantly less, meaning the results are 
insignificant. 
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“point-1” is centered in the window, and the left tail takes no input because it is before the 

piece starts. According to our tracked magnitudes, the piece initial conveys a strong dotted-

half-note periodicity (in blue). At points 13–16, the magnitude for the half-note periodicity 

(f6) is significantly larger than f4—this reconfirms our previous discussion (see Figure 4-8). f6 

resurfaces again around point 35, where both magnitudes are significant. f6 is larger at this 

moment because the end of measure 7 has a chord two units away from the downbeat of the 

next measure (8), which implements another large chord—large as in more onset-packed. 

Not only that, but the upbeat to measure 8 is a chord, further reinforcing that f6 periodicity. 

At point 44, the A' section re-presents the initial inflections of f4 and f6. The blue path takes 

dominance once more, until 12–13 points later. By tracking the magnitudes over time, it 

shows pulse saliency, and by association, captures certain phrase patterns. 

 

Figure 4-14. “Shy One”: Normalized Magnitudes (Adjusted) 
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Phase Tracking 

 Due to the phase shifting procedure (explained in chapter 2, which describes how 

the ORWDFT operates), the resulting phase is relative to the starting measure. Because 

phase relates to positioning, I refer to the meter in the score as the notated meter and otherwise 

as the phase position. 

Given a consistent, projected meter from the score that evenly divides the window 

size, with the phase shifting procedure, phase is anchored to the notated barline. The phase 

position would hypothetically remain level for a piece, with few metric changes throughout. 

Changes in phase may indicate displacements from the previously established and sounding 

meter. In a strophic piece with parallel structure—such as “Shy One”—we would expect the 

DFT’s components to mirror one another. It intuitively makes sense that a reprise of 

material would represent a reprise of DFT profiles. As discussed earlier, the notated meter in 

“Shy One” changes between 54		and 64—see Figures 4-2 and 4-5. Because the large A section 

repeats, we would expect the phase positioning of the resurfaced A section to equal its 

counterpart, but because of how the notated meters are organized (Figure 4-2), the phase 

value, which represented the initial barline grouping, is changed. The A section lasts 43 

beats, followed immediately by A’ on beat 44. 43 is a prime number and thus not divisible by 

the components we have been examining for “Shy One”—f3(15), f5(15)/f4(12), and f6(12). This 

means that the phase value which corresponds to the initial gesture is not equal to the value 

of the restated material. in measure 44 (notated).  

 In common-practice period classical music, changes in notated meter are not very 

common, so the definition of phase being anchored to the barline holds. However, due to 

the frequent meter changes in “Shy One”, this is no longer a sufficient definition. A 
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reorientation of how we view phase is in order. With the phase shifting procedure, the phase 

value should be thought of in terms of its positioning to an absolute temporal grid. Phase values, 

then, correspond to an absolute positioning established at the initiation of the first onset. 

Therefore, phase values are abstracted away from the barlines and, instead, should be viewed 

in relation to each other and to the temporal grid. This redefinition integrates the original 

view of phase being anchored to the barline, except that this only applies when the barline is 

consistent in relation to the absolute grid. 

 Figures 4-15a and 4-15b demonstrate how meter changes may influence phase. 

Figure 4-15a repeats the same model six times: 4 measure groupings of 54		followed by one 

bar of 64. A repetitive 54  pattern will elicit a high magnitude for f3(15) because it divides the span 

of 15 into 3 parts. Phase tracking is best enacted on components with generally higher 

magnitudes; otherwise, as shown in Chapter 2, the phase will shift more rapidly.75 Phase 

tracking a component with low magnitude means that the element is less salient, and the 

information gained from phase tracking will probably be less relevant in the music. Stability 

in phase is represented as a plateau in the graphs; if the line relatively levels out, it means that 

the orientation of the implicit downbeat—with respect to an absolute temporal grid—is 

stable. As shown in the phase-tracking representation of 4-15a, 4-15b forms five plateaus 

and starts a sixth, with each plateau representing a steady pulse projection. The changes in y-

axis value are due to the “added beat” in the 64 measures. Each 64 measure pushes the phase 

down, or counterclockwise on a phase clock (see Figure 4-16). To correct for the extra beat 

                                                
75 This is not to say that a component that has a relatively high magnitude throughout should not be 

trusted because of a dip in energy—in fact, this should inform us more about what is going on in the 
music. A feature which was once prevalent is somehow less present. 
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in the 64 measures, if we were to think of phase shifting in terms of our old definition, the 

phase values are pushed back and reassigned to new positions in the notated meter. 

Thinking about phase in terms of notated meter is potentially confusing here—the phase 

values do not readjust to align with the notated downbeats.  Instead, viewing the music in 

terms of an absolute temporal grid allows the results to speak for themselves. Stability in the 

phase’s x-axis represents a stable pulse, and, in this example, the changing phase means the 

music was pushed “back a beat.” 

 
Figure 4-15a. 54		interrupted regularly 
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Figure 4-15b. 54		Phase Tracking 

 
Figure 4-16. 54 phase space rotation 

For each 64 in “Shy One,” the notated meter’s downbeats are offset from the absolute 

grid of 54	below it. This means that the 54 grid used to gauge will be off for every measure of 64, 

like so:  
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The notated “position 1” in the representation above, would then be positioned where beat 

3 is in the grid. Figure 4-17 shows this in standard musical notation. The top musical line 

shows an example in which the notated meter changes from 54 to 64 and then back. Against the 

absolute grid (located below it), the downbeats of the changing meter become misaligned as 

the 64  continues. The phase value would begin to plateau when the meter returns to 54, but by 

then the phase value at which this stability occurs is different than at the start. Just like our 

hypothetical table above, the notated meter now starts on the third “beat position” of the 

absolute temporal grid. 

 
Figure 4-17. Example of Notated Meter Changes to an Absolute Temporal Grid 

 

By tracking the phase over the course of “Shy One,” we can show where these phase 

changes correspond to in the music. Figure 4-18a shows ϕ3(15), which corresponds to 

measures of 54. When tracking the placement of 54 measures in relation to the grid, imposing a 

measure of 64	 should, as just discussed, push the 54 back a beat. Overall, there is downward 

motion in the tracked phase profile, or, equivalently, counterclockwise motion on a phase-

space clock face (Figure 4-18b). In relation to the music, this rotational motion corresponds 

to what we expected; the phase is pushed back to another position in the temporal grid. This 

naturally makes sense based on what we know from Figures 4-15–4-16. 
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Figure 4-18a. “Shy One”: f3(15) Phase Tracking 

 

 
Figure 4-18b. 54		Phase Space 

 
There are very few plateaus in Figure 4-18a, meaning there are few consistent 

streams of 54. The phase value of the shifting notated meter should hypothetically manifest 

plateaus when the meter rests long enough to establish some salient pulse; against the 

absolute temporal grid of unwavering 54, changes in meter alter the relative phase value. The 
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plateau corresponds to “yxy” in the first strophe A–B: A[xxxy]B[xyxy].76 Figure 4-19a shows 

where this stream occurs (in mm. 4–7), and Figure 4-19b shows how the absolute grid pairs 

with the notated score. The phase-value range in the plateau starting around window 33 is 

approximately 1.89–2.6, which, according to the absolute grid, corresponds to around beat 4 

in the 54. A single 64		measure necessitates a compensation for the beat and reorientation of the 

phase value back a notated beat, but at this moment in the music, there have not been 

enough 64 measures to push the phase back to beat 4. The phase value at point 33—a 

window starting in beat 18 of the piece—positions f3(15) halfway through the measure, even 

though the first 64		has yet to complete. The full measure of 64		is not responsible for the stream 

displacement. The consistent stream for f3(15) starts halfway through measure 4 and is 

connected into the notated  third beat of the subsequent 54 measure (which would be the  

fourth beat in the absolute grid—Figure 4-19b). In other words, the majority of onsets in 

this section are not clustered around the metric downbeats. This is an example in which 

clustering reinforces a stream; the eighth notes at the end of the second projection group 

around the value even beat 3 of that measure reinforces the phase. As the phase tracker 

proceeds the value drifts towards beat 5, which makes sense with the imposition of 64 in 

measure 6.  

                                                
76 In order to capture initial events, for the coding procedure in “Shy One” each point represents the 

end of the window, not the beginning. Because the piece is so short, this procedure starts scanning 
gradually into the piece rather than starting its 15-span window on the starting onset. Therefore, the 
window which corresponds to point 33 actually starts on beat 18 of the piece. 
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Figure 4-19a. “Shy One”: mm. 4-7, 5-quarter-note stream 

 

 
Figure 4-19b. “Shy One:” mm. 4-7, Notated Measures vs. 54 Absolute Grid 

 
 Both ϕ5(15) and ϕ4(12)—corresponding to the dotted-half note of their respective 

windows—are also in a state of flux. The frequent phase change of ϕ5(15) and ϕ4(12) is due to 

the constant shifting of the takte pulse. The phase-tracking graphs representing the dotted-

half note pulse are in Figure 4-20, directly juxtaposing ϕ5(15) and ϕ4(12) to show how they are 
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essentially equivalent. There are brief plateaus starting around points 9, 22, 29, 44, and 53. 

The window starts prior to when the piece begins, so that the highest-weighted portion in 

the Hanning window incorporates the start of the piece. Because of this step, one subtracts 

half of the associated window from the “point” value to locate the center of the window. 

Therefore, point 9 is equivalent to beat 3 in the first measure; this phase stream thus 

represents a stream identified in Figure 4-7. Points 22 and 29 capture a stair-stepping effect 

from shifting back and forth between 64 and 54—the yxy portion of the first b subsection. The 

ascent in phase space is the directly opposite phase-tracking response from our previous 54 

tracking; because we are tracking dotted-half note streams, a 54 measure functions as 

interrupting a stream as opposed to extending it by a beat. As for the windows around point 

44, a clear projection of dotted-half notes in the 64 measure (m. 8) weighs strongly in favor of 

that phase. The plateau around beat 53 relates to a brief projection from measures 9–10 

from the inner-metric organization of <23> à <32>, so that the dotted-half note is 

projected farther. With the frequent changing of meter, each one of stable plateaus for the 

takte is brief, never lasting more than a few beats.  
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Figure 4-20. “Shy One”: f5(15) and f4(12) Phase Tracking 

 
In the case of “Shy One,” the phase of the takte changes very frequently, while the 

compound takt level is more predictable. Even on large-scheme progressions, the phase of 

the compound takt is pushed back, extending a concept that Krebs would call subliminal 

dissonance—a phenomenon where the placement of a previously established meter clashes 

with an ongoing one.77 The concept of subliminal dissonance is, quite literally, extended in 

that the absolute temporal grid tracks the continual accrual of subliminal dissonance in 

relation to the starting phase. The effect of the numerous metric changes creates a general 

state of opacity; with reliance on the compound takt being unreliable, and the takte even 

more so, there is no other definitive pulse to entrain to a higher level than the taktteile (the 

quarter note). The metric state is thus dialectic at two primary levels: the local level in which 

the asymmetrical meter 54 inherently contrasts subdivisions of 2 and 3, and the compound 

                                                
77 Harald Krebs, Fantasy Pieces: Metrical Dissonance in the Music of Robert Schumann (New York: Oxford 

Univ. Press), 2003. 
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takt in which 54 alternates with 64. Though my work here strictly concerns the DFT, in terms 

of interpretation these irregular metric changes may symbolize the narrator’s emotional state. 

In this way, it is possible that the DFT can be utilized in formal-narrative theories. 
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CHAPTER V: CONCLUSION 

This paper ends where it began: how can the DFT provide theoretical and analytical 

insights to the rhythmic domain? To conclude this thesis, I open a discussion on the latent 

potential of the DFT’s future applications and what this means for the future of theorizing 

about rhythm and meter. 

 Regarding pitch, Quinn described the magnitudes of components in terms of saliency. 

Quinn defined saliency in terms of quality; if a set is closer to a maximally-even set, then it 

has those characteristics. In other words, the magnitude levels describe certain characteristics 

of the input. I extend that, in rhythm, magnitudes relate to rhythms in terms of pulse saliency. 

In this way, when there are multiple rhythmic lines juxtaposed simultaneously in the music, 

the DFT has the ability to examine each one of those separately and describe their character, 

and subsequently describe the character of the unified form. The resulting metric profile has 

the benefit of describing how much of a specific component is conveyed through the rhythmic 

surface; Cohn’s ski-hill graphs can represent subdivisional presence, but the DFT can, in 

addition, show the degree of influence it has on the profile. 

 At the local level, phase can identify differences in rhythmic positioning. This is 

useful in that the magnitude of a profile will return identical results to another rhythm which 

is positioned differently—phase can distinguish the rhythms from one another. The 

scanning procedure and phase shifter component assist the interpretive process needed in 

order to track phase through a piece. By thinking about phase values in terms of an absolute 

temporal grid—as discussed earlier—metric displacements and syncopations in the music are 

placed in reference to one another at a global level. I foresee that phase, with additional 

weighting procedures, has the potential for locating downbeats of meters, and showing 
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form-defining rhythmic gestures; tracking phase throughout and locating cadential 

displacements such as cadential syncopations may show statistical trends in compositional 

styles or compositional periods. 

 

TOWARDS A THEORY OF METER 

Horlacher has discussed a problem of defining meter in terms of periodicities, saying 

that “metric irregularities may gain a certain privileged or normative status independent of a 

fixed point of reference in the background.”78 Horlacher’s view encourages a flexible 

listening of rhythmic patterns that may not be included in the definition of meter for many 

theorists. The difficulty with labeling meter in a piece like “Shy One” becomes controversial: 

do we consider the non-periodic rhythmic irregularities as meter? The strophic form 

certainly allows us to expect the recurring 54	contrasted with 64	in the consequent section. Or, 

alternatively, do we accept that meters like 54 are are not equally divisible, and may thus only 

be understood in relation to a regularity? The difference lies in the definition of meter. The 

term meter is primarily used to convey two different phenomena: 1) The cognitive concept 

linked to entrainment; and 2) nested, equally spaced divisions of a space. These two ideas are 

separated as such, with the formal term meter referencing the ecological adaptation to attend 

to a regular pulse and the latter as a structural organization into a recursive structure of 

equal-spaced events.  

Rhythms can either support or oppose the meter; they can either reinforce the meter 

or, in some cases, articulate structures that contradict it. The differentiation between rhythm 

                                                
78 Gretchen Horlacher, "Metric Irregularity in "Les Noces: The Problem of Periodicity" (Journal of 

Music Theory 39, no. 2, 1995: 285-309), 290.  
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and meter allows us to acknowledge both the presence of surface rhythms and a deeper 

periodic structure, that is, meter. In the words of Cohn, “Meter arrives unbidden to the 

projecting mind and entraining body, and takes up permanent residence by default.”79 In this 

way, Cohn is saying that entrainment is an unconscious reaction; meter as entrainment is 

formed through statistical learning, and expectation through that. Huron uses expectation to 

frame the equally spaced events that construct the common definition of meter: “Periodic 

events are predictable for the simple reason that they establish a regular time interval that 

acts as a predictive template.”80 Expectations of periods are intrinsic to the very makeup of 

the structure, so meter will, by association, inherently contain forms of expectation. I return 

to a previous quotation in which Huron goes on to say that “Although periodicity helps 

listeners to form temporal expectations, periodicity is not necessary for the formation of 

such expectations. It is important only that the listener be experienced with the temporal 

structure, and that some element of the temporal pattern be predictable.”81 He goes on to 

argue that meters are predictive schema—a model of some framework based on previous 

exposure and statistical learning. In this way, the definition of meter can be extended from a 

set of isochronous event onsets—a definition which invalidates asymmetrical meters like 54 

and 78—to that of general schema. Few musicians would doubt that 54 is not a meter, but 

according to a widely accepted definition, it would be relegated to a recurring rhythmic 

pattern. I expand upon Huron’s predictive-based model by positing that meter is the way in 

which familiarity through exposure influences the natural systems of human expectation. 

                                                
79 Richard Cohn, “A Platonic Model of Funky Rhythms,” (Music Theory Online, 1 June 2016), 1.6 

mtosmt.org/issues/mto.16.22.2/mto.16.22.2.cohn.html. 
80 David Huron, Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, 2008), 175. 
81 Ibid., 187. 
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This definition integrates the periodic model in that periods are easy to form expectations 

about. 

 As I have shown here, the DFT captures metric profiles that exhibit characteristic 

features of a pattern in terms of saliency. In moving forward with my research, I anticipate 

that these templates will provide a method of qualifying specific degrees of metricality. In 

fact, these templates describe the pulse saliency and this can, in turn, be thought of in terms 

of expectancy. Amiot describes interval vectors in terms of the “probability of hearing a 

given interval in a given (pc-)set,”82 and saliency can be thought of in similar terms; the 

likelihood of hearing a given pulse in a span is based on its magnitude.83 Just as if we were to 

hear a sound world comprised of a diatonic scale, we would expect sounds to be from that 

sound world. Similarly, the DFT’s metric profiles capture a state of probability. Based on 

Huron’s model of expectation, the DFT’s rhythmic templates share some similarities with 

conventional ideas about meter—I do not claim that the DFT profiles display meter, but 

merely that they exhibit rhythmic and metric qualities that enhance metric discourse. I hope 

that, through this thesis project, I have shown fruitful products of an alternative 

methodology and its contribution to theories of rhythm and meter. With more research, I 

intend to explore the use of the DFT and how it may be deployed towards a broader, yet 

more precise theory of meter.  

 Following Quinn’s (2005) revival of Lewin’s work (1959) concerning the DFT, its 

use has continued to clarify a range of analytical and theoretical questions posed by the 

                                                
82 Mathematics and Computation 2017 Amiot 153 
83 In fact, DFT of the interval vector is the convolution of a set with its inverse. The squares of DFT 

of the original set is then the interval vector.  



 

	

100 

music theory community. In this thesis, I aim to add to the recent scholarship which has 

extended the seemingly universal applications of DFT by applying  it to rhythm and meter. I 

hope to have established a method that has the capabilities of examining local and global 

rhythmic structures alike. This thesis project prompts further questioning, and in doing so, 

will hopefully provide some inspiration to theorists of all kinds to explore the immense 

provinces made accessible through the DFT.  
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