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ABSTRACT 

The human visual system is tasked with transforming variations in light within 

our environment into a coherent percept, typically described using properties such as 

luminance and contrast. The experiments described in this dissertation examine how the 

human visual cortex responds to each of these stimulus properties at the population-level, 

and explores the degree to which contrast adaptation can alter these response properties. 

The first set of experiments (Chapter 2) demonstrate how saturating sigmoidal contrast 

response functions can be captured using human fMRI by leveraging sustained contrast 

adaptation to reduce the heterogeneity of response profiles across neural populations. The 

results obtained using this methodology have the potential to rectify the qualitatively 

different findings reported across visual neuroscience, when comparing 

electrophysiological and population-based neuroimaging measures. The second set of 

experiments (Chapter 3) demonstrate how under certain conditions a well-established 

visuocortical response property, contrast response, can also reflect luminance encoding, 



!

! ix 

challenging the idea that luminance information plays no significant role in supporting 

visual perception. Specifically, these results show that the mean luminance information 

of a visual signal persists within visuocortical representations, even after controlling for 

pupillary dynamics, and potentially reflects an inherent imbalance of excitatory and 

inhibitory components. The final set of experiments (Chapter 4) examine how the time 

course of population activity during initial periods of adaptation differs across seemingly 

slightly different adapter conditions.  The degree to which stimulus adapter orientation 

bias (radial vs. concentric orientation) or stimulus adapter luminance (2409 cd/m2 vs. 

757.3 cd/m2) can alter adaptation time course dynamics is examined in detail, as well as 

investigating the prevalence of any retinotopic bias. In an effort to coalesce the findings 

across all three chapters, the shape and efficacy of the initial adaptation time course is 

ultimately compared against the contrast and luminance response function parameters 

reported in previous chapters. As a whole, the findings reported in this dissertation 

challenge some common assumptions about how the early human visual cortex adjusts 

and responds to the environment, provide methodological tools and stimulus design 

caveats vision neuroscientists will need to consider, and play a significant role in cortical 

models of vision.  
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1 

CHAPTER ONE: GENERAL INTRODUCTION 

General Introduction 

Relative measures of our visual environment 

The mammalian visual system is faced with a seemingly intractable problem: to 

infer relevant content within the environment and form a coherent understanding of the 

environment, using only an array of detectors for basic two-dimensional features. The 

majority of these detectors are derived from variations in light within our perceptible 

visual environment, building in complexity to permit discrimination and identification of 

many things, such as spatial location, relative size, 3D shape, and object categorization. 

The relative difference between lights and darks, saturated and faded textures, can be 

summarized as the ratio between the difference of the two extremes against the 

combination of the two extremes, most often reported as a Michelson Contrast level, 

ranging between zero and one-hundred percent (Blakeslee and McCourt, 2004; Cohen 

and Grossberg, 1984). Contrast is the common denominator upon which many other 

features of the visual environment are built. For instance, orientation describes the 

relative angle of a tilted contrast border (Graham et al., 1993; Hubel and Wiesel, 1968; 

Ling et al., 2009). Spatial frequency describes the density with which a contrast border 

alternates back and forth across space (Watanabe et al., 1968; Wilson et al., 1983a). 

Coherent motion describes the continuous drift of a single contrast border, or multiple 

borders in tandem, across space and time (Burr and Ross, 1982; Hietanen et al., 2007). 

The expansion and contraction of contrast borders across space and time originating from 

the point of fixation provides optic flow information as we move about our environment 
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(Warren and Fajen, 2004). Where and how do these complex operations begin to emerge 

within the mammalian brain? 

Ever since the discovery of single units in the occipital lobe responding to the 

appearance or absence of a hard edge, the neural representation and perception of contrast 

has been an ongoing and fruitful pursuit (Albrecht and Geisler, 1991; Hubel and Wiesel, 

1962). The ability of mammals to perceive changes in contrast is well established 

(Campbell, 1983; Pelli and Bex, 2013). In some cases contrast interacts with the 

sensitivity of other core visual features, namely spatial frequency (Campbell and Green, 

1965; Hess et al., 1980; van Meeteren and Vos, 1972) and orientation (Campbell and 

Kulikowski, 1966; Campbell et al., 1966). 

This theme of relativity emerges in other aspects of perception as well, where the 

threshold for perceiving a change in a particular stimulus dimension is relative to the 

standard stimulus against which it is being compared. This phenomenon, the 

Weber/Fechner law, can be observed when measuring change detection thresholds for 

variations in light (Kingdom and Moulden, 1991; Legge and Kersten, 1983; Sakmann and 

Creutzfeldt, 1969; Whittle, 1986). Besides being an interesting phenomenon in and of 

itself, the near universality of the Weber/Fechner law throughout the study of sensation 

and perception also provides insight into the types of computational functions taking 

place within the brain. One can interpret this law as having a close relationship to a 

feature neural response function, being in effect an instantaneous representation of how 

sensitive the perceptual system currently is to change within a particular feature 

dimension.  Under this mindset, the Weber/Fechner law is akin to a derivative, in which 



!

!

3 

case the integral of this derivative can also be informative for studying neural activity 

within sensory cortices. The solution to the integral strongly suggests that the underlying 

neural response function is non-linear, specifically logarithmic in nature. In fact, it is 

often the case that recordings from individual neurons residing within the early visual 

cortex of animals reveal nonlinear changes in neural activity as function of stimulus 

contrast level (Carandini et al., 1999; 1997; Priebe and Ferster, 2012). Taken together, the 

sensitivity profiles described by human psychophysics and the single/multi-unit 

recordings obtained with animal electrophysiology provide two end points of the 

connection between activity in the brain and our ability to perceive changes in the visual 

environment. However, major obstacles still exist in achieving a complete understanding 

of the mammalian visual system. One such obstacle is the disturbing lack of analogous 

evidence for nonlinear contrast response functions in humans. Despite considerable 

efforts, non-invasive population-based neural activity recording experiments conducted 

in humans often yield linear contrast functions (Boynton et al., 1999; 1996; Buracas and 

Boynton, 2007; Buracas et al., 2005; Hara and Gardner, 2014; Itthipuripat et al., 2019; 

Murray, 2008; Pestilli et al., 2011; Tootell et al., 1998; 1995). These incongruent results 

have begun to cause an uncomfortable bifurcation in modeling how higher order 

processes, such as attention and arousal, modulate and interact with sensory processes in 

animals and in humans. This disconnect between basic vision research across different 

sub-disciplines of neuroscience is addressed in Chapter 2. 
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Luminance: An absolute measure of our environment 

 The relative differences in “brightness” that humans readily perceive would not 

be possible without the variation of an absolute physical property of our environment, 

namely luminance, often defined using the SI unit of candelas per meter-squared (cd/m2) 

(Thibos et al., 2018). There is little evidence that humans can report the absolute 

luminance of a uniform surface within the visual field (Barlow and Verrillo, 1976; 

Gilchrist et al., 1983). On the other hand, anecdotally we can readily notice when the 

global illumination of our environment is changing across a variety of timescales 

(Saunders, 1968; Whittle, 1986), and over enormous orders of magnitude.  For instance, 

we have no trouble perceiving our environment at noon during peak sunlight (sunlit sky 

being roughly 7,000 cd/m2) as we do in the middle of the night when the only light source 

is the meager sunlight reflecting off of the rocky moon surface over two hundred 

thousand miles away (roughly 0.1 cd/m2 on a full moonlit night) (Stockman and Sharpe, 

2008).  

Despite the wild variations in luminance we regularly encounter, evidence of our 

ability to perceive absolute luminance changes in our environment is tenuous. 

Conversely, the malleability of our sensitivity for relative features under different 

luminance states is better understood (Hess et al., 1980; van Meeteren and Vos, 1972). 

Somewhat paradoxically though, global luminance changes do not actually alter the 

quantitative measurements of relative features.  The reason being that any change in 

luminance does not actually alter the luminance ratio between components which share 

an edge or boundary. These perceptual effects are mirrored in electrophysiology studies - 
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the ability of luminance changes to alter the neural response to a relative feature is 

supported by a robust body of evidence, mainly in animals (Bisti et al., 1977; Geisler et 

al., 2007; Wang et al., 2015).  However, in the absence of relative features, evidence for 

changes in neural activity relative to absolute luminance changes is sparse (Bartlett and 

Doty, 1974; Kayama et al., 1979; Kinoshita and Komatsu, 2001; Peng and Van Essen, 

2005; Rossi and Paradiso, 1999). Examining the extent to which luminance changes 

affect visuocortical response properties in the human visual system is the focus of 

Chapter 3. 

Adapting to our visual environment 

In addition to the prevalence of absolute and relative features in our environment, 

the stability and ephemerality of these properties is also constantly changing over various 

timescales. In order to maintain sufficient detection of novel and minute changes within 

the environment, the current context and stable properties of the environment need to be 

taken into account (Kohn, 2007; Webster, 2011). The sensitivity to certain features of the 

visual environment, for which neural representations have been shown to exist, are often 

malleable given prolonged exposure to any given intensity level of that feature (Carandini 

and Ferster, 1997; Movshon and Lennie, 1979; Ohzawa et al., 1985; Sclar et al., 1989). In 

Chapter 4, the results presented in chapters 2 and 3 are examined in further detail based 

on how the time-course of prolonged adaptation unfolds, evaluating how susceptible the 

main findings of these previous chapters are to juxtaposing feature-based conditions and 

initial adaptation measures. 
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Dissertation Summary 

Chapter 2 Aims and Main Findings 

Nonlinearities are ubiquitous throughout the brain, with one of the most well-

characterized nonlinearities residing within the visual system. Indeed, 

electrophysiological studies in visual cortex typically observe compressive nonlinearities 

in response to changes in stimulus contrast. While this relationship has long been 

established in electrophysiological measures, there remains considerable controversy 

regarding whether the same nonlinearities hold for population-based measurements 

obtained with human functional magnetic resonance imaging (fMRI). Chapter 2 proposes 

that these purported disparities have less to do with measurement type, and are instead 

largely dependent upon the state of the visual system at the time of interrogation. To 

homogenize the population response, a contrast adaptation paradigm is deployed, 

permitting reliable measurements of saturating sigmoidal contrast response functions. 

Critically, without adaptation, heterogeneity was not brought under control, 

demonstrating the important role of adaptation in manifesting measurable nonlinear 

responses within human visual cortex. The findings reported in Chapter 2 not only 

reconcile the qualitative discrepancy reported across vision neuroscience, but also help 

establish that the relationship between stimulus intensity and neural response is indeed 

qualitatively consistent across different measures of brain activity. 
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Chapter 3 Aims and Main Findings 

Models of vision often downplay the importance of luminance in shaping cortical 

responses, instead emphasizing representations that do not co-vary with overall 

luminance (i.e., contrast), and yet visuocortical response properties that may reflect 

luminance encoding remain poorly understood. Chapter 3 examines whether well-

established visuocortical response properties may also reflect luminance encoding, 

challenging the idea that luminance information itself plays no significant role in 

supporting visual perception. In this chapter, functional activity in human visual cortex is 

measured when presenting stimuli varying in contrast and mean luminance, revealing 

luminance response functions that are strongly contrast dependent between 50 to 250 

cd/m2. These results reveal that the mean luminance information of a visual signal 

persists within visuocortical representations, potentially reflecting an inherent imbalance 

of excitatory and inhibitory components that can be either contrast-dependent (V1 & V2) 

or contrast-invariant (V3). Furthermore, the results in described in Chapter 3 highlight 

how luminance should be weighed heavily as a core feature of the visual system, and play 

a significant role in cortical models of vision. 

Chapter 4 Aims and Main Findings 

Under natural conditions, as our visual environment is constantly changing and 

fluctuating, so too is the sensitivity and responsivity of the visual system in light of these 

environmental changes. Adaptation governs this ongoing functional malleability in the 

brain, and has been shown to operate over various basic visual features.  Recently, more 

nuanced response properties of the human visual cortex have been identified, namely 
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increased responsivity to radial orientations relative to fixation (radial bias), and increases 

in contrast responsivity across a particular photopic luminance range (as reported in 

Chapter 3). Chapter 4 complements the insights provided by Chapters 2 & 3 by 

examining how responsivity unfolds during prolonged bouts of adaptation, and how that 

may vary across juxtaposing adaptation stimulus conditions.  In this chapter, the shape of 

the BOLD response time course is compared when the visual system is adapting to a 

radial or concentric orientation relative to fixation, and when adapting under low and 

high luminance levels.  Furthermore, this chapter examines the degree to which any 

changes observed during initial adaptation can impact subsequently measured contrast 

and luxotonic response functions. The shape and timing of adaptation decay curves 

varied most often with eccentricity. The findings in Chapter 4 suggest that orientation 

bias can alter certain components of contrast adaptation in early visual cortex, and that 

the positive luxotonicity results in Chapter 3 cannot easily be explained by relative 

differences between adapter luminance level and the range of luminance levels over 

which subsequent luminance response functions are investigated.
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CHAPTER TWO: ADAPTATION PROMOTES VISUOCORTICAL 

NONLINEARITIES IN POPULATION RESPONSE 

Introduction 

Our perception of sensory experiences depends heavily upon nonlinear 

computations. As information about our environment cascades from one brain area to 

another, nonlinearities reshape representations, allowing for increasingly complex 

perceptual discriminability (DiCarlo et al., 2012; Shapley and Victor, 1978). One of the 

most well-known nonlinear neural computations, divisive normalization (Carandini and 

Heeger, 1994; Heeger, 1992) is believed to play a critical role in governing gain control 

of visuocortical responses, engendering the compressive sigmoidal relationship between a 

stimulus’s intensity (e.g., luminance contrast) and its subsequent neural response 

(Carandini et al., 1999; 1997; Priebe and Ferster, 2012). This relationship, commonly 

referred to as the contrast response function (CRF), is predominantly nonlinear when 

recording from single-units within non-human striate cortex (Albrecht and Hamilton, 

1982; Bonds, 1991; Dean, 1981; Williford and Maunsell, 2006), and yet population-

based measurements obtained with human functional magnetic resonance imaging 

(fMRI) instead reveal what appears to be a predominantly linear CRF within early visual 

areas (Boynton et al., 1999; 1996; Buracas et al., 2005; Buracas and Boynton, 2007; Hara 

and Gardner, 2014; Itthipuripat et al., 2019; Murray, 2008; Pestilli et al., 2011; Tootell et 

al., 1998; 1995). 

How can we reconcile the nonlinear contrast response properties of 

electrophysiology measurements in animals with the near linear population 
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measurements obtained in human fMRI? One possibility is that the human CRF is truly 

linear. The BOLD response in fMRI reflects a population response, with the smallest unit 

of measurement, a voxel (~2mm3), encompassing quite a large number and variety of 

neurons. When taken at face value, measurements at the level of a single voxel exhibiting 

a linear change in response could simply reflect a multitude of linear responses at the 

local level. However, the potential utility of strictly linear transformations to efficiently 

support response selectivity and discrimination, while also avoiding information 

redundancy, is questionable (Silver, 2010), which is why nonlinear operations such as 

divisive normalization are often considered to be an essential part of brain function. 

Furthermore, this possibility is also in jeopardy given  the broad heterogeneity of 

nonlinear response profiles known to be present at the sub-millimeter level (Albrecht and 

Hamilton, 1982; Sclar et al., 1990). Indeed, it has been demonstrated that averaging over 

a heterogeneous neural population can aggregate a multitude of non-linear neural contrast 

response functions into a qualitatively different population response, within both 

experimental (Albrecht and Hamilton, 1982) and modeling (Hara et al., 2014) contexts. 

Adequately reducing the heterogeneity within the population may therefore preserve the 

nonlinear nature of a population, after pooling across the population. 

Another possibility is that different measures are tapping into fundamentally 

different aspects of brain processes. This possibility would be particularly concerning, as 

it calls into question the assumption that the Blood Oxygen Level-Dependent (BOLD) 

response serves as a strong proxy for any underlying neural processing (Gagnon et al., 

2015; Heeger and Ress, 2002; Lee et al., 2010; Logothetis, 2008), and casts doubt on 
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basic neural operations thought to be common across mammalian species. Although, 

fMRI measurements in animals have also been shown to produce largely linear contrast 

response functions on occasion (Logothetis et al., 2001). Here, we propose an alternative, 

more parsimonious explanation, which preserves the notion of underlying nonlinear 

contrast responses across mammalian species, as well as the link between BOLD 

responses and underlying neural responses (Boynton et al., 1996). Our results reveal that 

nonlinear responses can be an emergent property of fMRI-derived population responses 

in humans, depending on variety of factors, including the state of the neural population. 

While local heterogeneity may give rise to more linear population responses, the 

brain dynamically recalibrates itself to ongoing input statistics, a recalibration that 

potentially promotes more or less homogeneity in the population response at any given 

moment. In the visual system, contrast adaptation acts as one such recalibration 

mechanism, ensuring that the visual system remains sensitive to a wide range of contrast 

levels by shifting the dynamic range of individual nonlinear neurons towards an adapter 

contrast under experimental settings (Carandini and Ferster, 1997; Ohzawa et al., 1985; 

Sclar et al., 1989). The process of altering contrast sensitivity by re-centering the CRF 

may effectively reduce heterogeneity across a large population of neurons within a 

relatively short period of time (~30 - 60 seconds) (Albrecht et al., 1984; Blakemore and 

Campbell, 1969; Gardner et al., 2005; Movshon and Lennie, 1979), although it is unclear 

how uniformly adaptation operates over diverse retinotopic representations. This suggests 

that by bringing the sensitivity of a heterogenous array of response functions into closer 

alignment, subsequent population response measurements, such as fMRI, may then 
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summarize a more homogenous population response, capturing a nonlinear representation 

of the underlying neural units (Figure 2.1a). Additionally, the impact of adaptation on 

population contrast responses has yet to be explicitly compared to responses collected in 

the absence of constrained adaptation, while holding other variables constant. 

In this study we set out to measure non-linear, saturating contrast response 

functions using fMRI, and determine the extent to which the adapted state of the system 

promotes nonlinear population responses. Specifically, we sought to test the degree to 

which contrast adaptation can mitigate the heterogeneity of cortical responses within 

early visual cortical areas, revealing nonlinear contrast response functions with human 

fMRI. Our results demonstrate the profound and diverse impact contrast adaptation can 

have on visuocortical responses throughout large expanses of early visual cortex, 

facilitating the study of modulatory influences upon nonlinear sensory processing (i.e. 

arousal and attention) (Buracas and Boynton, 2007; Li et al., 2008; Murray, 2008), 

establishing a closer link between neural activity recorded in animals and the BOLD 

response measured with human fMRI, and in general resumes a concerted effort to 

understand nonlinear gain control operations in the mammalian cortex. 

!  
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Figure 2.1. Measuring nonlinear contrast response functions using contrast adaptation and 

informed stimulus design. 

a. Conceptual illustration of how sustained contrast adaptation potentially induces nonlinear population 

contrast response functions by bringing units within the population into closer alignment via contrast gain 

changes. b. Experimental stimulus composed of gratings with radial orientations (relative to fixation) and 

cortically-magnified spatial frequency (actual stimulus spatial frequency not depicted).  c. Timeline and 

organization of typical fMRI run for Experiment 1, consisting primarily of fast event-related stimulus 

presentations (2 sec duration) at multiple Michelson Contrast levels, interleaved with the 16% contrast adapter 

stimulus to maintain adaptation throughout the entirety of each run.  Each run began with a 30 sec blank 

fixation baseline period (highlighted in green), followed by a 60 sec sustained adaptation period (highlighted in 

orange) to promote contrast response homogeneity.  For Experiment 2, the initial adaptation period was not 

included, and interleaved contrast adapter stimulus presentation during the fast event-related period was 

replaced with blank fixation epochs.   
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Materials and Methods 

Participants  

All ten participants (7 female) in this study were between the ages 18 to 37, 

reported normal or corrected-to-normal visual acuity, and were recruited from Boston 

University and the surrounding community. All participants provided written informed 

consent prior to study enrollment, and completed a safety screening form to verify they 

had no MRI-related contraindications. Participants were reimbursed for volunteering their 

time. All aspects of the study were approved by the Boston University Institutional 

Review Board. Experiment 1 had a total of eight participants, while Experiment 2 had a 

total of six participants. Of the eight participants recruited for Experiment 1, four of them 

also participated in Experiment 2. 

Visual Stimuli 

Participants were presented with stimuli generated using MATLAB (version 

2015b) and the Psychophysics MATLAB toolbox (Brainard, 1997), which were 

displayed via back-projection onto a screen set within the MRI scanner bore, using an 

VPixx Technologies PROPixx DLP LED projector (maximum luminance: 306 cd/m2). 

The linear gamma of the projector was confirmed using photometer measurements 

(Konica Minolta, LS-100; 1 DAC step = 1.2 cd/m2). 

Throughout the majority of each experimental fMRI run, participants viewed a 

stimulus display containing an arrangement of five concentric ring patterns radiating out 

from fixation (Figure 2.1b). Each concentric ring was composed of eight circular 
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apertures equally-spaced along the entire ring circumference, with the polar angle 

positioning of each set of apertures per ring alternating with a 22.5° degree offset, in 

order to maximize overall stimulus spatial density throughout the visual field. Each 

aperture contained a sinusoidal grating stimulus at a fixed spatial frequency oriented in a 

radial fashion relative to fixation in order to promote maximal responsivity, as has been 

previously reported when stimuli have a radial orientation bias (Sasaki et al., 2006). The 

luminance contrast of all apertures varied in tandem between nine different contrast 

intensities, spaced above and below 16% contrast in octaves (2.7, 4, 5.3, 8, 16, 32, 48, 64, 

& 96% Michelson Contrast). Aperture spatial frequency was optimized for relative 

spatial frequency preference using a cortical magnification function (multiplicative 

inverse function, (Polimeni et al., 2006)). Specifically, the cortically-magnified spatial 

frequencies were 9.38, 6.81, 4.67, 3.07, and 1.95 cycles-per-degree (cpd) corresponding 

respectively to apertures centered at 0.9°, 1.5°, 2.5°, 4.2°, and 7° of eccentricity 

logarithmically-spaced out from fixation. Correspondingly, aperture size (radius) also 

increased logarithmically across each successive ring going from parafovea (0.35°; inner-

most ring) out to the periphery (2.56°; outer-most ring). Furthermore, a Gaussian roll off 

was imposed to smooth the boundaries between the stimulus edge and the mean 

luminance background (! =30). The inner bound of the inner-most aperture ring was 

0.64° of visual angle from fixation, while the outer bound of the outer-most aperture ring 

was 9.17°, resulting in a total stimulation area spanning 8.53°.  Lastly, in order to 

maintain vigorous cortical stimulation during stimulus presentation, and to minimize 
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retinal afterimages, the phase of the gratings in all apertures was randomly shifted at a 

rate of 10 Hz. 

Experimental Design 

The goals of each experiment were as follows: Experiment 1 – collect contrast 

responses following radial orientation adaptation; Experiment 2 – collect contrast 

responses without any adaptation. All experimental data were collected over the course of 

2 fMRI sessions. The radial adaptation condition was collected during session 1, while 

the adaptation-free (no adaptation) data were collected during session 2. A third 

additional fMRI session was dedicated to collecting anatomical images, and data for 

population receptive field (pRF) mapping using standard techniques and stimuli 

(Dumoulin and Wandell, 2008; Kay et al., 2013; Kriegeskorte et al., 2008). 

In all experiments, participants were presented with experimental stimuli varying 

in contrast using a traditional fast event-related design, comprising the majority of each 

run (Figure 2.1c). Stimuli were presented for a 2 second duration intermixed with a null 

period, consisting of either an adaptation top-up stimulus (16% contrast; adaptation 

condition), or a mean luminance background (0% contrast; adaptation-free condition). 

Null periods varied in duration between 4-17 seconds, with the overall experimental 

stimulus presentation timing generated using the Optseq2 Schedule Optimization Tool 

(Dale, 1999a). The experimental presentation for Experiment 1 was preceded by a 60 

second initial adaptation block, during which participants were adapted to a 16% contrast 

stimulus, with visual properties identical to the null period stimulus presented later in the 

event-related portion of the run. Previous studies have demonstrated that a 60 second 
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adaptation period is sufficient to induce a stable adapted state of the human visual system 

(Blakemore and Campbell, 1969), and employing a top-up adaptation stimulus during 

null periods in both adaptation conditions mitigated any recovery from adaptation, 

serving to maintain the initial contrast adaptation state of the visual system throughout 

the experimental run (Foley and Boynton, 1993; Gardner et al., 2005). In the adaptation-

free condition, participants were not presented with an initial adaptation block, mirroring 

the lack of any top-up adaptation stimulus during the fast event-related block null 

periods. For all experiments, the beginning of each experimental run began with a 30 

second baseline period, during which participants viewed a uniform gray background 

(194.7 cd/m2). Participants completed 3-5 adaptation runs (8.5 mins each; 510 TRs), and 

3-4 no-adaptation runs (7.5 mins each; 450 TRs), with 6 observations per stimulus 

contrast level collected per run. 

For all fMRI experiments, participants fixated on a red dot at central fixation 

(diameter: 0.11˚), while being engaged in rapid visual stream presentation (RSVP) task 

also located at fixation. The RSVP task consisted of a rapid sequential presentation of 

letters (35 point size), with target letters appearing with a 30% probability every 250 ms, 

after a minimum of 10 non-target letters following the last target letter presentation. A 

MR-compatible response box was used to record behavioral responses to the RSVP task. 

Participants maintained high performance accuracy across all runs in both experiments 

(Experiment 1: 97.4%; Experiment 2: 98.1%). 
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MRI Data Acquisition 

All neuroimaging data was collected on a research-dedicated Siemens Prisma 3T 

scanner using a 64-channel head coil. Whole-brain anatomical data was acquired using a 

T1-weighted multi-echo MPRAGE 3D sequence (1mm3; FOV=256x256x176mm; 

FA=7˚; TR=2530ms; TE=1.69ms) (van der Kouwe et al., 2008). All functional 

neuroimaging data (main experiments and pRF mapping) was acquired using a T2*-

weighted in-plane simultaneous multi-slice imaging sequence (multi-band factor: 3) 

(Moeller et al., 2010; Xu et al., 2013), with the field of view oriented perpendicular to the 

calcarine sulcus (2mm3; FOV=60x112x172mm; FA=80˚; TR=1000ms; TE=35ms). 

Anatomical Data Analysis 

Whole-brain T1-weighted anatomical data was analyzed using the standard 

‘recon-all’ pipeline provided by the Freesurfer (Fischl, 2012) neuroimaging analysis 

package, generating cortical surface models, whole-brain segmentations, and cortical 

parcellations. Cortical surface models facilitated surface-based registration between 

structural and functional MRI volumes, allowing pRF analyses to be conveniently ported 

over to the native functional volume space. 

Functional Data Analysis 

EPI distortion correction was applied to all fMRI BOLD time-series data using a 

reverse phase-encode method (Andersson et al., 2003) implemented in FSL (S. M. Smith 

et al., 2004). All fMRI preprocessing steps were completed with FS-FAST (Fischl, 2012), 

including standard motion-correction procedures, Siemens slice timing correction, and 
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boundary-based registration (Greve and Fischl, 2009) between functional and anatomical 

volumetric spaces. To facilitate voxel-wise analyses, no volumetric spatial smoothing 

was performed (FWHM = 0mm). Precise volumetric alignment of experimental condition 

data within each neuroimaging sessions was achieved using cross-run within-modality 

robust rigid registration (Reuter et al., 2010), with the middle time-point of the first run 

from each session serving as the target volume, and the middle time-point of each 

subsequent run from the session, serving as the movable volume used for alignment. 

Before converting BOLD time-series data to units of percent signal change, time-points 

corresponding to the initial adaptation period (60 frames) were excluded when applicable. 

Data collected during the separate pRF mapping session was analyzed using the 

analyzePRF toolbox (Kay et al., 2013). Only voxels located within the cortical ribbon of 

the occipital lobe were designated for pRF modeling, which were identified using a visual 

area network label generated using an intrinsic functional connectivity atlas (Yeo et al., 

2011). 

For all fMRI experimental conditions, a univariate deconvolution analysis was 

carried out using a finite-impulse response (FIR) modelling approach (window size=24s, 

pre-stimulus delay=4s) (Dale, 1999b). This analysis provided a set of 24 beta weight 

parameters describing the time-course of the BOLD response for each contrast level 

under investigation. 

Voxel selection 

The results from the pRF mapping were used to determine voxel selection within 

each region-of-interest (ROI). The pRF results were used to define the boundaries of all 
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early visual areas (V1 - V3), and identify candidate voxels within each visual area having 

eccentricity preferences bounded by stimulus dimensions (inner diameter = 0.7˚, outer 

diameter = 9.1˚). The pRF data for one participant was acquired with a slightly 

constrained visual angle, limiting reasonable eccentricity estimates, so the outer diameter 

limit for this participant was set to 8.9˚ during voxel selection. ROI labels were further 

constrained by excluding voxels with poor pRF modeling goodness-of-fit (r2 < 20%), 

unreasonably small population receptive field sizes (RF < 0.1˚). Subsequently, for each 

experiment the ROI-averaged deconvolution time-course (FIR function) for the highest 

contrast condition (96%) was fit with a six-parameter difference-of-gaussian (DoG) 

function for each early visual area (V1 – V3). The best-fitting DoG function was then 

adjusted using linear regression (unbounded y-intercept and amplitude scalar parameters) 

in order to best match the FIR function of all nine contrast levels acquired. The goodness-

of-fit (r2 coefficient) for each DoG linear regression was calculated independently for 

each contrast level, and then additively pooled across all nine contrast levels, creating a 

metric ranging from 0 (worst fit) to 9 (best fit) for all voxels in each ROI. Voxels within 

each ROI were ranked according to their pooled goodness-of-fit metric, with the top 40% 

selected for further analysis. Importantly, voxels with a high pooled goodness-of-fit 

metric solely indicates that these voxels had a stimulus evoked response to each contrast 

level which was well described by the best-fit DoG function. This metric does not 

differentiate voxels based on the relative difference between contrast levels, thus it serves 

as a voxel selection method that is agnostic to the overall qualitative shape of the contrast 

response function. The total number of voxels (mean ± SEM across participants) that 
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survived these criteria, after combining across left and right hemispheres, were as follows 

for Experiment 1, V1: 211.75 ± 26.5, V2: 217.5 ± 20.6, V3: 207.75 ± 13.0, and 

Experiment 2, V1: 270.00 ± 45.1, V2: 256.00 ± 35.4, V3: 223.67 ± 25.0. 

The three deconvolution beta weights centered around the maximal post-stimulus 

peak identified by the best-fitting DoG function were averaged together to produce a 

contrast response measurement for all nine contrast levels under investigation in each 

experiment. These contrast responses were used to create both ROI-specific and voxel-

wise response functions, which were then subjected to further analyses. 

Model Fitting and Evaluation  

To evaluate the degree to which contrast response functions are truly nonlinear in 

nature, the explanatory power of two different models were compared following a 

partially-bounded least-squares fitting procedure in MATLAB (fmincon). The Naka-

Rushton (NR) equation (Naka and Rushton, 1966) was selected as the candidate 

nonlinear function model 
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, with Rmax, c50, and n, corresponding to the maximal contrast response, semi-saturation 

response, and overall rate of change, respectively. Conversely, any linear tendencies of 

the contrast response functions were determined using a purely linear equation (2 

parameters; y-intercept and slope). 
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Statistics 

In order to identify the best-fitting model while also considering respective 

degrees-of-freedom, given the number of free parameters, the corrected Akaike 

information criterion (cAIC) was computed for nonlinear and linear models (Banks et al., 

2017). A lower cAIC score reflects a better dataset fit, while penalizing for the number of 

free model parameters. The cAIC difference between the both candidate models was 

calculated (NR – linear), with negative values indicating the NR equation as the better-

fitting model, and positive values indicating the linear equation as the better-fitting 

model. We chose this approach since we are interested in comparing non-nested models 

using a metric derived from information theory, in which case statistical hypothesis 

testing (F-tests) is not a viable approach (Motulsky and Christopoulos, 2004). 

In order to assess the heteroscedasticity of model residuals, a Durbin-Watson test 

statistic was calculated. This statistic quantifies the prevalence of any lag 1 

autocorrelation of residuals across successive contrast levels, with a group-wise Durbin-

Watson d test statistic < 1.5 signifying a positive autocorrelation. One-way between-

subjects ANOVAs were performed to test for any differences in Naka-Rushton model 

parameter estimates across regions-of-interest, and to test for any systematic differences 

in functional SNR measurements across regions-of-interest for both Experiments 1 and 2. 

Significant effects were further investigated using pairwise t-tests using Bonferroni 

correction. Significant monotonic trends between eccentricity preference and semi-

saturation parameter estimates at the voxel-wise level were evaluated using Spearman 

correlations. 
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Voxel-wise functional SNR measurements were calculated based on the mean 

signal offset divided by the standard deviation of the residuals following FIR model 

fitting. Specifically, the residuals reflect the difference between the estimated and actual 

BOLD time-courses, and this method for estimating functional SNR is independent of 

any “task” signal and nuisance regressors. 

Results 

Sustained Adaptation Promotes Nonlinear Contrast Responses.  

Does prolonged and sustained contrast adaptation promote nonlinear contrast response 

functions? We first measured the BOLD response evoked by nine different luminance 

contrast stimuli (Figure 2.1b) following adaptation to a low contrast level (Figure 2.1c, 

see Methods for details). We then measured the BOLD response to the same contrast-

varying stimuli again, crucially this second experiment did not include sustained contrast 

adaptation. In both experiments, we performed a deconvolution analysis to obtain an 

average BOLD response for each contrast level under investigation. The ROI-averaged 

contrast responses collected following sustained contrast adaptation (Experiment 1) are 

qualitatively different when compared to contrast responses collected in the absence of 

constrained contrast adaptation (Experiment 2) across early visuocortical areas (example 

participant depicted in Figure 2.2a).  

In order to evaluate the degree to which sustained contrast adaptation promotes nonlinear 

population responses, we computed an ROI-averaged cAIC metric that allowed for the 

comparison between model fits of a Naka-Rushton (nonlinear) and a Linear model 

(Figure 2.2b). Under contrast adaptation, cAIC differences between the two models 
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(cAICNaka-Rushton minus cAICLinear), reported below as mean +/- SE across participant, 

favored the Naka-Rushton model, more so in striate cortex than in extra-striate cortex 

(V1: -2.28 +/- 1.28, V2: -0.40 +/- 0.79, V3: -0.70 +/- 0.52). In the absence of constrained 

contrast adaptation, cAIC differences instead favored the Linear model across all early 

visual areas (V1: 3.34 +/- 0.89, V2: 2.87 +/- 0.33, V3: 2.79 +/- 0.18). Furthermore, 

qualitatively different response functions are observed at the voxel-wise level when 

comparing across adapt and no adapt conditions (Figure 2.2c). This pattern of results is in 

line with the hypothesis that neural contrast response functions measured in the absence 

of constrained adaptation are highly heterogenous, in the sense that there exists large 

variability in semi-saturation point within local neural populations, resulting in a linear 

population response.  

To better assess the heteroscedasticity of the model fitting across conditions, the model 

prediction errors (residuals) were plotted as a function of contrast level (Figure 2.3), and 

compared using the Durbin-Watson autocorrelation test (DWd), with a DWd < 1.5 

signifying a positive autocorrelation.  In the presence of adaptation, the linear function 

systematically failed to capture the variance across the mid-range contrast levels, 

resulting in a positive autocorrelation across residuals for all ROIs (DWd (V1) = 0.81, 

DWd (V2) = 1.08, DWd (V3) = 0.91), indicating that a linear function does not 

adequately describe the pattern of contrast responses that we measured in Experiment 1. 

Conversely, the prediction error of the Naka-Rushton function lacks this systematic bias, 

and does not display any autocorrelation across residuals for all ROIs (DWd (V1) = 1.90, 
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DWd (V2) = 2.29, DWd (V3) = 1.95), indicating that an inherently nonlinear function is 

necessary for describing the pattern of contrast responses measured in Experiment 1. 

In the absence of constrained adaptation, however, both models displayed little-

to-no systematic biases, with the linear model residuals having the weakest overall 

tendency towards a positive autocorrelation (Linear Model: DWd (V1) = 2.00, DWd (V2) 

= 1.86, DWd (V3) = 1.73), and the Naka-Rushton model only having a slight bias in 

striate cortex (Naka-Rushton Model: DWd (V1) = 1.06, DWd (V2) = 1.75, DWd (V3) = 

1.68). 



!

!

26 

!
Figure 2.2. Sustained adaptation promotes nonlinear contrast responses within and across 

human visual cortex. 

a. ROI-averaged contrast response (mean BOLD % signal change) of a representative participant plotted as a 

function of log-spaced Michelson Contrast for each region-of-interest (V1 – V3), for both adaptation (red/circle) 

and no adaptation (blue/square) conditions. Solid lines reflect the best-fit Naka-Rushton function for each 

respective experimental condition. Vertical dashed lines represent the 16% Michelson Contrast level, 

corresponding to the adapter stimulus contrast level. Data are means +/- half the standard deviation across 

voxels. b. Individual and group-averaged voxel-wise differences of the corrected Akaike Information Criterion 

(cAIC), comparing Naka-Rushton model fits to linear model fits, for each region-of-interest, and for both 

adaptation (red/circle) and no adaptation (blue/square) conditions. Small symbols with dashed lines denote 

individual participants (means +/- SE across all voxels), and large symbols outlined in black denote group-

averaged cAIC difference scores (means +/- SE across all participants). c. Common patterns of contrast 

responses observed across experimental conditions at the voxel-wise level within area V1 for the individual 

participant depicted in Figure 2.2a.    All results plotted using the same conventions as described in Figure 2.2a.
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Figure 2.3. Systematic bias of model fit residuals: Linear model inadequate with adaptation. 

a. Individual and group-averaged model fit residuals plotted as a function of contrast level (log-spaced) for both 

Naka-Rushton and Linear model fits across regions-of-interest for data acquired following adaptation 

(Experiment 1). Each plot depicts the prevalence of any systematic bias in model fits (heteroscedasticity).  Insets 

denote the mean SSE (+/- standard error) across all participants. b. Model fit residuals for data acquired in the 

absence of constrained adaptation (Experiment 2).  All results plotted using the same conventions as described 

in Figure 2.3a. 
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Voxel-wise contrast response functions: Heterogeneity and trends within regions-of-

interest. 

To ascertain the degree of heterogeneity within a ROI, contrast response functions 

were evaluated on a voxel-wise basis. A Naka-Rushton (NR) equation was fit to voxel-

wise contrast responses only for Experiment 1, where it was demonstrated that adaptation 

is required to capture the non-linearity of the population response. The median estimated 

model parameters at the voxel-wise level were computed for each participant, which were 

then averaged within each ROI across all participants, producing three parameters of 

interest (Figure 2.4), reported below as mean +/- SE across participants. The semi-

saturation constant estimate (c50) remained relatively stable and low across ROIs (V1: 

38.83 +/- 4.53, V2: 37.09 +/- 4.55, V3: 39.07 +/- 3.98), reflecting the sustained low 

contrast adaptation at 16% Michelson Contrast, with no main effect of ROI (F(2,21) = 0.06, 

p = 0.94). The transducer estimate (n) increased in steepness from striate to extrastriate 

ROIs (V1: 2.39 +/- 0.14, V2: 3.76 +/- 0.29, V3: 4.75 +/- 0.55), confirmed by a main 

effect of ROI (F(2,21) = 10.44, p < 0.001), with significant differences between V1 vs. V2 

(t(7) = -4.7839, pcorrected = 0.006) and V1 vs. V3 (t(7) = -4.6187, pcorrected = 0.007), but not 

between V2 vs. V3 (t(7) = -1.8920, pcorrected = 0.301). Finally, the response saturation 

level (rmax) decreased in magnitude from striate to extrastriate ROIs (V1: 3.84 +/- 0.27, 

V2: 2.19 +/- 0.27, V3: 1.91 +/- 0.13), confirmed by a main effect of ROI (F(2,21) =  

20.19, p < 0.001), with significant differences between V1 vs. V2 (t(7) = 3.6828, pcorrected 

= 0.023) and V1 vs. V3 (t(7) = 9.5312, corrected pcorrected < 0.001), but not between V2 

vs. V3 (t(7) = 0.9711, corrected pcorrected = 1.0). Lastly, the significant differences  
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Figure 2.4. Voxel-wise contrast response function parameter estimates. 

Individual and group-averaged voxel-wise Naka-Rushton function parameter estimates describing contrast 

responses following adaptation for each region-of-interest (V1 -V3). Colored circles identify the median voxel-

wise parameter estimate for each individual participant, whereas gray circles denote the group-averaged 

parameter estimates (means +/- standard error). Note that semi-saturation estimates are plotted on log-scale, 

with the dashed line corresponding to 16% Michelson Contrast. Asterisks denote significant t-test results (*, p < 

0.01; **, p < 0.001).  
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observed across ROIs (V1 - V3) are not simply due to monotonic changes in functional 

SNR (see Methods for details) across the visual hierarchy (F(2, 21) = 3.06, p = 0.068). In 

general, the different patterns of transducer and response saturation estimates across the 

visuocortical hierarchy reflect hallmarks of nonlinear contrast response functions 

previously reported in the literature (Avidan et al., 2002), while the consistent semi-

saturation estimates across early visual areas seen here are analogous to previous reports 

(Albrecht and Hamilton, 1982; Sclar et al., 1990).  

While the semi-saturation constant estimates did not vary across the visual 

hierarchy, they did display a significant monotonic Spearman correlation with the 

distance of the preferred visual field location from fixation (eccentricity) when 

considering all participant voxel data points within each ROI (V1: rs = 0.44, p < .001; V2: 

rs = 0.45, p < .001; V3: rs = 0.41, p < .001) (Figure 2.5a). When averaging the voxel-wise 

contrast responses coarsely binned by eccentricity (Figure 2.5b), it becomes apparent that 

the CRFs are centered at progressively higher contrast levels as the preferred visual field 

location shifts further away from fixation. It has been well-established that receptive field 

(RF) size and eccentricity preference strongly covary with one another in early 

visuocortical areas (Dow et al., 1981; Harvey and Dumoulin, 2011; A. T. Smith et al., 

2001), therefore if the interaction between semi-saturation constant estimates and 

eccentricity reported above is not a spurious finding, semi-saturation constant estimates 

should also covary with population RF size within each ROI, which was found to be the 

case (V1: rs = 0.32, p < .001; V2: rs = 0.37, p < .001; V3: rs = 0.32, p < .001). No other 

consistent biases were found for parameter estimates across eccentricity, polar angle or 
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population RF size. In the event of using a contrast level higher than 16% during 

adaptation, one would expect semi-saturation estimates to increase accordingly, while 

still preserving the hierarchical differences for transducer and response saturation 

estimates, assuming adequate model fits. Presumably, the voxel-wise correlation between 

semi-saturation and eccentricity would be diminished as well, but it remains to be seen 

how susceptible this covariation is to different levels of contrast adaptation. 
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