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ActiveHedge: Hedge meets Active Learning

Bhuvesh Kumar 1 Jacob Abernethy 1 Venkatesh Saligrama 2

Abstract
We consider the classical problem of multiclass
prediction with expert advice, but with an active
learning twist. In this new setting the learner will
only query the labels of a small number of exam-
ples, but still aims to minimize regret to the best
expert as usual; the learner is also allowed a very
short burn-in phase where it can fast-forward and
query certain highly-informative examples. We
design an algorithm that utilizes Hedge (aka Ex-
ponential Weights) as a subroutine, and we show
that under a very particular combinatorial con-
straint on the matrix of expert predictions we can
obtain a very strong regret guarantee while query-
ing very few labels. This constraint, which we
refer to as ζ-compactness, or just compactness,
can be viewed as a non-stochastic variant of the
disagreement coefficient, another popular param-
eter used to reason about the sample complexity
of active learning in the IID setting. We also give
a polynomial time algorithm to calculate the ζ-
compactness of a matrix up to an approximation
factor of 3.

1. Introduction
The problem of multiclass prediction with expert advice has
emerged as a simple yet powerful framework for reasoning
about sequential decision tasks. We imagine we have a set
of N experts, at each round there are K possible outcomes,
and where each expert j makes a prediction Xt,j ∈ [K] at
time t about an unknown label yt ∈ [K]. Our learning task
is to emit our own estimate ŷt ∈ ∆k of yt, that takes into
account the advice of each expert along with their historical
performance up until this time point. The simple goal is: can
we predict well, in the long run, relative to the expert who
performs optimally over the full sequence of predictions,
despite that we do not know in advance which expert is
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best? Moreover, what can we guarantee even when some of
these experts may be predicting in an arbitrary or perhaps
adversarial fashion? These questions have received a great
deal of attention over the past two decades.

The classical algorithm for this problem is commonly known
as Hedge (Freund & Schapire, 1995), although variants are
often referred to as exponential weights or weighted major-
ity. While we give a precise description in Algorithm 1,
Hedge is quite simple to explain in words: the algorithm
combines the predictions of all the experts on a given round
by taking their weighted average, where the weight of an
expert exponentially decays according to the number of pre-
vious mistakes. Important details must be addressed, such
as the exponential decay factor and what to do with frac-
tional predictions, but a great deal of research has made one
point very clear: Hedge is essentially the minimax optimal
algorithm for the problem of prediction with expert advice.

One of the downsides of Hedge, as with many online learn-
ing algorithms, is that it is not label efficient: the learning
process requires that we observe the target yt on each round.
Obtaining individual labels can, quite often, be very expen-
sive to the learner; indeed this is central to why we design
prediction algorithms in the first place. Active learning,
which refers broadly to a family of frameworks in which
the learning algorithm can make selective label queries, are
designed precisely with the goal of minimizing the number
of needed labels while achieving a suitable learning per-
formance. The key idea is that we do not necessarily need
to have a batch of labelled examples prior to training, in
many natural scenarios the algorithm may be able to actively
engage with the labelling process to query labels on a set of
unlabelled examples. The classical Binary Search algorithm
is, in some sense, an active learning algorithm to find an
element in a sorted list.

It would be hard to argue against the wealth of empirical
results showing the benefits of active learning (Settles, 2011;
Nguyen & Smeulders, 2004; Wang & Hua, 2011; Kapoor
et al., 2007; Li & Guo, 2013). At the same time, while
our theoretical understanding of the label-efficiency gains
achieved using this new learning model has been studied
in a range of scenarios (Hanneke, 2007; Zhang, 2018; Han-
neke & Yang, 2012; Hanneke, 2011; Kulkarni et al., 1993;
Koltchinskii, 2006; Freund et al., 1997; Dasgupta et al.,
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2008), our progress towards a full-fledged concrete math-
ematical foundation of active learning has been relatively
slow. A persistent challenge is that precisely identifying
scenarios in which active label querying can provide prov-
able benefits, versus those where it necessarily can not, has
proven quite difficult (Zhang, 2018; Hanneke, 2011). The
one notable exception is disagreement-based active learning
(Hanneke, 2014): it has been shown that, as long as the
binary hypothesis class possesses a particular property with
respect to the underlying probability distribution, known
as the disagreement coefficient, a recursive algorithm can
“zoom in” to the optimal hypothesis and achieve faster learn-
ing with lower label complexity. While the disagreement
coefficient is somewhat difficult to define, the theoretical
work associated to this framework has been perhaps the
crowning achievement of the area.

In the following section we give longer outline of the exist-
ing work in this area. But it is worth noting up front that
nearly all work on active learning has imagined a “batch”
setting, where the algorithm is evaluated only at the end of
the learning process, in expectation, on new samples. This is
surprising, in particular, given that active learning methods
are by their nature online, as they seek to iteratively refine
their learning process and selection of samples. But thus far
there has been no work on putting active learning algorithms
to the test in a no-regret setting of prediction with expert
advice, where the algorithm’s decision is evaluated at each
round of the sequence, and where the expert’s predictions
as well as the labels can be non-stochastic and potentially
chosen by an adversary.

In the present paper we aim to remedy this gap, and show
that there is a natural framework for active learning in the
no-regret setting of prediction with expert advice with strong
learning guarantees as well as bounded label complexity.
First, we define a notion of complexity of the experts’ pre-
dictions, somewhat akin to the disagreement coefficient, that
provides a key tool in obtaining a provable guarantee; we
refer to this as compactness for a parameter ζ ≥ 1. Quite
notably, this quantity can be efficiently estimated up to a
constant factor!

Theorem 1.1 (Informal). There is a polynomial time algo-
rithm to calculate the compactness ζ of a matrix up to an
approximation factor of 3.

Second, we define “no-regret active learning” by laying out
what we believe is the appropriate analogue to the batch
setting. To put it briefly, we imagine a scenario in which
the learner must still make sequential predictions on an M -
length list of examples, but with the following modifications:
(a) the learner is given the sequence of all experts’ predic-
tions in advance, (b) the learner can only query the true label
yt on a small number of examples, and (c) the learner is
given a very short burn-in period where it can “fast-forward”

to future rounds in order to query particularly-informative
examples. It is this last feature that makes our setting truly
active, as this term is used in the batch setting, since the
learner can recursively seek out useful datapoints. After the
short burn-in, however, the learner must play the remainder
of the sequence in its original order while querying only a
small fraction of the labels.

Third, we propose an online learning algorithm for this
setting, ActiveHedge, that leans heavily on Hedge as a sub-
routine yet uses dramatically fewer label queries. We are
able to show the following:

Theorem 1.2 (Informal). Assume we must predict a se-
quence of labels in [K], we have N experts who have pro-
vided predictions (in [K]) on all M examples, and the pre-
diction matrix X ∈ [K]M×N is ζ-compact for some ζ ≥ 1.
If some expert makes only εM mistakes, for some ε > 0,
then with probability ≥ 1− ρ algorithm ActiveHedge guar-
antees that

1. with burn-in period of only O(ζ logN log 1
ε ) rounds,

2. no more than O
(
ζεMpolylog( N

εζρ )
)

label queries,

3. can achieve regret O
(√

εM lnN + lnN
)

.

Assuming the prediction matrix X is ζ-compact for a
reasonably-sized constant ζ, this theorem states that the
regret of ActiveHedge is indeed no worse than Hedge, yet
requires a dramatically lower label complexity: roughly
Õ(ζεM) queries are needed. The only extra power we
give the learner is a very brief burn-in period, roughly Õ(ζ)
rounds, where it can do active exploration of future exam-
ples. We now give an illustrative example to view this setting
in comparison with more classical batch active learning.

Batch vs Online Active Learning Before we dive into
the related work and our results, let us lay out an intrigu-
ing scenario. Imagine that a worldwide viral pandemic has
recently emerged, and a drug company has been working fu-
riously for months to develop a vaccine to provide immunity
to the novel virus. The company has been able to design
two candidate vaccines, A and B, has proven to federal reg-
ulators that both drugs are safe enough to study in humans,
but there’s a challenge: some people have a mild allergic
reaction to vaccine A but not B, and everyone else has a
similar allergic reaction to vaccineB but notA, but this only
occurs months after exposure. The company knows that the
allergic reaction is based on one of thousands of possible
genetic variants, yet must determine quickly which is the
relevant gene. Unfortunately there are only two ways to
determine if the allergic reaction will occur: (a) wait months
to inquire with the patient, or (b) run an expensive test af-
ter administering the vaccine that determines immediately
whether the allergic reaction will occur.
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In this scenario, the “experts” (hypotheses) correspond to
candidate genes, a recipient of the vaccine is an example, the
true label is their sensitivity to A or B, and the label query
cost is incurred by the expensive test needed to detect a
future allergic reaction. We introduce this challenge because
it helps to highlight the distinction between the two modes
of active learning, the classical batch framework and our
online setting.

1. If the company decides to take a batch active learning
approach, they would begin by asking random mem-
bers of the population to submit their genetic profile
and sign up for a vaccine study, but with only a small
chance to be selected. The company would then adap-
tively filter applicants, zero in on particularly-suitable
individuals with the relevant genetic information, ad-
minister one of the two vaccines, and then immediately
give the expensive test to detect for future allergic
reactions. A population-wide vaccine administration
protocol can then be developed once the key gene in
question is determined.

2. The online approach is more aggressive: the company
announces that anyone who would like to be vaccinated
will have the opportunity, but they must submit a certi-
fied genetic profile in advance, arrive at the local mall
on a Saturday by 11am, and then wait in a line. All are
promised to receive one of the two vaccines, with the
goal of minimizing potential allergic reaction; some
recipients will be given the expensive test to quickly
determine this. Also, all participants are told that a
small number may be brought to the front of the line so
that more medically-informative candidates are treated
first; this is the “burn-in” phase which we’ll discuss
more in Section 2.

The typical way that medical procedures are tested and
refined is using the first protocol, but we would argue1 that
the second is superior in how it accounts for and manages the
costs and benefits of both vaccine recipients and developers.
The batch active learning framework has generally been
focused on simply minimizing the number of label queries
(expensive tests) in order to achieve ε accuracy on future
examples, but prediction errors that occur in the study phase
are not accounted for in the loss objective. The online active
learning framework, on the other hand, does not distinguish
between study participants and regular vaccine recipients
– the goal is simply to induce the least number of allergic
reactions at the smallest possible testing cost over the long
term.

1We want to emphasize that we are not proposing to change the
drug design and trial framework, as this involves a host of ethical
and legal issues not considered here. Rather, drug development
provides a useful hypothetical to consider the relative costs of
testing and accuracy in an adaptive experimentation problem.

It is important to note that batch active learning methods,
including disagreement-based learning we describe below,
can not immediately be applied in the online setting. Batch
active learning only considers label query costs in the train-
ing phase and prediction error costs in the testing phase.
Another relevant distinction is that our results do not rely on
any IID assumption – indeed since the algorithm is allowed
to move certain examples ahead in the queue adaptively,
new examples are almost certain to be non-independent.

Related Work We briefly survey prior work in the gen-
eral area of active learning. We will describe salient aspects
of these works, and outline how our paper differs from these
existing approaches in terms of framework, method, and
theory. At a fundamental level, active learning deals with
label efficient learning, namely, identifying a good predictor,
h∗, from within a hypothesis class,H, based on selectively
choosing examples to query for labels. Within this con-
text, a number of methods under a variety of scenarios and
assumptions have been studied.

There has been a great deal of work in this area, yet we
limit our survey here to a few important themes, in order to
draw contrasts and parallels to our setting. Label efficient
learning has been considered in pool-based (Settles, 2012;
Hanneke, 2014), streaming (Cohn et al., 1994; Balcan et al.,
2006; Beygelzimer et al., 2008) and online scenarios (Cesa-
Bianchi et al., 2006; 2009; Dekel et al., 2012). Pool and
stream-based scenarios have been considered largely within
the setting of IID examples and/or labels, whereas online
methods have been considered under probabilistic (Dekel
et al., 2012) as well as adversarial (Cesa-Bianchi et al., 2006)
label noise assumptions. A number of approaches including
disagreement-based (Beygelzimer et al., 2008; 2010; Han-
neke, 2007; Dasgupta et al., 2008; Hanneke, 2009; Hanneke
& Yang, 2012), margin-based (Dasgupta et al., 2005; Bal-
can et al., 2007; Balcan & Long, 2013; Awasthi et al., 2014;
2015; Zhang, 2018), importance-sampling-based (Beygelz-
imer et al., 2008; Cortes et al., 2019), and multiplicative-
weight update-based (Cesa-Bianchi et al., 2006) and other
online (Yang, 2011; Dekel et al., 2012) based methods.

In much of the pool and streaming based methods, the under-
lying assumption is that the examples and labels, are or can
be, drawn IID from some fixed unknown distribution, with
labels hidden from the learner. The learner after making a
number of label requests, not exceeding, say U , outputs a
predictor ĥ. In this line of work, the active-learning protocol
is based on comparing ĥ against the Bayes optimal predic-
tor on an independent labeled sequence. While there is a
rich history of methods, which have been explored under a
variety of label noise assumptions, the setting of our work
is quite different, in that we make no probabilistic assump-
tions on the data generation process or label noise; and our
active learning protocol, in contrast to these works, does not
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require independence between training and test scenarios.
In particular, our protocol follows the online regret setting,
and the incorrect predictions are penalized on the dataset
available to the learner during the training process. On the
other hand, our proposed method and theoretical results are
fundamentally related to the so called disagreement based
methods, and leverages key insights of Hanneke’s disagree-
ment coefficient (Hanneke, 2014). In particular, we develop
the notion of ζ-compactness, which can be interpreted, in
some sense, as a deterministic and combinatorial version of
disagreement coefficient. Nevertheless, since we make no
probabilistic assumptions all previous disagreement-based
methods, we cannot leverage classical empirical risk min-
imization bounds in our context. For this reason, we draw
upon insights from the Hedge algorithm and its associated
regret bounds, which are agnostic to such probabilistic as-
sumptions.

Our work is also closely related to the label efficient online
learning methods, which have been analyzed both under
unbiased probabilistic noise as well as adversarial noise
assumptions. (Cesa-Bianchi et al., 2005) describes a selec-
tive sampling method within the framework of online regret
minimization for bounded loss functions. The learner plays
M rounds and at time t gets an input xt, and can decide to
seek a label, while being aware of the overall label budget
U . Within this setting, leveraging a variant of the Hedge
algorithm, and with no additional assumptions on data pro-
cess, (Cesa-Bianchi et al., 2005) provides regret guarantees,

which scale asM
√

log(N)
U forN experts (number of hypoth-

esis). A number of online variants to this selective sampling
approach have been proposed. (Cesa-Bianchi et al., 2009;
Dekel et al., 2012) introduce probabilistic noise assump-
tions, and in particular assume that the regression function
is linear, and the label noise is unbiased and independent of
other examples or queries. The linearity of the regression
function together with independent label noise allows them
to leverage recursive least-squares techniques. Similar to
these works, we also consider a regret-minimization tech-
niques. Different from (Cesa-Bianchi et al., 2009; Dekel
et al., 2012) we make no probabilistic assumptions on la-
bel noise. (Zhao et al., 2013; Hao et al., 2018) consider
the same setting as that of selective sampling where the
learner can request the label after making the predictions
in each round but don’t give any theoretical guarantees on
the label complexity. In contrast to (Cesa-Bianchi et al.,
2005) we assume data from all the N rounds are available
to the learner a priori. In addition, we impose the notion of
ζ-compactness on the dataset of experts’ predictions via a
concept closely related to disagreement coefficient, which
allows for dramatic improvements in label efficiency. As a
matter of comparison, say the optimal expert makes εM er-
rors, then the existing selective sampling results with budget

U = O(εM), would lead to a regret equal to
√

M log(N)
ε in

comparison to our result suggesting
√
εM log(N). Never-

theless, improvement in our result can be attributed to the
additional imposition of ζ-compactness.

2. Notation, Setting, and Background
For the remainder of the paper, we will consider a matrix
X ∈ [K]M×N that represent the predictions of a set of N
experts on a sequence of M rounds. We will use the nota-
tion Xt to refer to the tth row of X, although we will often
index rows using the letter i or I . We write Xi,j to denote
the (i, j)th entry of X. Alongside this matrix will be an (un-
known) sequence of labels y1, . . . , yM ∈ [K]. We require a
loss function ` : ∆K × [K]→ R, and for simplicity we re-
strict our attention to the absolute loss `(ŷ, y) := 1

2‖ŷ−δy‖1.
Here δy ∈ {0, 1}K is the indicator vector, with all zeros
except a 1 in the y-th coordinate.

2.1. Basics: Prediction with Expert Advice, and Hedge

In the classical setting of prediction with expert advice, the
learner receives prediction vector Xt at round t, makes a
prediction ŷt ∈ ∆K , observes the true label yt, and suf-
fers the loss `(ŷt, yt). Each expert j suffers a loss as well,
`(Xt,j , yt), and note that this loss is conveniently the 0-1
loss as well, 1[Xt,i 6=yt]. The algorithm wants to choose the
predictions ŷ1, . . . , ŷM in order to minimize the regret:

REGalg :=

M∑
t=1

`(ŷt, yt)− min
j∈[N ]

M∑
t=1

`(Xt,j , yt).

At times it will be convenient to refer to the cumulative loss
of expert j as LMj =

∑M
i=1 `(Xi,j , yi). Similarly, the loss

of the algorithm is LMHedge =
∑M
t=1 `(ŷt, yt)

We have already discussed Hedge, the most well-known al-
gorithm for the problem of prediction with expert advice.
We lay this out in full detail in Algorithm 1, with two impor-
tant subroutines, HedgeUpdate and HedgePredict, that will
be needed later.
Theorem 2.1. Assume we know a quantity L∗ such that
minj=1,...,N L

M
j ≤ L∗. Then, choosing η = log

(
1 +√

2 lnN
L∗

)
Algorithm 1 guarantees

LMHedge − min
j=1,...,N

LMj ≤
√

2L∗ lnN + lnN. (1)

This is, in many respects, a fundamental bound. We know,
for example, that this can not be made any tighter, even up
to constants (Cesa-Bianchi & Lugosi, 2006).

2.2. Prediction Matrix Compactness

In the typical adversarial learning setting we assume that the
experts’ predictions and labels are chosen in some arbitrary
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Algorithm 1: Hedge
1 Input: η > 0 /* learning rate parameter */

2 Init: ~w0 = [1, . . . , 1] /* N initial weights */

3 for t = 1, . . . ,M do
4 Xt ← Preds(t) /* Receive expert predictions */

5 ŷt ← HedgePredict(Xt, ~w)
6 yt ← QueryLabel(t)
7 ~w ← HedgeUpdate(~w,Xt, yt, η)

8 end
1 Procedure HedgePredict(~x, ~w)

2 ~p←
[

w1∑N
i=1 wj

, . . . , wN∑N
i=1 wj

]
/* ~p ∈ ∆N */

3 ŷ ← ~p · ONEHOT(~x) /* Weighted multiclass pred */

/* OneHot converts multiclass preds ~x ∈ [K]N to one-hot

matrix encoding ∈ (∆K)N */

4 return ŷ /* ŷ is a probability vec in ∆K */

1 Procedure HedgeUpdate(~w, ~x, y, η)
/* Decrease weight of incorrect experts */

2 for j = 1, . . . , N do
3 w+

j ← wj exp(−η1[xj 6=y])

4 end
5 return ~w+

fashion. On the other hand, it is well understood that to
obtain any reasonable learning result in an active label-
efficient mode one requires stronger assumptions on the
input data. In our framework of prediction with expert
advice this will mean we must constrain the matrix X in
an appropriate fashion. Let us now describe a particular
condition on X, which we call compactness, that measures
a purely combinatorial property of the space of predictions.

Definition 2.2. Given X ∈ [K]M×N , and for any subset
V ⊆ [N ] of experts, the points of contention of V is the set

POCX(V ) := {i ∈ [M ] | ∃j, j′ ∈ V : Xi,j 6= Xi,j′}

For any set of experts, the points of contention are the col-
lection of examples where at least two of the experts in the
set disagree.

Definition 2.3 (ζ- Compactness). For some ζ ≥ 1, we say
that an expert prediction matrix X is ζ-compact if it satisfies

|POCX(V )|
maxj,j′∈V |POCX({j, j′})|

≤ ζ (2)

for each V ⊂ [N ] with |V | ≥ 2. We refer to the com-
pactness of X as the smallest ζ for which inequality (2)
holds.

Given a prediction matrix X, the compactness of X controls
the divergence between two key quantities of a group of
experts V : the total number of points of contention of all
of V versus the largest number of points of contention over

any pair in the group. In one sentence, the matrix X is
ζ-compact if the size of the contentious set for any subset
of experts is never ζ larger than that of the most contentious
pair of experts in it. Here are two illuminating examples
that illustrate matrix compactness:

1. Let K = 2, M = N and let X be the identity matrix,
with all 0 entries except 1s on the diagonal. The com-
pactness of this matrix is M

2 , unfortunately, which is
very large. That’s because if you take V = [N ] we see
that POCX(V ) = [M ] the whole set of examples. But
for any pair j, j′ we have POCX({j, j′}) = {j, j′}. In
other words, any group of experts has as many points
of contention as members in the group, but any pair
of experts will disagree on only two points. This is in-
deed a very hard case for active learning, as individual
examples are not very informative.

2. Continue to let M = N and now let X be the upper
triangular matrix with all 1s on and above the diag-
onal, and 0s below. This is a very compact matrix,
with ζ = 1! That’s because for any subset V we
have POCX(V ) = POCX({min(V ),max(V )}), i.e.
the points of contention in V is identically the points
of contention for the largest-index and smallest-index
experts in the set.

Following point 1 above, we can give a simple bound on
the compactness of any expert prediction matrix X, whose
proof is in Appendix C. But this bound is mostly useless
from the perspective of our main results, as we need ζ �M
for a non-trivial guarantee on label complexity.

Theorem 2.4. For any matrix X ∈ [K]M×N , for M ≥ 2,
the compactness of X is less than or equal to min {M,N}

Comparison to the Disagreement Coefficient. As we
mentioned early in the paper, one of the major theoretical ac-
complishments in the literature on label-efficient statistical
learning is the work on disagreement-based active learning,
first introduced by (Hanneke, 2007) with several followup
works (Hanneke, 2009; 2011; Balcan et al., 2006; Hanneke,
2014; Hanneke & Yang, 2015). The key quantity of interest
in this work is known as the disagreement coefficient, a
scalar that measures the difficulty of active learning with
respect to a particular hypothesis class and data distribution.
What was shown all the way back to (Hanneke, 2007) was
that this coefficient controls the label complexity of learning
on the given task, and they show several examples where
the disagreement coefficient is of reasonable size.

While we developed our notion of compactness indepen-
dently, and with a different model in mind, we later realized
that in the case of binary classification our definition can
in some sense be viewed as a “derandomization” of Han-
neke’s disagreement coefficient; we make this more precise
in the proposition below. The compactness ζ of a prediction
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matrix X does not depend on any notion of IID sampling
from an underlying data distribution, as ζ is purely a com-
binatorial property of the experts’ predictions which could
have been adversarially chosen. And, while there is some
resemblance between the burn-in procedure in Phase I of
ActiveHedge and the A2 algorithm of (Hanneke, 2007), our
results are not at all comparable: the goal of our work was to
produce an algorithm that suffers low regret, as it is forced
to make a prediction and suffer loss on each example, and
be robust against non-stochastic sequences of data.
Proposition 2.5. Consider a binary expert prediction ma-
trix X with compactness ζ. Construct a data distribution
D which generates an x, y pair by uniformly sampling x as
a row of X and let y be the corresponding label. We can
considers the set of experts as an N -sized hypothesis class
H. Then the disagreement coefficient of (D,H), as defined
by (Hanneke, 2007), is 2ζ where ζ is the compactness of X.

2.3. Online active learning with experts

Let us now specify the details of our framework for active
learning with expert advice. It can be described in terms of
the vanilla Hedge setting, but with three key modifications:

1. The sequence of expert predictions, specified by X, can
be precomputed and is given to the learner in advance of
the prediction task.

2. The learner aims to make only a small number of label
queries, limiting the number of times yt is observed.

3. We allow a very brief burn-in period, which we call Phase
I, where the learner can “fast-forward” to act on particular
examples, and query their labels, out of turn. In Phase
II the learner then plays the remaining points, which are
the vast majority, in the order they are given, with the
occasional label query if needed.

Modification 1 above is not unusual and arises naturally in
settings where the experts are a set of pre-selected deter-
ministic hypotheses, the rounds/examples are given by a
queue of contexts/input vectors, and we can pre-evaluate
each hypothesis on each context (the vaccine development
scenario given in the introduction is another such example).
Modification 2 captures the underlying goal that we want to
skip the potentially-expensive step of obtaining the correct
multiclass label in all but a small fraction of rounds; adding
this modification alone is often referred to as label efficient
online learning, e.g. (Sculley, 2007).

Modification 3 is perhaps the most unusual in the context
of adversarial online learning, where one assumes that the
learner the sequence of examples and labels is chosen in an
adversarial fashion. But we would argue that this is actually
necessary to achieve any kind of non-trivial guarantee: with-
out a small number of fast-forward rounds, the adversary
can simply postpone all informative examples to the end of
the sequence, at which point querying their labels would

provide no benefit to the learner. Indeed we show that the
burn-in period can be extremely short, no more than roughly
O(ζ logN log 1

ε ) where ζ is the compactness of X, in order
to obtain the same regret as Hedge with vastly fewer label
queries (roughly Õ(ζεM )).

Note that if we don’t allow a burn in phase, the lower bounds
of Cesa-Bianchi et al. (2005, Theorem 13) apply to the
online active learning setting as well. This implies that
if we don’t allow a burn-in phase, then to guarantee the
same

√
2εM lnN regret as Hedge, any algorithm would

require at least C·M
ε labels for some constant C. Since

ε ≤ 1, C·Mε = Ω(M). Thus, without a burn-in period, any
algorithm would require Ω(M) labels to get the same regret
guarantee as Hedge. Since Hedge also request O(M) labels,
there would be no advantage in using anything other than
Hedge.

3. Algorithm And Performance Guarantee
Henceforth we will let b denote the index of the best expert,
i.e. b = argminj∈[N ] L

M
j , and that the number of mistakes

satisfies LMb ≤ εM.

3.1. An Overview of ActiveHedge

We present a multiplicative style algorithm ActiveHedge,
described precisely in Algorithm 2. First let us give a high-
level intuitive description of the procedure. ActiveHedge is
divided into two phases.

1. Phase I. This is the so-called burn-in period, where the
algorithm can fast-forward to future examples out of
turn. On each such example, the algorithm must still
make a prediction, and can then query the label. This
phase, while short, is done in small epochs of length
k = O(ζ log(N/ρ)), with a total of T = O(log(1/ε))
epochs. In a given epoch τ the algorithm has a set of
“candidate experts” V τ who have predicted reasonably
well thus far. To reduce the number of candidate ex-
perts, the algorithm samples future rounds from the
points of contention of V τ , makes a Hedge prediction
on each, and then queries the label. At the end of the
epoch the algorithm discards any experts in V τ whose
average error was above a given threshold. On the next
epoch we shrink the threshold and consider the new set
of candidate experts V τ+1, and sample examples from
the new set POCX(V τ+1), etc.

2. Phase II. At the start of this phase the algorithm has
a relatively small set of candidate best experts, V T,
that were selected in Phase I, and with high probability
b remains in V T and also every expert in V T agrees
with b on all but O(εM) examples. With the burn-in
segment over the algorithm now plays the remaining
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examples, which make up the vast majority, in their
original (adversarial) order; rounds played in Phase I
are skipped. Uses a very simple prediction strategy:

(a) if the example i is in POCX(V T), we use Hedge

to make a prediction on this example, we query
the label yi, and we do a Hedge update on the
weights;

(b) if i /∈ POCX(V T), we simply use an arbitrary
expert j∗ ∈ V T and use Xi,j∗ as our prediction.

Algorithm 2: ActiveHedge
Parameters :ε, η, k,T, ζ
Input :X ∈ [K]M×N

Initialize :V 0 ← [N ], t← 0, DONE ← ∅
/* //// PHASE I //// Recursively shrink candidate experts */

1 for τ = 0, . . . ,T− 1 do
2 Zτj ← 0 (∀j ∈ [N ]) /* #errs expert j at epoch τ */

3 for c = 0, · · · , k − 1 do
4 I ∼ POCX(V τ ) /* Sample w/ replacement */

5 if I /∈ DONE then
6 ŷI ← HedgePredict(XI , ~w

t)
7 yI ← QueryLabel(I)
8 ~wt+1 ← HedgeUpdate(~wt, XI , yI , η)
9 t← t+ 1 /* increment hedge update count */

10 DONE ← DONE ∪ {I}
11 end
12 Zτj ← Zτj + 1[XI,j 6=yI ] ∀j ∈ V τ
13 end

14 δτ ← M

2|POCX(V τ )|

(
1

2τ+1ζ
− ε
)

/* Update

thresh */

15 V τ+1 ←
{
j ∈ V τ : Zτj /k ≤ δτ

}
/* Shrink V */

16 end
/* //// PHASE II //// Play all remaining rounds */

17 Select j∗ ∈ V T arbitrarily
18 for i = 1, . . . ,M do
19 if i ∈ DONE then
20 continue /* skip if example already done */

21 else if i ∈ POCX(V T) then
22 ŷi ← HedgePredict(Xi, ~w

t)
23 yi ← QueryLabel(i)
24 ~wt+1 ← HedgeUpdate(~wt, Xi, yi, η)
25 t← t+ 1 /* increment hedge update count */

26 else
27 ŷi ← ONEHOT(Xi,j∗) /* use default expert j∗

*/

/* One-hot encoding required so that ŷi ∈ ∆K */

28 end
29 end

The choice in condition (b) might seem unusual, but
recall that all experts in V T agree on examples i /∈

POCX(V T). As long as we did not accidentally evict
b from our candidate experts in Phase I, the predic-
tion Xi,j∗ will match that of Xi,b. Therefore on these
rounds we should suffer no regret.

3.2. Regret and Label Guarantees

We now present the regret and label complexity guarantee
for ActiveHedge (Algorithm 2)

Theorem 3.1. Assume we have ε, ρ > 0, ~y, and ζ-compact
matrix X such that 10εζ ≤ 1 and for some b ∈ [N ] we have∑
i∈[M ] 1[Xi,b 6=yi] ≤ εM . We set the ActiveHedge params

k :=
⌈
192ζ log

(
N
ρ log 1

10εζ

)⌉
, T :=

⌈
log 1

10εζ

⌉
and

η := log

(
1 +

√
2 lnN
εM

)
.

(3)
Then with probability at least 1− ρ:
1. the number of calls to QueryLabel is no more than

O
(
ζ log

(
N
ρ log 1

10εζ

)
log 1

10εζ + εζM
)

2. the length of Phase I is no more than Tk which, up to
logarithmic terms, is Õ(ζ) rounds;

3. and finally we have that

REGActiveHedge ≤
√

2εM lnN + lnN.

Corollary 3.2. If the burn-in phase in ActiveHedge is lim-
ited to only B rounds, then we can achieve the same regret
as Hedge with label complexity Õ(B + M

2B/ζ
).

Theorem 3.1 states that ActiveHedge achieves the same re-
gret guarantee as Hedge with high probability while using
considerably less labels. Hedge requires a label complexity
of M , where as for a small ε and ζ, the label complexity of
ActiveHedge is closer to Õ(ζεM).

The proof of Theorem 3.1 can be found in the Appendix A.
The basic proof sketch is that we divide the regret analysis
and the label complexity analysis into the regret and label
complexity of the two phases.

In Phase I, using induction, we show that with high prob-
ability, the size of the candidate experts set V τ shrinks in
every round and the best expert is always present in V τ .
After the end of the Phase I, we have narrowed down to
the set of candidate experts V T so that with high probabil-
ity |POCX(V T)| = O(ζεM), using compactness, yet still
b ∈ V T. In Phase II we only request the labels for the
examples that are in POCX(V T), thus the label complexity
of Phase II is bounded by O(εζM).

Bounding the regret of ActiveHedge is surprisingly easy,
since for all examples played in Phase I as well as for those
played in Phase II from POCX(V T), we appeal directly to



ActiveHedge: Hedge meets Active Learning

Hedge where we have an optimal bound. In many examples
in Phase II, where i /∈ POCX(V T), we make a prediction
that (with high probability) agrees with expert b and thus
we suffer no regret on these rounds.

It should be noted that even though the guarantees in The-
orem 3.1 are dependent on the knowledge of ε and ζ for
initializing the parameters K and T of Algorithm 2, for
our proofs to follow through, we just an upper bound on
the error rate ε of the best expert, and similarly for the
compactness ζ. In Theorem 4.1, we give a polynomial
time algorithm to approximate ζ; this can be used to ini-
tialize Algorithm 2. Using ε′ > ε in Theorem 3.1, we still
get the same regret guarantee of

√
2εM lnN + lnN that

still depends on ε, but the label complexity will now be
O
(
ζ log

(
N
ρ log 1

10ε′ζ

)
log 1

10ε′ζ + ε′ζM
)

.

If no estimate for ε is available, a standard halving trick can
be applied to obtain similar regret and sample complexity
guarantees. See Appendix B for more details.

4. Calculating compactness

Algorithm 3: Calculate compactness

1 Input: X ∈ [K]M×N /* Expert prediction matrix */

2 Init: ζ̃ ← 0
3 for all pairs j, j′ ∈ [N ] do
4 Vj,j′ ← {j, j′} /* Initialize Vj,j′ */

/* Add experts with distance from j ≤ dist(j, j′) */

5 Vj,j′ ← Vj,j′ ∪ {h|dist(h, j) ≤ dist(j, j′)}
/* Add experts with distance from j′ ≤ dist(j, j′) */

6 Vj,j′ ← Vj,j′ ∪ {h|dist(h, j′) ≤ dist(j, j′)}

7 ζj,j′ ←
|POCX(Vj,j′ )|
DIAM(Vj,j′ )

/* Update ζ̃ if a bigger ratio is found */

8 if ζj,j′ > ζ̃ then
9 ζ̃ ← ζj,j′

10 end
11 end
12 Return: ζ̃

The compactness of an expert prediction matrix is a combi-
natorial quantity which is easy to compute for some concept
classes, but in the worst case it might be hard to compute
exactly as we have a supremum over all subsets of experts.
We present an algorithm that gives a 3-approximation of the
compactness in polynomial time.

For the remainder of this section and the appendix, for any
V ⊂ [N ] let DIAM(V ) := maxj,j′∈V |POCX({j, j′})| and
for any experts j, j′, let dist(j, j′) = |POCX({j, j′})|.
Theorem 4.1. If the input matrix X to Algorithm 3 is ζ-
compact, then Algorithm 3 returns ζ̃ such that ζ3 ≤ ζ̃ ≤ ζ

in runtime O
(
N4M

)
As stated earlier, for initializing Algorithm 2 for the results
in Theorem 3.1, we just need an upper bound on the ζ-
compactness. Using Algorithm 3, we can obtain an estimate
ζ̂ = 3ζ̃ such that ζ ≤ ζ̂ ≤ 3ζ.

5. Experiments
We provide preliminary experiments to compare Active-
Hedge (Algorithm 2), with standard Hedge (Algorithm 1)
and the label efficient algorithm given by Cesa-Bianchi et al.
(2005).
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Figure 1. Labels queried and the cumulative mistakes of Active-
Hedge, Hedge, and Cesa-Bianchi et al. (2005)(CL05) in 3 different
settings. Hedge queries label in every round and is not shown in
Labels queried plots to maintain readability.

We consider three different classes of experts for our experi-
ments. In Figure 1: a) we consider linear classifiers passing
through the origin as experts. We uniformly N sample lin-
ear classifiers from a unit sphere centred at origin. We then
sample M points from a unit sphere and classify each point
using theN experts to create the expert prediction matrix X.
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Similarly, in Figure 1: b), we consider multi-dimensional
thresholds as experts where a point x ∈ Rd is labeled 1
by an expert h ∈ Rd if xi ≥ hi∀i ∈ [d]. The experts are
sampled by sampling thresholds uniformly between 0 and
1. In both the cases, ActiveHedge is able to achieve similar
accuracy to Hedge and achieves better performance than
Cesa-Bianchi et al. (2005) in terms of both regret and label
complexity.

We also consider the more adversarial case in Figure 1: c),
where the expert prediction matrix has an identity matrix like
structure with ζ = O(N). Here the expert prediction matrix
is designed such that only one of the experts labels each
point as 1, and every expert classifies approximately equal
number of points as 1. Even in this adversarial case where
the ζ compactness is very high, ActiveHedge out performs
the competition. Thus happens because even though the
ζ compactness is high, it also implies that by removing
an expert from consideration, we also remove a significant
fraction of points we are confused on. This allows us to
quickly converge to the optimal expert. All experiments
are repeated 100 times, with M = 10000 and N = 100
and d = 10. We use upper bounds for ζ and ε and other
parameters are set optimally. For all these experiments,
ActiveHedge required less than 10% of the labels with the
burn-in phase being less than 2% of the points.
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A. Proof of Theorem 3.1
To prove Theorem 3.1, we need a few preliminary lemmas.

Lemma A.1. If a set of experts H1 is a subset of another set of experts H2, then POCX(H1) ⊆ POCX(H2)

Proof. If i ∈ POCX(H1), then there exist two experts j, j′ ∈ H1, such that Xi,j 6= Xi,j′ . Since H1 ⊆ H2, j, j′ ∈ H2,
hence i ∈ POCX(H2).

In each epoch τ of Phase I, we maintain a set of candidate experts V τ and a set of candidate points POCX(V τ ) we might
query the labels for. For ease of notation, let Sτ = POCX(V τ ), DIAM(V ) := maxj,j′∈V |POCX({j, j′})|, and for any
experts j, j′, let dist(j, j′) = |POCX({j, j′})|.

For the purpose of analysis, we partition the set V τ into two sets. Let

Bτ =
{
j ∈ V τ | dist(b, j) > M

2τ+1ζ

}
and also Bτ = V τ \Bτ .

Intuitively, Bτ are the experts which are far from the best expert and thus they make more mistakes and we want to remove
them. Using an inductive analysis, we will show that in each epoch, with high probability, we can shrink the set of candidate
experts, i.e for all τ , V τ+1 ⊆ Bτ and that we never remove the best expert b, i.e b ∈ V τ+1. For the rest of the section, we

set k = d192ζ log(Nρ log 1
10εζ )e, T = dlog 1

10εζ e and η = log(1 +
√

2 lnN
εM )

In the following lemma, we show that the size of the set of candidate points sampled from in epoch τ is bounded.

Lemma A.2. If V τ ⊆ Bτ−1, then |Sτ | ≤ M
2τ−1

Proof. By definition, Sτ = POCX(V τ ). Since V τ ⊆ Bτ−1, using Lemma A.1, Sτ ⊆ POCX(Bτ−1). By definition, of
Bτ−1, these experts are at a distance of at most M

2τζ from the best expert, the diameter of this set is at most M
2τ−1ζ . Using

definition of ζ−compactness, |POCX(Bτ−1)| ≤ ζ · M
2τ−1ζ = M

2τ−1 . Hence |Sτ | ≤ M
2τ−1 .

Now we show that in expectation, any expert in Bτ makes a large number of mistakes in epoch τ which we will use to
obtain a high probability bound.

Lemma A.3. If b ∈ V τ then for any j in Bτ , if Zτj is the number of mistakes made in epoch τ , then E
[
Zτj
]
≥

k
|Sτ | (

M
2τ+1ζ − εM)

Proof. Since j ∈ V τ and b ∈ V τ , By definition of Sτ = POCX(V τ ), if for some i, Xi,j 6= Xi,b, then i ∈ Sτ . b makes
at-most εM mistakes, so in the worst case, j can disagree with b on these points and be correct, but it has to be wrong on at
least M

2τ+1ζ − εM points in Sτ as it disagrees with b on M
2τ+1ζ points in Sτ .

We samples k points from Sτ . Let the examples samples in epoch τ be (I1, · · · , Ik), then Zτj =
∑k
c=1 1[XIc,j 6=yIc ],

=⇒ E
[
Zτj
]

=
∑k
c=1 E

[
1[XIc,j 6=yIc ]

]
=
∑k
c=1 P[XIc,j 6= yIc ] ≥

∑k
c=1

1
Sτ ( M

2τ+1ζ − εM) = k
Sτ ( M

2τ+1ζ − εM)

Lemma A.4. If b ∈ V τ and V τ ⊆ Bτ−1 then with probability at least 1− ρ|Bτ |
N log 1

10εζ

, V τ+1 ⊆ Bτ

Proof. For a fixed j ∈ Bτ , by definition the number of mistakes, Zτj =
∑k
c=1 1[XIc,j 6=yIc ]. The probability that we keep j
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in V τ+1 is

P
[
Zτj
k ≤

1
2|Sτ | (

M
2τ+1ζ − εM)

]
= P

[
Zτj
k −

1
|Sτ | (

M
2τ+1ζ − εM) ≤ − 1

2|Sτ | (
M

2τ+1ζ − εM)
]

≤P
[
Zτj
k −E

[
Zτj
k

]
≤ − 1

2|Sτ | (
M

2τ+1ζ − εM)
]

≤ exp(− k

12
(

M
2τ+1ζ − εM

2|Sτ |
)) (Chernoff Lower tail)

≤ exp(− k

12
(
1− 2τ+1ζε

8ζ
)) (as |Sτ | ≤ M

2τ−1
)

≤ exp(− k

12
(

1

16ζ
)) (as τ < log2

1

10εζ
)

=
ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Thus, with probability at least 1− ρ
N log 1

10εζ

, Zτj > δτ , thus j /∈ V τ+1. A union bound over j ∈ Bτ gives the proof.

So far in the inductive process we have shown that we shrink V τ to only keep experts from Bτ . Now we show that with
high probability, we never remove the best expert b.

Lemma A.5. If Zτb is the number of mistakes made in epoch τ by the best expert b, then E[Zτb ] ≤ kεM
Sτ

Proof. Since the best expert makes at-most εM mistakes, in the worst case all of these εM examples are present in Sτ . Since
we samples k points from St, Zτb =

∑k
c=1 1[XIc,b 6=yIc ] =⇒ E[Zτb ] =

∑k
c=1 E

[
1[XIc,b 6=yIc ]

]
=
∑k
c=1 P[XIc,b 6= yIc ] ≤∑k

c=1
εM
Sτ = kεM

Sτ

Lemma A.6. If b ∈ V τ and V τ ⊆ Bτ−1 then with probability at least 1− ρ
N log 1

10εζ

, b ∈ V τ+1

Proof. The probability that b is not present in V τ+1 is

P
[
Zτb
k ≥

1
2|Sτ | (

M
2τ+1ζ − εM)

]
= P

[
Zτb
k ≥

εM
2|Sτ | (

1
2τ+1εζ − 1)

]
≤P

[
Zτb
k ≥ E

[
Zτb
k

]
1
2 ( 1

2τ+1εζ − 1)
]

≤ exp(− kεM
6|Sτ |

1

2
(

1

2τ+1εζ
− 3)) (Chernoff upper tail)

≤ exp(−k
3

(

M
2τ+1ζ − 3εM

2|Sτ |
))

≤ exp(−k
3

(
1− 2τ+13ζε

8ζ
)) (as |Sτ | ≤ M

2τ−1
)

≤ exp(−k
3

(
1

16ζ
)) (as τ < log2

1

10εζ
)

=
ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Combining the two results, we can prove the inductive step.

Lemma A.7. If b ∈ V τ and V τ ⊆ Bτ−1, then with probability at least 1− ρ
log 1

10εζ

, b ∈ V τ+1 and V τ+1 ⊆ Bτ
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Proof. Union bound over Lemma A.4 and A.6.

We consider the base case and show that even in the first round, we shrink V 0 to get V 1 and that we don’t remove b.

Lemma A.8. With prob. ≥ 1− ρ
log 1

10εζ

, V 1 ⊆ B0 and b ∈ V 1

Proof. δ0 = k
2 ( 1

2ζ − ε). For any fixed j ∈ B0, E
[
Z0
j

]
≥ k( 1

2ζ − ε) (A.3). Probability that j ∈ V 1 is

P
[
Z0
j

k ≤
1
2 ( 1

2ζ − ε)
]

≤P
[
Z0
j

k −E
[
Z0
j

k

]
≤ − 1

2 ( 1
2ζ − ε)

]
≤ exp(− k

12
(
1− 2ζε

4ζ
)) (Chernoff lower tail)

≤ exp(− k

12
(

1

8ζ
)) (as 1− 2ζε > 1/2)

≤ ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Thus with probability at least 1− ρ
N log 1

10εζ

, j /∈ V 1

For b, E
[
Z0
b

]
≤ k

ε . Probability that b /∈ V 1

P
[
Z0
b

k ≥
1
2 ( 1

2ζ − ε)
]

≤P
[
Z0
b

k −E
[
Z0
b

k

]
≥ 1

2 ( 1
2ζ − 3ε)

]
≤ exp(−k

3
(
1− 6ζε

4ζ
)) (Chernoff lower tail)

≤ exp(−k
3

(
1

8ζ
)) (as 1− 6ζε > 1/2)

≤ ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Thus with probability at least 1− ρ
N log 1

10εζ

, b ∈ V 1

Union bound over j ∈ B0 and over b proves the statement of the lemma.

Now that we have proved the inductive step and the base case, we can use these results to state the result for Phase I.

Lemma A.9. In ActiveHedge (algorithm 2), when Phase I ends after T = 1
10εζ epochs, with probability at least 1 − ρ,

b ∈ V T and for all j ∈ V T , dist(b, j) ≤ 10εM

Proof. Using induction and union bound over τ = 1, · · · ,T for Lemmas A.8 and A.7, we get that with probability at least
1− ρ, b ∈ V T, and V T ∈ BT−1 ⊆

{
j ∈ [M ] | dist(b, j) ≤ M

2Tζ

}
, M

2Tζ = M

2
log( 1

10εζ
)
ζ

= 10εM

Now that we have shown that at the end of Phase I, i.e the burn-in period, we have considerably shrunk down our set of
candidate experts and thus confusing points. We can prove Theorem 3.1.

Since, ActiveHedge (Algorithm 2) is divided into two phases, a portion of the regret is incurred in each phase. The examples
we predict and request labels for in Phase I are denoted by the set DONE at the end of Phase I. So the portion of regret
incurred in Phase I be RI =

∑
i∈DONE(`(ŷi, yi) − `(Xi,b, yi)). For Phase II, the points are either in ST = POCX(V T)

where we make hedge updates and request for labels, or they are not in POCX(V T), and we use an arbitrary expert
j∗ ∈ V T to make predictions. Let the regret on the points in POCX(V T), i.e. the points of contention for V T in phase II



ActiveHedge: Hedge meets Active Learning

be Rcon =
∑
i∈([M ]\DONE)∩ST(`(ŷi, yi)− `(Xi,b, yi)) and the total regret for the points in Phase II not in POCX(V T) be

Ragree =
∑
i∈([M ]\DONE)\ST(`(ŷi, yi)− `(Xi,b, yi))

Proof of Theorem 3.1. First, let’s show the regret bound,

Regret Bound:

Since REGActiveHedge = RI + Rcon + Ragree, let’s consider the terms individually.

• RI and Rcon: We are using Hedge (Algorithm 1) to make predictions and make updates. If we re-sample a point for which
we have already made a prediction, we do not incur loss on it again. We know that LMb ≤ εM , hence L∗ = εM is an upper

bound on the loss of the best expert in RI + Rcon as well. Setting η = log
(

1 +
√

2 lnN
εM

)
, we can directly use the regret

bound of Theorem 2.1, to show that

RI + Rcon =
∑

i∈DONE∪ST

(`(ŷi, yi)− `(Xi,b, yi))

≤
∑

i∈DONE∪ST

`(ŷi, yi)− min
j∈[N ]

∑
i∈DONE∪ST

`(Xi,j , yi)

≤
√

2εM lnN + lnN

• Ragree: Using Lemma A.9, with probability at least 1− ρ, the best expert b ∈ V T. Since ST = POCX(V T), all the experts
present in V T agree on [M ] \ ST. Since ([M ] \ DONE) \ ST ⊆ M \ ST all the experts in V T agree on all examples in
([M ] \ DONE) \ ST. Thus for all i ∈ ([M ] \ DONE) \ ST, for any j ∈ V T, Xi,j = Xi,b. This is also true for j∗ selected
before the start of Phase II, We get

Ragree =
∑

i∈([M ]\DONE)\ST

(`(ŷi, yi)− `(Xi,b, yi))

=
∑

i∈([M ]\DONE)\ST

`(Xi,j∗ , yi))− `(Xi,b, yi))

=
∑

i∈([M ]\DONE)\ST

`(Xi,b, yi))− `(Xi,b, yi)) = 0

Thus with probability at least 1− ρ,
REGActiveHedge ≤

√
2εM lnN + lnN

Label complexity:

Let’s consider the number of labels requested in each phase.

• Phase I:

Since number of epochs T = log 1
10εζ and in each epoch we request the label for k = 192ζ log(Nρ log 1

10εζ ) examples, the
number of labels requested is Phase I is at most 192ζ log(Nρ log 1

10εζ ) log 1
10εζ . This is also the size of the burn-in period.

• Phase II:

Using Lemma A.9, with probability at least 1− ρ, for every j ∈ V T , dist(b, j) ≤ 10εM , thus DIAM(V T) ≤ 20εM . Using
the definition of ζ-compactness, |ST| = |POCX(V T)| ≤ ζDIAM(V T) ≤ 20εζM . Since we only request labels for the
examples in POCX(V T), the number of labels requested in Phase II is bounded by |POCX(V T)|, which is less than or
equal to 20εζM

Hence with probability at least 1− ρ, the number of labels requested in Phase II is at most 20εζM

Combining the label complexity for each of the phase, with probability at least 1− ρ, the number of labels requested by
Algorithm 2 is at most

O

(
ζ log

(
N

ρ
log

1

10εζ

)
log

1

10εζ
+ εζM

)
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Note that the regret bound and the label complexity result hold simultaneously with probability at least 1− ρ.

B. Halving trick for unknown ε

As the algorithm already works by zooming in on tighter error levels, a standard halving technique can be used to easily adapt
to an unknown ε as well. Note that k’s dependence on ε is only log log 1

ε coming from a union bound which can be upper
bounded by log logM . Now to run the algorithm adaptively, instead of fixing T, we keep the τ loop running till error rate of
some expert is less than 0.5, i.e. minj Z

τ
j /k < 0.5 and setting δτ ← M

2τ+2ζ|POCX(V τ )|
. Using similar steps as Theorem 3.1,

this ensures that with high probability, the best expert b is never removed from V τ . When τ < log 1
4εθ , we can show that with

high probability, the best expert b has Zτb /k ≤ 0.5 and for τ > log 1
2εθ , minj Z

τ
j /k > 0.5. Thus, without knowing ε, we

stop at the correct, τ , leading to the the optimal regret of
√

2εM lnN + lnN with O
(
ζ log

(
N
ρ logM

)
log 1

10εζ + εζM
)

.

C. Proof of theorem 2.4
Proof of Theorem 2.4. If for a set of experts V , if |V | ≤ 2 then |POCX(V )| = DIAM(v). Assume V has all unique experts.
For any set V ∈ [N ], |POCX(V )| ≤M , thus ζ ≤M .

For any V , we show that |POCX(V )| ≤ |V |DIAM(V ). Let show this by induction over the size of V . For |V | ≤ 2, the base
cases are direct. Assume that it is true for some V , i.e. |POCX(V )| ≤ |V |DIAM(V ). If we add one more expert h to this
set, then two cases are possible, a) DIAM(V + h) = DIAM(V ) or b) DIAM(V + h) > DIAM(V ).

a) DIAM(V + h) = DIAM(V )

We can show that |POCX(V + h)| ≤ |POCX(V )|+ DIAM(V ). If this is not true, i.e. if |POCX(V + h)| > |POCX(V )|+
DIAM(V ) then h disagrees with all j ∈ V on at least DIAM(V )+1 points which are not in POCX(V ). Thus POCX(h, j) ≥
DIAM(V )+1 > DIAM(V ) which would imply DIAM(V+h) > DIAM(V ) which is a contradiction. Thus |POCX(V+h)| ≤
|V + h|DIAM(V + h)

b) DIAM(V + h) > DIAM(V )

The extra points added in POCX(V ) by adding h is bounded by DIAM(V + h). We get

|POCX(V + h)| ≤ |POCX(V )|+ DIAM(V + h)

≤ |V |DIAM(V ) + DIAM(V + h)

≤ |V + h|DIAM(V + h)

This implies for any V , |POCX(V )| ≤ DIAM(V )|V |. Since |V | ≤ N , ζ ≤ N .

D. Proof of Theorem 4.1
Proof. Consider the subset

V ∗ = argmax
V,DIAM(V )>0

|POCX(V )|
DIAM(V )

Let h1, h2 ∈ V ∗ be the experts such that dist(h1, h2) = DIAM(V ∗). For any h′ ∈ V ∗, dist(h′, h1) ≤ DIAM(V ) and
dist(h′, h2) ≤ DIAM(V ), hence h′ ∈ Vh1,h2

, i.e V ∗ ⊆ Vh1,h2
in Algorithm 3. This gives us that |POCX(Vh1,h2

)| ≥
|POCX(V ∗)|

Since we include all experts that are at a distance of at most dist(h1, h2) from h1 or h2, the diameter DIAM(Vh1,h2
) ≤

3dist(h1, h2) = 3DIAM(V ∗)

Using these two facts, we get |POCX(Vh1,h2 )|
DIAM(Vh1,h2 )

≥ |POCX(V ∗)|
3DIAM(V ∗)

= ζ
3

We consider all pairs of experts in Algorithm 3, hence the ζ̃ returned satisfies

ζ̃ ≥ |POCX(Vh1,h2
)|

DIAM(Vh1,h2)
≥ ζ

3
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For the upper bound, since the ζ̃ returned is |POCX(Vj,j′ )|
DIAM(Vj,j′ )

for some j, j′, it is obvious that

ζ̃ ≤ max
V,DIAM(V )>0

|POCX(V )|
DIAM(V )

= ζ

The run time comes from the fact that we consider all O(N2) pairs of experts and for any subset V ⊆ [N ], |POCX(V )| can
be computed in O(|V |M) and DIAM(V ) can be computed in O(|V |2M)

D.1. Proof of Corollary 3.2

Proof. In ActiveHedge (Algorithm 2), in the results of Theorem 3.1, the learner is allowed to set the length of the burn-in
period itself, i.e. it can decide how many examples that we actually need to actively select and move ahead in the queue.
The burn-in phase in Theorem 3.1 is set in such a way that it minimizes the overall label complexity of the the algorithm
required to get the same regret bound as Hedge.

If instead of giving the learner the freedom to set its own length of Phase I, if the learner is only given a budget B of
number of examples it can move ahead in the queue, then by setting k = Õ(ζ) and T = B/k, the size of the burn-in phase
becomes B. At the end of Phase I, in this case, the size of the set of points of contentions, that is |POCX(V T)| is Õ( M

2B/ζ
)

(Lemma A.2). Thus, the total samples queried would be Õ(B + M
2B/ζ

).

Similar to Theorem 3.1, since we don’t make any mistakes on the points outside POCX(V T) in Phase II, the number of
mistakes is bounded by the mistakes made by Hedge, resulting in the same regret guarantee.

If we were to ignore the mistakes in the learning part, then using an off-the-shelf active learning algorithm (eg (Balcan et al.,
2006)) to solve this problem, i) We would need bounded VC dimension d, and ii) we would require a Õ(ζd log 1

ε + εζMd)-
long burn-in to ensure an excess error rate of the same order as the O(

√
εM) regret on the remainder of the examples.

This brings out a key benefit of our formulation: in pool-based batch active learning, there is no way to separate the number
of targeted queries (i.e. burn-in) and the label complexity; in our online setting the former can be dramatically smaller than
the latter.

E. Auxiliary lemmas
Lemma E.1 (Chernoff Bounds). LetX1, . . . , Xn be independent random variables, andXi lies in the interval [0, 1]. Define
X =

∑n
i=1Xi and denote E[X] = µ. For any δ ∈ [0, 1], we have Chernoff lower tail:

Pr{X < (1− δ)µ} ≤ exp(−µδ
2

3
)

and we have Chernoff upper tail:

Pr{X > (1 + δ)µ} ≤

{
exp(−µδ3 ) for δ > 1

exp(−µδ
2

3 ) for δ ∈ [0, 1]

The proofs for the inequalities in Lemma E.1 can be found in Theorem 4.4 and Theorem 4.5 of (Mitzenmacher & Upfal,
2017)


