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Effects of finite-range interactions on the one-electron spectral properties of TTF-TCNQ

José M. P. Carmelo,1,2,3,4 Tilen Čadež,3,5,6 David K. Campbell ,1 Michael Sing,7 and Ralph Claessen7

1Boston University, Department of Physics, 590 Commonwealth Ave, Boston, Massachusetts 02215, USA
2Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139, USA

3Center of Physics of University of Minho and University of Porto, P-4169-007 Oporto, Portugal
4Department of Physics, University of Minho, Campus Gualtar, P-4710-057 Braga, Portugal

5CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
6Beijing Computational Science Research Center, Beijing 100193, China

7Physikalisches Institut and Würzburg-Dresden Cluster of Excellence Complexity and Topology in Quantum Matter,
Universität Würzburg, D-97074 Würzburg, Germany

(Received 28 July 2019; published 5 December 2019)

The electronic dispersions of the quasi-one-dimensional organic conductor TTF-TCNQ are studied by
angle-resolved photoelectron spectroscopy (ARPES) with higher angular resolution and accordingly smaller
step width than in previous studies. Our experimental results suggest that a refinement of the single-band
1D Hubbard model that includes finite-range interactions is needed to explain these photoemission data. To
account for the effects of these finite-range interactions we employ a mobile quantum impurity scheme that
describes the scattering of fractionalized particles at energies above the standard Tomonaga-Luttinger liquid
limit. Our theoretical predictions agree quantitatively with the location in the (k, ω) plane of the experimentally
observed ARPES structures at these higher energies. The nonperturbative microscopic mechanisms that control
the spectral properties are found to simplify in terms of the exotic scattering of the charge fractionalized particles.
We find that the scattering occurs in the unitary limit of (minus) infinite scattering length, which limit occurs
within neutron-neutron interactions in shells of neutron stars and in the scattering of ultracold atoms but not
in perturbative electronic condensed-matter systems. Our results provide important physical information on the
exotic processes involved in the finite-range electron interactions that control the high-energy spectral properties
of TTF-TCNQ. Our results also apply to a wider class of 1D and quasi-1D materials and systems that are of
theoretical and potential technological interest.
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I. INTRODUCTION

The organic quasi-one-dimensional (1D) conductor
tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)
was the first material for which angle-resolved photoemission
spectroscopy (ARPES) was able to identify charge-spin
separation on the energy scale of the band width [1,2].
Its stacks of the TCNQ and TTF planar molecules are
effectively doped and become conducting by charge transfer
from TTF to TCNQ. The single-band 1D Hubbard model
provides a preliminary description of the experimental data
[2]. However, it does not explain some of the TTF-TCNQ
properties consistently [3].

In this paper we study the electronic structure of TTF-
TCNQ using ARPES with higher angle resolution and accord-
ingly smaller step width than in previous studies [1,2]. We
show that inconsistencies and unrealistic parameter choices
in previous attempts to describe the experimental dispersions
can be resolved by including finite-range interactions in a
single-band 1D Hubbard model description of each of the TTF
and TCNQ stacks.

We employ a mobile quantum impurity model (MQIM)
[4–6] to describe the microscopic mechanisms underlying
the experimental ARPES data at energies above the stan-
dard Tomonaga-Luttinger liquid (TTL) limit [7–10]. Our

theoretical predictions agree quantitatively with the location
in the (k, ω) plane of the experimentally observed ARPES
structures at such energies. The nonperturbative microscopic
mechanisms that control the TTF-TCNQ spectral properties
are found to simplify in terms of the exotic scattering of the
charge fractionalized particles.

We find that the scattering occurs in the unitary limit
of (minus) infinite scattering length, which limit plays an
important role in the physics of several well-known systems,
including the dilute neutron matter in shells of neutron stars
[11] and the atomic scattering in systems of trapped cold
atoms [12,13], but not in perturbative electronic condensed-
matter systems. Our results thus provide important physical
information on the exotic processes involved in the finite-
range electron interactions that control the high-energy spec-
tral properties of TTF-TCNQ. Our results also apply to a
wider class of 1D and quasi-1D materials and systems that
are of theoretical and potential technological interest [7].

A complication relative to the ARPES data of the 1D
metallic states in simpler systems (such as the line defects
of MoSe2 [14,15] and in those of Bi/InSb(001) [6]) is that
TTF-TCNQ contains two stacks of molecules. Metallicity
arises through charge transfer of about 0.59 electrons per TTF
to each TCNQ molecule. It follows that the electronic density
of the TCNQ stack of molecules is nQ

e = 0.59 and that of the
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TTF stack of molecules is nF
e = 2 − 0.59 = 1.41. For the the-

oretical study of the one-electron spectral features associated
with the TTF stack of molecules, we rely on a particle-hole
symmetry. This allows us to determine the spectral function
for one-electron removal at density 2 − 0.59 = 1.41 from the
corresponding spectral function for one-electron addition at
density 2 − 1.41 = 0.59.

The MQIM theoretical approach used in our study involves
a uniquely defined transformation from 1D Hubbard model
and its pseudofermion dynamical theory (PDT) [16,17]. Such
a transformation adds to that model finite-range interactions.
The corresponding model accounts for the effects of the
higher-order (HO) terms in the effective-range expansion
[18,19] of the fractionalized particles charge-charge phase
shifts; hence we call the model MQIM-HO. The charge-
spin separation in the MQIM [4–6], implies that the part
of the one-electron spectral-function spectrum associated
with the spin degrees of freedom remains invariant under
the transformation. Beyond the studies of Ref. [6], useful
related representations for the Hamiltonian of the lattice
electronic model with finite-range interactions in a relevant
one-electron subspace are used to access different aspects
of the microscopic mechanisms that control the spectral
properties.

For low energies, 1D correlated electronic metallic systems
show universal properties captured by the TLL description
[7–10]. An important low-energy property of such systems
is the universal power-law scaling of the spectral intensity
I (ω, T ), such that I (ω, 0) ∝ |ω|α . Here the exponent α con-
trols the suppression of the density of states (SDS) and ω is a
small excitation energy near the ground-state level. The value
of the SDS exponent, α = (1 − Kρ )2/(4Kρ ), is determined by
that of the TLL charge parameter Kρ [7,8,20].

In the case of TTF-TCNQ, the exponent α is very difficult
to be accessed experimentally [2]. For the metallic states of
other 1D and quasi-1D electronic systems, the experimental
values of α lie in the range 0.5–0.8 [1,7,8,14,20–24]. For the
TTF-TCNQ system, we predict that α = αC = 0.50 and α =
αF = 0.74 for the TCNQ and TTF and stacks of molecules,
respectively. If the interaction between the two stacks is weak,
the leading contribution would then be I (ω, 0) ∝ |ω|α where
α = αC = 0.50. If otherwise, the SDS exponent α will have a
single value in the range ∈ [0.50, 0.74] and its expression will
involve both αC and αF . Those values could not be reached
within the 1D Hubbard model whose TLL charge parameter
Kρ is larger than 1/2 thus requiring α to be smaller than 1/8.

Our results explain the seeming lower degree of charge-
spin splitting of the TTF derived part of the ARPES data,
although the electronic states of the (i) TTF stacks are more
strongly correlated than those of the (ii) TCNQ stacks. This is
confirmed by our prediction for their TLL charge parameters
(i) Kρ = KF

ρ = 0.21 and (ii) Kρ = KC
ρ = 0.27, respectively,

and known experimental properties [2,3,25].
In order to achieve a preliminary description of the TCNQ

experimental data within the 1D Hubbard model, a renormal-
ization of the hopping integral t = 0.40 eV at the surface by
a factor of 2 with respect to the bulk value from density-
functional theory or estimates from bulk-sensitive measure-
ments had to be assumed [2]. However, there is some evidence
that the observed transfer of spectral weight at kF over the

entire conduction band width with increasing temperatures
cannot be reconciled within the use of t = 0.40 eV [3]. Our
results confirm that these data can be consistently interpreted
incorporating finite-range interactions, in addition to the on-
site Coulomb energy U .

In this paper we employ units of h̄ = 1 and kB = 1. The
use of units of lattice spacing a0 = 1 is limited to Secs. IV
and V. In Sec. II we provide the experimental and tech-
nical details of the high resolution ARPES measurements
performed for TTF-TCNQ. The model Hamiltonian, the ξc →
ξ̃c transformation, and the universal properties of the poten-
tial Vc(x) associated with the fractionalized particles charge-
charge interactions induced by the electronic potential Ve(r)
for interaction distances r > 0 are the topics addressed in
Sec. III. In Sec. IV several useful representations for the
Hamiltonian of the lattice electronic model with finite-range
interactions used in our studies and the corresponding one-
electron singularities subspace are introduced and discussed.
The line shape near the (k, ω)-plane singularities of the model
one-electron removal and addition spectral functions is the
subject of Sec. V. In Sec. VI the ARPES data are presented. In
addition, we determine the parameter values of the theoretical
approach for which the location in the (k, ω) plane of the
experimentally observed high-energy ARPES structures agree
with those deduced from the theoretical spectral-function
singularities. Finally, we summarize our results and present
concluding remarks in Sec. VII. Three appendices provide
useful information needed for the studies of this paper.

II. EXPERIMENTAL DETAILS

The ARPES data were recorded in our laboratory in
Experimentelle Physik 4, University of Würzburg, with a
SPECS Phoibos 100 electron spectrometer equipped with a
two-dimensional charge-coupled device (CCD) detector. Pho-
toelectrons were excited by using nonmonochromatized He I
radiation from a duoplasmatron discharge lamp (SPECS UVS
300) with the operation conditions optimized for maximal flux
of 21.22 eV photons (He Iα) and at the same time negligible
contributions from the satellite lines at higher energies (He
Iβ , He Iγ ). The energy resolution was set to 60 meV, while
the angle resolution along the analyzer slit, i.e., parallel to the
1D chains of TTF-TCNQ, amounted to <0.2◦. Note that the
energy widths of the spectral features in the ARPES spectra
are not resolution limited. The Fermi energy was calibrated to
the Fermi cutoff of a freshly sputtered Ag foil.

The measurements were performed at 60 K, i.e., in the
metallic phase above the charge-density wave transition at
54 K. The single crystals were grown by diffusion in pure
acetonitrile and fresh, clean surfaces parallel to the (a, b)
plane. They were exposed by in situ cleavage at the measuring
temperature and a pressure <3 × 10−10 mbar. Cleavage was
accomplished by knocking off a post glued on the top of
the 2 × 5 × 0.2 mm3 TTF-TCNQ platelets with the chain
axis b oriented along the long crystal dimension. Special
attention was paid to collect data on short enough time scales
so as not to spoil the spectra owing to photoinduced sample
degradation [2].
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III. THE MODEL, THE ξc → ξ̃c TRANSFORMATION,
AND THE INDUCED MQIM-HO POTENTIAL Vc(x)

A. The model Hamiltonian and the ξc → ξ̃c transformation

The 1D model Hamiltonian associated with the MQIM-HO
for electronic density ne ∈]0, 1[ is given by [6]

Ĥ = t T̂ + V̂ where

T̂ = −
∑

σ=↑,↓

L∑
j=1

(c†
j,σ c j+1,σ + c†

j+1,σ c j,σ )

V̂ = U
L∑

j=1

ρ̂ j,↑ρ̂ j,↓ +
L/2−1∑

r=1

Ve(r)
∑

σ=↑,↓

∑
σ ′=↑,↓

L∑
j=1

n̂ j,σ n̂ j+r,σ ′ .

(1)

Here t is the transfer integral, ρ̂ j,σ = (n̂ j,σ − 1
2 ), n̂ j,σ =

c†
j,σ c j,σ , Ve(r) = U Fe(r)/r for r > 0 where U is the inter-

action, and Fe(r) is a continuous screening function. It is such
that Fe(r) � 1/4. At large r it vanishes as some inverse power
of r whose exponent is larger than one, limr→∞ Fe(r) = 0.
Different values of t and U and potentials Ve(r) with different
r dependence are found in Secs. VI and VII to describe the
stacks of the TCNQ and TTF molecules, respectively.

At Fe(r) = 0 the interaction U is simply an onsite repulsion
and the model in Eq. (1) becomes the 1D Hubbard model. The
charge parameter that for the latter model is denoted here by
ξc and for the model, Eq. (1), by ξ̃c, plays an important role
in our study. It is directly related to the TLL charge parameter
[7,8] as K0

ρ = ξ 2
c /2 and Kρ = ξ̃ 2

c /2, respectively. For the 1D
Hubbard model its dependence on u = U/4t and ne ∈]0, 1[ is
defined by Eq. (A12) and is such that ξc ∈]1,

√
2[. Upon in-

creasing u, it decreases from ξc = √
2 for u → 0 and reaches

its smallest value ξc = 1 in the u → ∞ limit.
Within the MQIM-HO [6], there is a ξc → ξ̃c transforma-

tion for ne ∈]0, 1[ such that ξ̃c ∈]1/2, 1[ ; ]1, ξc] is the above
renormalized charge parameter of the model, Eq. (1). This
transformation maps the 1D Hubbard model onto that model,
upon gently turning on Fe(r). Consistently, limξ̃c→ξc

Fe(r) →
0 for r ∈ [0,∞]. In this paper we use the following ξ̃c-related
deviation parameter,

δ̃c ≡ (ξc − ξ̃c) ∈]0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [ where

δ̃(1)
c = (ξc − 1) ∈ ]0, (

√
2 − 1)[ and

δ̃
( 1

2 )
c = (ξc − 1/2) ∈ ]1/2, (

√
2 − 1/2)[. (2)

The advantage of using this parameter is that limδ̃c→0 Fe(r) →
0, as it reads δ̃c = 0 at the boundary value ξ̃c = ξc that refers
to the bare 1D Hubbard model. Its value increases upon
decreasing the renormalized charge parameter ξ̃c under the
ξc → ξ̃c transformation. Hence in this paper the latter model
is called δ̃c = 0 bare model.

The MQIM-HO expressions near the singularities of the
one-electron spectral function of the model, Eq. (1),

B−1(k, ω) =
∑

σ

∑
ν−

|〈ν−| ck,σ | GS〉|2

× δ
(
ω + (

ENe−1
ν− − ENe

GS

))
ω � 0

B+1(k, ω) =
∑

σ

∑
ν+

|〈ν+| c†
k,σ

| GS〉|2

× δ
(
ω − (

ENe+1
ν+ − ENe

GS

))
ω � 0, (3)

which are studied below in Sec. V, are used in this paper
to describe the (k, ω)-plane location of the related TTF and
TCNQ stacks of molecules ARPES spectral features. Here
γ = −1 (and γ = +1) for one-electron removal (and addi-
tion) in Bγ (k, ω), ck,σ and c†

k,σ
are electron annihilation and

creation operators, respectively, of momentum k and spin
projection σ , |GS〉 denotes the initial Ne-electron ground state
of energy ENe

GS , the ν− and ν+ summations run over the Ne − 1
and Ne + 1-electron excited energy eigenstates, respectively,
and ENe−1

ν− and ENe+1
ν+ are the corresponding energies. As noted

in Sec. I, the one-electron removal spectral function for the
TTF electronic density nF

e = 1.41 is accessed through the one-
electron removal spectral function at ne = 2 − nF

e = 0.59.
For noncommensurate electronic densities, no T = 0

broken-symmetry transition at ξ̃c = √
2 ne is expected [26]

for the model, Eq. (1). For some long-range potentials, lattice
fermions have a metallic ground state for all ξ̃c values [27].
Independent of the nature of the ground state of the model,
Eq. (1), which is determined by the unknown precise form
of Ve(r), we use its lowest metallic energy eigenstate as a
reference “ground state.” Our goal is to employ a model
Hamiltonian of general form, Eq. (1), but with specific trans-
fer integral t and interaction U values and potential Ve(r) to
describe the metallic one-electron spectral properties at T =
60 K of the TTF and TCNQ stacks of molecules, respectively.

Our theoretical scheme uses a rotated-electron representa-
tion for the model Hamiltonian, Eq. (1). It is a suitable repre-
sentation for the description of the separation of the degrees
of freedom at all MQIM energy scales. Such rotated electrons
are related to the electrons by a unitary transformation. As
described in Appendices B and C, in the one-electron sub-
space, the fractionalization of the rotated-electron occupancy
configurations leads to a representation in terms of charge
and spin fractionalized particles. Within the MQIM-HO, they
are called c (charge) and s (spin) particles, respectively [6].
The corresponding c and s bands include c and s holes,
respectively, which also play an active role in the physics.

The suitability of the rotated-electron related c and s
particle representations used in this paper is justified by the
corresponding c and s band occupancy configurations gener-
ating states that in an important subspace of the one-electron
subspace defined below in Sec. IV A are either exact energy
eigenstates of the Hamiltonian, Eq. (1), or states with quantum
overlap primarily with one of its energy eigenstates.

B. Properties of the potential Vc(x) induced by Ve(r)
that controls the ξc → ξ̃c transformation

The 1D charge-spin separation that occurs at all energy
scales of the MQIM class of systems [4–6] leads to the
electronic potential Ve(r) in Eq. (1) giving rise to an attractive
potential Vc(x). It is associated with fractionalized particles
charge-charge interactions [6]. In the case of one-electron
removal excitations, it is associated with the interaction be-
tween c particles and a c (hole) mobile scattering center at
distance x. In this paper we find that for one-electron addition
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excitations it is rather associated with the interaction between
c holes and a c (particle) mobile scattering center at distance
x. Both for one-electron removal and addition excitations such
an interaction is attractive and thus associated with a negative
scattering length. The c mobile scattering center involved in
the interactions is created by such excitations. The c particle
and c hole scatterers preexisted in the ground state.

The use of the expressions for the c (charge-charge) phase
shifts given in Eq. (A4) of Appendix A for both one-electron
removal and addition in the corresponding effective-range
expansion [6,18,19] provided in Eq. (A3) of that Appendix,
gives the negative renormalized and bare scattering lengths ã
and a, respectively, Eq. (A5) of Appendix A. This confirms
that their negativity applies both to one-electron removal and
addition excitations and that Vc(x) is attractive for both of
them.

The values as given in Eq. (A5) of Appendix A, ã = −∞
and a = −∞, both for one-electron removal and addition are
known as the unitary limit [6,12,13]. The MQIM-HO is valid
for that limit whose existence implies that δ̃c �= δ̃(1)

c , δ̃c �=
δ̃

( 1
2 )

c , ξc �= 1, and thus that the relative momentum kr in the
effective-range expansion, Eq. (A3) of Appendix A, obeys the
inequality |kr | � tan(π ne)/(4u) [6]. This excludes electronic
densities very near ne = 0 and ne = 1 for all u values and
excludes large u values for the remaining electronic densities.

The properties of the potential Vc(x) are determined by
those of the electronic potential Ve(r) in Eq. (1). For the class
of lattice electronic systems with finite-range interactions to
which the MQIM-HO applies [6], the general properties of
Vc(x) play an important role. We discuss them briefly here.
Vc(x) is negative for x > x0, where x0 is a nonuniversal
distance that either vanishes or is much smaller than the lattice
spacing a0. The scattering energy of the residual interactions
of the c particles or c holes with the c mobile scattering
center is smaller than the depth |Vc(x1)| = −Vc(x1) of the
potential Vc(x) well. Here x1 is a small nonuniversal potential-
dependent value of x such that x0 < x1 < a0 at which
∂Vc(x)/∂x = 0 and −Vc(x) reaches its maximum value [6].

For small distances, the potential Vc(x) has a nonuniversal
form, determined by the specific small-r form of Ve(r) itself.
A universal property [6] is its behavior at large x, for which
it vanishes as V asy

c (x) = −Cc/(x/2rl )l , Eq. (A7) of Appendix
A. Here 1/Cc = (2rl )2μ, with μ a nonuniversal reduced
mass, and l an integer determined by the large-r behavior of
Ve(r). The effective range of the interactions associated with
Vc(x) considered below converges only if l > 5 [6,28,29].
The l dependence of the length scale 2rl is provided in
Eq. (A8) of Appendix A for the interval δ̃c > δ̃(1)

c of interest
for TTF-TCNQ. It reads 5.95047 a0 at the value l = 6 at
which 2rl is twice the van der Waals length, reaches a max-
imum 6.48960 a0 at l = 10, and decreases to 4.93480 a0 as
l → ∞.

Despite its nonuniversal form (except for large x), Vc(x)
obeys two universal sum rules. In the interval x ∈ [x0,∞] the
positive “momentum”

√
2μ(−Vc(x)) obeys a first sum rule,


 = ∫ x2

x0
dx

√
2μ(−Vc(x)), Eq. (A9) of Appendix A. Here 


is a zero-energy phase, x2 is a length scale defined in that
equation, and the relative fluctuation �a/ã in the expression
tan(
) = −(�a/ã) cot(π/[l − 2]) also given in that equation

involves the difference �a = a − ã. Although both a = −∞
and ã = −∞, their ratio ã/a is finite, as given in Eq. (A6)
of Appendix A. The corresponding finite relative fluctuation
�a/ã controls the effects of the finite-range interactions [6].

These are stronger for the range δ̃c ∈ [δ̃�
c , δ̃

( 1
2 )

c [ where δ̃�
c =

ξc(1 − 1/ξ 2
c ) ∈]0, 1/

√
2[.

As justified below in Sec. IV, the second sum rule reads,∫ ∞
0 (−Vc(x)) = π

4 [(ξ 4
c − ξ̃ 4

c )/ξ̃ 4
c ] v̆Fc. The relation of the ve-

locity v̆Fc = v̆c(2kF ) appearing here to the δ̃c = 0 bare c band
Fermi velocity vFc = vc(2kF ) is given by Eqs. (C31) and
(C35) of Appendix C.

The effective range of the interactions (Reff ) of the c parti-
cles and c holes with the c mobile scattering center plays an
important role in the MQIM-HO physics [6,28]. For δ̃c > δ̃(1)

c ,
Reff = a0(1 − c1 (ã/a) + c2 (ã/a)2), Eq. (A10) of Appendix
A. Here c1 and c2 only depend on the integer l > 5, as given in
Eq. (A11) of that Appendix. They decrease from c1 = c2 = 2
at l = 6 to c1 = 1 and c2 = 1/3 for l → ∞. The effective
range Reff appears in the expressions of the spectral-function
exponents given below in Sec. V A. This occurs through
the charge-charge phase shift 2π
̃c,c(±2kF , q), as shown by

Eq. (A2) of Appendix A. Its value Reff = ∞ for δ̃c = δ̃
( 1

2 )
c is

excluded, as δ̃c = δ̃
( 1

2 )
c is outside the range of validity of the

unitary limit [6].

The intervals δ̃c ∈]0, δ̃(1)
c [ and δ̃c ∈]δ̃(1)

c , δ̃
( 1

2 )
c [ for which the

SDS exponent is such that α < 1/8 and α > 1/8, respectively,
refer to two qualitatively different physical problems. The ξ̃c

value in the ξc → ξ̃c transformation is uniquely defined for
each of the two such intervals solely by the integer quan-
tum number l > 5 in the potential Vc(x) large-x expression,
tan(
), and the initial value of ξc = ξc(ne, u), Eqs. (A7), (A9),
and (A12) of Appendix A, respectively. Specifically [6],

ξ̃c = ηc(ξc,
, l )

(
1 +

√
1 − 1

η2
c (ξc,
, l )

)
for δ̃c ∈ [0, δ̃(1)

c [

= ηc(ξc,
, l )

(
1 −

√
1 − 1

η2
c (ξc,
, l )

)

for δ̃c ∈ [
δ̃(1)

c , δ̃
( 1

2 )
c

]
, (4)

where,

ηc(ξc,
, l ) = 1 + 1

2π
arctan

⎛
⎝ tan

( (ξc−1)2π

ξc

)
1 + tan

(
π

l−2

)
tan(
)

⎞
⎠. (5)

IV. USEFUL REPRESENTATIONS OF THE
MODEL HAMILTONIAN

The universal properties of the potential Vc(x) induced
by Ve(r) (through the related rotated-electron potential Vre(r)
considered in Appendix C) reported above have been in-
troduced and used in the studies of Ref. [6]. However, the
expressions of the Hamiltonian, Eq. (1), in which the Fourier
transform of such potentials emerges, have neither been given
nor studied in that reference. The derivation of such ex-
pressions from the Hamiltonian written in terms of rotated-
electron operators provides important physical information.
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It is needed for the further clarification of the microscopic
mechanisms that describe our high-resolution ARPES data of
TTF-TCNQ.

Two other problems also require additional informa-
tion on the rotated-electron representation and related
fractionalized particles representations beyond that provided
in Refs. [6,14,15]: (1) The extension of the MQIM-HO to
one-electron addition excitations and (2) accounting for the
renormalization of the line shape near the corresponding one-
electron spectral-function branch lines and spectral features
called boundary lines considered below in Sec. V.

We address all these issues in the ensuing sections. These
results involve several related c particle representations that
are associated with the Fourier transform of corresponding po-
tentials. These representations are developed from the rotated-
electron representation. Due to the charge-spin separation at
all energy scales of the MQIM, the s (spin) particle terms of
the Hamiltonian in all such representations remain invariant
under the ξc → ξ̃c transformation.

The corresponding developments of the MQIM-HO re-
quire accounting for properties of the rotated-electron repre-
sentation and corresponding c and s particle representations
in the δ̃c = 0 bare limit that have not been studied elsewhere.
Such properties are reported and briefly discussed in Ap-
pendix B. In the case of the δ̃c = 0 bare model, one can extract
from the Bethe ansatz solution all quantities of its Hamiltonian
expression in the c and s particle representation [17,30] that
diagonalizes it in the one-electron subspace, Eq. (B14) of
Appendix B.

In that Appendix we show how to derive that Hamil-
tonian expression from the corresponding rotated-electron
expression with an infinite number of Hamiltonian terms. The
rotated-electron operators are related to the electron operators
by the unitary transformation, Eq. (B1) of Appendix B. The
corresponding unitary operator Û = eŜ is uniquely defined in
Ref. [30] in terms of the 4L × 4L matrix elements between all
the model energy eigenstates.

The relation between the diagonal expression of the Hamil-
tonian, Eq. (1), at δ̃c = 0 in the one-electron subspace,
Eq. (B14) of Appendix B, to the same Hamiltonian expressed
in an alternative c particle representation where it is nondiag-
onal, Eq. (B18) of that Appendix, provides essential informa-
tion. In the latter Hamiltonian expression, V1

c (k) is the Fourier
transform of an effective potential V 1

c (x). It is associated
with the interaction of the c particles/holes scatterers with
the c mobile scattering center. It controls the dependence of
the one-electron matrix elements on the phase shifts of such
scatterers.

The information on the relation between the rotated-
electron representation and the c and s particle representations
provided in Appendix B for δ̃c = 0 is a first needed step for
their use for the δ̃c > 0 model, Eq. (1). As δ̃c is smoothly
turned on, the potential V 1

c (x) evolves into a related potential
Ṽ 1

c (x). The part of the latter potential that accounts for most of
the renormalization of V 1

c (x) by the finite-range interactions is
the potential Vc(x) whose universal properties were reported in
Sec. III B.

In this section, we discuss the partial generalization of
the use of the δ̃c = 0 operator representations to the model

in Eq. (1) for δ̃c ∈ [0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [. We examine the

corresponding technicalities in Appendix C. A qualitative
difference between the δ̃c = 0 and δ̃c > 0 quantum problems
is that their Hamiltonians in the one-electron subspace when
expressed in terms of c and s particle operators can and cannot
be diagonalized, respectively.

Indeed, except in the δ̃c = 0 bare limit, for the model,
Eq. (1), the rotated-electron occupancy configurations and
corresponding c and s particle occupancy configurations that
generate the states of the representations used in this paper
are not in general exact energy eigenstates. Consistent with
the properties of the general MQIM [4–6], they become exact
energy eigenstates when generated by processes that lead to
the line shape near some types of singular spectral features:
specifically, near the low-energy TLL spectral features and
in the vicinity of high-energy spin spectral features called s
and s′ branch lines. In the case of the latter lines, this follows
from conservation laws and for δ̃c > 0 applies to momentum
intervals for which the exponent in the spectral-function ex-
pression near them is negative. Such laws are due to these lines
coinciding with edges of support of the one-electron spectral
function. These lines separate (k, ω)-plane regions without
and with finite spectral weight.

On the other hand, in the present representation, some
excited states (specifically those generated by processes that
contribute to the line shape near two types of spectral features
called c-s boundary lines and c, c′, c′′, and c′′′ branch lines,
respectively) have quantum overlap mainly with a single ex-
cited energy eigenstate. The corresponding branch lines occur
in that region of the (k, ω) plane in which there is a continuum
distribution of spectral weight; this is represented by light gray
regions in the sketch of Fig. 1. For them this applies again
to the k intervals in that plane for which the corresponding
exponent in the spectral-function expression is negative.

The line shape of the one-electron spectral function in the
vicinity of the (k, ω)-plane regions where it displays these
different types of singularities is controlled by transitions
to a particular class of excited states. They span a smaller
subspace, contained in the one-electron subspace. Fortunately,
in that singularities subspace the δ̃c > 0 Hamiltonian, Eq. (1),
can be diagonalized when expressed in terms of c and s
particle operators. In the next section, we begin by introducing
that subspace.

A. The one-electron singularities subspace

The singularities subspace considered here refers to one-
electron removal and addition at electronic densities ne ∈
]0, 1[. Indeed, as noted previously, the spectral features of the
ARPES for the TTF stack of molecules with electronic density
nF

e = 1.41 can under a suitable and well-defined transforma-
tion be described by the spectral function for one-electron
addition at density ne = 2 − nF

e = 0.59.
The one-electron subspace is generated from application

of one-electron annihilation or creation operators onto the
Ne-electron ground state. On the other hand, the singulari-
ties subspace is spanned by the one-electron excited states
that contribute to the line shape near the above mentioned
singularities of the spectral function (k, ω) plane. Those are
identified with the ARPES structures associated with the TTF
and TCNQ stacks of molecules.
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c c

c

c-s

c-s

kF

3kF

FIG. 1. Sketch of the (i) ω < 0 s (spin) and c and c′ (charge)
branch lines, (ii) ω > 0 s′ (spin), c′′ and c′′′ (charge) branch lines,
and (iii) ω < 0 and ω > 0 c − s boundary lines in the one-electron
removal and addition spectral functions for momentum values k > 0
of the models discussed in this paper. Their spectra are defined below
in Eqs. (i) (17), (ii) (18), and (iii) (20), respectively. (The branch and
boundary lines correspond to the solid and dotted lines, respectively.)
The soft gray region refers to the small spectral-weight distribution
continuum. The darker gray regions below the one-electron removal
branch lines, above the one-electron addition branch lines, and both
below and above the boundary lines typically display more weight.
In the actual spectral function this applies in the case of the branch
lines to k intervals for which the exponents that control the line shape
near them are negative.

The c and s particles occupy a c band and an s band whose
momentum values q j and q′

j , respectively, are such that q j+1 −
q j = 2π/L and q′

j+1 − q′
j = 2π/L [6]. In the thermodynamic

limit, one often uses a continuum representation in terms
of continuum momentum variables q and q′, respectively.
Their ground-state occupancies are q ∈ [−2kF , 2kF ] and q′ ∈
[−kF , kF ], respectively, where 2kF = πne. In Sec. V we
discuss the expression in terms of corresponding q and q′
occupancies of the physical momentum k of the one-electron
excitations whose spectra are sketched in Fig. 1.

For one-electron removal, most of the spectral function
weight is generated in the thermodynamic limit by transitions
from the ground state to excited states involving the following
processes: (1) creation of one c hole at some c band momen-
tum in the interval q ∈] − 2kF , 2kF [; (2) one s hole in the

s band interval q′ ∈] − kF , kF [; plus (3) low-energy particle-
hole processes in such bands. For one-electron addition, most
of the spectral function weight is generated in that limit by
the following processes under transitions to excited states:
(1) creation of one c particle at some c band momentum
in the intervals q ∈] − π,−2kF [ or q ∈]2kF , π [; (2) one s
hole in the s band interval q′ ∈] − kF , kF [; plus 3) low-energy
particle-hole processes in such bands. In the case particle-
hole processes in the s band, both for one-electron removal
and addition correct results are achieved under addition of
a small virtual magnetic field that is made to vanish in the
end of the calculations. This gives q′ ∈] − kF↓, kF↓[ and |q′| ∈
]kF↓, kF↑[ for the occupied and unoccupied s band Fermi seas,
respectively.

Importantly, only the above reported processes contribute
to the line shape near the singularities of spectral function in
the (k, ω) plane that describe the ARPES structures. Processes
where both the c and s holes for one-electron removal and
the c particle and the s hole for one-electron addition are
created away from the c band and s band Fermi points ±2kF

and ±kF , respectively, contribute to the spectral-function con-
tinuum away from such singularities. The exception refers
to the processes (4-Rem) and (4-Add) defined below. They
contribute to a particular type of such singularities, called
boundary lines.

The s hole and (i) the c hole and (ii) the c particle created
under one electron (i) removal and (ii) addition excitations,
respectively, refer to scattering centers. The corresponding
scatterers are the c and s particles and c holes that preexisted
in the ground state. The singularities subspace is spanned by
excited states reached by transitions from the ground state
within the processes defined in the following. By high energy
we meant energy scales beyond the reach of the low-energy
TLL. All the following processes are dressed by low-energy
and small momentum particle-hole processes near the c and s
bands Fermi points ±2kF and ±kF↓ → ±kF , respectively:

(i) (1-Rem) and (ii) (1-Add)—Low-energy TLL processes
where (i) one c hole (“holon”) and (ii) one c particle (“holon”
removal), respectively, is created in the vicinity of one of
the c band Fermi points at q = ±2kF + p, and one s hole
(“spinon”) is created near one of the s band Fermi points at
q′ = ±kF + p′. The small momenta p and p′ intervals are here
and in the following given in Table I. There δqFc such that
δqFc/2kF � 1 and δqFs such that δqFs/kF � 1 are very small
for a large finite system and may vanish in the thermodynamic
limit. Such processes contribute to the low-energy spectral
weight distribution near k = ±kF and k = ±3kF . See the
sketch of the spectral features in Fig. 1 for k > 0.

(i) (2-Rem) and (ii) (2-Add)—High-energy processes
where one s hole is created at momentum values spanning a s
band subinterval of the interval q′ ∈ [−kF + δpFs, kF − δpFs]
for which the spectral function displays singularities
controlled by negative k dependent exponents and (i) one
c hole (“holon”) and (ii) one c particle (“holon” removal),
respectively, is created near one of the c band Fermi points
at q = ±2kF + p. Those processes contribute to the spectral
weight distribution in the vicinity of the subintervals of
the (i) s and (ii) s′ branch lines. Their spectra run in the
thermodynamic limit in the intervals (i) k ∈] − kF , kF [ and
(ii) k ∈] − 3kF ,−kF [ ; ]kF , 3kF [, respectively, shown in the
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TABLE I. The momentum intervals for the c and s bands of
scattering centers created under one-electron removal and addi-
tion involving processes in the singularities subspace. Here v−

Fs ≡
vs(kF − δpFs ).

Momentum intervals of scattering centers

s hole (low-energy “spinon”)
q′ = −kF + p′ where p′ ∈ [0, δpFs]
q′ = +kF + p′ where p′ ∈ [−δpFs, 0]
s hole (single s mobile scattering center)
q′ ∈ [−kF + δpFs, kF − δpFs]
c hole (low-energy “holon”)
q = −2kF + p where p ∈ [0, δpFc]
q = +2kF + p where p ∈ [−δpFc, 0]
c hole (single c mobile scattering center)
q ∈ [−2kF + δpFc, 2kF − δpFc]
c hole and s hole (both mobile scattering centers)
q ∈ [−qh

c , qh
c ] where |ṽc(±qh

c )| = v−
Fs and qh

c < 2kF

q′ such that vs(q′) = ṽc(q)
c particle (low-energy “holon” removal)
q = −2kF + p where p ∈ [−δpFc, 0]
q = +2kF + p where p ∈ [0, δpFc]
c particle (single c mobile scattering center)
q ∈ [−π,−2kF − δpFc] ; [2kF + δpFc, π ]
c particle and s hole (both mobile scattering centers)
q ∈ [−π,−qc] ; [qc, π ] where |ṽc(±qh

c )| = v−
Fs and qc > 2kF

q′ such that vs(q′) = ṽc(q)

sketch of Fig. 1 for k > 0. We call the s band hole created
away from the corresponding s band Fermi points a s (hole)
mobile scattering center.

(i) (3-Rem) and (ii) (3-Add)—High-energy processes
where one s hole (“spinon”) is created near one of the s
band Fermi points at q′ = ±kF + p′ and one (i) c hole and
(ii) one c particle is created at momentum values spanning a c
band subinterval of the intervals (i) q ∈ [−2kF + δpFc, 2kF −
δpFc] and (ii) q ∈ [−π,−2kF − δpFc] ; [2kF + δpFc, π ], re-
spectively, for which the spectral function displays singu-
larities controlled by negative k dependent exponents. For
(i) one-electron removal, such processes contribute to the
spectral weight distribution near the corresponding subin-
tervals of the c and c′ branch lines. Their spectra run in
the thermodynamic limit in the intervals k ∈] − kF , kF [ and
] − 3kF , 3kF [, respectively, shown in the sketch of Fig. 1
for k > 0. For (ii) one-electron addition, they contribute to
the weight distribution in the vicinity of the subintervals of
the c′′, c′′′ (branch I) and c′′′ (branch II) branch lines. Their
spectra run in the thermodynamic limit in the intervals k ∈] −
(π − kF ),−kF [ ; ]kF , (π − kF )[, k ∈] − π,−3kF [ ; ]3kF , π [,
and k ∈] − π,−(π − kF )[ ; ](π − kF ), π [, respectively, also
shown in the sketch of Fig. 1 for k > 0. We call the (i) c hole
or (ii) c particle created away from the c band Fermi points a
c (hole or particle) mobile scattering center.

(i) (4-Rem) and (ii) (4-Add)—High-energy processes
where (i) one c hole and (ii) one c particle is created at a c band
momentum (i) q ∈ [−qh

c , qh
c ] and (ii) q ∈ [−π,−qc] ; [qc, π ],

respectively, and one s hole is created at a s band momentum
q′ such that vs(q′) = ṽc(q). Here 0 < qh

c < 2kF and 2kF <

qc < π are such that |ṽc(±qh
c )| = v−

Fs and |ṽc(±qh
c )| = v−

Fs,
respectively. In these expressions v−

Fs ≡ vs(kF − pFs), vs(q′)

TABLE II. The momentum intervals in the c and s bands for pro-
cesses involving active scatterers within the singularities subspace.

Momentum intervals of active scatterers

s particle (electron removal and addition)
q′ = −kF + p′ where p′ ∈ [0, δpFs]
q′ = +kF + p′ where p′ ∈ [−δpFs, 0]
c particle (electron removal)
q = −2kF + p where p ∈ [0, δpFc]
q = +2kF + p where p ∈ [−δpFc, 0]
c hole (electron addition)
q = −2kF + p where p ∈ [−δpFc, 0]
q = +2kF + p where p ∈ [0, δpFc]

is the δ̃c = 0 bare s band group velocity [6], and ṽc(q) is
the renormalized c band group velocity given in Eq. (C11)
of Appendix C. Such processes contribute to the spectral
weight distribution near well-defined spectral features called
c-s boundary lines. In the sketch of Fig. 1 they are represented
by dotted lines.

As discussed below in Sec. V, for the δ̃c > 0 model,
Eq. (1), in the singularities subspace only the phase shifts
imposed by creation of the c and s scattering centers onto c
particles, c holes, and s particles scatterers with momentum
values near their bands Fermi points play an active role.
Indeed, only such scatterers contribute to the line shape in the
vicinity of the branch lines that display singularities. Their
c and s band momentum values intervals are provided in
Table II.

B. The c and s particle representation associated
with the potential Vc(x)

As shown in Appendix C, for the δ̃c > 0 model, Eq. (1),
there is a c and s particle representation whose nondiagonal
Hamiltonian in the one-electron subspace involves the Fourier
transform Ṽ1

c (k) of the potential Ṽ 1
c (x). As given in Eq. (C12)

of that Appendix, in the δ̃c → 0 bare limit, Ṽ 1
c (x) and Ṽ1

c (k)
become the effective potential V 1

c (x) and its Fourier transform
V1

c (k), Eq. (B25) of Appendix B, of the δ̃c = 0 bare model.
The free term of the δ̃c = 0 bare Hamiltonian in Eq. (B23)

of Appendix B, which corresponds to the potential V 1
c (x)

representation, involves the velocity v1
Fc = (ξ 2

c /2) vFc. It is a
charge elementary current that controls the charge stiffness
of the δ̃c = 0 bare model, D0

ρ = v1
Fc/π , in the real part of

the conductivity, σ 0
ρ (ω) = 2πD0

ρδ(ω) + σ
reg
ρ (ω) [17]. Simi-

larly, the renormalized potential Ṽ 1
c (x) is associated with a

charge elementary current ṽ1
Fc = (ξ̃ 2

c /2) ṽFc that controls the
corresponding renormalized charge stiffness Dρ . At k = 0 its
Fourier transform Ṽ1

c (k) can be expressed in terms of it as
Ṽ1

c (0) = π ( 1
ξ̃ 4

c
− 1

4 ) 2πDρ .
With the finite-range interactions, the SDS exponent α,

compressibility χρ , and charge stiffness Dρ read

α =
(
2 − ξ̃ 2

c

)2

8ξ̃ 2
c

; χρ = 2

π n2
e ṽ0

Fc

; Dρ = ṽ1
Fc

π
, (6)
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respectively. Here ṽ0
Fc = (2/ξ̃ 2

c ) ṽFc, and ṽFc =
√

ṽ0
Fc × ṽ1

Fc is
the renormalized Fermi velocity associated with the c energy
dispersion given below in Sec. IV C.

The effects of the finite-range interactions upon increasing
δ̃c enhance the SDS exponent α from α0 ∈ (2 − ξ 2

c )2/(8ξ 2
c ) ∈

]0, 1/8[ to α ∈ [α0, 1/8[ ; ]1/8, 49/32[. In contrast, as follows
from Eqs. (C31) and (C35) of Appendix C, both the compress-
ibility χρ and the charge stiffness Dρ tend to be suppressed by
such interactions.

As noted above, the potential Vc(x) can be viewed as the
part of Ṽ 1

c (x) that accounts for most of the renormalization of
V 1

c (x) by the δ̃c > 0 finite-range interactions. Indeed, Ṽ 1
c (x)

includes both contributions that stem from V 1
c (x) and Ve(r).

On the other hand, the related potential Vc(x) is mostly
induced by the electron potential Ve(r) and thus by the
corresponding rotated-electron potential Vre(r) considered in
Appendix C. In contrast to Ṽ 1

c (x), both Vc(x) and Vre(r) and
their Fourier transforms Vc(k) and Vre(k), respectively, vanish
in the δ̃c → 0 limit, as given in Eq. (C12) of Appendix C.

However, Vc(x) and Vre(r) describe different microscopic
mechanisms. The former controls the renormalization by the
finite-range interactions of the c particle/hole phase shifts
in Eqs. (A1) and (A2) of Appendix A. It thus controls the
renormalization of the corresponding quantum overlaps of the
matrix elements in the one-electron spectral function, Eq. (3).
In turn, the potential Vre(r) controls the renormalization of the
excitation energy spectra, (ENe∓1

ν∓ − ENe
GS ), in the same spectral

function expression provided in that equation. Their k and ω

dependence near the singularities is given below in Sec. V.
Three related c particle representations that describe com-

plementary aspects of the quantum problem microscopic
mechanisms are associated with the potentials, Vre(r), Ṽ 1

c (x),
and Vc(x), respectively. The dependence on k of the Fourier
transforms of such potentials [Vre(k), Ṽ1

c (k), and Vc(k), re-
spectively, Eq. (C15) of Appendix C] is only universal in
the limit of small k. This follows from the corresponding
potentials Vre(r), Ṽ 1

c (x), and Vc(x) having a nonuniversal form,
except at large distances. It is determined by that of the
electronic potential Ve(r) itself for general r ∈ [0,∞] values.

Having as starting point the Hamiltonian, Eq. (1), ex-
pressed in terms of rotated-electron operators, Eqs. (C1) and
(C2) of Appendix C, we derive in that Appendix three cor-
responding nondiagonal expressions of that Hamiltonian in
the one-electron subspace in terms of the c and s particle
representations. They are given in Eq. (C16) of that Appendix.
[The common notation used in that equation for the three
representations associated with the Fourier transforms Vre(k),
Ṽ1

c (k), and Vc(k) is defined in Eq. (C17) of Appendix C.]
The three alternative expressions for the Hamiltonians

cannot be diagonalized in the one-electron subspace. This is
due to their terms denoted by Ȟre in Eq. (C16) of Appendix
C. Fortunately, their complicated form is not needed for
our studies. The emergence of such terms follows from, in
contrast to the δ̃c = 0 bare model, the states generated by
occupancy configurations of the c and s particles in general
not being energy eigenstates.

The use of the choices V̌ (k) = Vc(k), f̌ †
q,c = f̆ †

q,c, and
ε̌c(q) = ε̆c(q) in the general expression given in Eq. (C28) of
Appendix C leads to the following Hamiltonian expression in

TABLE III. Intervals of
∑

k,p,q in V̂c,γ for γ = ∓1 and ι = ±,
Eq. (7).

k ∈ [−δpFc − p, −p] for ι γ = −1

k ∈ [−p, δpFc − p] for ι γ = +1

p ∈ [−δpFc, 0] for ι γ = −1

p ∈ [0, δpFc] for ι γ = +1

q ∈ [−2kF + δpFc, 2kF − δpFc] for γ = −1

q ∈ [−π,−2kF − δpFc] ; [2kF + δpFc, π ] for γ = +1

the specific representation of Vc(x),

: Ĥ : = : Ĥc : + : Ĥs :

: Ĥc : =
π∑

q=−π

ε̆c(q) : f̆ †
q,c f̆q,c : + V̂c,γ

V̂c,−1 = 1

L

∑
ι=±

∑
k,p,q

Vc(k) f̆ †
ι2kF +p,c f̆ι2kF +p+k,c f̆q−k,c f̆ †

q,c

V̂c,+1 = 1

L

∑
ι=±

∑
k,p,q

Vc(k) f̆ι2kF +p+k,c f̆ †
ι2kF +p,c f̆ †

q,c f̆q−k,c

: Ĥs : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (7)

Here : Ô : stands for the (standard) normal ordering of an
operator Ô and the k, p, q summations in the interaction terms
V̂c,γ suitable to one-electron removal (γ = −1) and addition
(γ = +1) run in different intervals given in Table III. This is
consistent with the singularities subspace processes defined in
Sec. IV A.

The charge term : Ĥc : in Eq. (7) describes the interac-
tion of the c particle or c hole scatterers with the c (hole
or particle) mobile scattering center. Specifically, in the ex-
pressions of its interacting term V̂c,γ for one-electron (i)
removal (γ = −1) and (ii) addition (γ = +1), the operators
(i) f̆ †

ι2kF +p,c f̆ι2kF +p+k,c and (ii) f̆ι2kF +p+k,c f̆ †
ι2kF +p,c refer to the

(i) c particle and (ii) c hole scatterer, respectively. On the other
hand, the operators (i) f̆q−k,c f̆ †

q,c and (ii) f̆ †
q,c f̆q−k,c correspond

to the c mobile (i) hole and (ii) particle scattering center,
respectively.

The spin term : Ĥs : in Eq. (7) remains invariant under the
ξc → ξ̃c transformation. It equals that of the δ̃c = 0 model
whose dispersion εs(q′) is defined in Ref. [6]. The renormal-
ized c particle energy dispersion ε̆c(q) in the : Ĥc : expression
is given in Eq. (C24) of Appendix C in terms of the δ̃c = 0
bare dispersion εc(q) [6].

Since δpFc in Table III is very small and may vanish in
the thermodynamic limit, the same applies to the k intervals
given in that table. Hence in the expression, Eq. (7), of the
Hamiltonian, Eq. (1), in the singularities subspace, the k = 0
value of Vc(k) plays a major role. Combining the information
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provided in Eqs. (C23) and (C25) of Appendix C, one finds

Vc(k) = −π

2
ᾰc(k) v̆Fc where ᾰc(k) = ᾰc + O(k2)

ᾰc = ξ 4
c − ξ̃ 4

c

ξ̃ 4
c

and β̆c = ṽFc − v̆Fc

v̆Fc
= ξ 2

c − ξ̃ 2
c

ξ̃ 2
c

(8)

for the whole interval δ̃c ∈ [0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [. The potential

Vc(x) sum rule reported in Sec. III B,
∫ ∞

0 (−Vc(x)) = π
4 [(ξ 4

c −
ξ̃ 4

c )/ξ̃ 4
c ] v̆Fc, follows directly from the k = 0 value Vc(0) given

in Eq. (8).
The corresponding parameter values for the representation

associated with the related potential Ṽ 1
c (x) are α̃1

c = (4 −
ξ̃ 4

c )/ξ̃ 4
c and β̃1

c = (2 − ξ̃ 2
c )/ξ̃ 2

c , Eq. (C25) of Appendix C.
In the δ̃c → 0 bare limit they become the parameters α1

c
and β1

c , Eqs. (B25) and (B26) of Appendix B, respectively.
Their expressions are the same under the replacement of
ξ̃c by ξc. In contrast, ᾰc and β̆c in Eq. (8) vanish in that
limit.

The representation, Eq. (7), of the δ̃c > 0 Hamiltonian,
Eq. (1), in the singularities subspace is that which explicitly
displays the microscopic processes that control the renormal-
ization of the c particle/hole phase shifts. We will define
and discuss these briefly in the following. They appear in
the expressions given below in Sec. V A of the k dependent
exponents that control the quantum overlaps in the matrix
elements of the spectral function, Eq. (3).

For one-electron removal, −2π
̃c,s(±2kF , q′) and
−2π
̃c,c(±2kF , q) are the phase shifts imposed on a c
particle scatterer of c band momentum ±2kF + p at and
near the c band Fermi points by creation of one s mobile
scattering center at momentum q′ and one c mobile scattering
center at q, respectively. Here the interval of p is given in
Table II and those of the momenta q′ and q of the created
s and c (hole) mobile scattering centers, respectively, are
provided in Table I. For electron addition, the same applies to
−2π
̃c,s(±2kF , q′), whereas 2π
̃c,c(±2kF , q) is the phase
shift imposed on a c hole scatterer of c band momentum
±2kF + p at and near the c band Fermi points. The intervals
of the momentum q of the created c (particle) mobile
scattering center and of p are again given in Tables I and II,
respectively.

The phase shift 2π
̃c,s(±2kF , q′) has the same expression,
Eq. (A1) of Appendix A, for both one-electron removal
and addition. In contrast, the 2π
̃c,c(±2kF , q) expression,
Eq. (A2) of that Appendix, has different q intervals for one-
electron removal and addition. A second difference is the
factor γ in the expression of phase shift term 2π
̃Reff

c,c (kr )
in the latter equation, which reads γ = −1 and γ = +1 for
electron removal and addition, respectively.

How does the Hamiltonian expression, Eq. (7), con-
trols the renormalization of the phase shifts? The renor-
malization of 2π
̃c,s(±2kF , q′) and of the phase-shift term
2π
̃ã

c,c(±2kF , q) in Eqs. (A1) and (A2) of Appendix A,
respectively, involves only the renormalized and bare charge
parameters ξ̃c and ξc, respectively. Indeed, Vc(k), Eq. (8),
in that Hamiltonian expression only depends on these two
parameters.

Moreover, for the c particle operators in the Hamiltonian
expression, Eq. (7), the relative momentum reads kr = (q −
ι2kF ) − (k + p). For a large finite system, one has according
to the k and p intervals provided in Table III that (k + p) is
very small or vanishes. Indeed, pFc is very small and may
vanish in the thermodynamic limit. This is why kr = (q −
ι2kF ) where ι = ±. Some of the processes associated with
the higher-order contributions O(k2) in Eq. (8) are accounted
for the dependence on kr = (q ∓ 2kF ) of the phase shift term
2π
̃Reff

c,c (kr ) in Eq. (A2) of Appendix A. In its expression,
Pc(kr ) = 0 in the present unitary limit [6]. The effective range
Reff in the expression of 2π
̃Reff

c,c (kr ) depends on the ratio ã/a.
Again as α̃c = α̃c(0) in the Vc(k) expression, Eq. (8), that ratio
depends only on the parameters ξ̃c and ξc, as given in Eq. (A6)
of Appendix A.

C. The rotated-electron potential Vre(r) and related
c and s particle representation

The expression of the Hamiltonian, Eq. (1), in the one-
electron subspace that involves the Fourier transform Vre(k)
is given in Eq. (C9) of Appendix C in terms of c and s particle
operators. It has again been derived from the expression in
terms of rotated-electron operators, Eqs. (C1) and (C2) of
that Appendix. That specific expression explicitly displays the
microscopic processes that control the renormalization of the
spectra (ENe∓1

ν∓ − ENe
GS ) in the spectral function, Eq. (3).

The corresponding simplified Hamiltonian expression in
the smaller singularities subspace that can be diagonalized in
terms of c and s particle operators is given by the choices
V̌ (k) = Vre(k), f̌ †

q,c = f †
q,c, and ε̌c(q) = εc(q) in the general

expression, Eq. (C28) of Appendix C.
As discussed in Appendix C 3, the deformation of the c

band energy dispersion by the finite-range interactions must
preserve its energy bandwidth, W̃c = Wc = 4t . The compress-
ibility in Eq. (6) is largest in the δ̃c = 0 limit and tends to be
suppressed by the finite-range interactions. The degree of that
deformation is limited by its largest δ̃c = 0 bare value through
the inequality ṽFc � v0

Fc. Here v0
Fc is the velocity, Eq. (B27)

of Appendix B, in the δ̃c = 0 compressibility expression. The
corresponding effects on the k = 0 value of Vre(k) are then
found in Appendix C 3 to lead to

Vre(0) = π

2
αc vFc where αc = ξ 4

c − χ4
c (ξ̃c)

χ4
c (ξ̃c)

and

χc(ξ̃c) = ξ̃c for δ̃c � δ̃ ˘
c − δ

= ξ̃ ˘
c for δ̃c � δ̃ ˘

c + δ with δ � δ̃ ˘
c, (9)

so that,
∫ ∞

0 drVre(r) = π
4 αc vFc. Here,

ξ̃ ˘
c = ξ 2

c√
2

∈]1/
√

2, 1[ and

δ̃ ˘
c = ξc

(
1 − ξc√

2

)
∈]0, (

√
2 − 1)/

√
2[. (10)

The only property of χc(ξ̃c) in the small interval δ̃c ∈ [δ̃ ˘
c −

δ, δ̃ ˘
c + δ], where δ � δ̃ ˘

c, needed for our studies is that its
derivative with respect to ξ̃c has no discontinuity.

Diagonalizing the Hamiltonian, Eq. (1), in the singularities
subspace is achieved by diagonalizing its terms in Eq. (C9) of
Appendix C except Ĥre under the transformation, Eq. (C10)
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of that Appendix. One then limits the c band momentum
summations to the intervals given in Table III that refer to such
a subspace. This gives

: Ĥ :=
π∑

q=−π

ε̃c(q) : f̃ †
q,c f̃q,c : +

kF∑
q′=−kF

ε̃s(q
′) : f̃ †

q,s f̃q,s :, (11)

where the spin term : Ĥs : remains that in Eq. (7). The c and s
band energy dispersions are given by

ε̃c(q) = (1 + βc)εc(q) for q ∈ [−2kF , 2kF ]

=
(

1 + βc

{
1 − 4t

W h
c

(
εc(q)

W h
c

)})
εc(q)

for |q| ∈ [2kF , π ]

ε̃s(q
′) = εs(q

′) for q′ ∈ [−kF , kF ]. (12)

Here εc(q) and εs(q) are δ̃c = 0 bare energy dispersions [6],
W h

c = 4t − W p
c = εc(±π ) and W p

c = −εc(0) are correspond-
ing c hole and c particle occupancy energy bandwidths, re-
spectively, and the renormalized ε̃c(q) expression is obtained
in Appendix C. The βc expression,

βc = ξ 2
c − χ2

c (ξ̃c)

χ2
c (ξ̃c)

, (13)

is derived from that of αc in Eq. (9) by use of the relation,
βc = √

1 + αc − 1. This ε̃c(q) expression is valid under the
ξc → ξ̃c transformation for the interval ξc ∈ [ξ 0

c ,
√

2[ where
ξ 0

c =
√

1 + W p
c /4t . Consistent with the unitary-limit MQIM-

HO regime, this excludes electronic densities very near ne = 1
for all u values and excludes large u values for the remain-
ing electronic densities. For ξc < ξ 0

c the ε̃c(q) expression
is slightly different, as the renormalized energy bandwidth
W̃ p

c = −ε̃c(0) maximum enhancement parameter is smaller
than (1 + βc) = 2/ξ 2

c . The latter is that of ṽFc, Eq. (C35) of
Appendix C.

That the s (spin) energy dispersion, ε̃s(q′) = εs(q′), in
Eq. (12) and corresponding s (spin) band Fermi velocity,
ṽFs = vFs = vs(kF ), remain invariant under the effects of the
finite-range interactions whereas the c (charge) band Fermi
velocity, ṽFc = ṽc(2kF ), is slightly increased as the range of
interactions increases, is known from numerical studies. (See
the related charge and spin spectra in Fig. 7 of Ref. [26] and
the corresponding discussion.)

Finally, combining the parameters expressions in Eqs. (8)
and (9) one finds that at k = 0 the Fourier transform of the
potential Vc(x) is related to that of Vre(r) as

Vc(0) = −Cce Vre(0) where

Cce = 1 for δ̃c � δ̃ ˘
c − δ

= 2
(
ξ 4

c − ξ̃ 4
c

)
ξ̃ 2

c ξ 2
c

(
4 − ξ 4

c

) for δ̃c � δ̃ ˘
c + δ. (14)

Hence
∫ ∞

0 dx(−Vc(x)) = Cce
∫ ∞

0 drVre(r) where Cce � 1.

V. THE ONE-ELECTRON SPECTRAL FUNCTION

As noted in previous sections, in the case of the spectral
structures associated with the stacks of TTF molecules, our
analysis relies on the following exact symmetry relation be-
tween the one-electron removal and addition spectral func-

tions, Eq. (3), for electronic densities ne ∈]1, 2[ and n̄e =
2 − ne ∈]0, 1[, respectively,

B−1(k, ω)|ne=1.41 = B+1(−k,−ω)|ne=2−1.41=0.59

= B+1(k,−ω)|ne=0.59. (15)

Here we used the symmetry, Bγ (k, ω) = Bγ (−k, ω).

A. The one-electron spectral function near the branch lines

Within the MQIM-HO, one finds that for small energy
deviations [ω̃cc (k) − ω]γ > 0 near the (i) cc = c, c′ and (ii)
cc = c′′, c′′′ branch lines and [ω̃ss (k) − ω]γ > 0 in the vicinity
of the (i) ss = s and (ii) ss = s′ branch lines for (i) γ = −1
and (ii) γ = +1, respectively, the spectral function, Eq. (3),
behaves as [6]

Bγ (k, ω) ≈
∑
ι=±1

Ccc,γ ,ιIm

⎧⎨
⎩
(

(ι)

[ω̃cc
(k) − ω]γ − i

2τcc (k)

)−ζcc (k)
⎫⎬
⎭

Bγ (k, ω) = Css,γ ([ω̃ss (k) − ω]γ )ζss (k). (16)

Here Ccc,γ ι and Css,γ are ne, u = U/4t , and ξ̃c dependent
constants for energy and momentum values corresponding to
such small energy deviations and ω̃cc (k)γ > 0, ω̃ss (k)γ > 0,
and ωγ > 0 are high energies beyond the reach of the TLL.
For δ̃c > 0 the expressions, Eq. (16), near the branch lines
apply only to k intervals for which the exponents are negative.
For the cc = c, c′, c′′, c′′′ branch lines the c mobile scattering
center lifetime τcc (k) is very large for such k intervals [6] and
the singularities in Eq. (16) refer to peak structures with very
small widths.

That the ss = s, s′ branch lines coincide with edges of
the support for the spectral function ensures that near them
the line shape is power-law like. This applies to k intervals
for which ζss (k) < 0. The cc = c, c′, c′′, c′′′ branch lines run
within the weight continuum. The width of the k intervals
for which the lifetime τcc (k) in Eq. (16) is large and ζcc (k)
negative tends to decrease upon increasing δ̃c in the range

δ̃c ∈ [δ̃�
c , δ̃

( 1
2 )

c [. Here δ̃�
c = ξc(1 − 1/ξ 2

c ). This is due to the
effects of the relaxation processes induced by the finite-range
interactions then becoming more pronounced. Actually, upon

increasing δ̃c towards δ̃
( 1

2 )
c , such processes progressively wash

out all peak structures [6].
The spectra of the s and c, c′ branch lines in the expressions

for the γ = −1 spectral function in Eq. (16) involve the s and
c dispersions in Eq. (12). They read

ω̃s(k) = ε̃s(k) = εs(k) � 0 for k = −q′ ∈ [−kF , kF ]

ω̃c(k) = ε̃c(|k| + kF ) � 0 for

k = −sgn{k}kF − q ∈ [−kF , kF ] with

q ∈ [−2kF ,−kF ] for k ∈ [0, kF ]

q ∈ [kF , 2kF ] for k ∈ [−kF , 0]

ω̃c′ (k) = ε̃c(|k| − kF ) � 0 for

k = sgn{k}kF − q ∈ [−3kF , 3kF ] with

q ∈ [−kF , 2kF ] for k ∈ [−3kF , 0]

q ∈ [−2kF , kF ] for k ∈ [0, 3kF ]. (17)
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Using the relation, Eq. (15), minus the spectra of the s′ and
c′′, c′′′ branch lines in the expressions for the γ = +1 spectral
function at density ne = 0.59, we find the following spectra
for the γ = −1 spectral function at density nF

e = 2 − ne =
1.41,

−ω̃s′ (k) = ε̃s(|k| − 2kF ) � 0 for

k = sgn{k}2kF − q′ ∈ [−3kF ,−kF ] ; [kF , 3kF ]

with q′ ∈ [−kF , kF ]

−ω̃c′′ (k) = −ε̃c(|k| + kF ) � 0 for

k = −sgn{k}kF + q ∈ [−(π − kF ),−kF ]

∈ [kF , (π − kF )] with

q ∈ [−π,−2kF ] for k ∈ [−(π − kF ),−kF ]

q ∈ [2kF , π ] for k ∈ [kF , (π − kF )]

−ω̃c′′′ (k) = −ε̃c(|k| − kF ) � 0 branch I for

k = sgn{k}kF + q ∈ [−π,−3kF ]

∈ [3kF , π ] with

q ∈ [−(π − kF ),−2kF ] for k ∈ [−π,−3kF ]

q ∈ [2kF , (π − kF )] for k ∈ [3kF , π ]

−ω̃c′′′ (k) = −ε̃c(|k| − (2π − kF )) � 0 branch II for

k = −sgn{k}(2π − kF ) + q ∈ [−π,−(π − kF )]

∈ [(π − kF ), π ] with

q ∈ [(π − kF ), π ] for k ∈ [−π,−(π − kF )]

q ∈ [ − π, − (π − kF )] for k ∈ [(π − kF ), π ]. (18)

The branch-line spectra, Eqs. (17) and (18), are represented in
the sketch of Fig. 1 by solid lines. Their expressions in these
equations are defined for the q and q′ intervals given in the
equations.

The exponents ζss (k) and ζcc (k) in Eq. (16) that control the
line shape near the (i) ss = s and cc = c, c′ branch lines for
γ = −1 and (ii) ss = s′ and cc = c′′, c′′′ branch lines for γ =
+1 are given by

ζss (k) = −1 +
∑
ι=±

(
(1 + γ )ξ̃c

2
+ ι

2ξ̃c
− γ 
̃c,s(ι2kF , q′)

)2

ζcc (k) = −1

2
+

∑
ι=±

(
ξ̃c

4
+ γ 
̃c,c(ι2kF , q)

)2

. (19)

Here q′ and q belong to the intervals defined from those in
Eqs. (17) and (18) under the replacement of ±kF and ±2kF

by ±(kF − pFs) and ±(2kF + γ pFc), respectively. This is
consistent with the intervals in Table I for processes (2-Rem),
(3-Rem), (2-Add), and (3-Add).

On the other hand, within the low-energy TLL processes
(1-Rem) and (1-Add), the scattering centers are created in the
same very small intervals given in Table II as the scatterers.
Hence the c and s scattering centers lose their identity. Indeed,
they cannot be distinguished from the TLL “holons” and
“spinons” in the low-energy and small-momentum particle-
hole processes. As a result, the spectral-function TLL expo-
nents have different expressions than those in Eq. (19) [6].

The contribution of the s particle scatterers phase shifts
to the exponents expressions given in Eq. (19) has been ac-
counted for. They do not appear explicitly in these expressions
because they simplify to γ 2π
̃s,c(ιkF , q) = −γ ιπ/

√
2 and

−2π
̃s,s(ιkF , q′) = −ιπ/
√

2. Here ι = ± for both γ = ±1
and the c and s scattering centers q and q′ intervals, respec-
tively, are provided in Table I. Their simplicity is due both to
the global spin SU (2) symmetry and their invariance under
the ξc → ξ̃c transformation.

B. The one-electron spectral function near the
c-s boundary lines

Another type of spectral-function singularity is located on
the c-s boundary lines shown in Fig 1. The spectral-function
expressions near them are for δ̃c = 0 provided by the PDT
[30]. They involve an exponent −1/2 that remains invariant
under the ξc → ξ̃c transformation. The corresponding δ̃c > 0
expressions are then obtained under the replacement of the
δ̃c = 0 bare c particle energy dispersion and group velocity
by ε̃c(q), Eq. (12), and ṽc(q), Eq. (C11) of Appendix C,
respectively.

The spectral weight distribution in the vicinity of such
lines results from the processes (4-Rem) and (4-Add) defined
in Sec. IV A. As given in Table I, under such processes the
c hole is created at q ∈ [−qh

c , qh
c ] where |ṽc(±qh

c )| = v−
Fs,

0 < qh
c < 2kF , and v−

Fs ≡ vs(kF − δpFs) for γ = −1. For γ =
+1, the c particle is created at q ∈ [−π,−qc] ; [qc, π ] where
|ṽc(±qh

c )| = v−
Fs and 2kF < qc < π . Here qh

c = qc for u → 0
and qh

c = 0 and qc = π for u → ∞. The s hole is created
both for γ = −1 and γ = +1 at a s band momentum q′ such
that ṽc(q) = vs(q′). Hence q and q′ are not independent of
each other. The corresponding c-s boundary line (k, ω)-plane
spectrum is of the general form,

ω̃c−s(k) = (γ ε̃c(q) − εs(q
′)) δṽc (q),ṽs (q′ )

k = ∓(γ − 1)kF + γ q − q′ for γ = ±1. (20)

The c-s boundary spectra are represented in the sketch of
Fig. 1 by dotted lines.

In the vicinity of such a line the one-electron spectral
function, Eq. (3), has the following behavior,

Bγ (k, ω) = Cι
c−s([ω̃c−s(k) − ω]γ ι)−1/2

for small [ω̃c−s(k) − ω]γ ι. (21)

Here Cι
c−s where ι = + refers to [ω̃c−s(k) − ω]γ > 0 and ι =

− to [ω̃c−s(k) − ω]γ < 0 are ne, u = U/4t , and ξ̃c dependent
constants for energy and momentum values corresponding to
the small energy deviations [ω̃c−s(k) − ω]γ and ω̃c−s(k)γ >

0 and γω > 0 are high energies beyond those of the TLL.

VI. ARPES IN TTF-TCNQ

A. ARPES data

In the top panel of Fig. 2 we display the raw ARPES band
map along the 1D direction of TTF-TCNQ corresponding to
the �Z high-symmetry line of the Brillouin zone. The � point
in the zone center at zero momentum as well as the Z point
at the zone boundary are indicated by solid vertical lines.
The energies are referenced to the chemical potential at zero
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FIG. 2. Raw TTF-TCNQ ARPES data and second-derivative
ARPES map showing the experimental dispersions obtained along
the easy-transport axis and matching theoretical boundary lines and
branch lines for the k > 0 intervals for which the exponents of
the latter are negative. Their choice is justified in Sec. VI B. The
theoretical lines refer to (i) u = U/4t = 0.800 and t = 0.29 eV and
(ii) u = 1.225 and t = 0.24 eV for the (i) TTF (orange) and (ii)
TCNQ (green) stacks of molecules, respectively. The branch and
boundary lines are represented by solid and dotted lines, respectively.
The spectral function line shape near and below the branch lines has
the singular form given in Eq. (16) for the k intervals for which
the corresponding exponents are negative. Its line shape near both
sides of the boundary lines is provided in Eq. (21). (The TTF related
s′ and c′′′ branch lines do not appear in the figure because their
exponents are positive.) The TCNQ and TTF stacks of molecules
related boundary lines emerge from the c′ and c′′ branch lines at
k = kQ

cs = 0.115 Å−1 and k = kF
cs = 0.520 Å−1, respectively, and run

up to k = π/a0 ≈ 0.823 Å−1.

energy, marked by a horizontal solid line. In contrast to our
previous photoemission data [1,2], already in the raw data
dispersive features are clearly discernible due to the better
momentum resolution and finer k grid, e.g., the V-shape-like
intensity distribution centered around zero momentum and a
structure, shifting away from close to the chemical potential at
about 0.23 Å−1 towards the zone boundary. Even more details
become apparent in the negative second derivative along the
energy axis, clipped at zero intensity, which is plotted in the
lower panel of Fig. 2. These are indicated by solid lines and
denoted by the characters s, c, c′, and c′′ when associated with
the theoretical branch lines and by dotted lines and denoted by
c-s in the case of boundary lines. Such branch and boundary
lines were introduced in Sec. IV A. They have been observed
previously but with less clarity and are discussed in the
following paragraphs in more detail based on our theoretical
analysis.

B. Agreement between ARPES and the theory predictions

The use of the one-electron spectral function expressions
provided by the MQIM-HO, Eqs. (16) and (21), allows the
prediction of (i) the location in the (k, ω) plane of the experi-
mentally observed ARPES structures at energy scales beyond
the reach of the TLL and (ii) the values of the low-energy
TLL SDS exponent α in Eq. (6). Indeed, the latter only de-
pends on the charge parameter ξ̃c in the high-energy exponent
expressions, Eq. (19). In using our T = 0 theoretical results
to describe high-energy ARPES data taken at 60 K, we expect
(and observe) that the corresponding predicted peak structures
are slightly smeared by thermal fluctuations and coupling to
phonons.

To access the two sets of parameter values suitable for the
description of the spectral features related to the TTF and
TCNQ stacks of molecules, two entangled criteria associated
with the spectra and the matrix elements in the spectral
function, Eq. (3), respectively, are used.

The first criterion refers to the overall agreement between
the (k, ω)-plane spectra shape of the theoretical branch lines
and c-s boundary lines and that of the ARPES maps shown in
Fig. 2. The latter criterion involves the exponents in Eq. (19)
that control the quantum overlap in the spectral-function
matrix elements near the branch lines and the k intervals,
Eq. (20), for which boundary lines exist. It refers to the
agreement between the location in the (k, ω) plane of (i)
the k intervals of both boundary-line singularities and those
of the branch-line singularities for which their exponents
are negative and (ii) that of the corresponding high-energy
ARPES structures in Fig. 2.

For the TTF stacks of molecules, the analysis of the
problem involves the c-s boundary line running in the interval
k ∈ [kF

cs, π/a0] where kF
cs < π/a0 − kF and the k intervals for

which the branch-line exponents ζc′′ (k), ζc′′′ (k), and ζs′ (k) are
negative and positive, respectively. They are plotted in Fig. 3
for the parameter values found below to be suitable for TTF.
In the case of the TCNQ stacks of molecules, the c-s boundary
line running for k ∈ [kQ

cs, π/a0] where kQ
cs < kF and the k

dependence of the exponents ζc(k), ζc′ (k), and ζs(k) are those
involved in such an analysis. They are plotted in Fig. 4 for the
TCNQ parameter values whose choice is justified below.
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FIG. 3. The exponents, Eq. (19), in the spectral function,
Eq. (16), that control the line shape near the theoretical c′′ branch
line, two branches of the c′′′ branch line, and s′ branch line in
Fig. 1 for nF

e = 2 − ne = 1.41, u = U/4t = 0.80, and l = 12. The
k intervals for which these exponents are negative describe the
(k, ω)-plane location of the corresponding experimental high-energy
structures in the ARPES maps of Fig. 2 related to the TTF stacks of
molecules. This holds for the specific exponent lines corresponding
to the parameter values ξ̃c = ξ̃F

c = 0.649 and α = αF = 0.739 for
which ζc′′ (k) crosses zero at k = kF

cs = 0.520 Å−1 and all exponents
meet the agreement criteria. The −1/2 exponent dashed-dotted line
refers to the c-s boundary line.

In Figs. 3 and 4 different curves are associated with differ-
ent values of the renormalized charge parameter ξ̃c and thus
of the TLL charge parameter Kρ = ξ̃ 2

c /2, SDS exponent α =
(2 − ξ̃ 2

c )2/(8ξ̃ 2
c ) in Eq. (6), and effective range Reff , Eq. (A10)

of Appendix A. The black solid and black dashed lines
refer to the δ̃c = 0 bare limit and the interval δ̃c ∈]0, δ̃(1)

c [,
respectively.

For simplicity, in the following we limit our analysis re-
garding the fulfillment of the agreement criteria to momentum
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FIG. 4. The exponents, Eq. (19), in the spectral function,
Eq. (16), that control the line shape near the theoretical c, c′, and
s branch lines in Fig. 1 for nQ

e = ne = 0.59, u = U/4t = 1.225,
and l = 6. The k intervals for which these exponents are negative
describe the (k, ω)-plane location of the corresponding experimental
high-energy structures in the ARPES maps of Fig. 2 related to the
TCNQ stacks of molecules. This applies to the specific exponent
lines corresponding to the parameter values ξ̃C

c = 0.734 and αC =
0.495 for which ζc′ (k) crosses zero at k = kQ

cs = 0.115 Å−1 and all
exponents meet the agreement criteria. The −1/2 exponent dashed-
dotted line refers to the c-s boundary line.

values k > 0. However, similar results hold for k < 0. One
finds from analysis of the experimentally observed high-
energy ARPES structures in Fig. 2 associated with the TTF
stacks of molecules that the c′′ branch line exponent should be
negative for the interval k ∈ [kF + δpFc, kF

cs] and positive for
the small interval k ∈ [kF

cs, π − kF ]. In contrast, the exponents
of the two branches of the c′′′ branch line and that of the s′
branch line should be positive for all their k intervals. The c-s
branch line that emerges from the c′′ branch line at k = kF

cs
and runs until k = π/a0 should separate a (k, ω)-plane region
above it with finite spectral weight from a region below it with
very little weight. The spectral function expression given in
Eq. (16) for the cc = c′′ branch line refers to the region just be-
low it. However, that line runs within the spectral-weight con-
tinuum and thus can have finite weight above it. That spectral-
function expression does not apply thought to that region.

On the other hand, in the case of the TCNQ high-energy
ARPES structures in Fig. 2, the c and s branch lines exponents
should be negative for their whole intervals k ∈ [0, kF −
δpFc] and k ∈ [0, kF − δpFs], respectively. The exponent of
the c′ branch line should be negative for the small interval
k ∈ [0, kQ

cs] and positive for k ∈ [kQ
cs, 3kF − δpFc]. Here kQ

cs <

kF is the momentum at which a c-s boundary emerges from
the c′ branch line. The s branch line must coincide with
the edge of support of the one-electron spectral function. It
separates (k, ω)-plane regions without and with finite spectral
weight above and below that line, respectively. Again the
spectral function expression given in Eq. (16) for the cc =
c, c′ branch lines refers to the region just below them. These
lines run within the spectral-weight continuum yet there is no
imposition that there is or there is not a significant amount
of weight above them. In the region above them the spectral
function expression is not given by Eq. (16).

For the (i) TTF stacks of molecules with density nF
e =

2 − ne = 1.41 and the (ii) TCNQ stacks of molecules with
density nQ

e = ne = 0.59 the best agreement concerning both
the (k, ω)-plane spectra shape and location of the singularities
is reached (i) for u = U/4t = 0.8 and t = 0.29 eV (ξc =
1.228) and (ii) for u = 1.225 and t = 0.24 eV (ξc = 1.171),
respectively. This gives interactions U ≈ 1 eV for both sys-
tems, (i) U = 0.928 ≈ 0.9 eV and (ii) U = 1.176 ≈ 1.2 eV
for TTF and TCNQ, respectively.

At such fixed ne and u = U/4t values, those of l > 5 and ξ̃c

are determined by the criterion involving the (k, ω)-plane lo-
cation of the singularities. In the case of the TFF related spec-
tral features, the best agreement is reached for l = 12 at the
value ξ̃F

c = 0.649 for which ζc′′ (k) crosses zero at k = kF
cs =

0.520 Å−1 in Fig. 3. This corresponds to KF
ρ = 0.211, RF

eff =
6.173 a0 = 23.575 Å, and αF = 0.739. At l = 11 the agree-
ment is poorer but the other parameters have nearly the same
values. For l < 11 some of the agreement criteria are not met.

For the TCNQ related spectral features, the best agreement
is reached for l = 6 at the value ξ̃C

c = 0.734 for which ζc′ (k)
crosses zero at k = kQ

cs = 0.115 Å−1 in Fig. 4. This cor-
responds to KC

ρ = 0.269, RC
eff = 24.828 a0 = 94.818 Å, and

αC = 0.495. For l > 7 some of the agreement criteria are not
met. At l = 7 the agreement is poorer, but all other parameters
except RC

eff have nearly the same values. Due to its dependence
on l , Eqs. (A10) and (A11) of Appendix A, it drops to RC

eff =
12.818 a0 = 48.952 Å.
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VII. DISCUSSION AND CONCLUDING REMARKS

In this paper we have reported new high-resolution ARPES
data for TTF-TCNQ and used an extended version of the
MQIM-HO [6] to describe the microscopic mechanisms be-
hind the spectral properties of that conductor at T = 60 K.
This involved the use of a model Hamiltonian of general form,
Eq. (1), with transfer integral t , interaction U , and potential
Ve(r) specific to the TTF and TCNQ stacks of molecules,
respectively, to describe their one-electron spectral properties.

The best agreement between the theory and the high-
resolution ARPES data was obtained for the spectral features
related to (i) TTF and (ii) TCNQ stacks of molecules for
(i) u = U/4t = 0.80 with t = 0.29 eV and U = 0.928 eV
and for (ii) u = 1.225 with t = 0.24 eV and U = 1.176 eV,
respectively. Despite the smaller u = U/4t , U , and effective
range Reff values, we found the TTF stacks of molecules to
be more correlated then those of TCNQ, in as far as their
smaller charge parameter value ξ̃F

c = 0.649 and correspond-
ing TLL charge parameter KF

ρ = 0.21 (and thus larger SDS
exponent αF = 0.74) is concerned. Indeed, for the TTF stacks
of molecules such parameters were found to be given by
ξ̃C

c = 0.734, KC
ρ = 0.27, and αC = 0.50, respectively.

The effective ranges of the fractionalized particles charge-
charge interaction found for TTF and TCNQ read RF

eff =
6.2 a0 = 23.6 Å and RC

eff = 24.8 a0 = 94.8 Å, respectively.
However, at l = 7 for which the agreement with the exper-
imental data is poorer for TCNQ, the values of its other
parameters remain nearly the same except that the effective
range drops to RC

eff = 12.8 a0 = 49.0 Å. In any case, the re-
sults reveal that a first-neighbor interaction V is not sufficient
to describe the physics of TTF-TCNQ. Indeed, Reff > 6 a0 for
both its stacks of molecules with Reff also applying to the
related rotated-electron interactions.

A necessary condition for the occurrence of a low-
temperature 4kF charge-density wave (CDW) is that ξ̃c < 1
and Kρ < 1/2 [20,26]. That for the TTF stacks of molecules
the charge parameters ξ̃c and Kρ are quite smaller than for
those of TCNQ is consistent with its 4kF CDW phase ob-
served at temperatures T < 49 K [31].

However, ξ̃c < 1 is not a sufficient condition for a 4kF

CDW [26]. Indeed, lattice fermions have for some forms of
long-range potentials a metallic ground state for the whole
ξ̃c < 1 range [27]. In addition to the requirement that ξ̃c < 1,
the occurrence of a 4kF CDW depends on the specific form
of the electronic potential Ve(r). The lack of a low-T 4kF

CDW phase for the TCNQ stacks of molecules then reveals
that, besides the different parameters values reported above,
the type of r dependence of the electronic potentials Ve(r) of
the two stacks of molecules is different.

Charge-spin separation at high-energy scales beyond the
TLL is associated with the emergence of independent c, c′, c′′
(charge) branch lines and the s (spin) branch line, respectively,
represented by solid lines in the lower panel of Fig. 2. Their
singularities are controlled by momentum, interaction, and
density dependent negative exponents. They are generated
by creation of independent charge and spin fractionalized
particles, respectively, that move with different group veloc-
ities. On the other hand, the c-s boundary lines represented
by dotted lines in that figure panel whose singularities are
controlled by a classical exponent −1/2 are generated by

creation of one charge and one spin fractionalized particle that
propagate with the same velocity. This can thus be understood
as charge-spin recombination. Hence in different regions of
the (k, ω) plane both spectral features of different type emerge
that can be associated with charge-spin separation and charge-
spin recombination, respectively.

In this paper two Hamiltonians of the same form, Eq. (1),
but different parameter values and potentials have been used to
describe the related TTF and TCNQ stacks of molecules high-
energy spectral features, respectively. Indeed, it is expected
that the effects of possible interaction terms coupling both
problems can be neglected in the (k, ω)-plane regions where
such spectral features do not overlap. The only exception is
thus the TCNQ related c-s boundary line that runs in Fig. 2
in the interval k ∈ [kQ

cs, π/a0] where k = kQ
cs = 0.115 Å−1.

It is expected that upon running in the “TTF (k, ω)-plane
region” its singularity may be washed out or changed by such
interaction terms.

Moreover, the values of the charge parameters ξ̃c and
Kρ = ξ̃ 2

c /2 and related SDS exponent α = (2 − ξ̃ 2
c )2/(8ξ̃ 2

c )
specific to TTF and TCNQ, respectively, were accessed via the
dependence on ξ̃c of the exponents, Eq. (19). Consistent with
this result, the corresponding related TTF and TCNQ high-
energy branch lines run in different regions of the (k, ω) plane.
However, in the low-energy TLL limit where such exponents
are not valid, the corresponding branch lines overlap near k ≈
kF . An open question is the effect in that limit of the interac-
tion terms on the low-energy suppression of the photoelectron
intensity, I (ω, 0). If such interaction terms remain weak at low
energy, then I (ω, 0) = CC |ω|αC + CF |ω|αF where αC ≈ 0.50
and αF ≈ 0.74 are the “TCNQ” and “TTF” SDS exponents,
respectively, and CC and CF are constants. As noted in Sec. I,
in this case the leading contribution would be I (ω, 0) ∝ |ω|α
where α = αC ≈ 0.50. If otherwise, α will have a single value
in the range ∈ [0.50, 0.74] and its expression will involve both
αC and αF .

Another interesting issue is the apparent less pronounced
effect of the charge-spin separation in the stacks of TTF
molecules. To address this issue, one should take into account
that at density nF

e = 1.41 > 1 the microscopic mechanisms
that control the spectral properties are similar to those of the
one-electron addition spectral function at density ne = 2 −
nF

e = 0.59 < 1. For the latter quantum problem, the charge-
spin separation persists within the model, Eq. (1). However, as
discussed below, it acquires a different form. That the expo-
nent ζss (k) in Eq. (19) is positive and negative in Figs. 3 and 4
for the TTF and TCNQ related ss = s′ and ss = s branch lines,
respectively, explains why only the latter exhibits ARPES
peak structures associated with spin degrees of freedom.

Nonetheless, at higher energy values ω > 0 not shown in
the sketch of Fig. 1, there is an inverted upper-band s branch
line. At its lowest energy point at k = π/a0 − kF , that line
has for u > 0 an energy gap relative to the c′′ branch line
highest energy point at that k value. This is an important
line, since in the u → 0 limit the whole k > 0 one-electron
spectrum stems from the s branch line for k ∈ [0, kF ] and ω <

0, c′′ branch line for k ∈ [kF , π/a0 − kF ] and ω > 0, and that
inverted upper-band s branch line for k ∈ [π/a0 − kF , π/a0]
and ω > 0. Indeed, its energy gap at k = π/a0 − kF vanishes
as u → 0.
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Using the relation, Eq. (15), that line gives rise to a related
TTF s branch line whose exponent is negative for k ∈ [π/a0 −
kF + δpFs, π/a0]. It is located at higher energies, ω ∈
[−1.390,−1.203] eV, for which there are no ARPES data in
Fig. 2. For k > 0 it connects the (k, ω)-plane points (π/a0 −
kF ,−2μ) and (π/a0,−2μ − Ws). Here −2μ = −4.149 t =
−1.203 eV and −2μ − Ws = −4.793 t = −1.390 eV where
2μ is twice the absolute value of the chemical potential (it
should be distinguished from the reduced mass μ in Eq. (A7)
of Appendix A) and Ws = 0.644 t = 0.187 eV is the s branch
line energy bandwidth. Hence for the model, Eq. (1), at
electronic densities ne > 1 the charge-spin separation is as-
sociated with the singularities at the (charge) c′′ branch line
and that higher-energy (spin) s branch line. Whether the latter
line emerges at higher energy in the ARPES data remains an
open question.

Finally, an interesting issue is that the effects of the finite-
range interactions have lowered the TCNQ transfer integral
t = 0.40 eV within the 1D Hubbard model description [2] to
t = 0.24 eV. This is consistent with evidence that the observed
transfer of spectral weight at kF over the entire conduction
band width with increasing temperatures cannot be reconciled
within the use of t = 0.40 eV whereas it can be reconciled
with a value of t = 0.24 eV [3].

In summary, our quantitative results confirm that the in-
terplay of one dimensionality and finite-range interactions
plays a major role in the one-electron spectral properties of
TTF-TCNQ. In particular, our results identify the specific mi-
croscopic processes that determine the (k, ω)-plane location
of the corresponding ARPES structures. Specifically, we have
shown that the high-energy spectral properties of TTF-TCNQ
are controlled by the scattering of charge fractionalized parti-
cles in the unitary limit of (minus) infinite scattering length.
The representation of such processes in terms of interactions
of the fractionalized particles has greatly simplified a complex
many-electron problem.

These results apply as well to a wide class of non-Fermi
liquid and nonperturbative many-electron 1D and quasi-1D
systems [6] of which TTF-TCNQ is a typical example. Fur-
ther, the unitary limit of (minus) infinite scattering length also
appears in neutron-neutron interactions in shells of neutron
stars and in the scattering of ultracold atoms. That it also
plays an active role in condensed matter systems treated
beyond the Fermi liquid approximation represents a fun-
damental conceptual novelty. Finally, our representation of
the microscopic mechanisms associated with nonperturbative
many-electron interactions in terms of fractionalized particles
scattering in the unitary limit may also be useful for the
further understanding of two-dimensional strongly correlated
electronic systems in which the concept of quasiparticle itself
breaks down, for example in the cases of high-temperature
superconductivity and other types of exotic superconductivity
where the microscopic mechanisms are not well understood.
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APPENDIX A: USEFUL MQIM-HO QUANTITIES

The MQIM-HO renormalized phase shifts
2π
̃c,s(±2kF , q′) and 2π
̃c,c(±2kF , q) for q �= ∓2kF in
the exponents expressions, Eq. (19), are given by,

2π
̃c,s(±2kF , q′) = ξ̃c

ξc
2π
c,s(±2kF , q′) (A1)

and

2π
̃c,c(±2kF , q) = 2π
̃ã
c,c(±2kF , q) + 2π
̃Reff

c,c (kr )

2π
̃ã
c,c(±2kF , q) = ξc

ξ̃c

(ξ̃c − 1)2

(ξc − 1)2
2π
c,c(±2kF , q)

= arctan
(

ã
L 2π

)
arctan

(
a
L 2π

) 2π
c,c(±2kF , q)

2π
̃Reff
c,c (kr ) = −γ arctan

(
1

2
Reff kr sin2

(
(ξ̃c − 1)2

ξ̃c
π

)

+ Pc(kr )

)
, (A2)

respectively. Here γ = −1 and γ = +1 for one-electron re-
moval and addition, respectively, which is an extension of the
results of Ref. [6] to one-electron addition.

The effective-range expansion obeyed by the phase shift

̃c(kr ) = γ 2π
̃c,c(±2kF ,±2kF + kr ) where kr = q ∓ 2kF

is the small relative momentum reads [6,18,19,28,29],

cot(
̃c(kr )) = −1

ã kr
+ 1

2
Reff kr − Peff R3

eff k3
r + O

(
k5

r

)
. (A3)

For the δ̃c = 0 bare model it is merely given by cot(
c(kr )) =
−1
a kr

. Here ã and a are the renormalized and bare scattering
lengths, respectively, and Reff is the effective range. The shape
parameter Peff and those of higher order and the corresponding
effects of Pc(kr ) in Eq. (A2) are in the present unitary limit
negligible [6].

To determine the scattering lengths, one uses the phase
shift limkr→0 
̃c(kr ) in the expansion, Eq. (A3), in the ther-
modynamic limit. This is straightforwardly extended to one-
electron addition γ = +1 as


̃c(kr ) = −2π
̃c,c(±2kF ,±2kF + kr )|kr=±γ 2π
L

= ±γ
(ξ̃c − 1)2π

ξ̃c
for γ = ±1. (A4)

The use of this expression (which also applies at δ̃c = 0 with

̃c(kr ) = −2π
̃c,c reading 
c(kr ) = −2π
c,c) in the two
above effective-range expansions gives the scattering lengths
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in the thermodynamic limit as

ã = − L

2π
tan

(
(ξ̃c − 1)2π

ξ̃c

)
→ −∞ for ξ̃c �= 1 and

a = − L

2π
tan

(
(ξc − 1)2π

ξc

)
→ −∞ for ξc �= 1, (A5)

so that the unitary limit [6,12,13] holds for both one-electron
removal and addition, γ = ∓1. The ratio,

ã

a
= tan(π (ξ̃c − 1)2/ξ̃c)

tan(π (ξc − 1)2/ξc)
, (A6)

is though finite.
The potential Vc(x) induced by Ve(r) vanishes for large x

as [6],

V asy
c (x) = −γc

xl
= − Cc

(x/2rl )l
where

Cc = 1

(2rl )2μ
and γc = (2rl )l−2

μ
. (A7)

Here μ is a nonuniversal reduced mass, l > 5 is an integer
determined by the large-r behavior of Ve(r), and 2rl is a length
scale whose l dependence for the range δ̃c > δ̃(1)

c of interest
for the present problem is [6],

2rl = 3πa0

2
sin

(
π

l − 2

)(
l − 2√

2

) 2
l−2 �2

(
2

l−2

)
�
(

3
l−2

)
�
(

1
l−2

)
�
(

4
l−2

) . (A8)

Here a0 is the lattice spacing and �(z) is the � function.
In the interval x ∈ [x0,∞] where Vc(x) < 0, the “momen-

tum”
√

2μ(−Vc(x)) obeys the sum rule [6],


 =
∫ x2

x0

dx
√

2μ(−Vc(x)) where x2 = 2rl

(
4
√

2

πθc

) 2
l−2

with tan(
) = −�a

ã
cot

(
π

l − 2

)
. (A9)

Here θc =
√

(ξ 4
c − ξ̃ 4

c /(ξ 4
c − 1) for δ̃c ∈]0, δ̃(1)

c [ and θc = 1 for

δ̃c ∈]δ̃(1)
c , δ̃

( 1
2 )

c [ and �a = a − ã.

For the interval δ̃c ∈]δ̃(1)
c , δ̃

( 1
2 )

c [ of interest for TTF-TCNQ,
the effective range in Eq. (A3) is given by [6],

Reff = a0

(
1 − c1

(
ã

a

)
+ c2

(
ã

a

)2
)

, (A10)

where

c1 = 2

cos
(

π
l−2

) �
(

2
l−2

)
�
(

l−4
l−2

)
�
(

1
l−2

)
�
(

l−3
l−2

) and

c2 = 3 (l + 1)

(l − 1) cos2
(

π
l−2

) �
(

3
l−2

)
�
(− l+1

l−2

)
�
( −1

l−2

)
�
(− l−1

l−2

) . (A11)

The parameter ξc = ξc(ne, u) in the ξc → ξ̃c transformation
is defined by the following relation and equation,

ξc = ξc

(
sin Q

u

)
where ξc(r) is the solution of

the integral equation,

ξc(r) = 1 +
∫ sin Q

u

− sin Q
u

dr′K (r − r′) ξc(r′). (A12)

Here the kernel K (r) is given by

K (r) = i

2π

d

dr
ln

�
(

1
2 + i r

4

)
�
(
1 − i r

4

)
�
(

1
2 − i r

4

)
�
(
1 + i r

4

) .
For ne ∈]0, 1[ and u � 1 the limiting behavior of ξc is

ξc =
√

2

(
1 − U

8tπ sin
(

π
2 ne

)
)

. (A13)

APPENDIX B: ROTATED-ELECTRON REPRESENTATION
AND RELATED c AND s representations

Some of the results presented in this Appendix for δ̃c =
0 have not been presented elsewhere and are needed for the
related δ̃c > 0 results provided in Appendix C.

1. The general rotated-electron representation

The rotated electron operators,

c̃†
j,σ = Û † c†

j,σ Û , c̃ j,σ = Û † c j,σ Û , ñ j,σ = c̃†
j,σ c̃ j,σ , (B1)

and ñ j = ∑
σ ñ j,σ are generated from those of the electrons

by the unitary operator Û = eŜ . It is uniquely defined in
Ref. [30] in terms of the 4L × 4L matrix elements between
all the δ̃c = 0 bare model energy eigenstates. An important
property is that rotated-electron single and double occupancy
are good quantum numbers for the whole u > 0 range. For
electrons this only applies in the u → ∞ limit and thus u−1 →
0 limit in which rotated electrons adiabatically become
electrons.

The bare model Hamiltonian ĤH, Eq. (1) for δ̃c = 0, has in
the rotated-electron operators representation an infinite num-
ber of terms given by the Baker-Campbell-Hausdorff formula,

ĤH = t T̃0 + ṼH + δĤH

δĤH = t
∑
ι=±1

T̃ι + [ĤH, S̃ ] + 1

2
[[ĤH, S̃ ], S̃ ] + ...

ṼH = U
L∑

j=1

ρ̃ j,↑ρ̃ j,↓. (B2)

Here ρ̃ j,σ = (ñ j,σ − 1
2 ) and S̃ = Û † Ŝ Û = Ŝ. The Hamilto-

nian terms H̃H ≡ t T̃ + ṼH where

T̃ =
∑

d=0,±1

T̃d

T̃0 =
L∑

j=1

∑
ι=±1

(T̃0, j,ι + T̃ †
0, j,ι)

T̃+1 =
L∑

j=1

∑
ι=±1

T̃+1, j,ι and T̃−1 = T̃ †
+1, (B3)
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d = 0,±1 gives the change in the number of rotated-electron
doubly occupied sites and

T̃0, j,ι = −
∑

σ

{ñ j,−σ c̃†
j,σ c̃ j+ι,σ ñ j+ι,−σ

+ (1 − ñ j,−σ ) c̃†
j,σ c̃ j+ι,σ (1 − ñ j+ι,−σ )}

T̃+1, j,ι = −
∑

σ

{ñ j,−σ c̃†
j,σ c̃ j+ι,σ (1 − ñ j+ι,−σ )

+ ñ j+ι,−σ c̃†
j+ι,σ c̃ j,σ (1 − ñ j,−σ )} (B4)

have the same expression in terms of rotated-electron op-
erators as the full Hamiltonian ĤH = t T̂ + V̂H in terms of
electron operators. The form of the commutators,

[ṼH, T̃d ] = d × T̃d where d = 0,±1,

is behind all higher terms in δĤH, Eq. (B2), having a kinetic
nature. Indeed, the expression of Ŝ = S̃ in the unitary operator
Û = eŜ only involves the three d = 0,±1 rotated kinetic
operators T̃d , Eqs. (B3) and (B4).

2. General fractionalized particles representation from
rotated-electron degrees of freedom separation

The rotated-electron operators, Eq. (B1), naturally fac-
torize as follows upon acting onto the full Hilbert
space [30],

c̃†
j,↑ = f †

j,c

(
1
2 − s̃z

j,s − s̃z
j,η

) + (−1) j f j,c
(

1
2 + s̃z

j,s + s̃z
j,η

)
c̃†

j,↓ = ( f †
j,c + (−1) j f j,c)(s̃+

j,s + s̃+
j,η ), (B5)

and c̃ j,σ = (c̃†
j,σ )† where σ =↑,↓. The rotated-electron singly

occupied sites separate into lattice/charge degrees of freedom
described by the spinless c particles of creation operator f †

j,c
and spin degrees of freedom associated with rotated spins 1/2
with local operators s̃l

j,s where l = z,±. The rotated spins
are the spins of the rotated electrons that singly occupy sites
whereas their charges are carried by the c particles.

On the other hand, the degrees of freedom of the remaining
sites unoccupied and doubly occupied by rotated electrons
separate into lattice/charge degrees of freedom described by
the c holes associated with the annihilation operator f j,c and
η-spin/charge degrees of freedom associated with the η-spin
degrees freedom of the rotated-electron unoccupied sites (up
η-spin projection) and rotated-electron doubly occupied sites
(down η-spin projection). Such onsite rotated η-spin degrees
of freedom correspond to the l = z,± local operators s̃l

j,η. The
related l = z,± rotated quasispin operators,

q̃l
j = s̃l

j,s + s̃l
j,η where l = z,± and

q̃−
j = (q̃+

j )† = (c̃†
j,↑ + (−1) j c̃ j,↑) c̃ j,↓

q̃z
j = (ñ j,↓ − 1/2), (B6)

read (i) q̃l
j = s̃l

j,s and (ii) q̃l
j = s̃l

j,η for rotated-electron
(i) singly and (ii) unoccupied and doubly occupied
sites.

Manipulations based on Eqs. (B5) and (B6) then give

f †
j,c = ( f j,c)† = c̃†

j,↑ (1 − ñ j,↓) + (−1) j c̃ j,↑ ñ j,↓

ñ j,c = f †
j,c f j,c for j = 1, ..., L, (B7)

where ñ j,σ is provided in Eq. (B1). Hence,

s̃l
j,η = f j,c f †

j,c q̃l
j and s̃l

j,s = f †
j,c f j,c q̃l

j, (B8)

where f j,c f †
j,c and f †

j,c f j,c are suitable site projectors.
Straightforward manipulations of Eqs. (B5)–(B7) give

{ f †
j,c, f j′,c} = δ j, j′ and { f †

j,c, f †
j′,c} = { f j,c, f j′,c} = 0.

The operators f †
j,c and f j,c commute with q̃l

j for l = z,± and
s̃l

j,s and s̃l
j,η obey the usual SU (2) operator algebra.

The kinetic operators T̃0 and T̃±1, Eq. (B3), and the inter-
action ṼH in Eq. (B2) can then be written as

T̃0 = −1

2

L∑
j=1

∑
ι=±1

( f †
j,c f j+ι,c + f †

j+ι,c f j,c)(1 + 4 �̃q j · �̃q j+ι)

T̃+1 = (T̃−1)† = −1

2

L∑
j=1

∑
ι=±1

(−1) j f j,c f j+ι,c(1 − 4 �̃q j · �̃q j+ι)

ṼH = U

2

L∑
j=1

(
1

2
− f †

j,c f j,c

)
, (B9)

where

�̃q j · �̃q j+ι = q̃z
j q̃

z
j+ι + 1

2 (q̃+
j q̃−

j+ι + q̃−
j q̃+

j+ι).

Hence the Hamiltonian, Eq. (B2), can be expressed as

ĤH = Ĥ0
H c + δĤ∗

H where

Ĥ0
H c = − t

2

L∑
j=1

∑
ι=±1

( f †
j,c f j+ι,c + f †

j+ι,c f j,c)

+ U

2

L∑
j=1

(
1

2
− f †

j,c f j,c

)

δĤ∗
H = −2t

L∑
j=1

∑
ι=±1

( f †
j,c f j+ι,c + f †

j+ι,c f j,c) �̃q j · �̃q j+ι + δĤH.

(B10)

3. c and s particle representation that diagonalizes the
δ̃c = 0 model in the one-electron subspace

By use of c particle operators labeled by momentum, which
are related to the corresponding local operators by,

f †
j,c = ( f j,c)† = 1√

L

π∑
q=−π

e−iq j f †
q,c where j = 1, ..., L,

f †
q,c = ( fq,c)† = 1√

L

L∑
j=1

e+iq j f †
j,c

for q ∈ [−π, π ], (B11)

the term Ĥ0
H c in Eq. (B10) can be written as

Ĥ0
H c =

π∑
q=−π

(
U

4
− 2t (cos q + u) f †

q,c fq,c

)
.
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In the one-electron subspace it is ground-state normal ordered
as

: ĤH : = : Ĥ0
H c : + : δĤ∗

H : where

: Ĥ0
H c : =

π∑
q=−π

(−2t (cos q − cos 2kF )) : f †
q,c fq,c :

: δĤ∗
H : = δĤ∗

H − 〈GS|δĤ∗
H|GS〉. (B12)

Here δĤ∗
H also appears in Eq. (B10) and : f †

q,c fq,c :=
f †
q,c fq,c − NGS

c (q) where in the thermodynamic limit,
NGS

c (q) = 〈GS| f †
q,c fq,c|GS〉 = θ (2kF − |q|).

The use of the δ̃c = 0 bare model exact Bethe-ansatz
solution reveals that : δĤ∗

H : in Eq. (B12) reads

: δĤ∗
H : =

π∑
q=−π

δεc(q) : f †
q,c fq,c : + : ĤH s : where

δεc(q) = εc(q) + 2t (cos q − cos 2kF ) and

: ĤH s : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (B13)

Here εc(q) and εs(q′) are defined in Ref. [6] and f †
q′,s and fq′,s

are s particle creation and annihilation operators [17,30]. For
u → 0 and u → ∞, δεc(q) reads,

δεc(q) = −4t
(

sin2
(q

2

)
− sin2 kF

)
for q ∈ [−2kF , 2kF ] and u → 0

= −2t (cos(|q| − kF ) − cos q − (cos kF − cos 2kF ))

for |q| ∈ [2kF , π ] and u → 0

δεc(q) = 0 for q ∈ [−π, π ] and u → ∞.

It vanishes for u → ∞ upon rotated electrons becoming elec-
trons. In the one-electron subspace the diagonalized Hamilto-
nian : ĤH :, Eq. (B12), is in the thermodynamic limit given
by

: ĤH : = : ĤH c : + : ĤH s :

: ĤH c : =
π∑

q=−π

εc(q) : f †
q,c fq,c :

: ĤH s : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (B14)

The c band hole and particle energy bandwidths W h
c =

εc(±π ) and W p
c = −εc(0), respectively, are such that Wc =

W h
c + W p

c = 4t for all u > 0 values and ne ∈]0, 1[.
In the low-energy TLL limit the following Hamiltonian

with linearized c and s band energy dispersions describes the
diagonal Hamiltonian, Eq. (B14),

: ĤH : = : ĤH c : + : ĤH s :

: ĤH c : = π vFc

L

∑
k,ι=±

: σc,ι(ιk)σc,ι(−ιk) :

: ĤH s : = π vFs

L

∑
k,ι=±

: σs,ι(ιk)σs,ι(−ιk) : . (B15)

Here vFc = vc(2kF ) and vFs = vs(kF ) where vc(q) =
∂εc(q)∂q and vs(q′) = ∂εs(q′)∂q′, respectively, and

σc,ι(k) =
∑

p

f †
ι2kF +p+k,c fι2kF +p,c

σs,ι(k) =
∑

p′
f †
ιkF +p′+k,s fιkF +p′,s.

The k and p summations in : ĤH c : and σc,ι(k) run in the
intervals given in Table III and the k and p′ summations in
: ĤH s : and σs,ι(k) run in the following intervals,

k ∈ [−δpFs − p′,−p′] for ι = +
k ∈ [−p′, δpFc − p′] for ι = −
p′ ∈ [−δpFs, 0] for ι = +
p′ ∈ [0, δpFc] for ι = −. (B16)

4. A useful c and s particle nondiagonal representation
in the one-electron subspace

There exists a uniquely defined transformation,

f †
q,c → f̄ †

q,c and fq,c → f̄q,c, (B17)

that leads to a representation for which the c particles have
interactions associated with an effective potential V 1

c (x). It
controls the one-electron matrix elements dependence on c
particle/hole phase shifts. In that representation the Hamil-
tonian, Eq. (B14), in the one-electron subspace is given by,

: ĤH : = : ĤH c : + : ĤH s :

: ĤH c : =
π∑

q=−π

ε1
c (q) : f̄ †

q,c f̄q,c :

+ 1

L

∑
k,q,q′

V1
c (k) f̄ †

q,c f̄q+k,c f̄q′,c f̄ †
q′−k,c

: ĤH s : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (B18)

Here ε1
c (q) and v1

c (q) = ∂ε1
c (q)∂q read

ε1
c (q) = εc(q)(

1 + β1
c

) for q ∈ [−2kF , 2kF ]

= W 1h
c

8t β1
c

{(
1 + β1

c

)
W 1h

c

−
√((

1 + β1
c

)
W 1h

c

)2 − 16t β1
c εc(q)

}
for |q| ∈ [2kF , π ], (B19)

v1
c (q) = vc(q)(

1 + β1
c

) for q ∈ [−2kF , 2kF ]

= W 1h
c√((

1 + β1
c

)
W 1h

c

)2 − 16t β1
c εc(q)

vc(q)

for |q| ∈ [2kF , π ], (B20)
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where β1
c is given below and W 1h

c = ε1
c (π ) and W 1p

c = −ε1
c (0)

are such that W 1
c = W 1h

c + W 1p
c = 4t . Inversion of Eqs. (B19)

and (B20) leads to

εc(q) = (
1 + β1

c

)
ε1

c (q) for q ∈ [−2kF , 2kF ]

=
(

1 + β1
c

{
1 − 4t

W 1h
c

(
ε1

c (q)

W 1h
c

)})
ε1

c (q)

for |q| ∈ [2kF , π ], (B21)
vc(q) = (

1 + β1
c

)
v1

c (q) for q ∈ [−2kF , 2kF ]

=
(

1 + β1
c

{
1 − 8t

W 1h
c

(
ε1

c (q)

W 1h
c

)})
v1

c (q)

for |q| ∈ [2kF , π ]. (B22)

In the low-energy limit, the term : ĤH c : of the nondiagonal
Hamiltonian, Eq. (B18), is equivalent to the charge TLL
model,

: ĤH c : = π v1
Fc

L

∑
k,ι=±

: σ 1
c,ι(ιk)σ 1

c,ι(−ιk) : + 1

L

∑
k,ι=±

(−V1
c (k))

× (
: σ 1

c,ι(ιk)σ 1
c,ι(−ιk) : +σ 1

c,ι(ιk)σ 1
c,−ι(−ιk)

)
,

(B23)

where v1
Fc = v1

c (2kF ), σ 1
c,ι(k) = ∑

p f̄ †
ι2kF +p+k,c f̄ι2kF +p,c, and

V1
c (k) is here and in Eq. (B18) the Fourier transform of the

effective potential V 1
c (x) associated with the interaction of

the c particles/holes with c mobile scattering centers. The
transformation, Eq. (B17), is in the low-energy TLL limit such
that,

σc,ι(k) = eS1
c σ 1

c,ι(k) e−S1
c where

S1
c = 2π

L

∑
k>0

ln(1 + α1
c (k))

4k

× (
σ 1

c,+(k)σ 1
c,−(−k) − σ 1

c,−(k)σ 1
c,+(−k)

)
. (B24)

For very small k, V1
c (k) in Eq. (B23) is given by

V1
c (k) = −π

2
α1

c (k) v1
Fc where α1

c (k) = α1
c + O(k2)

and α1
c = α1

c (0) = 4 − ξ 4
c

ξ 4
c

. (B25)

The parameter α1
c and the related parameter β1

c control the
ratio vFc/v

1
Fc of the velocities in Eqs. (B15) and (B23) as

follows, √
1 + α1

c = 1 + β1
c = vFc

v1
Fc

= 2

ξ 2
c

β1
c = vFc − v1

Fc

v1
Fc

= 2 − ξ 2
c

ξ 2
c

. (B26)

The charge TLL described by the Hamiltonian term :
ĤH c :, Eq. (B23), is such that within the notation used in the
second expression given in Eq. (7) of Ref. [32] the equality
g4ρ = g2ρ holds and g4ρ corresponds to π

2 α1
c v1

Fc + O(k) in
Eq. (B25). The velocities vρ and vF of that reference refer
here to vFc = vc(2kF ) and v1

Fc = v1
c (2kF ), respectively.

v1
c (2kF ) is not the U = 0 Fermi velocity, vF = 2t sin kF .

Except in the u → 0 limit, vFc/v
1
Fc = 2/ξ 2

c is different from

vFc/vF = vFc/(2t sin kF ). The physics of that velocity is re-
vealed by its expression, v1

Fc = 1
2 jρc . Here, jρc = ξ 2

c vFc is the
elementary charge current that controls the metal charge stiff-
ness 2πD0

ρ = 2v1
Fc = jρc in the real part of the conductivity,

σρ (ω) = 2πD0
ρδ(ω) + σ

reg
ρ (ω) [17]. Hence V1

c (0) = π ( 1
ξ 4

c
−

1
4 ) 2πD0

ρ in Eq. (B25). The related velocity v0
Fc,

v0
Fc = 2

ξ 2
c

vFc such that vFc =
√

v0
Fc × v1

Fc

lim
u→0

v0
Fc = lim

u→0
vFc = lim

u→0
v1

Fc = vF , (B27)

controls the compressibility, χ0
ρ = 2/(πn2

ev
0
Fc). The three ve-

locities in Eq. (B27) become in the u → 0 limit the Fermi
velocity, vF = 2t sin kF .

The exact expressions of the dispersion ε1
c (q) and potential

Fourier transform V1
c (k) in the Hamiltonian, Eq. (B18), could

in principle be extracted from the Bethe-ansatz solution. How-
ever, since for δ̃c > 0 there is no exact solution, here we used
a controlled and very good approximation that also applies for
δ̃c > 0 to derive the expression of ε1

c (q) given in Eq. (B19) and
relation, Eq. (B21). This approximation ensures that v1

c (q) =
∂ε1

c (q)/∂q has its exact TLL value v1
Fc = v1

c (2kF ) uniquely
defined by the relations in Eq. (B26). In addition, it accounts
for the c band energy bandwidth W 1

c = 4t and the group ve-
locity values v1

c (0) = v1
c (±π ) = 0 remaining invariant under

the transformation, Eq. (B17). That the expression of ε1
c (q) in

Eq. (B19) obeys all those exact properties is behind it being a
very good approximation.

APPENDIX C: REPRESENTATIONS FOR THE
HAMILTONIAN WITH FINITE-RANGE INTERACTIONS

1. Rotated-electron representation and c and s particle
representation that directly emerges from it

In the rotated-electron representation the δ̃c > 0 Hamilto-
nian, Eq. (1), has again an infinite number of terms given by
the Baker-Campbell-Hausdorff formula,

Ĥ = t T̃0 + Ṽ + δĤ

δĤ = t
∑
ι=±1

T̃ι + [Ĥ, S̃ ] + 1

2
[[Ĥ, S̃ ], S̃ ] + .... (C1)

The d = 0,±1 kinetic operators T̃d and the operator S̃ = Ŝ
have the same expressions as for δ̃c = 0. In contrast, the
rotated-electron interaction Hamiltonian term Ṽ ,

Ṽ = U
L∑

j=1

ρ̃ j,↑ρ̃ j,↓ +
L/2−1∑

r=1

Ve(r)
∑

σ=↑,↓

∑
σ ′=↑,↓

L∑
j=1

ñ j,σ ñ j+r,σ ′ ,

(C2)

where ρ̃ j,σ = (ñ j,σ − 1
2 ) and ñ j,σ = c̃†

j,σ c̃ j,σ , has new terms
associated with the finite-range interactions. Those render the
commutator terms of δĤ in Eq. (C1) different from those of
the δ̃c = 0 bare model. In the one-electron subspace, only
the charge term : ĤH c : of the normal-ordered Hamiltonian,
Eq. (B14) of Appendix B, is though changed by the finite-
range electron interactions.

245202-19



JOSÉ M. P. CARMELO et al. PHYSICAL REVIEW B 100, 245202 (2019)

Ṽ in Eq. (C2) can be expressed solely in terms of the c
particle operators, Eq. (B7) of Appendix B, as

Ṽ =
L/2−1∑

r=1

Ve(r)
L∑

j=1

f †
j,c f j,c f †

j+r,c f j+r,c

+ U

2

L∑
j=1

(
1

2
− f †

j,c f j,c

)
. (C3)

The Hamiltonian, Eq. (C1), can then be rewritten as

Ĥ = Ĥ0
c + δĤ∗. (C4)

The charge-only term Ĥ0
c and δĤ∗ are here given by

Ĥ0
c = − t

2

L∑
j=1

∑
ι=±1

( f †
j,c f j+ι,c + f †

j+ι,c f j,c)

+ U

2

L∑
j=1

(
1

2
− f †

j,c f j,c

)

+
L/2−1∑

r=1

Ve(r)
L∑

j=1

f †
j,c f j,c f †

j+r,c f j+r,c,

δĤ∗ = −2t
L∑

j=1

∑
ι=±1

( f †
j,c f j+ι,c + f †

j+ι,c f j,c) �̃q j · �̃q j+ι

+ δĤ . (C5)

Under the operator transformation, Eq. (B11) of Appendix B,
the term Ĥ0

c in Eq. (C5) reads

Ĥ0
c =

π∑
q=−π

(
U

4
− 2t (cos q + u) f †

q,c fq,c

)

+ 1

L

∑
k,q,q′

Ve(k) f †
q,c fq+k,c f †

q′,c fq′−k,c,

where Ve(k) is the Fourier transform of Ve(r). In the one-
electron subspace, the normal-ordered expression of the
Hamiltonian, Eq. (C4), is given by

: Ĥ : = : Ĥ0
c : + : δĤ∗ :

: Ĥ0
c : =

π∑
q=−π

(−2t (cos q − cos 2kF )) : f †
q,c fq,c :

+ 1

L

∑
k,q,q′

Ve(k) f †
q,c fq+k,c f †

q′,c fq′−k,c. (C6)

In the present case of the δ̃c > 0 model Hamiltonian,
Eq. (1), the electronic potential Ve(r) leads to some renor-
malization of the terms in the expansion of δĤ in Eq. (C1).
Under it Ve(r) is replaced by a renormalized rotated-electron
potential Vre(r). All the higher kinetic operator terms in δĤ
are renormalized by the finite-range potential Ve(r). Hence its
renormalization by such kinetic operators that leads to Vre(r)
is a weaker higher-order effect.

For simplicity, we provide here the rotated kinetic operator
terms in the expression of the Hamiltonian term [H̃ , S̃ ] of δĤ
in Eq. (C1). It involves the three d = 0,±1 operators T̃d and

four additional kinetic operators renormalized by the potential
Ve(r) that are given by the commutators,

J̃+
0 = [Ṽ , T̃0], J̃−

0 = (J̃+
0 )†, J̃±1 = [Ṽ , T̃±1]. (C7)

They explicitly read

J̃+
0 =

L/2−1∑
r=1

Ve(r)
L∑

j=1

∑
ι=±1

(T̃0, j,ι − T̃ †
0, j,ι)

× (ñ j+r + ñ j−r − ñ j+r+ι − ñ j−r+ι)

J̃±1 = ±UT̃±1 ±
L/2−1∑

r=1

4Ve(r)
L∑

j=1

∑
ι=±1

T̃±1, j,ι

× (ñ j+r + ñ j−r + ñ j+r+ι + ñ j−r+ι). (C8)

Higher kinetic operator terms in the expression of δĤ in
Eq. (C1) also only involve the operators T̃0, j,ι and T̃±1, j,ι,
Eq. (B4) of Appendix B, and the operator ñ j = ∑

σ ñ j,σ =∑
σ c̃†

j,σ c̃ j,σ at sites with different relative positions.
Accounting for the higher-order terms in the Hamiltonian

term : δĤ∗ : in Eqs. (C5) and (C6), one finds the following
expression of the Hamiltonian, Eq. (1), in the one-electron
subspace,

: Ĥ : = : Ĥc : + : Ĥs :

: Ĥc : =
π∑

q=−π

εc(q) : f †
q,c fq,c :

+ 1

L

∑
k,q,q′

Vre(k) f †
q,c fq+k,c f †

q′,c fq′−k,c + Ĥre

: Ĥs : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (C9)

Here Ĥre has a complicated expression not needed for our
studies and Vre(k) is the Fourier transform of Vre(r). At k = 0
it is given by Eq. (9), as justified below in Sec. C 3. The
term Ĥre in Eq. (C9) prevents diagonalizing the Hamiltonian
: Ĥ : when acting onto the one-electron subspace. This results
from states generated by occupancy configurations of the frac-
tionalized particles emerging from the rotated electrons not
being in general energy eigenstates of the δ̃c > 0 Hamiltonian,
Eq. (1).

In the singularities subspace such occupancy configura-
tions generate states that are energy eigenstates or have quan-
tum overlap mainly with one energy eigenstate. The effects of
Ĥre can then be neglected and : Ĥ : in Eq. (C9) is diagonalized
under a uniquely-defined transformation,

f †
q,c → f̃ †

q,c and fq,c → f̃q,c. (C10)

This gives the Hamiltonian expression in Eq. (11). It is valid
under the ξc → ξ̃c transformation for ξc ∈ [ξ 0

c ,
√

2[ and ξ 0
c =√

1 + W p
c /4t . This refers to u and ne values within the unitary-

limit MQIM-HO regime for which the expression provided
in Eq. (12) for ε̃c(q) is a very good approximation. The
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corresponding expression of ṽc(q) = ∂ε̃c(q)/∂q is

ṽc(q) = (1 + βc)vc(q) for q ∈ [−2kF , 2kF ]

=
(

1 + βc

{
1 − 8t

W h
c

(
εc(q)

W h
c

)})
vc(q)

for |q| ∈ [2kF , π ]. (C11)

Here vc(q) = ∂εc(q)/∂q and βc in Eqs. (12) and (C11) is
given in Eq. (13), as justified below in Sec. C 3. The energy
bandwidth W̃c = ε̃c(±π ) − ε̃c(0) = 4t remains invariant un-
der the ξc → ξ̃c transformation whereas W̃ h

c = ε̃c(±π ) and
W̃ p

c = −ε̃c(0) slightly decrease and increase, respectively,
relatively to their δ̃c = 0 bare value.

The controlled approximation used in Appendix B to de-
rive the energy dispersion ε1

c (q), Eq. (B19) of that Appendix,
is used to obtain the expressions for the c band energy
dispersion given in Eq. (12) and below for other related
c particle representations. It ensures that the corresponding
group velocity has the correct TLL value at the c band Fermi
points, q = ±2kF , accounts for the c band energy bandwidth
reading 4t for all such representations, and the c band velocity
vanishing both at q = 0 and q = ±π for u > 0.

That in the case of the expressions, Eqs. (12) and (C11),
the corresponding Fermi velocity at q = 2kF increases rela-
tive to vFc under the transformation is behind them being a
good approximation provided that ξc ∈ [ξ 0

c ,
√

2[ in the ξc →
ξ̃c transformation. In all remaining cases considered in the
following, the Fermi velocity at q = 2kF decreases relative to
vFc. The corresponding c dispersion and velocity expressions
are then a very good approximation for all ξc and ξ̃c intervals.

2. c and s representations for the Fourier transforms
of three related potentials

The three c particle representations associated with the po-
tentials Vre(r), Ṽ 1

c (x), Vc(x) considered in Secs. IV B and IV C
and their Fourier transforms Vre(k), Ṽ1

c (k), Vc(k), respectively,
are such that,

lim
δ̃c→0

Ṽ 1
c (x) = V 1

c (x)

lim
δ̃c→0

Vc(x) = lim
δ̃c→0

Vre(r) = 0 and thus

lim
δ̃c→0

Ṽ1
c (k) = V1

c (k)

lim
δ̃c→0

Vc(k) = lim
δ̃c→0

Vre(k) = 0. (C12)

Here V1
c (k) is the Fourier transform, Eq. (B25) of Appendix

B, of the δ̃c = 0 bare potential V 1
c (x). Such Fourier transforms

can be expanded in powers of k as

V̌ (k) =
∫ ∞

−∞
dz e−ikz V (|z|) = 2

∫ ∞

0
dy e−iky V (y)

=
∞∑

l=0

k2l Čl where

Čl = 2(−1)l

(2l )!

∫ ∞

0
dy y2l V (y). (C13)

For small k they are thus given by

V̌ (k) = V̌ (0) + O(k2). (C14)

The general notation used in Eqs. (C13) and (C14) for the
three c particle representations is such that

V (y) = Vre(r)|r=y, Č = Cre,l for V̌ (k) = Vre(k)

V (y) = Ṽ 1
c (x)|x=y, Čl = C̃1

c,l for V̌ (k) = Ṽ1
c (k),

V (y) = Vc(x)|x=y, Č = Cc,l for V̌ (k) = Vc(k), (C15)

respectively. The Hamiltonian in the one-electron subspace,
Eq. (C9), has expressions in all three c particle representations
of general form,

: Ĥ : = : Ĥc : + : Ĥs :

: Ĥc : =
π∑

q=−π

ε̌c(q) : f̌ †
q,c f̌q,c :

+ 1

L

∑
k,q,q′

V̌ (k) f̌ †
q,c f̌q+k,c f̌q′,c f̌ †

q′−k,c + Ȟre

: Ĥs : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (C16)

Here,

f̌ †
q,c = f †

q,c ; ε̌c(q) = εc(q) for V̌ (k) = Vre(k)

f̌ †
q,c = f̄ †

q,c ; ε̌c(q) = ε̃1
c (q) for V̌ (k) = Ṽ1

c (k)

f̌ †
q,c = f̆ †

q,c ; ε̌c(q) = ε̆c(q) for V̌ (k) = Vc(k), (C17)

and Ȟre refers to Ĥre, H̄1
re, and H̆re, respectively. In all

three c particle representations, the Hamiltonian expressions,
Eq. (C16), can be diagonalized in the singularities subspace
under uniquely defined transformations,

f̌ †
q,c → f̃ †

q,c and f̌q,c → f̃q,c, (C18)

that lead to the Hamiltonian in Eq. (11).
The c particle energy dispersions ε̌c(q) in Eq. (C16) and

corresponding group velocities v̌c(q) can be expressed in
terms of the corresponding bare δ̃c = 0 quantities as

ε̌c(q) = (1 + βc)

(1 + β̌c)
εc(q) for q ∈ [−2kF , 2kF ]

= W̌ h
c

8t

(1 + βc)

(β̌c − βc)
× { (1 + β̌c)

(1 + βc)
W̌ h

c

−
√(

(1 + β̌c)

(1 + βc)
W̌ h

c

)2

− 16t
(β̌c − βc)

(1 + βc)
εc(q)}

for |q| ∈ [2kF , π ]. (C19)

v̌c(q) = (1 + βc)

(1 + β̌c)
vc(q) for q ∈ [−2kF , 2kF ]

= W̌ h
c√(

(1+β̌c )
(1+βc ) W̌ h

c

)2
− 16t (β̌c−βc )

(1+βc ) εc(q)

vc(q)

for |q| ∈ [2kF , π ]. (C20)
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Here W̌ h
c = ε̌c(π ), β̃1

c and β̆c are obtained in the following,
and βc is given by Eq. (13), as confirmed below in Sec. C 3.
That β̌c = βc and W̌ h

c = W h
c for V̌ (k) = Vre(k) ensures that

ε̌c(q) and v̌c(q) in Eqs. (C19) and (C20) are the δ̃c = 0 bare
quantities εc(q) and vc(q), respectively.

Three TLL Hamiltonians with the following general form
describe in the low-energy limit : Ĥc : in Eq. (C16),

: Ĥc : = π v̌Fc

L

∑
k,ι=±

: σ̌c,ι(ιk)σ̌c,ι(−ιk) : + 1

L

∑
k,ι=±

(−V̌ (k))

× (: σ̌c,ι(ιk)σ̌c,ι(−ιk) : +σ̌c,ι(ιk)σ̌c,−ι(−ιk)) where

σ̌c,ι(k) =
∑

p

f̌ †
ι2kF +p+k,c f̌ι2kF +p,c. (C21)

Here k and p run in the intervals given in Table III, the
c particle operators are provided in Eq. (C17), and v̌Fc =
v̌c(2kF ) refers for the three representations to vFc = vc(2kF ),
ṽ1

Fc = v̄1
c (2kF ), and v̆Fc = v̆c(2kF ).

In the low-energy limit, the transformations, Eq. (C18), are
such that

σ̃c,ι(k) = eŠ σ̌c,ι(k) e−Š where

Š = 2π

L

∑
k>0

ln(1 + α̌(k))

4k

× (σ̌c,+(k)σ̌c,−(−k) − σ̌c,−(k)σ̌c,+(−k)), (C22)

and Š stands for Sre, S̃1
c , and S̆c, respectively. Known TLL

procedures then lead for very small k to

V̌ (k) = ι̌
π

2
α̌(k) v̌Fc where

α̌(k) = α̌ + O(k2) and α̌ = α̌(0), (C23)

and

√
1 + α̌ = 1 + β̌ = ṽFc

v̌Fc
and β̌ = ṽFc − v̌Fc

v̌Fc
, (C24)

for δ̃c ∈ [0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [. Here α̌(k) stands for αre(k),

α̃1
c (k), and ᾰc(k) and ι̌ reads ι̌ = −1 for α̃1

c and ᾰc and ι̌ = +1
for αc. One then finds for Ṽ1

c (k) and Vc(k),

α̃1
c = 4 − ξ̃ 4

c

ξ̃ 4
c

; β̃1
c = ṽFc − ṽ1

Fc

ṽ1
Fc

= 2 − ξ̃ 2
c

ξ̃ 2
c

ᾰc = ξ 4
c − ξ̃ 4

c

ξ̃ 4
c

; β̆c = ṽFc − v̆Fc

v̆Fc
= ξ 2

c − ξ̃ 2
c

ξ̃ 2
c

for δ̃c ∈ [0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [. (C25)

Combining the above results gives

ṽFc

ṽ0
Fc

= ξ̃ 2
c

2
;

ṽFc

ṽ1
Fc

= 2

ξ̃ 2
c

;
v̆Fc

ṽ1
Fc

= 2

ξ 2
c

;
ṽFc

v̆Fc
=

(
ξc

ξ̃c

)2

,

(C26)

where ṽ0
Fc such that ṽFc =

√
ṽ0

Fc × ṽ1
Fc controls the renormal-

ization of the compressibility in Eq. (6). Hence,

ṽFc

ṽ1
Fc

= v̆Fc

ṽ1
Fc

× ṽFc

v̆Fc
and

2

ξ̃ 2
c

= 2

ξ 2
c

×
(

ξc

ξ̃c

)2

for δ̃c ∈ [0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [ and

v̆Fc

ṽ1
Fc

|δ̃c=δ̃ ˘
c
= ṽFc

v̆Fc
|δ̃c=δ̃ ˘

c
= 2

ξ 2
c

, (C27)

where ṽFc
v̆Fc

< v̆Fc

ṽ1
Fc

for δ̃c < δ̃ ˘
c, ṽFc

v̆Fc
> v̆Fc

ṽ1
Fc

for δ̃c > δ̃ ˘
c, and δ̃ ˘

c and

ξ̃ ˘
c are defined in Eq. (10).

In the singularities subspace the Hamiltonians read

: Ĥ : = : Ĥc : + : Ĥs :

: Ĥc : =
π∑

q=−π

ε̌c(q) : f̌ †
q,c f̌q,c : +V̂c,γ

V̂c,−1 = 1

L

∑
ι=±1

∑
k,p,q

V̌ (k) f̌ †
ι2kF +p,c f̌ι2kF +p+k,c f̌q,c f̄ †

q−k,c

V̂c,+1 = 1

L

∑
ι=±1

∑
k,p,q

V̌ (k) f̌ι2kF +p+k,c f̌ †
ι2kF +p,c f̄ †

q−k,c f̌q,c

: Ĥs : =
kF∑

q′=−kF

εs(q
′) : f †

q′,s fq′,s : . (C28)

Here the k, p, q summations in V̂c,γ run in intervals provided
in Table III and V̌ (k) is given in Eq. (C23).

3. Enhancement parameters associated with the potential Vre(r)
that controls the renormalization of the one-electron spectrum

Diagonalizing the low-energy TLL Hamiltonians,
Eq. (C21), under the transformations, Eq. (C22), gives

: Ĥc : = π ṽFc

L

∑
k,ι

: σ̃c,ι(ιk)σ̃c,ι(−ιk) : where

σ̃c,ι(k) =
∑

p

f̃ †
ι2kF +p+k,c f̃ι2kF +p,c. (C29)

This is equivalent in the low-energy limit to the c term of the
Hamiltonian in the singularities subspace, Eq. (11).

At δ̃c = 0 the following boundary conditions hold,

ṽFc = v̆Fc = vFc and ṽ0
Fc = v0

Fc = 2

ξ 2
c

vFc

ṽ1
Fc = v1

Fc = ξ 2
c

2
vFc at δ̃c = 0. (C30)

Upon increasing δ̃c within the interval δ̃c ∈ [0, δ̃ ˘
c − δ] where

δ̃ ˘
c is defined in Eq. (10) and δ � δ̃ ˘

c, the velocity ṽFc in-
creases whereas the velocities v̆Fc and ṽ1

Fc remain unchanged.
The exact relations, Eq. (C26), then imply that the velocity
ṽ0

Fc increases and the following expressions in terms of the
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δ̃c-independent velocity vFc apply,

ṽFc =
(

ξc

ξ̃c

)2

vFc and v̆Fc = vFc

ṽ0
Fc = 2

ξ̃ 2
c

(
ξc

ξ̃c

)2

vFc

ṽ1
Fc = v1

Fc = ξ 2
c

2
vFc for δ̃c < δ̃ ˘

c − δ. (C31)

That the c band energy bandwidth, Wc = W̃c = 4t , re-
mains invariant under the ξc → ξ̃c transformation imposes
constraints to the deformation caused to the c band energy
dispersion by the finite-range interaction effects. The com-
pressibility in Eq. (6) is largest in the δ̃c = 0 limit and tends to
be suppressed by the finite-range interactions. The degree of
the above deformation is limited by the largest compressibility
reached at δ̃c = 0, χ0

ρ = 2/(πn2
ev

0
Fc), through the inequality

ṽFc � v0
Fc. Here v0

Fc is the velocity defined in Eq. (B27) of
Appendix B. That inequality limits the corresponding degree
of enhancement of several renormalized quantities as follows,

ṽFc � v0
Fc and thus

ṽFc

vFc
�

(
ξc

ξ̃ ˘
c

)2

= 2

ξ 2
c

αc � ξ 4
c − (ξ̃ ˘

c )4

(ξ̃ ˘
c )4

= 4 − ξ 4
c

ξ 4
c

βc � ξ 2
c − (ξ̃ ˘

c )2

(ξ̃ ˘
c )2

= 2 − ξ 2
c

ξ 2
c

, (C32)

where ξ̃ ˘
c is defined in Eq. (10).

From the use of the ξc behavior in Eq. (A13) of Appendix
A for u � 1, one finds that in that limit the inequalities,
Eq. (C32), imply the following inequality for

∫ ∞
0 drVre(r) and

Vre(k) at k = 0, Eq. (9), that explicitly involves the c band
energy bandwidth, Wc = W̃c = 4t ,∫ ∞

0
drVre(r) = 1

2
Vre(0) � U

Wc
t = U

4
for u � 1. (C33)

The physics behind this inequality is associated with prop-
erties of the potentials Ve(r) and Vre(r), such that Ve(r) ∝ U
and Vre(r) ∝ U . That inequality is directly controlled by the
u → 0 c particle density of states at the Fermi level, Dc(εF ) =
L/[2π t sin ( πne

2 )]. Indeed, in the u � 1 limit the αc and βc

inequalities in Eq. (C32) read

αc � U

L
Dc(εF ) = U

2t π sin
(

πne
2

) and

βc = ṽFc − vFc

vFc
� U

2L
Dc(εF ) = U

4t π sin
(

πne
2

)
for u � 1. (C34)

For the whole u > 0 range, upon increasing δ̃c within the
interval δ̃c ∈ [0, δ̃ ˘

c + δ] , where δ � δ̃ ˘
c, the renormalized c

band Fermi velocity ṽFc is enhanced from ṽFc = vFc at δ̃c = 0
to its maximum value, ṽFc = (ξc/ξ̃

˘
c )2 vFc = v0

Fc, at δ̃c = δ̃ ˘
c +

δ. Upon further increasing δ̃c above δ̃ ˘
c + δ, the velocity ṽFc

remains having its maximum value.
The exact relations provided in Eq. (C26) then impose

that upon further increasing δ̃c above δ̃ ˘
c + δ, the velocity ṽ0

Fc

further increases and both the velocities ṽ1
Fc and v̆Fc decrease,

the corresponding velocities expressions in terms of the δ̃c-
independent velocity vFc reading,

ṽ0
Fc =

(
2

ξc ξ̃c

)2

vFc

ṽFc = 2

ξ 2
c

vFc and v̆Fc = 2

ξ 2
c

(
ξ̃c

ξc

)2

vFc

ṽ1
Fc =

(
ξ̃c

ξc

)2

vFc for δ̃c > δ̃ ˘
c + δ. (C35)

One finds two regimes, determined by the initial bare charge
parameter ξc value in the ξc → ξ̃c transformation,

Regime 1 → ξc ∈ [2
1
4 ,

√
2[ and Regime 2 → ξc ∈]1, 2

1
4 ].

The velocity relations given in Eqs. (C30), (C31), and
(C35) then uniquely determine that

αc = lim
k→0

αc(k) = ξ 4
c − ξ̃ 4

c

ξ̃ 4
c√

1 + αc = (1 + βc) = ṽFc

vFc
=

(
ξc

ξ̃c

)2

βc = ṽFc − vFc

vFc
= ξ 2

c − ξ̃ 2
c

ξ̃ 2
c

for δ̃c ∈ [0, δ̃ ˘
c − δ] in regime 1

for δ̃c ∈ [0, δ̃(1)
c [ ; ]δ̃(1)

c , δ̃ ˘
c − δ] in regime 2, (C36)

and αc = lim
k→0

αc(k) = ξ 4
c − (ξ̃ ˘

c )4

(ξ̃ ˘
c )4

= 4 − ξ 4
c

ξ 4
c√

1 + αc = (1 + βc) = ṽFc

vFc
=

(
ξc

ξ̃ ˘
c

)2

= 2

ξ 2
c

βc = ṽFc − vFc

vFc
= ξ 2

c − (ξ̃ ˘
c )2

(ξ̃ ˘
c )2

= 2 − ξ 2
c

ξ 2
c

for δ̃c ∈ [δ̃ ˘
c + δ, δ̃(1)

c [ ; ]δ̃(1)
c , δ̃

( 1
2 )

c [ in regime 1

for δ̃c ∈ [δ̃ ˘
c + δ, δ̃

( 1
2 )

c [ in regime 2. (C37)

The only property needed for our studies of the ξ̃c dependent
quantities in the small interval δ̃c ∈ [δ̃ ˘

c − δ, δ̃ ˘
c + δ] is that

their derivative with respect to ξ̃c has no discontinuity in it.
Finally, we discuss the relation in the u � 1 limit of the

parameter αc in Eqs. (9), (C36), and (C37) to the Coulomb
enhancement parameter considered in the studies of Ref. [25].
For u � 1, one has that δ ≈ 0 and αc reads

αc = 4
(
1 − U

L Dc(εF )
) − ξ̃ 4

c

ξ̃ 4
c

for ξ̃c ∈ [0, δ̃ ˘
c]

= U

L
Dc(εF ) for δ̃c ∈ [

δ̃ ˘
c, δ̃

(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c

]
. (C38)

Here δ̃ ˘
c = U/[4

√
2 π t sin ( πne

2 )], δ̃(1)
c = √

2 − 1 − δ̃ ˘
c, δ̃

( 1
2 )

c =√
2 − 1/2 − δ̃ ˘

c, and Dc(εF ) = L/[2π t sin ( πne
2 )].
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The interval, ξ̃c ∈ [0, δ̃ ˘
c], is extremely small, its width van-

ishing in the u → 0 limit. In the complementary interval, δ̃c ∈
[δ̃ ˘

c, δ̃
(1)
c [ ; ]δ̃(1)

c , δ̃
( 1

2 )
c [, of physical interest for TTF-TCNQ, the

parameter αc that here controls changes in charge quantities
reads αc = U/[2π t sin ( πne

2 )]. Since for u → 0 the charge
and spin degrees of freedom recombine, in the u � 1 limit αc

also controls changes in spin quantities. Provided that L is re-
placed by the Avogadro number N0, it equals the Coulomb en-
hancement parameter α = U D(εF )/N0 = U/[2π t sin ( πne

2 )]
used to study other properties of TTF-TCNQ in Ref. [25].
[It should be distinguished from the SDS exponent α

in Eq. (6).]
The charge and spin quantities deviation effects result in

the u � 1 limit from a small perturbation to the δ̃c = 0 bare
model caused by a charge and spin probe, respectively. Here
it refers to the small r > 0 potential Ve(r) ∝ U , the parameter
αc � 1, Eq. (C38), controlling the resulting enhancement

in the u � 1 limit of the k = 0 Fourier transform Vre(k) =
π
2 αc(k) vFc, Eqs. (9) and (C33).

On the other hand, the Coulomb enhancement parame-
ter α = U/[2π t sin ( πne

2 )] � 1 given in the non-numbered
equation appearing after Eq. (11) of Ref. [25] controls in
the u � 1 limit the k = 0 value κ (0) = 1/

√
1 + α of the

factor κ (k) in the Korringa relation. That parameter is be-
hind a slightly larger value of the u → 0 Fermi velocity
vF relative to the spin diffusion velocity vSD

F through a
u � 1 relation, vF = √

1 + α vSD
F . Such a velocity devia-

tion results from a small spin perturbation to the δ̃c = 0
bare model that gives rise in the u � 1 limit to the Knight
shift.

For u � 1, such spin quantities can be expressed in terms
of the parameter αc, Eq. (C38), as κ (0) = 1/

√
1 + αc and

vF = √
1 + αc vSD

F , similarity to the present problem relation
ṽFc = √

1 + αc vFc. The equality of the two parameters only
holds though for u � 1.
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