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OPERATING SYSTEM
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ABSTRACT

This thesis aims to address the growing disconnect between the goals general-purpose

operating systems were designed to achieve and the requirements of some of today’s

new workloads and use cases. General-purpose operating systems multiplex system

resources between multiple non-trusting workloads and users. They have generalized

code paths, designed to support diverse applications, potentially running concur-

rently. This generality comes at a performance cost. In contrast, many modern

data center workloads are often deployed separately in single-user, and often single-

workload, virtual machines and require specialized behavior from the operating sys-

tem for high-speed I/O.

Unikernels, library operating systems, and systems that exploit kernel bypass

mechanisms have been developed to provide high-speed I/O by being specialized to

meet the needs of performance-critical workloads. These systems have demonstrated

immense performance advantages over general-purpose operating systems but have

yet to see widespread adoption. This is because, compared to general-purpose oper-

ating systems, these systems lack a battle-tested code base, a large developer commu-

nity, wide application, and hardware support, and a vast ecosystem of tools, utilities,
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etc.

This thesis explores a novel view of the design space; a generality-specialization

spectrum. General-purpose operating systems like Linux lie at one end of this spec-

trum; they are willing to sacrifice performance to support a wide range of applications

and a broad set of use cases. As we move towards the specialization end, different

specializable systems like unikernels, library operating systems, and those that exploit

kernel bypass mechanisms appear at different points based on how much specializa-

tion a system enables and how much application and hardware compatibility it gives

up compared to general-purpose operating systems.

Is it possible, at compile/configure time, to enable a system to move to different

points on the generality-specialization spectrum depending on the needs of the work-

load? Any application would just work at the generality end, where application and

hardware compatibility and the ecosystem of the general-purpose operating system

are preserved. Developers can then focus on optimizing performance-critical code

paths only, based on application requirements, to improve performance. With each

new optimization added, the set of target applications would shrink. In other words,

the system would be specialized for a class of applications, offering high performance

for a potentially narrow set of use cases.

If such a system could be designed, it would have the application and hardware

compatibility and ecosystem of general-purpose operating systems as a starting point.

Based on the target application, select code paths of this system can then be incre-

mentally optimized to improve performance, moving the system to the specializable

end of the spectrum. This would be different from previous specializable systems,

which are designed to demonstrate huge performance advantages over general-purpose

operating systems, but then try to retrofit application and hardware compatibility.

To explore the above question, this thesis proposes Unikernel Linux (UKL), which

ix



integrates optimizations explored by specializable systems to Linux. It starts at

the general-purpose end of the spectrum and, by linking an application with the

kernel, kernel mode execution, and replacing system calls with function calls, offers

a minimal performance advantage over Linux. This base model of UKL supports

most Linux applications (after recompiling and relinking) and hardware. Further,

this thesis explores common optimizations explored by specializable systems, e.g.,

faster transitions between application and kernel code, avoiding stack switches, run-

to-completion modes, and bypassing the kernel TCP state machine to access low-level

functions directly. These optimizations allow higher performance advantages over

unmodified Linux but apply to a narrower set of workloads.

Contributions of this thesis include proposing a novel approach to specialization,

i.e., adding optimizations to a general-purpose operating system to move it along the

generality-specialization spectrum, an existence proof that optimizations explored by

specializable systems can be integrated into a general-purpose operating system with-

out major changes to the invariants, assumptions, and code of that general purpose

operating system, a demonstration that the resulting system can be moved on the

generality-specialization spectrum, and showing that performance gains are possible.
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1

Chapter 1

Introduction

General-purpose operating systems, like Linux, offer enormous value in the data cen-

ter for a number of reasons. First, they provide features like backward compatibility, a

stable API, security and isolation, and services applications depend on for execution,

e.g., threading, scheduling, timekeeping, synchronization, and memory management.

Second, many applications, tools, utilities, debuggers, profilers, etc., have been writ-

ten for general-purpose operating systems, allowing developers and operators to share

a collective knowledge of designing, deploying, and performance-tuning applications.

Third, the vast hardware compatibility list (HCL) of general-purpose operating sys-

tems like Linux allows applications to be deployed on many different architectures

and take advantage of a diverse range of accelerators that are becoming increasingly

important. Fourth, they offer some specialization, i.e., for performance or functional

reasons, applications can, up to a degree, modify the operating system’s behavior

and code, e.g., in Linux, through build-time configuration options, run-time policy

management, insertable modules, or recent developments like eBPF. Fifth, these op-

erating systems have a vast community of developers, especially around Linux, which

keeps maintaining and fixing bugs in the existing code base and adding new features

and device drivers.

However, there is a growing mismatch between the design of general-purpose op-

erating systems and the requirements of some of today’s cloud workloads. Operating

systems like Linux were designed assuming that multiple non-trusting applications
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would share the same system. Under these assumptions, it is challenging to opti-

mize for a single application, and security, isolation, and privacy come at the cost of

performance. The general-purpose operating system APIs were designed to abstract

away hardware devices and multiplex them between many applications. However,

with the advancements in virtualization technology, non-trusting applications don’t

have to share the same system anymore; instead, they are now deployed separately

in single-user, and often single-application, virtual machines. Applications deployed

on virtual or dedicated physical machines do not need to share resources and should

not have to pay this penalty.

The design of general-purpose operating systems has also not evolved at the same

pace as advancements in hardware. With the emergence of high throughput network

and storage I/O devices, e.g., 400 Gbit/s Ethernet cards, general-purpose operating

systems have become I/O bottlenecks. The socket API, and even new interfaces

like io uring, provided by Linux, cannot keep up with the requirements of many

modern workloads [99]. Consequently, there is a need for specialized behavior from

the operating system.

There has been a massive body of work exploring operating system specialization,

from extensible operating systems - which allowed applications to insert custom code

into the kernel (§ 3.1), to library operating systems and unikernels (§ 3.2) - which

involved developing new or adapting existing operating systems according to applica-

tion needs, and modern-day kernel bypass mechanisms (§ 3.3) - which, as the name

suggests, bypass existing operating systems on performance-critical paths.

Extensible systems [90] allowed applications to insert custom code into the ker-

nel, thus extending the standard interface, to gain performance improvements. These

systems were developed in the 80s and 90s, before the advent of virtualization tech-

nology and cloud computing, when the hardware and operating system had to be
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shared between multiple applications. Consequently, these operating systems could

not be specialized fully to the needs of any single application, and security became

a major concern, giving birth to the idea that ”Extensible Kernels are Leading OS

Research Astray” [34].

Recently, after advancements in virtualization technology removed the require-

ment for multiple applications to share hardware, there has been a resurgence of re-

search systems exploring the idea of a library operating system, or a unikernel, where

an application is linked with a specialized kernel and deployed directly on (virtual)

hardware [35]. Unikernels are mostly designed and written from scratch according to

the needs of a class of applications. They have shown tremendous improvements over

general purpose operating systems like Linux in boot time [63, 54], security [100, 76],

resource utilization [29], and I/O performance [88, 52].

Despite all these advantages, unikernels have not been widely adopted. As with

any operating system, widespread adoption of a unikernel will require significant

and ongoing investment by a large community. Justifying this investment is difficult

because unikernels target only niche portions of the broad use cases of general-purpose

operating systems. Many only run a single application [63, 88, 54], whereas many

workloads require secondary applications to run, e.g., loggers and profilers. Most

unikernels only support virtualized deployments [88, 54, 76, 88] and often a single

processor core [54, 63], whereas many workloads are often deployed bare-metal, e.g.,

Ceph [96] or are multi-threaded and require multiple cores. Unikernels do not support

accelerators (e.g., GPUs and FPGAs) that are increasingly critical to achieving high

performance in a post Dennard scaling world. Some unikernels do not support any

backward compatibility [63] and require the applications to be fully ported to the

new APIs they provide.

Some unikernel projects have tried to remedy the lack of application and hardware
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compatibility of from-scratch design by taking general-purpose operating systems and

modifying them. Examples include NetBSD-based Rump Kernel [49], Windows-based

Drawbridge [80], and Linux-based Linux Kernel Library (LKL) [83]. These projects,

however, make significant changes to the base general-purpose operating systems,

resulting in a fork of the code base and community. As a result, ongoing investments

in the base operating system are typically not incorporated into these forked projects.

To avoid the investment required to maintain a new or significantly modified oper-

ating system, the recent Lupine [56] and X-Containers [91] projects exploit Linux’s in-

nate configurability to enact application-specific customization. These projects avoid

the hardware overhead of system calls between user and kernel mode, but they do

not explore deeper optimizations that unikernels written from scratch do. Essentially

these projects preserve the API between the application and the underlying operating

system, giving up on unikernel performance advantages that depend on specializing

kernel code to the application.

Despite the challenges, operating system specialization research points us to the

potential of specialization. Based on application knowledge, special-purpose code

paths can switch to polling if frequent I/O is expected [98, 25, 29, 43, 65, 77, 79,

81, 88], the complex state machines in the general purpose operating systems can be

flattened and unneeded conditions can be removed [88, 52], scheduling policies can

be modified [92, 81, 44, 77, 37], multiple implementations of different features can

co-exist [38, 82, 17, 88, 54], I/O paths can be highly customized [88, 54], zero-copy

networking can be implemented [88, 52], etc.

The influence of operating system specialization can also be felt in general-purpose

systems. While some specialization can be very specific, if it solves a critical problem

and doesn’t have intrusive changes, it can become part of the general purpose code

base, maintained and extended as more applications use it [4, 3]. Examples of mech-



5

anisms that enable specialization include modularity with well-defined interfaces and

virtual functions to select context-appropriate code paths, dynamically inserting or

removing modules, a massive list of compile-time and run-time configuration options,

and most recently, eBPF to download custom code into the Linux kernel to be ex-

ecuted in a virtual machine, etc. While continuing to be general purpose, with one

code base, Linux has become increasingly specializable, to the extent some believe

it is all that is needed [56]. The existing specialization techniques in Linux already

require an administrator to enable them, e.g., to configure/build the system or to

download the customized eBPF code.

General purpose operating system specialization suffers from some of the same

problems that earlier extensible operating systems faced; general purpose operating

systems are general, designed to provide performance to different applications, and

thus cannot be fully specialized to a single application. Modular code paths and

virtual functions still need to cater to broad use cases, e.g., TCP v UDP traffic,

instead of application-specific cases. Loadable modules and compile-time and run-

time configurations can only be implemented by kernel developers, posing a massive

barrier to entry for application developers who better understand the needs of their

applications. Further, although eBPF suggests that significant gains can be obtained

if in-kernel specialization can be enabled with application code, the problem with

eBPF is that it is limited in the kinds of optimizations possible, and a totally new

programming model needs to be adopted. This means user-level libraries won’t work,

and application programmers have to rewrite their code completely.

In this thesis, we propose the idea of having a system that, at compile time

of the kernel, can be specialized with regular application code, adopting the same

requirement specializable systems have, as well as Linux currently has with root

privileges, that there is one critical application to run. Imagine a spectrum where the
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same kernel can be configured as a general-purpose system on one end (sacrificing

performance to preserve application and hardware compatibility) and as a highly

specialized system on the other end (optimizing performance, even at the cost of

application and hardware compatibility). At the general-purpose operating system

end of the spectrum, the unmodified application, linked into the kernel, enjoys broad

application and hardware compatibility, and an ecosystem of tools and utilities, while

other applications can run alongside it. Can we start on this end of the spectrum

and then move towards the specialized end, based on application needs, by turning

on optimizations explored by earlier specializable systems?

Taking Linux as a starting point, in terms of design and implementation, is it pos-

sible to build such a system that can be adopted across the generality-specialization

spectrum? Would the resulting changes be so many that we essentially end up with

a forked code base? Will we be able to preserve Linux’s battle-tested code base, its

developer community, its application compatibility and HCL, and its ecosystem of

tools and utilities? Is it possible to integrate optimizations explored by specializable

systems into Linux? Would these optimizations provide any performance benefits?

Will unmodified applications be able to take advantage of this system? Can we en-

able developers to design custom optimizations by modifying the applications and

the kernel together? This thesis is an exploration of these questions. We chose Linux

as a starting point since it is the defacto operating system for cloud deployments

today, and countless applications, tools, and utilities have been written for it. It has

broad hardware support, and a large community of operators and engineers share its

collective knowledge and understanding.

If we can build a system that can be adopted across the generality-specialization

spectrum, we hypothesize the following will be possible. At the general purpose end,

the system will just work on all hardware, with all applications, configured and de-
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ployed using standard techniques that the community knows about. Applications

can use standard tools to identify the performance-critical optimizations that could

potentially be adopted. New configuration options could be employed incrementally

and tested thoroughly to identify the workloads and scenarios that they are appro-

priate for. Application and user libraries could be written to improve performance

only where it matters, solving one problem at a time rather than having to write

an entire system. In contrast to eBPF, the application developer can do the work

instead of the kernel expert, and all user libraries will just work. Since it is one code

base, the entire community of the general-purpose operating system can be involved,

and there is never the need to make a massive investment to re-produce what the

general-purpose system already does well. Just like systems have adopted increasing

modularity, they can incrementally start adding new checks, internal interfaces, and

options to tie into application code for critical workloads. As one moves towards a

more and more specialized system to improve performance, the system will be suitable

for fewer applications, but it is the decision of the developer if it is justified.

Our research has demonstrated that building a system that can be moved across

the generality-specialization spectrum is possible. In our system ‘Unikernel Linux’

(UKL), like many unikernels, a single application is statically linked with the kernel

and executed in supervisor mode. This base model of UKL preserves most of the

invariants and design of Linux, including a separate pageable application portion of

the address space and a pinned kernel portion, distinct execution environments for

application and kernel code, and the ability to run multiple processes. As a result,

this base model provides an avenue toward supporting all hardware and applications

of the original Linux kernel and the entire Linux ecosystem of tools for deployment,

debugging, and performance tuning. The changes to Linux to support the UKL base

model ( 550 LoC) and the resulting performance improvement (e.g., 5% for syscall)
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are, as expected, modest.

Once an application runs in the UKL base model, a developer can move along

the spectrum towards the specialized end by adopting additional configuration op-

tions and/or modifying the applications to invoke kernel functionality directly. These

steps may improve performance but may only work for some applications. Exam-

ple configuration options we have explored include avoiding costly transition checks

between application and kernel code, using simple return (rather than iret) from

page faults and interrupts, and using shared stacks for application and kernel ex-

ecution. Application modifications can, for example, defer scheduling and exploit

application knowledge to reduce the overhead of synchronization and polymorphism.

Experiments show up to 83% improvement in system call latency and substantial per-

formance advantages for real workloads, e.g., 26% improvement in Redis throughput

while improving tail latency by 22%. The full UKL patch to Linux, including the

base model and all configurations we have developed so far, is 1250 LoC.

This thesis answers some research questions and explores others. It proves that

it is possible to link an unmodified application with the kernel and execute it at the

kernel privilege level. It also demonstrates that the changes are practical, the patch

set is modest in size, and there are significant performance gains. To answer the

question of how far this system can go to adopt the kind of optimizations explored

by earlier systems, this is intrinsically a many-year process. This thesis adds the base

capability and enables application developers to pursue potentially many different

optimizations.

This thesis makes the following contributions:

1. Proposed the design of a system that can be adapted from a general-purpose

operating system to a specialized system instead of being a fixed point on the

generality-specialization spectrum.
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2. An existence proof that optimizations explored by specializable systems can be

integrated into a general-purpose operating system in a fashion that preserves

its compatibility and application execution environment.

3. A demonstration that a single kernel can be adopted across a spectrum between

a general-purpose operating system, where it enjoys complete application and

hardware compatibility, and the ecosystem of tools, utilities, and community,

and a specialized unikernel, which is specialized to the requirements of a single

application.

4. A demonstration that performance advantages are possible; although unmodi-

fied applications achieve modest gains, co-optimizing the application and kernel

code can achieve more significant gains.

The rest of this thesis is organized as follows. Chapter 2 provides the relevant

background and motivation for this research. Chapter 3 discusses previous research

in the area of operating system specialization and, based on that research, builds the

case for the generality-specialization spectrum. Chapter 4 presents the goals for UKL

and its design to meet those goals. Chapter 5 discusses UKL’s implementation details

and Chapter 6 presents the evaluation. Finally, Chapter 7 concludes this thesis and

discusses potential future work.
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Chapter 2

Background and Motivation

Modern data center workloads, deployed on dedicated machines, don’t share the sys-

tem with non-trusting applications. This relaxes their security requirements from the

operating system and provides an opportunity for specialization (§ 2.1.1). Further,

the high-performance requirements of some of today’s use cases necessitate special-

ization (§ 2.1.2). We briefly discuss the research efforts in the space of specialization

and their impact on general-purpose operating systems (§ 2.2). Then we discuss how

these specializable systems lack wide application and hardware compatibility, large

ecosystem of developers, tools, and utilities of general-purpose operating systems, and

how it is a significant impediment to wide adoption (§ 2.3). Finally, we discuss a way

forward and the motivation for this thesis (§ 2.4).

2.1 Operating System Specialization

With the advancement in virtualization technology and the advent of cloud computing

over the last decade, the way we deploy applications and what is required of the

operating systems is changing. General-purpose operating systems have not kept up

with these recent trends. This section discusses the modern data center workload

requirements and the challenges general-purpose operating systems face.
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2.1.1 Opportunity for Specialization

General-purpose operating systems are designed to allow multiple non-trusting ap-

plications to share the same system. They maintain strict isolation and separation

between different applications and also between applications and the kernel. To ex-

ecute any privileged operation, the kernel ensures that the application is allowed to

do that operation and then executes it on behalf of the applications. For example, to

send a buffer over the network, Linux ensures that the buffer exists in the memory

region designated for that application, uses specific paths to copy over that buffer to

its own memory, and then directs the NIC to transfer it.

In numerous modern use cases, data center workloads do not share the machine

with non-trusting workloads, e.g., Memcached [69] and Redis [85] are often deployed

on thousands of dedicated virtual machines. Infrastructure workloads, e.g., Ceph [96],

are usually deployed on dedicated bare-metal servers. These applications can signifi-

cantly benefit if the operating system could be specialized to the needs of the appli-

cation and allows optimizations like direct access to device buffers and zero-copy I/O

paths etc.

2.1.2 Need for Specialization

General-purpose operating systems were designed at a time when storage was backed

by slow disks and network bandwidth was limited. There was no need to develop

faster abstractions or APIs because the operating system was not the limiting factor.

Today, we have fast storage through highspeed drives and non-volatile memory, and

high bandwidth, low latency networks coupled with highspeed NICs, especially in

data centers. General-purpose operating systems and their APIs have emerged as the

new I/O bottlenecks. Studies have shown that the Linux API is not suited to the new

highspeed I/O devices [99]. The need for operating system specialization to remove
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performance bottlenecks is paramount.

Without specialization, operating systems are becoming prohibitively slow for

many performance-sensitive applications. These applications are now being adapted

to bypass the operating system and directly access hardware devices for faster I/O

through frameworks like DPDK [2] and SPDK [15]. Although the Linux community is

adding newer APIs of its own, e.g., io uring, kernel bypass techniques, and userspace

I/O stacks show higher performance improvements [67].

2.2 Specialization Research and its Impact

In response to the mismatch between the design of general-purpose operating systems

and the high-performance requirements of some applications and use cases, operating

system specialization has always been a focus of research. A large body of work

in extensible operating systems explored specialization, dating back to the 80s and

90s [92, 35, 27, 72]. Since these systems came before the advances in virtualization

technology, multiple applications had to share the same system. This meant that

extensible operating systems could not be totally specialized to a single application,

since the system still needed to ensure that application-specific specialization could

not compromise the security and isolation of other applications.

With the advancement in virtualization technologies, applications did not have

to share the machine. This led to operating system specialization focusing on a

single application; unikernel [63, 88, 54, 52, 76] and kernel bypass research [50, 43,

81, 44, 77, 37, 99]. Unikernels are specialized operating systems, often written from

scratch [63, 88, 54], designed according to the requirements of specific classes of

applications [52, 54, 88]. These systems show immense performance improvements

over, e.g., Linux [52, 54, 88] but have yet to see widespread adoption. Major chal-

lenges to their adoption include the lack the applications and hardware support,
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mature codebase, and ecosystem of tools, developers, and community of general-

purpose operating systems. Other research has focused on bypassing the general-

purpose operating systems [24, 79, 25] and accessing I/O devices directly [87, 24, 43]

to gain huge performance benefits. These kernel bypass techniques require special-

ized NICs [61, 81, 32, 46], offload security and isolation to hardware devices, and have

poor integration with existing applications. Moreover, many kernel bypass projects

are implemented as library operating systems [99, 25, 79, 81], and essentially have

the same challenges as other library operating systems.

Despite failing to achieve wide-scale adoption, specializable systems have im-

pacted the design of general-purpose operating systems. Extensible operating sys-

tems demonstrated that substantial performance gains are possible if applications

can insert extensions into the kernel instead of forcing all applications to use the

standard interfaces. Loadable modules and API extensions like io uring [4] in Linux

harken back to the era of extensible operating systems. Exokernel [35] pointed to the

gains possible by packet filters, i.e., allowing application code to be downloaded into

the operating system. Unikernels have shown how zero-copy networking [88], lock-

free implementations [52], and customized code paths [88] can provide high-speed

I/O to applications. Kernel bypass techniques have shown that if the complex state

machine of the general-purpose network stack can be bypassed, it results in huge

performance gains. eBPF now allows similar capabilities in Linux. These lessons

have pushed general-purpose operating systems like Linux to be more specializable,

especially if administrator privileges are used to optimize for a single application, e.g.,

through loadable modules, injecting application code into the kernel through eBPF,

and compile-time and run-time configurations. Although there’s a limit to this spe-

cialization, as general-purpose operating systems have to support a wide range of

applications, the impact of specialization points to the need for more.
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2.3 Problems with Specializable Systems

Specializable systems show performance improvements over general-purpose operat-

ing systems, but lack their application (§ 2.3.1) and hardware compatibility (§ 2.3.2)

and their ecosystem of developers, tools, and utilities (§ 2.3.3). This makes the large-

scale adoption of specializable systems hard. This section discusses these problems

in more detail.

2.3.1 Application support

General-purpose operating systems provide an application programming interface

(API), e.g., POSIX. Over the years, there have been many additions to the API

of operating systems like Linux, e.g., new system calls or different programming

models like io uring, but the Linux community has maintained backward compati-

bility, ensuring that applications written for Linux are always supported. This has

allowed a large body of applications, shared libraries, tools, and utilities, e.g., debug-

gers, and profilers, to be written for Linux. Linux also provides applications with

complex services, e.g., scheduling, timekeeping, threading, memory management, etc.

Applications don’t have to be programmed differently for various hardware devices;

instead, general-purpose operating systems abstract all the device idiosyncrasies be-

hind the same API and abstractions, such as sockets for networking and files for

storage. Further, applications don’t have to protect themselves against other non-

trusted applications on the same system; general-purpose operating systems ensure

applications’ isolation, security, and privacy.

Today’s specializable systems give up on this generality to provide custom code

paths for target applications. They either do not support standard APIs and services

or implement only the parts needed to run the target application. Most only support

a single process and, consequently, cannot run tools and utilities that the target
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application might require.

2.3.2 Hardware support

A wide range of infrastructure applications (e.g., storage systems, schedulers, net-

working toolkits) that are typically deployed bare-metal depend on the vast Hardware

Compatibility List (HCL) of Linux. In a post-Dennard scaling world, where perfor-

mance depends on taking advantage of the revolution of heterogeneous computing

(e.g., GPUs, TPUs, FPGAs), Linux enables the use of these accelerators. Linux

has support for different architectures, e.g., x86 64, arm, etc., and drivers for a wide

range of peripheral devices. This encourages developers to write their applications

for Linux, especially if they need support for a particular hardware device. This fur-

ther incentivizes hardware vendors to provide drivers and libraries for Linux for their

devices.

Specializable systems cannot support the entire HCL of general-purpose operating

systems; that would be a momentous engineering task, even if these systems had

large developer communities. Many only provide support for virtualized deployments.

Consequently, direct access to hardware and I/O devices or support for accelerators

is unavailable. Kernel bypass mechanisms also only support a small list of devices

that allow access from userspace and have vendor-supplied libraries.

2.3.3 Ecosystem

General-purpose operating systems like Linux have huge development communities

that keep integrating new features, fixing bugs, adding device drivers, and ensur-

ing application compatibility. The Linux community also keeps adding new features

to the Linux API, e.g., io uring [4] and eBPF [3], etc., which offer higher perfor-

mance benefits. Engineers, developers, and operators share the collective knowledge

of building, debugging, and performance-tuning applications on Linux. The massive
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body of compatible software and wide hardware compatibility list, along with a huge

developer community, has created a vast ecosystem around Linux that is extremely

important for today’s cloud infrastructure.

Many specializable systems are limited to only research endeavors or are unmain-

tained after a few years since they lack the developer communities of general-purpose

operating systems like Linux. Consequently, they have a limited or non-existent set

of tools, debuggers, and profilers required by applications.

2.4 A Path Forward

Specializable systems have acknowledged the problem of adoption, and many have

tried to address elements of it in different ways. Some have tried to offload all func-

tionality to a general-purpose operating system and only implemented performance-

critical code paths [88, 17]. Kernel bypass systems also only implement the data

plane and use Linux as the control plane, i.e., the application can use Linux for all

management and profiling tasks. Some systems even support features typically not

supported by specializable systems, e.g., fork [76, 100], multiprocessing [93], or bare

metal deployment [48, 88]. While these efforts have demonstrated that any one of the

limitations can be addressed, it will be a heroic task to address all of them. Moreover,

these systems lack the larger ecosystem of the general-purpose operating system, i.e.,

helper applications, tools, and utilities for logging, debugging, profiling, and manage-

ment tasks, and a community of developers and experienced system administrators.

On the contrary, general-purpose operating systems like Linux, although specializable

to a degree, are still general by design and cannot be fully specialized only to one

application.

There is a need to preserve Linux’s application and hardware compat-

ibility, battle-tested code base, and its ecosystem while also enabling the
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system to be more specialized to one single application by adopting opti-

mizations explored by specializable systems. UKL aims to explore this research

problem.
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Chapter 3

Related Work

Unikernel Linux (UKL) aims to integrate application-specific optimizations into

Linux, a general-purpose operating system. This allows applications to start with

Linux’s full hardware and software compatibility and its ecosystem of tools, utilities,

and developers. Optimizations explored by specialized systems can then be added to

Linux according to application needs. As optimizations are added to Linux, the target

set of applications those optimizations are appropriate for decreases but the perfor-

mance gains for that set increase. This generality-specialization spectrum between

Linux and highly specialized systems is central to UKL research. Earlier research

systems can be placed on this spectrum, and this thesis adopts many valuable lessons

from them. This chapter discusses the earlier research and how it has motivated and

impacted UKL.

In Section § 3.1, we discuss how Extensible operating systems of the 80s and

90s were designed to allow multiple non-trusting applications to securely customize

the behavior of the underlying operating system. Recent unikernels (Section § 3.2)

exploit the fact that applications don’t have to share the system with non-trusting

applications, and have explored specialized paths for application performance. Fi-

nally, in Section § 3.3, we discuss how kernel bypass systems provide great insights

into what parts of Linux are performance bottlenecks and how applications can ben-

efit from direct access to hardware devices. The advantages and drawbacks learned

from kernel bypass research in creating custom code paths inspire the deep optimiza-
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tions explored in UKL research. Below we discuss all of this previous work, with

descriptions of individual projects, and summarize the insights and lessons learned

from them.

3.1 Extensible Operating Systems

There has been a huge body of work in the 90s that explores extensible operating

systems [90]; these are systems where ”applications can interact with the OS through

additional extension interfaces” [34], i.e., these operating systems allow application

developers to extend the standard interface by adding custom high-performance code

to the kernel [92, 27]. Extensible operating systems were developed before the advent

of virtualization under the assumption that multiple non-trusting applications would

share the system. Under these assumptions, it was imperative to ensure that exten-

sions inserted into the operating system by one application did not affect another

application, the security and trust boundaries between applications were not compro-

mised, extensions inserted by an application could be reversed once that application

finished executing, and the operating system could arbitrate between conflicting ex-

tensions of different applications [89]. Solving these self-created problems meant that

the operating system could not be specialized to a single application, and led some

to argue the ”Extensible Kernels are Leading OS Research Astray” [34].

3.1.1 Vino [92]

Vino takes database management systems (DBMS) as the case study and argues

that services provided by the operating system might not be suited to application

needs, resulting in performance loss. Resource-intensive systems like DBMS often

avoid the operating system services and implement their own in userspace to improve

performance, e.g., avoiding the filesystem and writing to the raw disk directly. In

other cases, it is impossible to avoid operating system services, e.g., virtual memory
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management. This can lead to a doubling of effort, i.e., DBMS and the operating

system implementing their own custom policies.

To fix this mismatch between DBMS requirements and operating system services,

Vino makes application-specific tailoring of services a norm, not an exception. All

policies can be modified at the application’s discretion, and the operating system

arbitrates the policy of competing applications. Vino provides an extensible interface

for services with a default implementation that can be modified fully or partly by

applications. Extensions, or ”grafts”, are added dynamically to the kernel to avoid

privilege switch costs. Vino ensures safety through static type checking of grafts

and sandboxing them at runtime. Vino ensures fairness in resource utilization by

implementing timeouts. Many recent unikernels follow the same philosophy of cus-

tomizable services, e.g., Unikraft [54] and language level protection mechanisms, e.g.,

MirageOS [63]. UKL is also motivated by the disconnect between application require-

ments and Linux design for some use cases.

3.1.2 Cache Kernel [30]

Cache kernel argues that microkernels are not the solution to the limitations of mono-

lithic general-purpose operating systems. Although microkernels provide modularity,

reliability, and security improvements, they suffer from some major drawbacks; they

are slow due to privilege separation between servers and the kernel, bloated because

virtual memory management and support for different hardware devices have to be

part of the kernel, and non-extensible because they don’t provide sufficient control

over resource management to applications. This paper introduces Cache Kernel, a

minimal supervisor mode kernel that caches the OS objects, e.g., threads, address

spaces, etc., while the rest of the functionality is implemented in application kernels

in userspace. Cache kernel exports an interface to allow application kernels to load

and unload objects. Applications run on top of application kernels in the same or



21

separate address spaces. Application kernels reduce supervisor-level complexity and

allow application-level resource management and application control over exception

handling.

Application kernels load objects into the cache kernel that need to be executed.

When an application faults or traps, the cache kernel catches that and notifies or

gives control to the application kernel, providing application-level control of excep-

tion handling. A multiprocessor module (MPM) is a collection of nodes/CPUs and

their caches. One cache kernel runs on one MPM along with a resource management

server. Applications run on MPMs by getting resources from the resource manager.

Running multiple cache kernels provides parallelism and fault containment, i.e., if an

MPM/cache kernel fails, it does so independently of other MPMs or cache kernels.

This model allows applications to manage hardware, enables application-specific ex-

ception handling, and reduces the complexity of the supervisor. Recent systems like

Graphene [93] use similar ideas of providing multiprocessing by running multiple in-

stances of the system. The difference between Exokernel [35] and Cache kernel [30] is

philosophical. Cache kernel, unlike the Exokernel, imposes a hard boundary between

the supervisor and application kernels, and does not allow the inserting of packet

filters or safe user code into the kernel.

3.1.3 Spin [27]

Spin aims to provide high performance to performance-sensitive applications by al-

lowing safe extensions. Spin argues that the interface exported to the applications

should provide fine-grain access to system services and allow security control at the

same granularity. The communication between the extensions and the kernel should

be low latency. To ensure this, Spin dynamically loads extensions into kernel virtual

address space, which are accessible through simple procedure calls. Extensions are

written in a type-safe language to ensure safety, and further isolation is provided
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by using namespaces. Recent systems like MirageOS [63] and EbbRT [88] also use

language-level primitives for isolation and performance.

3.1.4 Exokernel [35]

The exokernel authors argue that operating systems limit the flexibility and perfor-

mance of applications because they export a rigid, non-extensible interface. They

hide information about the machine behind high-level abstractions, and their imple-

mentation cannot be replaced or modified. New abstractions can only be added as

awkward emulation on top of existing ones.

They argue that the lower the level of a primitive, the more efficient its implemen-

tation and the more latitude it grants higher-level abstractions. The ideal interface is

the hardware. Exokernel is a minimal kernel that securely multiplexes the hardware

resources and exports a very low-level interface to library operating systems, which

are specialized for a single application and implement all of the system services like

virtual memory and IPC etc. Although most of the functionality is implemented in

library operating systems, it might be performant at times to download code into the

kernel for execution, e.g., for packet filtering. Type-safe languages, static checking,

and sandboxing may be used to run downloaded code safely. The exokernel, which

runs at a higher privilege, can repossess all the resources of an uncooperative library

operating system.

Exokernel has been the architectural model of almost all recent unikernels and

library operating systems. Through the advancements in virtualization technology,

hypervisors, e.g., Xen [21] and Qemu-KVM [10, 5] are modern manifestations of the

Exokernel [35] and expose a very low-level machine interface. Unikernels [63, 52, 54,

66, 28, 55, 100] run on this exposed interface instead of being deployed bare metal.
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3.1.5 Scout [72]

The layered system model is fundamental to how operating systems have been struc-

tured and built and allows us to manage complexity, isolate failures and enhance

configurability. This research introduces the ‘path’ abstraction, which can be under-

stood as a logical channel through a multi-layered system over which I/O data flows.

Many operating system optimizations can be understood and explained through this

path abstraction. This is because paths expose and exploit non-local context, allow-

ing optimizations based on a global context. This global context is unavailable inside

any single layer and can improve resource allocation, scheduling decisions, and code

quality.

The contributions of this research include developing the Scout operating system

with an explicit path abstraction and demonstrating how this path abstraction leads

to advantages in resource allocation and scheduling. Examples of path-based opti-

mizations which depend on global context include zero copy paths, real-time schedul-

ing, and early decision-making. Examples of code quality improvements based on

path abstraction include compiler optimizations, e.g., constant folding and propaga-

tion, dead-code elimination, etc., and eliminating redundant work by merging per-

layer operations. Modern kernel bypass techniques [2, 15] follow a similar philosophy

by creating direct custom paths from applications to hardware devices. The entire

layered stack of traditional operating systems is replaced by a global context, leading

to performance benefits.

3.1.6 Flux OSkit [36]

This research notes that building an operating system is hard work. Before researchers

can work on ‘interesting’ components, they have to implement functionality like early

bootstrap or device initializations, etc. Adapting an existing operating system for
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research purposes can be complicated and full of dependencies.

Flux OSKit provides a framework to use a set of modularized library code with

simple well-documented interfaces for operating system construction, e.g., bootstrap-

ping, a POSIX environment, memory management, etc. Each library either has a

single goal, e.g., drivers, or a set of functions that can be used by other compo-

nents, e.g., a C library. All these components can optionally also be taken from other

well-developed operating systems, improving overall code quality and maturity. Flux

OSKit provides a kernel support library, which contains functionality to deal with

the underlying architecture, e.g., to initialize segmentation, page tables, install IDT

and traps, etc. Recent systems like Unikraft [54] and EbbRT [88] follow a similar

modular approach.

3.1.7 Protected Shared Libraries [20]

Protected Shared Libraries, or PSL, is based on the premise that the flexibility and

extensibility of a system depend on its modular design. Modularity can be achieved

through a microkernel design or language primitives, e.g., object-oriented design. But

these approaches have limitations; the modularity of microkernel design is limited to

user kernel separation, and language-based primitives require building a new operat-

ing system altogether.

PSL adopts a library model as opposed to a process model. In PSL, modularity

comes from passive protection domains through shared libraries, and efficiency comes

from cross-domain interactions with shared data. PSL is implemented by dividing

the address space into different regions, each with its own sharing permissions. When

switching between libraries, memory regions can be mapped and unmapped. The

linker and loader are responsible for dividing the code into separate sections and

loading them into the correct regions in memory, respectively. Shared libraries allow

zero-copy code, which is efficient and easier for the programmer to understand, and
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sharing of code allows the same symbols to be called from different domains and still

be resolved correctly. For protection, libraries can only be entered from secure entry

points, so the code and data of the previous library can be unmapped, and the code

and data of the new library can be mapped. Recent systems like Kylinx [100] also

take a similar approach by supporting dynamic libraries which can be updated at

runtime.

3.1.8 SLIC [39]

This work aims to add new efficient extensions to commodity operating systems

through interposition. Interposition means capturing events crossing an interface

boundary and forwarding those events to an extension. The extension can call the

original interface or do something new. Previous approaches do a from-scratch im-

plementation to create extensible systems, but the initial cost of implementation of

an operating system is prohibitive and requires many developers and a considerable

amount of time. Re-engineering available operating systems to be extensible is an-

other approach, but since operating systems are complex, it can quickly turn into

redesigning and reimplementing the operating system, which is, again, complex and

very costly.

This paper takes the third approach, i.e., adding functionality with minor modifi-

cations to the underlying operating system and no changes to the applications. Inter-

position can be done through two approaches; modifying jump tables or making direct

calls to kernel functions through binary rewriting. Extensions implemented in user

space can take advantage of standard development and debugging techniques and are

safe from malicious applications through process isolation. But user-level extensions

suffer from the overhead of boundary crossing and context switching. Kernel-level ex-

tensions can be invoked directly from the kernel and have better performance. These

extensions are protected from malicious applications by being in kernel space, but the
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kernel is not protected against malicious or faulty extensions. UKL takes lessons from

all the extensible systems but is very similar to SLIC in that it also tries to minimize

the code changes to an existing operating system. UKL takes it further by having

the option of modifying applications to exploit deeper shortcuts into the kernel.

3.1.9 K42 [53]

K42 was designed to address scalability and dynamic customization of operating

system functionality on multiprocessor machines. The project noted that, to achieve

scalability, it has to minimize sharing of operating system structures and instead

improve locality. To that end, K42 uses an object-oriented design; system services

consist of objects, i.e., process, file, etc., and instead of having global objects and

locks, each processor has its own instance of those objects. In order to improve

customizability, K42 moves kernel functionality into servers and application libraries,

encouraging custom code paths and avoiding common implementations.

Each processor has its own pool of memory from which processor-specific objects

are allocated. Any faults or client requests are handled at the same processor to

improve locality. This object-oriented design also allowed applications to replace

objects with new ones to provide better performance and code updates. This gave

a lot of flexibility, where objects could be replaced based on the requirements of the

applications at runtime, giving an adaptive nature to operating system design.

3.1.10 Discussion

Extensible operating systems were designed to integrate application-specific optimiza-

tions into general-purpose operating systems while maintaining security and isolation

guarantees between non-trusting workloads. Although extensible operating systems

have not been widely adopted, many lessons learned from them have made their way

into Linux and modern specializable systems. Linux provides specialization up to
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a degree by allowing loadable modules, newer APIs like io uring, and allowing cus-

tom code to be downloaded into the kernel, i.e., eBPF [3]. All of these mechanisms

essentially extend Linux’s interface.

Compared to extensible operating systems, modern unikernels § 3.2 and library

operating systems that exploit kernel bypass techniques § 3.3 solve a more straight-

forward problem. They also aim to provide workload-specific optimizations, but since

workloads don’t have to share machines, they don’t have the security and isolation re-

quirements of extensible operating systems. Modern specializable systems [88, 54, 63]

take inspiration from the optimizations explored by extensible operating systems, e.g.,

custom code paths, language level primitives, pushing functionality into application

libraries, etc.

3.2 Unikernels and Library Operating Systems

With the advent of virtualization and large-scale adoption of the cloud, the way

workloads were deployed changed. Modern workloads are often deployed on single

applications, single-user virtual machines. The relaxed security requirements due to

not having to share the machine with other workloads provide the opportunity to

optimize the performance of a single workload. Added to this, modern I/O-bound

workloads require specialized behavior. These factors have led to modern unikernels

and library operating systems that optimize for a specific workload. We divide library

operating systems or unikernels into Clean-slate systems, split-Design systems, and

incremental systems. Below is an explanation of each category and descriptions of a

representative set of projects from each.

3.2.1 Clean-Slate Systems

These are systems written from scratch or almost written from scratch, i.e., some

might use a minimal bare-bones kernel for bootstrapping, etc. A lot of clean-slate
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systems, e.g., ClickOS [66], MiniCache [55], and KylinX [100] etc., build on MiniOS,

which ships with Xen [21] and is a minimal kernel.

3.2.1.1 MirageOS [63]

MirageOS aims to build Unikernels and defines them as ”single-purpose appliances

that are compile-time specialized into standalone kernels, and sealed against modifi-

cation when deployed to a cloud platform.” Unikernels run applications written in

a high-level language, run on a hypervisor and provide a reduction in image size,

improved efficiency and security, and better performance. MirageOS is written in

OCaml and uses language-level and compiler-based techniques to create unikernels

that are more robust to vulnerabilities. Single-purpose image means fewer lines of

code, so the attack surface is minimized. After compilation, it is sealed to further

changes. MirageOS runs on top of Xen [21] hypervisor and builds on the MiniOS ker-

nel that ships with Xen. MirageOS showed that security and efficiency benefits come

at no performance degradation compared to traditional kernels and even improve per-

formance in some cases, e.g., thread creation. MirageOS does not support hardware

deployment and runs in virtualization over Xen. Applications must be rewritten for

MirageOS; consequently, it does not have a large ecosystem of developers, tools, and

operators.

3.2.1.2 EbbRT [88]

EbbRT aims to reduce the effort required to build application-specific library op-

erating systems without sacrificing performance or optimization. General-purpose

operating systems are not optimized for each application, and it is hard to customize

or construct an operating system for each app. To remedy this, EbbRT consists of

building blocks that can be extended, replaced, or discarded to create specialized sys-

tems. EbbRT allows hardware access with minimal abstraction due to a lightweight
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execution model. EbbRT allows functionality to be offloaded to a general-purpose

OS to ease engineering efforts. It has two modes of execution; native runtime - a

lightweight bootable library operating system runtime, and hosted runtime - a user-

level library that can be linked into a process of a general-purpose operating system.

Native runtime allows apps to be written directly to hardware and provides basic

functionality, i.e., clocks, networking, memory allocation, etc. Any unimplemented

and non-performance critical functionality can be offloaded to the hosted runtime,

allowing EbbRT applications to integrate with legacy software. EbbRT library oper-

ating systems show performance improvements compared to Linux, e.g., Memcached

implemented for EbbRT delivers more than two times higher throughput. EbbRT’s

behavior is fixed after the build and has to be recompiled to make changes.

3.2.1.3 HermitCore [58]

HermitCore is a unikernel created for High Performance Computing (HPC) applica-

tions. It brings the multikernel operating system design [22] to unikernels by running

a separate unikernel on each core and communicating through RPC over IP. Her-

mitCore implements only 17 syscalls. Any pre and post-processing is done through a

Linux instance running on one of the cores. Linux’s hotplugging mechanism separates

cores that boot up HermitCore unikernels. HermitCore allows behavior changes at

runtime, but for code changes, it has to be recompiled. HermitCore runs bare metal

but requires Linux for management. Applications have to be recompiled and linked

with modified libraries to use HermitCore.

3.2.1.4 HermiTux [76]

HermiTux aims to reduce the effort required to port applications to a unikernel set-

ting. It provides binary compatibility with existing Linux applications by supporting

the syscall instruction to achieve its goal. Further, through binary analysis and
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rewriting techniques, syscalls can be replaced by function calls in static binaries. For

applications that use dynamic libraries, those libraries can be replaced with unikernel-

aware libraries that already make function calls instead of syscalls. HermiTux uses

a custom hypervisor called uhyve, an extension of ukvm [97] hypervisor. It extends

HermitCore unikernel [58] to provide more syscall coverage, and its current prototype

provides 83 syscalls. HermiTux shows performance benefits, e.g., more than five times

lower syscall latency than Linux. HermiTux has to be recompiled for changes to man-

ifest and runs in virtualization, so it does not target hardware support. Applications

must be recompiled and linked with modified libraries to run on HermiTux.

3.2.1.5 Unikraft [54]

Unikraft aims to lower the difficulty of creating application-specific unikernels. It

has a modular design where all operating system services, e.g., memory allocator,

scheduler, etc., are implemented as micro-libraries. These micro-libraries can be

replaced, skipped, or extended as required. It uses compiler features such as link-time

optimization and dead-code elimination to achieve a smaller code size. It provides

POSIX compatibility but allows non-POSIX APIs for performance improvement. It

provides a syscall shim layer to translate syscalls made by libraries into function calls

at build time. Due to the required engineering effort, it only supports the commonly

used 146 syscalls. Unikraft performs 1.7 times to 2.7 times better than Linux for

Nginx, SQLite, and Redis. Unikraft unikernels must be recompiled to make any

changes and run in virtualization, so they don’t target hardware support. Unikraft

allows unmodified applications to run after recompilation and linking with modified

libraries. It also allows applications to be modified for more significant gains. It has

a thriving community of developers, but still extremely small compared to Linux.
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3.2.1.6 Libra [17]

Libra is a system based on the exokernel and library operating system model [35]. It

uses the Xen [21] hypervisor in the role of the exokernel, and Libra assumes the role

of the library operating system. Library operating system development is complex

due to the engineering effort required, so Libra only provides performance-critical

features and offloads unimplemented functionality to a Linux domain. This reduces

the cost of library operating system development. Libra ports a JAVA runtime so

that applications written in JAVA can use the performance advantage of a specialized

system. Libra needs to be rebuilt for changes to occur, and unmodified applications

can run with Libra after linking with modified libraries. It has no hardware support

and runs in virtualization.

3.2.1.7 Xax [31]

Xax notes that web apps enjoy host independence and isolation by running in a

browser and aims to provide the same for desktop applications with native code per-

formance. It creates a picoprocess abstraction, a lightweight process that executes

native code with a narrow syscall interface. Desktop applications run in the pico-

process, which also includes a platform abstraction layer or PAL. PAL provides an

operating system independent ABI to the applications and interfaces with the Xax

monitor, which mediates access to the outside world and runs in a browser envi-

ronment. The browser acts as a sandbox environment providing security, and PAL

provides operating system independence. The implementation details of Xax reveal

the difficulty in providing compatibility to applications in a restricted setting. Appli-

cations must be modified to remove unneeded dependencies, syscalls are rejected, or

error values returned as long as the application does not exit. Some syscalls are em-

ulated internally, and a few are provided through calls to the host. Understandably,
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libraries such as pthreads are not supported. Like many clean-slate systems, Xax does

not support runtime customization or codebase modifications. It runs in a browser, is

hardware-independent, and has no application compatibility, i.e., applications must

be rewritten.

3.2.1.8 ClickOS [66]

ClickOS takes the idea of operating system specialization and applies it towards a

specific use case, i.e., provide a high-performance, virtualized software middlebox

platform. Hardware-based middleboxes are expensive and difficult to manage, and

software-based middleboxes have performance limitations. ClickOS uses a software

router Click, along with the minimal library operating system MiniOS which ships

with Xen to create ClickOS. It runs virtualized on Xen, and the project also modifies

the Xen code base to optimize I/O for performance improvements. ClickOS has to

be recompiled to make changes, does not target broad application compatibility, and

only operates in virtualization.

3.2.1.9 OSv [52]

OSv is an operating system designed for cloud deployments. It’s based on the premise

that cloud deployments are single-application virtual machines, and a general-purpose

operating system designed to multiplex resources is not suitable. Also, support for

multiple devices is irrelevant to a virtualized operating system. OSv’s goals are to run

existing applications and frameworks like JVM faster than Linux, provide optional

faster non-POSIX interfaces and create small images that can boot quickly. OSv is

written from scratch in C++ and uses lock-free techniques, zero-copy mechanisms,

and paravirtualized drivers for performance improvement. OSv has to be recompiled

for changes to occur and runs only in virtualization, so it does not target hardware

compatibility. It is almost binary compatible with existing Linux applications which
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has allowed some adoption in cloud deployments.

3.2.1.10 KylinX [100]

KylinX is another point in the Xen/MiniOS-based unikernels area. It notes that

despite having excellent isolation and performance benefits, unikernels don’t have

a process like abstraction, which limits flexibility and applicability. Its process-like

VM (pVM) abstraction allows unikernels to call hypervisor-assisted fork to create

new unikernel instances. It allows applications running as unikernels to communicate

with each other through abstractions similar to interprocess communication. It will

enable the hypervisor to support dynamic libraries in unikernel address space with the

option of live library update. Kylinx allows modification in behavior and codebase at

runtime. It does not target hardware compatibility and runs only in virtualization,

and it also has no compatibility with existing Linux applications.

3.2.1.11 Discussion

Clean-slate systems have the freedom to design and optimize for performance. These

projects show substantial performance benefits over traditional operating systems,

e.g., Memcached for EbbRT shows more than two times higher throughput than

Linux. For performance, many clean-slate systems use paravirtualized drivers, e.g.,

Virtio [54, 88] for I/O.

Regarding implementation, clean-slate systems require considerable effort because

the operating system has to be built from scratch. As Ford et al. note [36] that ”any

realistic operating system, in order to be useful even for research, must include many

largely uninteresting elements such as boot loader code, kernel startup code, various

device drivers, kernel printf and malloc code, and a kernel debugger”. Clean-slate

systems must make a significant engineering effort to write the ‘uninteresting’ code

before the research contributions manifest. Consequently, these systems make some
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trade-offs. For instance, many only support a single processor model [63, 54] or mostly

run only in virtualization [63, 54, 76, 88]. Running in virtualization helps with device

drivers. Hypervisors expose simple virtual devices, which frees the developers from

writing drivers. Further, this gives clean-slate systems host independence, i.e., any

hypervisor running on any hardware only needs to expose a simple machine interface

for these systems to run. A few clean-slate systems are cognizant of the considerable

engineering effort required. Unikraft [54] and Ebbrt [88] have a modular design, so

building operating system appliances is easier. Developers can use different modules

together to build the required kernel. These modules can be replaced, removed, or

edited as needed. Further, EbbRT [88] allows offloading unimplemented functionality

to a general-purpose operating system. This means the developers can start with a

model where all I/O and other functionality are routed through a general-purpose

operating system and then implement the most performance-critical parts of the

system using EbbRT’s modular design. This iterative development lets developers

focus on the system’s most critical features first.

Having the freedom of not having legacy kernel code, clean-slate systems can

choose their level of compatibility with existing applications. MirageOS [63] offers

no compatibility; it requires applications to be written in OCaml. EbbRT [88] also

requires applications to be reimplemented or modified to take advantage of its event-

driven execution and low latency I/O code paths. Unikraft [54] allows API-level

compatibility with the help of modified C libraries. Further, Unikraft has the option

of non-POSIX-Linux API for better performance, i.e., applications can be modified

to use the new optimized API. Unikraft does not provide full API coverage yet (146

syscalls [54]), but providing the rest of the syscalls is an engineering effort and not a

design limitation. HermiTux [76] goes all the way and provides full binary compati-

bility for Linux applications. Further, it provides binary rewriting for static binaries
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and C library replacement for dynamic binaries to use the faster function call mecha-

nism instead of the syscalls. HermiTux also only supports partial API coverage, i.e.,

83 syscalls [76].

Clean-slate systems are primarily run only in virtualization. This allows them to

offload security and isolation to the hypervisor. Further, hardware-based virtualiza-

tion means these systems are isolated from the host. MirageOS [63] uses language-

level safety through OCaml, a high-level statically typed language. This makes it

robust to vulnerabilities. Further, MirageOS [63] appliances are secure by design.

Their code and behavior can only be modified at build time, not run time.

Operating systems need decades to build communities for development, support,

and bug fixes. No matter how specialized or performant, new operating systems

cannot match long-running projects like Linux in this regard. Clean-slate systems

have the biggest disadvantage here, having little or no developer support and a new

codebase that is not battle-tested.

Clean-slate systems are designed to explore application-specific optimizations, e.g.,

MirageOS [63] and EbbRT [88] force the developers to use the optimized execution

model and internal APIs fully since applications have to be rewritten for them from

scratch. EbbRT [88] and Unikraft [54] help per application optimizations further

through their modular design. Modules can be replaced based on application needs

or developed just for a single application without modifying the rest of the system.

Clean-slate systems have the advantage of starting from scratch and designing the

system without legacy baggage. These systems can achieve diverse goals, e.g., perfor-

mance, language level safety, minimalism, small memory footprint, etc. Nevertheless,

the factors holding them back are massive development effort, small or non-existent

developer community, and lack of battle-tested codebase.
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3.2.2 Split-Design Systems

These systems split a general-purpose operating system and use its architecture-

independent parts as a library in userspace. Since this library cannot be used without

the architecture-dependent code, these systems write new code to act as glue between

the different parts and to emulate the personality and functionality of the original

general-purpose operating system.

3.2.2.1 Linux Kernel Library (LKL) [83]

Linux Kernel Library or LKL was created to allow applications to reuse Linux code

by porting architecture-independent parts of the Linux kernel into a userspace library

that can then be linked with the application. LKL requires memory management,

timers, and support for threading, interrupts, and idling from the underlying host.

Glue code is also necessary to make all the different parts of LKL run. LKL does

not contain architecture-specific code so that it can run on different host operating

systems. Applications need to be ported to use LKL code, so only a few data points

are available. An FTP server implemented in userspace using LKL shows comparable

performance to an FTP server using native services. LKL does not target hardware

compatibility (designed to run in userspace). LKL has remained unmaintained for

years now.

3.2.2.2 Drawbridge [80]

Drawbridge aims to create a library operating system from the Windows operating

system. Its goal is not performance, but security, host independence, and easy mi-

gration. Drawbridge imports parts of the Windows operating system and emulates

the rest of the functionality to provide the expected Windows personality and inter-

face to applications. A platform adaptation layer is also provided, which implements

the functionality required by the library operating system and translates the library
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operating system ABI to host ABI. A security monitor lives in the host, virtualizing

host resources such as threading, virtual memory, filesystem, and networking support

for the library operating system while maintaining a separation between the library

operating system and the host. Communication with the applications running inside

the library operating system happens through a remote desktop protocol. Drawbridge

allows unmodified applications to run with comparable performance to native execu-

tion. It does not target hardware compatibility and is a proprietary solution, so the

actual state of its support and ecosystem is unknown.

3.2.2.3 Rump Kernel [49]

Rump kernel is an effort to allow NetBSD drivers to run in userspace. The project

notes that driver development can lead to an unstable system. Hence, drivers need

to be developed and run in a protected environment. It introduces the idea of partial

paravirtualization, hence the name ‘Rump’. It only implements the glue code required

to run the drivers in userspace, and requests services like scheduling, threading, mem-

ory allocation, etc., from the host underneath. Rump has a very fluid design. Each

driver can exist as a separate server, giving a microkernel personality. Or all the

drivers can exist together with the application in a single server, providing a library

operating system personality or any combination between these extremes. Rump al-

lows applications to exist on a separate and/or the same host. Further, Rump allows

the reimplementation of the host-specific layer so that it can run on a general-purpose

OS as a process or Xen as a paravirtualized system.

Rumprun unikernel [48] is the continuation of the Rump kernel project. It al-

lows Rump kernels to run on KVM or bare-metal. As noted earlier, Rump kernels

have a host-dependent layer to interact with the host. Rumprun provides a small

kernel, written from scratch, to live beneath that host-dependent layer. It is aptly

named ‘bare metal kernel’ or bmk. Bmk provides Rump kernels with the required
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bootstrapping code, threading support, interrupts, page-level memory management,

etc. It only supports cooperative scheduling and does not support virtual memory or

signals.

Rump allows binary compatibility and must be recompiled for changes to occur.

It has been used in many other research systems. The community around Rump is

mainly academic and research-focused, but significant additions to Rump have not

been made in years.

3.2.2.4 LibrettOS [75]

LibrettOS combines microkernel and library operating system principles to achieve

performance and intra-kernel isolation. LibrettOS builds on top of Rumprun [48] and

uses Xen [21] as the hypervisor. Performance-sensitive applications are run in a library

operating system fashion, with direct access to virtualized hardware through SR-IOV

and IOMMU support. Other applications which are not performance sensitive or

cannot be allowed direct access to hardware due to security concerns use microkernel-

style servers. LibrettOS uses NetBSD drivers for servers, which run atop Rumprun in

separate Xen domains. The compatibility and ecosystem of LibrettOS are the same

as Rump’s.

3.2.2.5 Graphene [93]

Graphene is the next step in the Drawbridge [80] and picoprocess [31] ecosystem. It

notes that modern applications comprise multiple processes, but library operating

systems run only a single process. So Graphene is a Linux-compatible library op-

erating system where multiple library operating systems collaboratively implement

the POSIX abstraction, yet appear to the application as a single operating system.

Graphene library operating system is based on Drawbridge [80] and runs on top of a

platform abstraction layer (PAL). Functionality is emulated in the library operating
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system, so only a tiny number of syscalls go through the PAL to the host kernel. A

security monitor secures this interface. Library operating system instances commu-

nicate and coordinate shared state through RPC. Reference monitors can sandbox

different library operating system instances together, providing isolation to applica-

tions. Graphene has to be recompiled for changes to occur. It runs on top of a

general-purpose OS, and unmodified applications can run on top of it after a re-

compilation and linking with modified libraries. There is not a huge ecosystem and

community around Graphene, but it has been used in other research systems [94].

3.2.2.6 Discussion

Split-Design systems struggle with performance issues. Unlike traditional monolithic

operating systems, split-Design systems operate in user mode and pay the ring tran-

sition cost for calls to the host. Further, these systems implement glue code to allow

imported parts of the general-purpose operating system to function. This glue code is

written for compatibility and emulation, not for performance, e.g., Drawbridge, LKL,

etc. Finally, split-Design systems depend on services from the host, e.g., threading

or scheduling, etc. Any functionality split-Design systems provide will always include

the latency already added by the host. This poses enormous performance challenges

for split-Design systems. Rump kernels are a little more nuanced. They have modes

where no general-purpose host operating system is involved, i.e., Rumprun unikernel.

Rumprun has a small, bare-bones kernel to act as the host. It is geared towards pro-

viding the bare minimum functionality, not necessarily performance. So performance-

wise, split-Design systems lag behind general-purpose operating systems.

These systems also have a considerable implementation effort involved to emulate

the functionality and personality of the original operating system. On top of that,

other goals, e.g., security, host independence, etc., require still more new code to be

written. Drawbridge [80] implements a security monitor which resides on the host
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operating system and virtualizes resources for the library operating system. Rump

kernels [49] have multiple layers, e.g., the library that provides platform abstraction or

the minimal kernel layer that allows Rumprun unikernel [48] to run bare metal or on

KVM, etc. Similarly, LKL [83] also requires a lot of new code to allow imported parts

of the Linux kernel to be useful as a library. Split-Design systems must implement the

platform abstraction layer for each underlying platform to achieve host independence.

Regarding compatibility, split-Design systems are highly compatible with existing

applications. Drawbridge [80] has binary compatibility with Windows applications,

primarily because it presents itself as a Windows-like operating system with the same

personality, not as a library. Rump [49] allows API-level compatibility with modifi-

cations to the C library. Applications can be modified to use internal APIs for better

performance. Since LKL [83] is a library, applications and other user libraries need

to be modified to use its functionality instead of a host kernel’s.

Split-Design systems are mostly not built for a machine interface. It is harder to

secure custom interfaces like the syscall interface compared to a machine interface.

Drawbridge [80] runs on top of a host operating system on a syscall interface. Its

security monitor also lives on the host. In this deployment, the host becomes part of

the trusted computing base and isolates multiple instances of Drawbridge. In another

deployment, Drawbridge can run on the Hyper-V hypervisor and make hypercalls to

the host. That is a more secure deployment, especially if hardware virtualization is

available. Rump [49] can be deployed in different ways; when deployed as a process,

the isolation from other processes is offloaded to the host operating system. The

security guarantees are much more substantial when deployed on top of Xen, KVM,

or bare metal.

Although split-Design systems inherit the codebase from general-purpose oper-

ating systems, they don’t inherit the community because split-Design systems differ
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significantly from their original donor operating systems. They contain new glue code

for emulation and connecting different imported parts. Having little or no developer

support means the new parts of their codebase are not battle-tested.

General optimizations and speed-ups are not usually available to split-Design sys-

tems because they run on a general-purpose operating system in user mode. These

easy gains are possible in other deployments where a general-purpose operating sys-

tem is not involved, e.g., a split-Design system running on a hypervisor or bare metal.

Rump [49] allows per-application optimizations due to the modular design it shares

with its donor operating system NetBSD.

Split-Design systems result from the exokernel movement [35], where a library

operating system runs on an interface exposed by the exokernel. The split-Design

systems require a rich interface, e.g., threading support or memory management,

which is contrary to the Exokernel idea that an ideal interface is a machine interface

or one that can be as low and as minimal as possible. In this sense, clean-slate

systems that run in virtualization better represent the Exokernel model, with the

hypervisor acting as the exokernel. Split-Design systems also suffer in performance

and functionality because the donor operating systems are not designed to be split

down the middle. Those monolithic operating systems have huge dependencies on

the low-level architecture-dependent code and other parts of the system. It is almost

impossible to cut out self-contained pieces. That is why split-Design systems must

write massive amounts of glue code to get a functional system out of the imported

parts. Rump [49] fares better mainly because NetBSD is already a modular operating

system with fewer dependencies across the different parts. This has enabled Rump

kernels to be used in other projects as well [75, 1].

Split design systems try to import kernel code to userspace and end up creating

a huge implementation effort and little performance gains. UKL, on the other hand,
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imports application code into the kernel and presents a cleaner design and large

performance benefits.

3.2.3 Incremental Systems

These systems patch a general-purpose operating system to expose internal interfaces

to applications. These systems take an incremental approach to specialization while

retaining the benefits of having a general-purpose operating system.

3.2.3.1 X-containers [91]

X-containers project proposes deploying ”Single Concern” containers in a library

operating system setting on top of an exokernel which provides isolation. It uses

Xen [21] as the exokernel and Linux as the library operating system. For perfor-

mance, applications run at the same privilege level as the Linux library operating

system. Further, the Linux library operating system provides binary compatibility

and multiprocessing. Xen exokernel gives virtual machine-based isolation and ease

of deployment without requiring hardware virtualization support. Despite being a

general-purpose operating system, this work notes that Linux is highly customizable

through build time config options and boot parameters. It creates a small and highly

optimized Linux library operating system. It modifies Xen so that the Linux library

operating system and its user processes run at the same privilege level. Any syscalls

made are trapped by Xen and then forwarded to the library operating system to

achieve binary compatibility. Further, binary rewriting allows using direct function

calls instead of syscalls. X-containers show significant performance improvements

compared to Docker and other container solutions for cloud workloads, e.g., Mem-

cached. X-containers allows behavior and codebase changes at runtime by virtue of

being based on Linux and offers full binary compatibility. X-Containers has evolved

into a proprietary solution [14].
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3.2.3.2 Kernel Mode Linux (KML) [64]

Kernel Mode Linux (KML) is an out-of-tree patch of the Linux kernel (the latest patch

was for kernel version 4.0, which is more than seven years old). It was motivated by

slow kernel entry/exit mechanisms, i.e., int80 and sysenter/sysexit. KML runs user

applications at the kernel privilege level so that applications can make a function

call to the kernel entry point. The gains of this feature have decreased over time

as faster syscall and sysret instructions have been introduced. Also, KML belonged

to an era of systems where single application deployments were not very common,

so it justifiably talks about security concerns of running applications at the highest

privilege level. It provides a typed assembly language (TAL) to statically analyze

the application’s instructions to ensure it is not misbehaving. KML has lived on in

specialized systems lore and has been used recently again by Lupine. KML allows

complete hardware and application binary compatibility by being a patch of Linux.

However, it has not seen any development after Linux v 4.0 due to the original patch

not making it into the mainline and a lack of community to keep working on it.

3.2.3.3 Lupine Linux [56]

Lupine Linux aims to build a unikernel-like Linux kernel through configurations and

syscall overhead elimination. Lupine builds on top of Kernel Mode Linux (KML)

[64]. Lupine Linux [56] notes that Linux is highly customizable despite being the

giant monolith general-purpose operating system. It meticulously prunes thousands of

Linux config options, choosing just over 300 options to create an extremely lightweight

and optimized Linux kernel. When run on a lightweight monitor like uhyve [76] or

solo5 [13], it gives memory and boot times comparable to specialized unikernels.

Further, Lupine uses the KML [64] patch to eliminate the syscall overhead. Lupine

shows up to 40% improvement in syscall latency, but this gets amortized to only a 4%
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improvement in macrobenchmarks. Lupine further discusses how the config options

can be modified to move away from a bare-bones unikernel personality that runs a

single application and only runs on a single processor etc., towards a more general-

purpose operating system personality. Lupine inherits all the traits of KML. It also

does not have any community around it, and because KML was only developed for

Linux v 4.0 at the latest, that’s the Linux version Lupine supports.

3.2.3.4 Discussion

Incremental systems have some performance benefits compared to the general-purpose

operating systems they are based on. X-containers [91] and Lupine [56] avoid the

ring transition overhead by running applications in kernel mode and making function

calls instead of syscalls. X-containers gets 27x better syscall latency than Docker for

selected syscalls but does not show the results of increasing the payload for those

syscalls. Lupine gets 40x better syscall latency than Linux for extremely small re-

quests. For Lupine, these benefits exponentially decrease as the syscall payload in-

creases.

The least amount of implementation is required in incremental systems. These

systems do not aim to fundamentally modify the execution model or structure of the

general-purpose operating system. The implementation primarily focuses on exposing

the kernel API for function calls instead of syscalls. Lupine [56], which uses the KML

[64] patch of the Linux kernel, only exposes the syscall entry points. It modifies a C

library to make function calls to those entry points instead of syscalls. X-containers

modifies both Linux and Xen to allow applications and Linux kernel to operate in

kernel mode.

Incremental systems provide a very high degree of compatibility with the least

effort. X-containers [91] is fully binary compatible with existing Linux applications

because syscalls are trapped by Xen and forwarded to the guest Linux kernel. It
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allows binary rewriting as well. Lupine [56] only offers API-level compatibility with

modifications to the C library.

These systems are interesting because they allow multiple processes to co-exist on

the same operating system. Although Lupine [56] restricts itself to a single process as a

design decision, the underlying KML [64] patch allows co-running multiple processes.

X-containers [91] allows multiple processes and decouples security and isolation from

the process abstraction. The same idea can be applied to incremental systems in

general, i.e., multiple trusting processes can be deployed together, e.g., a primary

workload and helper utilities for logging and profiling, etc. This way, the isolation

can be done externally, e.g., at the hypervisor level in the case of both Lupine and

X-containers.

Operating systems need decades to build communities for development, support,

and bug fixes. No matter how specialized or performant, new operating systems

cannot match long-running projects like Linux in this regard, resulting in small or non-

existent developer communities. This is one of the more significant obstacles in the

widespread adoption of operating systems; production deployments choose operating

systems backed by large developer communities instead of betting on a promising new

operating system but almost no developer support. Lack of production deployment

means the code is not as well tested as Linux.

Incremental systems, in theory, have an easier route to inheriting the community

from Linux; although KML [64] and, by extension, Lupine [56], and X-containers [91]

modify Linux, they don’t do it as significantly as split-Design systems, e.g., LKL [83].

With the help of the Linux developer community, these patches can potentially be

merged upstream, but in reality, there has been no upstream activity on these patches

for years, or they were never submitted for review in the first place.

Incremental systems have the most potential for compatibility and low engineering



46

effort. These systems only expose the external kernel API to applications but can

potentially do further specialization. These systems do not have to worry about device

drivers because they inherit them from the base operating system they modify, and

these systems already support a POSIX-Linux environment. It is hard for these

systems to make massive design and code changes and not risk losing application

compatibility. Getting performance speed-ups is more challenging for these systems

because they don’t link applications and the kernel together, so they can’t explore

deep application-specific optimizations.

3.3 Kernel Bypass

The availability of hardware, and related libraries, that allow applications direct ac-

cess to low-level I/O buffers, and extremely high-speed I/O requirements of some

modern workloads have led to kernel bypass research. General-purpose operating

systems like Linux don’t provide the performance and isolation guarantees required

in some cases; key-value stores have microsecond-scale tail latency requirements, and

the performance of some workloads drops due to interference by sharing resources

with co-running applications. Kernel bypass techniques have addressed these issues

by splitting the workloads [25, 79] into the performance-critical data plane (fast-path)

and the control plane (slow-path), which includes setup, management, and clean-up

operations, etc. The general-purpose operating system services the slow path, and the

fast path is customized to the workload requirements for high performance through

kernel bypass. Using the general-purpose operating system for non-performance crit-

ical paths eases the engineering burden and provides some level of compatibility with

the existing ecosystem. The specialized performance-critical paths often require spe-

cialized hardware and libraries, or new code needs to be inserted into the general-

purpose operating system, e.g., kernel modules in Linux.
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Some earlier works [87, 25] argue that hardware-based kernel bypass techniques

have some drawbacks, e.g., the inherent inflexibility of requiring special hardware, lack

of security guarantees as isolation and protection are offloaded to hardware, and poor

integration with existing applications. Works that have used commodity hardware

either allow userspace network stacks direct access to NIC buffers or insert special

modules into Linux that provide applications with specialized APIs and batch packet

processing. Examples include Chronos [50], netmap [87], mTCP [43], Sandstorm [65],

Dune [24] and Snap [67]. Similarly, UKL does not require any specialized hardware.

Speed-ups provided by specialized hardware [41] are orthogonal to UKL design.

Hardware-based kernel bypass mechanisms either depend on DPDK and require

modern specialized DPDK-enabled NICs or depend on RDMA and require specialized

Inifiniband NICs. DPDK [2] provides userspace libraries for packet processing, by-

passing the Linux network stack. Examples of works that depend on DPDK, or those

which don’t require it but have optional support for it, include mTCP [43], IX [25],

MICA [61], ZygOS [81], Shinjuku [44], Shenango [77], TAS [51], eRPC [45], Cal-

adan [37] and Demikernel [99], etc. RDMA-enabled specialized NICs allow kernel by-

pass and provide the required userspace libraries, e.g., FaRM [32], HERD [46], RAM-

Cloud [78], FaSST [47], LITE [95], and eRPC [45], etc. A lot of previous work has used

RDMA to build abstractions to improve the performance of RPCs [32, 46, 47, 95],

etc.

The unpredictable and uncontrolled tail latency offered by Linux [50] has been

the motivation for many research projects. These projects use Linux as a control

plane and bypass its network stack for performance-critical paths or the data plane.

Works that target Linux’s tail latency issues include Chronos [50], MICA [61], and Zy-

gOS [81], etc. These works have implemented their own network stacks in userspace

and show significant performance benefits over Linux. UKL also takes motivation
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from these research works and shows improvement in tail latency for cloud applica-

tions, i.e., Redis. Further, the deep shortcuts explored in UKL, where applications

can reach into the Linux network stack and call functions directly, can be seen as a

kernel bypass but within the kernel.

Previous research has also used kernel bypass mechanisms to show improvement

in specific use cases. Some works have focused on TCP performance in Linux and

bypassed Linux’s TCP stack to show performance benefits. mTCP [43] argues that

short TCP connections are becoming pervasive in cloud settings, but they suffer from

high system call overhead and latency issues caused by the Linux network stack.

TAS [51] further argues that assuming a data center setting can greatly simplify the

TCP stack and provide performance benefits over Linux. Other works like MICA [61]

and HERD [46] focus on using kernel bypass to improve the performance of key-value

stores. Sandstorm [65] argues that kernel bypass mechanisms can provide further

performance benefits if they are designed to optimize for application requirements.

Other works like FaRM [32] and RAMCloud [78] use kernel bypass to fully benefit

from the cheap and widely available DRAM to accelerate message passing and build a

memory-based storage system, respectively. eRPC [45] and FaSST [47] improve RPC

performance using kernel bypass. All of these systems help UKL make the point that

each application and workload has its own specific optimizations, and Linux should be

equipped to provide the developers with a way of integrating those application-specific

optimizations.

Linux kernel schedulers cannot provide microsecond-scale latencies [44, 81]. So

systems like ZygOS [81], Shinjuku [44], Shenango [77] and Caladan [37] have focused

on bypassing the Linux kernel scheduler and implemented userspace schedulers with

policies which allow microsecond-scale tail latency guarantees. This work is highly

relevant to UKL since it provides optimizations that can be integrated into UKL to
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provide interference reduction [37] and microsecond-scale tail latency guarantees [81].

A run-to-completion optimization currently explored in UKL, which allows bypassing

the Linux scheduling for performance-critical paths and shows tail latency improve-

ment, also falls in this research area.

Recently, projects like Demikernel [99] and PIX [42] aim to provide usable APIs

and abstractions for hard-to-use kernel bypass mechanisms. This shows that kernel

bypass research is coming the full circle, i.e., arguing that existing APIs are too slow

because they abstract away the hardware, bypassing those APIs for direct hardware

access, realizing that directly programming individual devices is tedious and non-

scalable, providing new APIs that abstract hardware devices for ease of development.

This greatly motivates UKL research because, through UKL, developers can keep

using the existing APIs and gain performance benefits or explore newer APIs by

calling functions deep into the kernel and bypassing the complex state machine of the

Linux network stack.

3.4 Generality-Specialization Spectrum

To rectify the disconnect between application requirements and operating system

design, it is helpful to take a bird’s eye view of the research space and find the

common theme between general-purpose operating systems and specializable systems.

There exists a generality-specialization spectrum between general-purpose operating

systems and specializable systems. General-purpose operating systems like Linux lie

at the generality end of this spectrum where the top priority is preserving application

and hardware compatibility, and the ecosystem of tools, utilities, and community,

while specialized systems lie at the other end where the top priority is to optimize

performance.

At the general-purpose end of this spectrum, properties such as application com-
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patibility and hardware support are the main priority. Other features are by-products

of this compatibility, e.g., the interdependence of application and shared libraries is

only possible if there is some standardized API, e.g., the Linux API. Even software

compiled earlier can run on newer systems because Linux ensures application binary

interface or ABI compatibility. A massive list of devices is supported, and hardware

vendors can distribute compiled binaries of userspace libraries and kernel modules,

and they just work without the need for recompilation. The vast community of appli-

cation programmers and Linux kernel development community has been growing over

the years. They can provide support, reason about bugs, and add new features be-

cause they agree on the standards of compatibility. After compatibility, performance

is the second priority. A lot of effort is spent on making features perform better, but

never at the expense of breaking API or ABI compatibility. Linus Torvalds pressed

on this issue when he said, ”If a change results in user programs breaking, it’s a bug

in the kernel.” [11]

A closer look at general-purpose operating systems like Linux will show that it is a

specializable system in itself, albeit the range of specialization is limited. Linux allows

loadable modules, custom code injection into the kernel through eBPF, and compile-

time and runtime configurability. But since it is a general-purpose operating system

designed to concurrently support multiple applications that might have conflicting

goals, it cannot be entirely specialized for a single application. Linux can be imagined

as occupying a small range on the generality-specialization spectrum, lying at the

generality end but able to oscillate a little, and provide some specialization when

fully pushed towards the specialization end of its range.

If one starts moving on this spectrum towards the specialization end, other sys-

tems begin to appear which are also occupying small portions of this spectrum, e.g.,

systems that harvest architecture-independent code from the operating systems, e.g.,
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LKL [83]. LKL packages some Linux kernel code as a library to which applications

can link. The final binary still executes in userspace, as it requires all the services,

e.g., threading, timekeeping, and memory management, from the underlying general-

purpose operating system. Some operations serviced by the LKL library might be

faster since the system call overhead is avoided. Linux provides the environment for

this to execute, but one cannot expect the Linux community to update the LKL li-

brary every time a new kernel version comes out because the LKL library provides a

non-standard function call API instead of a system call API promised by Linux.

Also on this spectrum are systems like KML [64] and Lupine [56] etc. These

systems break the compatibility by executing applications at the kernel privilege level

through a non-standard function call API. Otherwise, these systems try to preserve

the rest of the compatibility of Linux. As a result, Linux applications are compatible

with these systems, but there are no security guarantees anymore, and the Linux

kernel development community will not provide support to ensure isolation from non-

trusting applications which execute at higher privilege. These systems trade off some

compatibility for some performance gains.

Kernel bypass frameworks [99] are also a great example of workload-specific op-

timization. The library operating systems that exploit kernel bypass mechanisms

require Linux to set up the device and execute the application in userspace. Once

that is done, the application, programmed to a non-standard API, accesses the device

directly. Linux does not support this mode of operation as it breaks compatibility,

and the Linux kernel development community does not provide support for this. Ker-

nel bypass systems trade-off a lot of compatibility, and if applications can afford this

loss of compatibility, the performance gains are incredibly high.

Further along this spectrum are systems that trade off more and more of the

compatibility of Linux to gain extremely high performance. Clean slate unikernels,
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which lie on the performance end of this spectrum, do precisely that. Some systems

provide full or almost full Linux ABI compatibilty [52, 76] so Linux applications

can run. However, if support is required, these systems have a very small or nearly

non-existent community. Further, some systems, e.g., Mirage [63] and EbbRT [88],

don’t even provide API compatibility, and applications must be rewritten for them.

Significant performance advantages over Linux replace the loss of compatibility in

these systems. Clean-slate systems occupy a small range on the spectrum, lying at

the specialization end.

Given the generality-specialization spectrum framing of this research space, all

the systems discussed fall into small regions on this spectrum because they were not

originally designed with this spectrum in mind. The primary motivation for many

of these systems was to get performance advantages over Linux. In hindsight, their

adoption has been limited because they lack application and hardware compatibility

and the vast ecosystem of general-purpose operating systems.

While some systems explicitly target just one class of workload [55, 66], many

envision covering a broad set of applications and being specialized to any target

application. Even for systems that have gone past a research prototype [52, 54] used

by just the researchers that developed it, they have ended up occupying just a small

range on the generality-specialization spectrum, suited to solving one task for specific

applications and hardware. Preferably, an operating system needs to occupy a broad

range; ideally, the entire spectrum, i.e., support many applications and be able to

specialize to them. Specializable systems are in a catch-22 situation, they have to

be successful before they can build the community, which adds features needed to

occupy a broad part of the spectrum, but without already occupying a broad part of

the spectrum, they can’t build the community.

This generality-specialziation spectrum based frmaing of the problem enables us
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to compile a list of goals for this research and then design the system to achieve those

goals; it should ideally start at the general-purpose end of this spectrum and naturally

inherit application and hardware compatibilty, ecosystem, and large community and,

according to the application’s needs, move along this specialization to optimize for

performance. Along the way to specialization, as optimizations are added, the system

will become specialized to a smaller set of applications and hardware, but, hopefully,

retain the community. Unlike previous systems, where the designers of those systems

decided which features of the general purpose operating systems were essential for

applications and thus needed to be kept and what were not, application developers

should make this decision according to their individual needs. Instead of either fully

adopting a new system or sticking with Linux, the application developers should pick

and choose the unique optimizations they prefer and apply them on top of Linux.

The design of UKL is an attempt to achieve these goals.
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Chapter 4

Architecture

In § 4.1, we describe UKL’s goals and how they impact UKL’s architecture. Sec-

tion 4.2.1 describes the design of the UKL base model, which sits at the general

purpose end of the generality-specialization spectrum. The optimizations that can be

applied on top of this model to move the system towards the specialization end are

discussed in § 4.2.2.

4.1 Goals

UKL explores the generality-specialization spectrum between Linux and specializable

systems. The goal is to start at the generality end with Linux and its support for

a broad class of applications and hardware and move towards the specialization end

of the spectrum by adding optimizations. As we move along this spectrum, we go

towards a highly optimized unikernel which may be specialized down to the specifics

of a single application and platform. In doing this, we aim to enable optimizations

(§ 4.1.1) demonstrated by earlier systems while preserving an application execution

environment’s broad application support (§ 4.1.2), broad hardware support (§ 4.1.3),

and the ecosystem of developers, tools, and operators (§ 4.1.4). We describe each of

these four goals.
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4.1.1 Optimizations

At the generality end of the spectrum (§ 3.4), general-purpose operating systems like

Linux are limited in their range of optimizations. This is because, unlike many spe-

cialized systems (§ 3.2.1), they do not link the application and kernel code together

and execute them in different address spaces. This limits them to optimizations like

loadable modules, inserting application code into the kernel through eBPF [3], and

compile-time and run-time configurability. Even incrementally specialized systems

like X-containers (§ 3.2.3.1) and Lupine Linux (§ 3.2.3.3) only leverage executing ap-

plications in kernel privilege mode and the compile time configurability of Linux to

produce lightweight binaries. UKL needs to remove the separation between applica-

tion and kernel code to explore further optimizations.

In order to be able to move across the generality-specialization spectrum (§ 3.4),

starting with a general-purpose operating system and adding optimizations to move

towards a highly specialized system, it is necessary to link application and kernel

code together and execute in a single address space. Through this design, UKL will

be able to explore optimizations that previous specialized systems have adopted, like

the following:

• avoiding ring transition overheads (§§ 3.2.1.4 and 3.2.1.5)

• exploiting the shared address space to pass pointers rather than copying data

(§ 3.2.1.2)

• exploiting fine-grained control over scheduling decisions, e.g., deferring preemp-

tion in latency-sensitive routines (§ 3.2.1.9)

• enabling interrupts to be efficiently dispatched to the application code (§ 3.2.1.2)

• exploiting knowledge of the application to remove code that is never used

(§ 3.2.1.1)
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• employing kernel-level mechanisms to optimize locking and memory manage-

ment (§ 3.2.1.9), for instance, by using Read-Copy-Update (RCU) [68], per-

processor memory (§ 3.1.9), and DMA-aided data movement (§ 3.3)

• enabling compiler (§ 3.2.1.2), link-time, and profile-driven optimizations be-

tween the application and kernel code

• exploring novel code paths for performance-critical parts of the application

(§§ 3.2.1.5 and 3.2.1.9) and direct hardware access to applications for high-

speed I/O (§ 3.3).

Ultimately our goal with UKL is to explore the full spectrum between Linux and

specialized systems. For this thesis, our goal is to enable applications to be linked into

the Linux kernel, explore at least some of the above optimizations and measure the

performance improvements that can be achieved, first in the context of an unmodified

application source plus a recompilation and link step, then by modest changes to the

application and general-purpose system.

4.1.2 Application Support

One of the fundamental problems with specializable systems is the limited set of ap-

plications that they support. Only executing a single process excludes any application

that requires helper processes, scripts, etc. Moreover, moving away from backward

application compatibility and standard APIs typically requires substantial porting

effort for any application and libraries the application uses.

UKL seeks to enable optimizations while remaining broadly applicable. Our goal

is to allow any unmodified Linux application and library to use UKL with a recompi-

lation, as long as only one application needs to be linked into the kernel. Depending

on the application, the developer can gradually move toward the performance end,

i.e., incrementally enable optimizations. A large set of applications should be able to
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achieve some gain on the general purpose end of the spectrum, while a much smaller

set of applications will be able to achieve more substantial gains as we move toward

the specialization end.

4.1.3 Hardware Support

Another fundamental problem with specializable systems is the lack of support for

physical machines and devices. While recent research has mostly focused on vir-

tual systems, some recent [88, 48] and previous [70, 30, 35, 59, 18] systems have

demonstrated the value of per-application specialized operating systems on physical

machines. Unfortunately, even these systems were limited to specific hardware plat-

forms with a restricted set of device drivers. The lack of hardware support precludes a

wide range of infrastructure applications (e.g., storage systems, schedulers, network-

ing toolkits) that are typically deployed bare metal. Moreover, the lack of hardware

support is an increasing problem in a post-Dennard scaling world, where performance

depends on taking advantage of the revolution of heterogeneous computing.

Our goal with UKL is to provide an environment capable of supporting the com-

plete hardware compatibility list (HCL) of Linux, allowing applications to exploit any

hardware (e.g., GPUs, TPUs, FPGAs) enabled in Linux. Although the implementa-

tion efforts in this research are focused only on Intel x86 64 architecture, the lessons

learned are generalizable across other platforms as well.

4.1.4 Ecosystem

While application and hardware support are typically considered the fundamental

barriers to moving along the spectrum toward the specialization end, the problem is

much larger. Linux has a vast community of developers and operators that know how

to configure and administer it, a massive body of battle-tested code, and a rich set

of tools to support functional and performance debugging and configuration.
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Our goal with UKL is, while enabling developers to adopt extreme optimizations

that are inconsistent with the broader ecosystem, the entire ecosystem should be

preserved on the general-purpose end of the spectrum. This means operational as well

as functional and performance debugging tools should just work. Standard application

and library testing systems should, similarly, just work. Most of all, the base changes

required to enable UKL need to be of a nature that they don’t break assumptions of

the battle-tested Linux code, can be accepted by the community and can be tested

and maintained as development on the system progresses.

As optimizations are added to the system, the ecosystem support will understand-

ably decrease, e.g., if an application developer implements a highly specialized path

inside the kernel, it might not be accepted upstream due to lack of broad applicabil-

ity, or if the application requires no other process execute alongside it, the tools and

utilities cannot be run.

4.2 Design

As stated above, at the general-purpose end of the spectrum, UKL aims to support

all applications (§ 4.1.2), hardware (§ 4.1.3), and ecosystem (§ 4.1.4) of Linux. At this

end, UKL is in what we call its base model . Importantly, the base model preserves

the (known and unknown) invariants and assumptions of applications and Linux,

except syscalls are replaced by function calls, and application code now executes in

supervisor mode in the kernel address space. From this starting point, an expert pro-

grammer can adopt specific optimizations, explored by specializable systems, that are

valuable and safe for their particular application by choosing (additional) configura-

tion options and/or modifying the application to invoke kernel functionality directly,

thus moving towards the performance or unikernel end of the spectrum. Section 4.2.1

describes the base model, and Section 4.2.2 describes various optimizations we have
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explored that specialized the system for some applications.

4.2.1 Base Model

UKL base model can be best understood as a standard Linux kernel, except one appli-

cation is linked with the kernel and executes at the kernel privilege level. That partic-

ular application does not experience any difference than if it were running on unmod-

ified Linux, except a very slight speed up due to the replacement of syscall/sysret

instructions with call/ret. Other applications running on UKL run precisely as

they would on unmodified Linux, and the UKL base model supports all the HCL of

unmodified Linux. Below we describe the design of the UKL base model.

4.2.1.1 Support for multiple processes

One key area where UKL differs from other unikernels is that, while only one appli-

cation can be linked into the kernel, UKL supports a full userspace and enables other

applications to run unmodified on top of the kernel. Support for multiple processes

is critical to run many applications that are logically composed of various processes

(§ 4.1.2), standard configuration and initialization scripts for device bring-up (§ 4.1.3),

and the tooling used for operations, debugging and testing (§ 4.1.4). UKL supports

multithreaded applications.

It is important to note that while UKL supports multiple processes, other pro-

cesses are not protected from the performance-optimized one linked into the kernel.

Similar to unikernels, our security model assumes other workloads that need to be

protected are isolated by a hypervisor or by techniques for securing bare metal ma-

chines [71, 16].
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4.2.1.2 Address space layout

UKL preserves the standard Linux virtual address space split between the applica-

tion and kernel. The application heap, stacks, and mmapped memory regions are

all created in the user portion of the address space. Kernel data structures (e.g.,

task structs, file tables, buffer cache) and kernel memory management services (e.g.,

vmalloc and kmalloc) all use the kernel portion of the address space. Since the kernel

and application are compiled and linked together, the application (and kernel) code

and data are allocated in the kernel portion of the virtual address space.

We found it necessary to adapt this address space layout because Linux performs

a check to see if an address being accessed is pinned or not; modifying this layout

would have resulted in changes that may have been difficult to upstream (§ 4.1.4).

Unfortunately, this layout has two negative implications for application compatibility.

First, (see § 5.2) applications have to be compiled with different flags to use the higher

portion of the address space. Second, it may be problematic for applications with

large initialized data sections that, in UKL, are now pinned.

4.2.1.3 Execution models

Even though the application and kernel are linked together, UKL differs from other

unikernels in providing fundamentally different execution models for application and

kernel code. Application code uses large stacks (allocated from the application portion

of the address space), is fully preemptable, and uses application-specific libraries. This

model is critical to enabling a large set of applications to be supported without source

modification (§ 4.1.2).

On the other hand, Kernel code runs on pinned stacks, accesses pinned data

structures, and uses kernel implementation of common routines. This model was

required to avoid substantial modifications to Linux that may prohibit acceptance by
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the community (§ 4.1.4).

On the transition between the execution models, UKL performs the same entry

and exit code of the Linux kernel, with the difference that: 1) transitions to kernel

code are done with a procedure call rather than a syscall, and 2) transitions from

the kernel to application code are done via a ret rather than a sysret or iret.

This transition code includes changing between application and kernel stacks, RCU

handling, checking if the scheduler needs to be invoked, and checking for signals. In

addition, it includes setting a per-thread ukl mode flag to identify the current mode of

the thread so that subsequent interrupts, faults, and exceptions will go through regu-

lar transition code when resuming interrupted application code, minimizing affecting

kernel invariants in the base model(§ 4.1.4).

4.2.2 Optimizations

While preserving existing execution environments enables most applications to run

with no source modifications on UKL, the performance advantages of just avoiding

syscall, sysret, and iret operations are, as expected, modest. However, once an

application is linked into the kernel, different optimizations, that have been explored

by specializable systems, are possible. First, a developer can apply configuration

options that may improve performance. Second, a knowledgeable developer can im-

prove performance by modifying the application to call internal kernel routines and

violating, in a controlled fashion, the normal assumptions and invariants of kernel

versus application code. Expertise is needed to perform these customizations. For

example, the kernel will fail if an application calls an internal kernel routine passing a

pointer to an application data structure that resides on a page that has not yet been

accessed/allocated.

In § 4.2.2.1, we discuss the configuration options we have explored so far, that

don’t require application modification. In § 4.2.2.2, we discuss the optimizations that
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Config Feature

UKL BYP Bypass entry exit code

UKL NSS Avoid stack switches

UKL NSS PS Avoid stack switches with pinned user stacks

UKL RET Replace iret with ret

UKL PF DF Use dedicated stack on double faults

UKL PF SS Use dedicated stack on all faults

Table 4.1: UKL Configuration options

require applications to be modified but provide larger performance benefits.

4.2.2.1 Configuration Options

Once an application is running, a developer can easily explore a number of configura-

tion options that, while not safe for all applications, may be safe and offer performance

advantages for their application.

Bypassing entry/exit code: On Linux, on transitions between application and

kernel environments through system calls, interrupts, and exceptions, some entry and

exit code is executed; this is expensive. We introduced a configuration (UKL BYP)

that allows the application, on a per-thread basis, to tell UKL to bypass entry and exit

code for some number of transitions between application and kernel environments.

As we will see, this model results in significant performance gains for applications

that make many small kernel requests.

Avoiding stack switches: Linux runs applications on dynamically sized user

stacks, and kernel code on fixed-sized, pinned kernel stacks. Every time kernel func-

tionality is invoked, this stack switch breaks the compiler’s view and limits cross-layer
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optimizations, e.g., link-time optimizations 1. The developer can select between two

UKL configurations that avoid stack switching (UKL NSS and UKL NSS PS); UKL

NSS skips the jump to kernel stacks when transitioning from application to the kernel

execution environment and allows applications that need large stacks to benefit from

this option. However, this prevents normal user space applications (e.g., tools, util-

ities, debuggers) to co-run with the UKL application (see § 5.10 for details). UKL

NSS PS solves this limitation by skipping the jump to kernel stacks and allocating

user stacks in the pinned kernel portion of the address space. These are non-extensible

stacks, so applications that need to extend stacks dynamically cannot use this option.

ret versus iret: Linux uses iret when returning from interrupts, faults and excep-

tions. iret is an expensive instruction that automatically changes the privilege level,

instruction pointer, stack pointer, etc. The UKL RET configuration option switches

from kernel to application stack and uses ret instead of iret to return to application

code. To ensure that the system never lands in an undefined state, interrupts are

enabled only after returning to the application stack and code.

4.2.2.2 Application Modifications

Along with the above configurations, developers can modify the applications to invoke

an internal kernel routine directly, where no automatic transition paths exist, e.g.,

invoking vmalloc to allocate pinned pre-allocated kernel memory rather than regular

application routines. Using such memory results in less overhead because, unlike user

memory, all of its pages are pinned and thus avoid subsequent faults when kernel

interfaces have to copy data to and from that memory.

1today LTO in Linux is only possible with CLANG while glibc can only be compiled with gcc.
Efforts are underway in the community to enable glibc to be compiled with CLANG and to enable
Linux LTO with gcc. We are excited to explore the advantages of LTO as soon as one of these
external efforts completes.
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Developers can explore deeper optimizations by taking advantage of application

knowledge. For example, they may be able to assert that only one thread is accessing

a file descriptor and avoid costly locking operations. As another example, they may

know a priori that an application is using TCP and not UDP and that a particular

write operation in the application will always be to a TCP socket, avoiding the

substantial overhead of polymorphism in the kernel’s VFS implementation.

The UKL base model ensures that the application and kernel execution environ-

ments stay separate, with proper transitions between the two. But applications may

find it beneficial to adopt some features, even for short times, of the kernel exe-

cution environment like non-preemption. Applications can toggle a per-thread flag

which switches on features of the kernel execution environment, allowing application

threads to be treated as kernel threads in specific cases, e.g., so they won’t be pre-

empted. This can be used as a ‘run-to-completion’ mode where performance-critical

paths of the application can avoid perturbation.
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Chapter 5

Implementation

This chapter talks about UKL’s implementation details, i.e., the overview of changes

to Linux and glibc (§ 5.1), linking an application and its required libraries into

the Linux kernel and building a bootable binary (§ 5.2), boot-up and initialization

process (§ 5.3), enabling the UKL base model, i.e., ensuring that applications run

without modifications (§§ 5.4 to 5.6), process creation (§§ 5.7 and 5.8), configuration

based optimizations (§§ 5.9 to 5.12), and optimizations which involve application

modification (§ 5.13).

5.1 Changes to Linux and glibc

The size of the UKL base model patch to Linux kernel 5.14 is approximately 550 lines,

and the full UKL patch (base model plus all the configuration options in table 4.1)

is 1250 lines. The vast majority of these changes are target-specific, i.e., in the

x86 architecture directory. A newer version of the UKL base model patch, i.e., for

Linux kernel version 6.0, has been shared with the Linux community [62]. This

chapter, however, discusses the changes to Linux kernel version 5.14, which was used

to evaluate UKL (chapter 6).

UKL takes advantage of the existing kernel Kconfig and glibc build systems.

These allow target-specific functionality to be introduced that doesn’t affect generic

code or code for other targets. All UKL changes are wrapped in macros which can

be turned on or off through kernel and glibc build time config options; they are
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compiled out when Linux and glibc are configured for a different target.

We found that the UKL patch can be small due to many favorable design decisions

by the Linux community. For instance, Linux’s low-level transition code has recently

undergone massive changes to reduce assembly code and rewrite functionality in C.

Further, the remianing assembly code has been refactored to removr code duplication.

This has allowed UKL changes to also be localized to the newly refactored code.

Further, the ABI for application threads dedicates a register (fs) to point to thread-

local storage. In contrast, kernel threads have no such concept but instead dedicate

a register (gs) to point to processor-specific memory. If a register were used by

both Linux and glibc, UKL would have had to add code to save and restore it on

transitions; instead, both registers can be preserved.

In addition to the kernel changes, about 5,439 lines of code are added or changed in

glibc. This number is inflated because according to the glibc development approach,

any file that needs to be modified has to be first copied to a new sub-directory and then

modified. The actual number of lines changed in glibc is 1,720. All the UKL changes

are well contained in a separate directory. The glibc build process, configured for

UKL, first searches the UKL specific directory for a target file at build time before

searching the default location.

The different configurations of UKL (Table table 4.1) involve changes to the tran-

sitions between application and kernel code. All changes were made through Linux

SYSCALL DEFINE and glibc INLINE SYSCALL macros. This ensured that the changes

were limited to header files, keeping the LoC changed to a minimum.

5.2 Building UKL

Our current implementation does not support dynamically loaded libraries, requiring

the application code and associated user libraries to be compiled and statically linked
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with the kernel. This code is built with two special flags. The first flag disables the

red zone optimization (-mno-red-zone) as is standard when building kernel code.

Red zone optimization allows the compiler to use the stack without decrementing

the stack pointer in leaf functions, i.e., functions that do not call any other function.

This optimization works for applications running in user mode because any interrupt,

exception, or fault will trigger a privilege change and a switch to a dedicated kernel

stack, leaving the user stack intact. This optimization cannot be used for an appli-

cation running in kernel privilege level because, since there is no privilege change,

the switch to a dedicated stack does not happen and the interrupt or fault servicing

code uses the same, i.e., user stack. This means that any data on the stack under the

stack pointer will be garbled, leading the application to break once control returns to

it. The second kernel memory model flag (-mcmodel=kernel) enables the generated

code to be loaded into the highest 2GB of address space instead of the lower 2GB

that is the default for user code.

While a limitation of our current implementation, that attempts to minimize

changes to Linux, we do believe future work could enable binary compatibility for non

performance-critical parts of application code and user libraries. The kernel already

supports dynamic linking, and extending the dynamic linker to support application

libraries seems feasible. Previous work [76] has shown how all faults, interrupts, and

exceptions can be made to use dedicated stacks through the Intel interrupt stack

table (IST); such an approach would eliminate the need to disable red zones. Finally,

an new research direction would be to only link performance-critical parts of the

application and user libraries with the kernel, and ensure binary compatibility for all

other application code and user libraries by loading them in the user part of address

space and using binary re-writing to resolve addresses.

After the application and libraries are compiled, a modified kernel build system
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combines them and the kernel into a final vmlinux binary which can boot bare-metal

or virtual. Before linking the application and kernel together, all application symbols

(including library ones) are prefixed with ukl to avoid name collisions using the

objcopy utility. Kernel code typically has no notion of thread-local storage or C++

constructors, so the kernel’s linker script is modified to link with user-space code and

ensure that thread-local storage and C and C++ constructors and destructors work.

Appropriate changes to the kernel loader are also made to load the new ELF sections

along with the kernel.

5.3 Boot up and Initialization

UKL ensures that all Linux’s boot-up and initialization code is executed without

modification. This allows UKL to inherit Linux’s hardware and application sup-

port; Linux’s early boot-up code does hardware discovery and device set-up. Once

the system boots up, the user space is initialized as it would in unmodified Linux.

This provides the expected execution environment for glibc and other libraries and

applications to run without modifications.

There are, however, some modifications to enable UKL applications to run prop-

erly. Even though we added the thread local storage (TLS) section to kernel’s vmlinux

binary, through the changes to the linker script described above (§ 5.3), the kernel

loader is still oblivious to this change. We modify the Linux loader so that, as Linux

boots and decompresses its binary, the loader loads all the sections at their correct

places in memory, including the PT TLS or thread local storage section.

5.4 Environment Tracking

On unmodified Linux, on every switch between application and kernel execution en-

vironments (system calls, interrupts, or exceptions), entry and exit code is executed.
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Linux tracks whether a process is running in the application or kernel execution envi-

ronment through the CS register (which actually tracks the hardware privilege level).

UKL-optimized applications always run at the kernel privilege level, so the CS register

never changes and cannot be used to track the execution environment. UKL tracks

the execution environment with a flag (ukl mode) added to the kernel’s thread control

block, i.e., task_struct.

5.5 Transition between execution environments

If a UKL application makes a system call, it uses a procedure call rather than a

syscall instruction. We modify glibc’s INLINE SYSCALL macro to replace syscall

instruction with a call instruction to the UKL system call entry point, ukl entry

SYSCALL 64. This entry point is similar to Linux kernel’s unmodified system call

entry point, i.e., entry SYSCALL 64, except in the handling the difference between

call and syscall instructions. A syscall does not modify the application stack,

but call pushes the return address to the application stack. Also, syscall puts the

return address and flags into specific registers, while call does not. UKL’s system

call entry point ukl entry SYSCALL 64 fixes this discrepancy, i.e., puts the return

address into RCX register and flags into R11 register. This is important because the

following code saves the entire register state on the kernel stack (and this state is

used later on by kernel code, e.g., all the arguments to the system call are contained

in it). If this register state is incorrect, the kernel code can break unpredictably.

The UKL entry point also differs from Linux’s in how the execution environment

is tracked, as discussed in § 5.4. UKL toggles the ukl mode flag to kernel value, so

that kernel entry code is not executed on any subsequent interrupts (because the

system call already switched the execution environment to kernel) until the system

call returns.
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On the return path, ukl entry SYSCALL 64 switches the ukl mode flag back to

application value and executes a ret instruction instead of a sysret or iret in-

struction. The return address pushed on the applications stack by call will now be

popped by the ret so that the stack is intact when control returns to the application.

Details of how we keep the interrupts disabled on the return path can be found in

§ 5.9.

5.6 Permissions Checking

The Linux kernel normally has several checks to ensure that applications and kernel

threads behave as expected. UKL defies many of the assumptions regarding permis-

sions, so these checks need to be made UKL-aware as well. As an example, application

threads are not allowed to access kernel memory. But UKL threads need to access

memory in the kernel portion of the address space since their text and data sections

reside there due to being linked with the kernel. In another example, kernel threads

are not meant to suffer page faults in the application’s part of the address space. Since

UKL always executes at the kernel privilege level, it is considered a kernel thread for

these checks. Since UKL threads have their heaps, stacks, and memory-mapped areas

in the application’s part of the address space, page faults are bound to occur. For

these scenarios, we modify the header files where the permission-checking functions

and macros are defined. Here we add checks for the ukl mode flag (a non-zero value

means it is a UKL thread) so that in case of a UKL thread, the correct permissions

are returned. For example, permission is granted for the UKL thread to access the

kernel’s part of the address space. In all the places where permissions are checked,

these inline functions and macros are called, so making changes here allows us to keep

the overall patch size small.
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5.7 Changes to execve

User-space processes running on UKL can exec as expected. The UKL process is

started by invoking exec with a program name specified by a configuration option.

While most of execve is unmodified, we skip loading the (nonexistent) binary and

jump directly to the glibc entry point. glibc initialization happens almost as ex-

pected, but when initializing thread-local storage, changes had to be made to read

symbols set by the kernel linker script instead of an ELF binary. C and C++ con-

structors run the same way as in a normal process. Command-line parameters to

main are extracted from a part of the Linux kernel command line.

Details about fork and clone in UKL, which would create another UKL process

or thread, respectively, can be found in § 5.8. While we have not yet done so, we

believe that, once UKL calls fork, only modest effort is required to enable the new

UKL process to change into a non-UKL process through exec, and then execute some

normal user-space binary. That would entail enabling the exec code in the kernel to,

based on some UKL flag, set the ukl mode flag to zero. This would mean that the

process is now a non-UKL process, and the rest of the exec code will treat it as such.

It will be able to run a normal userspace binary because UKL changes don’t modify

execve handling of non-UKL processes.

5.8 Fork and Clone

Non-UKL user-space processes running on UKL can fork as expected. UKL processes

can also call fork, or clone with specific flags so that it acts as fork, but there

are some caveats. Process creation, or fork, only makes copies of the user part of

the address space (or copy-on-write to be exact). The kernel page tables are not

duplicated because they don’t need to be. For UKL processes, the application text

and data sections are present in the kernel part of the address space (due to the
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application being linked with the kernel). This means that when a UKL process

forks, the text and data sections are not duplicated, and child and parent UKL

processes share them. Text section can be shared between multiple UKL processes,

but sharing the data section can lead to an undefined state. So fork may not function

as expected, depending on the application.

Ignoring this issue, we have enabled this “fork” of a UKL process, and it works

for many applications. A change needs to be made in the page-fault handling code.

UKL process never faults on instructions because its text section is always pinned

due to being in the kernel part of the address space. Also, the parent does not fault

on the “virtual dynamic shared object” or VDSO pages, which are located in the user

part of the address space, because execve code faults that in before handing control

off to the UKL application. The child, however, needs to fault those VDSO pages in

when it tries to access them. This fires a page fault, which fails because, normally, a

process executing in kernel mode (which UKL always does) should not be accessing

text pages in the user part of the address space. The fault handling code needs to be

made UKL-aware so that it allows UKL to fault in VDSO pages.

We have used this new fork to run multiple UKL processes for the LEBench

microbenchmark [86], which, we have found, does not rely on the data section. How-

ever, this new fork will not work for real-world applications which rely on the data

section and use both fork and exec. Although we have not explored it yet, one way

of enabling full fork support would be to borrow the idea from glibc’s handling

of the thread-local storage (TLS) [33]. This would mean keeping the original data

section that lives in the kernel part of the address space intact, and for every process,

including the first one, copy it into that process’s user part of the address space and

use that copy.

As far as using clone to create new threads is concerned it fully works with UKL.



73

To create UKL threads, the user-space pthread library calls pthread create, which

further calls clone. We modified the pthreads library to pass a new flag CLONE

UKL to ensure the correct initial register state is copied into the new task. This is

important because if shared stacks are enabled (§ 5.10), the register state would be

found on the user stack, and if not, it will be found on the kernel stack. We have run

multi-threaded real-world applications like Memcached without any problem.

5.9 Kernel to Application Transition with UKL RET

In UKL, returning from system calls always uses ret instruction instead of sysret

or iret instructions. By turning on the UKL RET configuration option, this becomes

true for all transitions from kernel code to application code, e.g., on returning from

interrupts, exceptions, and faults. In doing so, UKL must ensure that the system

does not land in an undefined state, in case of an interrupt. The sysret or iret

instructions perform a number of operations atomically; updating the instruction

pointer and stack pointer, restoring flags (which restarts interrupts), and changing

privilege level. The atomicity of these instructions ensures that when interrupts

are enabled, the control has cleanly returned from the kernel to the application.

The ret instruction only pops the return address from the stack and updates the

instruction pointer. Additional instructions are required to restore the flags (which

enables interrupts) and change the stack pointer. If an interrupt arrives before all

of these instructions are executed, the system can be in an undefined state. UKL

ensures that interrupts are not enabled before all of these instructions are executed.

UKL prepares the user stack for the return path earlier when going from application

to kernel code. The call instruction puts the return address on the user stack. Once

in the system call entry point (see 5.5), UKL pushes flags onto the user stack as well.

On the return path, it first updates the stack pointer from the kernel to the user
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stack and then restores flags (which restarts interrupts). Taking interrupts here is

safe because the instruction pointer was already correct, and now the stack pointer

is also correct. At this point, the ret instruction can return control back to the

application.

5.10 Shared Stacks with UKL NSS and UKL NSS PS

In the UKL base model, a switch between the user and kernel stack occurs when code

transitions between the two domains, limiting cross-layer compiler optimization. We

have developed two configurations to avoid these stack switches.

With the UKL NSS configuration option, UKL avoids switching from application to

kernel stack in the system call entry point (see § 5.5), which results in the kernel also

using the application stack. Similarly, the reverse switch from kernel to application

stack on the return path is unnecessary and thus avoided. However, this configuration

option restricts other non-UKL applications to only run before or after the UKL

application, but not concurrently with it, because doing so can result in page faults

that cannot be handled. To understand this, consider the following example; in the

case of an inter-processor interrupt, e.g., for a TLB invalidation, before interrupting

the other processor, Linux allocates some data structures on the current process’s

kernel stack. These data structures are meant for the remote processor to access,

but in the case of UKL NSS configuration option, the current process’s kernel stack is

actually its user stack, which is naturally not mapped in the page tables of any other

process. When the remote processor is interrupted, it inherits the page tables of the

process running on it at that time. It would try to access the data structures, but

since the user stack of the original process is not mapped in its page tables, it would

result in a page fault that cannot be handled. When only the UKL process is running

on the system, this won’t be a problem because UKL shares the kernel’s page tables,



75

and the remote processor would be running an idle kernel thread or another UKL

thread. The page tables are shared in both cases, and page faults won’t occur.

This restriction is solved by the UKL NSS PS configuration option, which allocates

fixed-sized stacks in the kernel part of the address space, and shares those between

the kernel and application. This means that every processor, when interrupted, can

access those shared stacks used by the interrupting processor. We currently use a

fixed size for these pinned stacks (the largest size glibc allows application stacks to

grow to), but this size can be configurable in the future. This configuration allows

multiple processes to run concurrently but is impractical for applications that create

a large number of threads that use huge stacks.

5.11 Page Faults with UKL PF DF and UKL PF SS

Normally, if a user stack suffers a page fault, hardware switches to the kernel stack

and pushes a frame on that kernel stack. The switch from user to kernel stack only

happens if a privilege switch from user to kernel mode also occurs. But UKL threads

always execute in kernel mode, so when the user stack suffers a page fault, no privilege

switch occurs, and consequently, no switch to a pinned kernel stack happens. When

the hardware tries to push state on the already faulted user stack, it faults again,

generating a double fault. A stack switch to a new pinned special stack always

occurs in case of a double fault through the Interrupt Stack Table (IST) mechanism.

The double fault prints a panic message, call stack, and register values to help with

debugging, and the system then panics.

UKL addresses this stack page fault issue in two ways; with UKL PF DF and UKL

PF SS configuration options. If UKL PF DF is used, it is assumed that the only reason

to land in the double fault handler is through the stack page fault. Since the double

fault uses a new pinned stack, it can be used to handle the original page fault as
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well. So a jump is made to the page fault handler, which extends the user stack and

returns the control to the application as if no double fault ever occurred. The UKL

PF SS configuration option fixes this issue by using the Interrupt Stack Table (IST)

mechanism to create a new stack for page faults. The page fault entry in the Interrupt

Descriptor Table (IDT) is then updated so that every page fault is serviced on the

new stack, regardless if it is a stack-based page fault or otherwise or if it occurred to

a UKL process or non-UKL process. The jump to this new stack also happens if the

execution was already in kernel mode, i.e., no privilege switch occurred. This way,

as soon as any page fault occurs, the hardware switches to the new stack, pushes the

state on it and then handles the page fault.

The UKL NSS configuration option creates a new complication for the page fault

handler because if UKL NSS configuration option is turned on and a page fault occurs, a

deadlock can occur. For example, if a thread is executing some memory management

function, e.g., mmap, and needs to modify the page tables, it has to take the lock

on the memory control struct (mm struct). While it has this lock, if a page fault

occurs, the page fault handler will run. This handler will again try to take the lock

on mm struct and fail because the lock is already taken (by the same thread earlier!).

Unable to take the lock, the thread will wait, resulting in a deadlock. To address this

problem, when a UKL thread or process is created, UKL saves a reference to the user

stack virtual memory area or VMA. In case of any page fault, the faulting address is

first compared to the saved user stack VMA to check if the page fault is a user stack

page fault. If so, UKL skips trying to retake the lock and handles the fault. If the

faulting address does not belong to the user stack, normal page fault handling occurs,

i.e., try to take the lock and then handle the fault.
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5.12 Bypassing Application-Kernel Transitions with UKL BYP

When the transition happens from application code to kernel code, some entry code is

executed, including stack switch, saving register state, and RCU handling. Some exit

code is executed on the return path, including a stack switch, restoring register state,

RCU handling, and calls to the scheduler, signal handler, etc., based on flags (see

§§ 4.2.2.1 and 5.5. Since this entry and exit code takes time, especially if the scheduler

is called or signals are handled, bypassing it results in a performance advantage. To

enable bypassing the entry and exit code, UKL has UKL BYP configuration option.

We modify the Linux SYSCALL DEFINE macro to add a stub that simply calls the

actual system call function. We also modify glibc INLINE SYSCALL macro so that if

the UKL BYP configuration option is turned on, glibc calls the stub in Linux source

instead of going through the normal path and calling UKL’s system call entry point

(see § 5.5). This allows the entry and exit code to be bypassed, and control goes from

glibc directly to the Linux functions and back.

The entry and exit code that is bypassed must be run at some point; otherwise,

the system can break, e.g., if the scheduler is never called, a thread would never give

up the CPU and result in a hung multi-threaded application, or an application that

depends on signals might also break because signals are not handled. To address this,

we further modify glibc INLINE SYSCALL macro so that it only bypasses the entry

and exit code for a certain number of transitions before automatically going through

the regular route once. This number is also configurable. UKL also ensures that the

entry and exit code is bypassed on interrupts and faults as well to ensure correct

behavior.
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5.13 Optimizations based on Application Modifications

In addition to the configuration options (See table 4.1) for performance improvement,

UKL also allows application modification for further gains (See § 4.2.2.2). Developers

can modify their applications to call internal kernel routines directly, e.g., vmalloc.

To ensure this happens safely, the execution environment needs to be tracked care-

fully (See § 5.4). Environment tracking is easy at pre-defined points, e.g., system

calls, interrupts or faults, etc., but it is not tracked if the application starts calling

kernel functions directly. This would result in kernel functions being executed in the

application execution environment and can result in unforeseen issues, e.g., it can

be problematic if an interrupt occurs while kernel code is running in the application

execution environment and the scheduler is called when exiting the interrupt han-

dler. This is because the execution could be that part of the kernel that cannot be

preempted and could take the system to an undefined state. To address this, UKL

provides applications with two functions, i.e., enter user and exit user. If applica-

tions call any kernel functionality after calling exit user first, and once they return

from the kernel routine, they call enter user, they are guaranteed to be in the safe

state. These functions toggle the ukl mode flag and changes are made to entry and

exit functions to check this flag before executing.

5.14 Optimizations based on Application and Kernel Co-

modifications

In addition to allowing developers to modify applications to call existing kernel func-

tions directly, UKL also enables developers to implement custom code paths inside

the kernel and then modify the application to call those code paths. To ensure this

happens safely, the same entry and exit functions are used as described in § 5.13. To

illustrate this optimization, consider the following example.
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Figure 5·1: Part of a flame graph generated after profiling Redis with
UKL base model with perf [9]. The read and write functions at the
bottom reside in Redis code. Blue arrows show the code bypassed in
UKL BYP, and green arrows show deeper shortcuts, i.e., bypassing the
Linux VFS [8] layer and calling TCP functions directly from Redis code.

While running Redis with UKL (§ 6.5), we wanted to understand if further spe-

cialization is possible, on top of the configurations. We built Redis with the UKL

base model, deployed it bare metal, and profiled it using the Linux perf [9] utility.

Figure 5·1 shows part of a flame graph [40] we generated from the perf output. The

blue arrows in fig. 5·1 show how UKL BYP configuration option bypasses Linux entry

and exit code and invokes the system call routines directly, i.e., read to ksysread

and write to ksyswrite. Figure 5·1 further shows that both read and write paths

have to go through the Virtual File System (VFS) [8] layer before reaching the TCP

functionality. VFS layer, which is “an abstraction within the kernel which allows dif-

ferent filesystem implementations to coexist” [8], allows applications to use generic

system calls like read and write, and the kernel, based on the file descriptor, invokes

the appropriate functions. We can see that there is significant overhead due to the

polymorphism, and Redis, for specific read and writes, always invokes TCP function-

ality. An obvious specializaiton then was to introduce special purpose code that can

bypass the VFS layer and invoke the underlying TCP functionality directly. Green

arrows on fig. 5·1 show our intended shortcuts, i.e., read to tcp recvmsg and write

to tcp sendmsg.

Due to arguments mismatch, read and write functions in Redis could not be
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simply replaced with tcp recvmsg and tcp sendmsg functions, respectively; read

and write take a file descriptor argument whereas tcp recvmsg and tcp sendmsg

take a socket struct as one of the arguments. A colleague [84] implemented stubs in

the kernel which translated the file descriptor to the corresponding socket struct and

called relevant kernel TCP function. We modified Redis to call these stubs instead of

read and write functions. UKL provides functions that need to be called before and

after invoking kernel functions directly (§ 5.13) to ensure the execution environment

is correctly tracked. These changes required only 10 LOC to be modified in Redis.

We call this optimization UKL RET BYP (shortcut).
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Chapter 6

Evaluation

The main goals of this thesis are to move a general-purpose operating system across

the generality-specialization spectrum, i.e., integrate optimizations explored by dif-

ferent specializable systems into a general-purpose operating system while preserving

its application and hardware compatibility and its ecosystem of tools, utilities and

its community of developers. In this chapter, we want to understand if UKL can

achieve those goals and if there are any performance advantages compared to Linux

and other specializable systems.

In Section 6.1, we discuss if UKL preserves the generality of Linux. Our experi-

ences show that UKL runs many unmodified Linux applications (§ 6.1.1) after recom-

piling them and supports unmodified Linux binaries as normal userspace processes.

UKL maintains Linux’s hardware compatibility (§ 6.1.2), and we have been able to

deploy it virtualized and bare-metal on different hardware. UKL can be deployed,

debugged, tuned, and profiled with standard Linux utilities and tools, preserving its

ecosystem (§ 6.1.3). The code changes required for UKL are also minimal.

In Section 6.3, we aim to understand, at a fine granularity, what impact different

optimizations have on performance. We run a series of microbenchmarks and find

out that, for various system calls, the UKL base model performs very similarly to

Linux. Adding more optimizations on top of the UKL base model results in significant

improvements over Linux.

In Section 6.5, we take Redis as a case study and explore different aspects of UKL.
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We compare UKL to other specializable systems and learn that UKL performs within

10% of a recent clean-slate unikernel designed for performance. On top of that, UKL

preserves the applications and hardware compatibility of Linux, and its ecosystem,

which unikernels written from scratch cannot. We benchmark Redis in virtual and

bare-metal environments and see up to 22% improvement in latency and up to 26%

improvement in throughput compared to Linux. To further understand the reasons

for UKL’s performance improvement over Linux, we profile UKL, analyze the output,

and find out that cache efficiency plays a significant role in UKL’s gains.

6.1 Preserving Generality

One of the central goals of UKL is to preserve, at least at the general-purpose end

of the spectrum (§ 3.4), the application and hardware compatibility of Linux, as well

as its ecosystem of tools, utilities, and developers. This section presents a qualitative

analysis of how well UKL achieved this goal. We share our experiences of optimizing

different applications with UKL (§ 6.1.1), deploying UKL on different virtual and

physical hardware (§ 6.1.2), and running various applications, tools, and utilities as

normal user space processes and sharing the UKL patch with the Linux community

(§ 6.1.3).

6.1.1 Application support

We expected no significant challenges in running different unmodified applications as

optimization targets with the UKL base model (§ 4.2.1, after compilation and linking.

Our hypothesis was largely true. We tested dozens of unmodified applications without

any additional UKL-specific effort, including Memcached [69], Redis [85], Nginx [74],

FIO [19] (a filesystem benchmark), a multi-party computation benchmark [60], a

small TCP echo server, simple programs to test C++ constructors and the C++

Standard Template Library (STL), the GAP Benchmark Suite [23] (a complex C++
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graph based benchmark suite), LEBench [86] (a Linux system call benchmark), and

a large number of standard glibc and pthread unit test programs.

Although the experience of running different applications with UKL was largely

smooth, we did experience three (anticipated) challenges. First, it can be difficult to

re-recompile and statically link applications with complex dependencies and Make-

files. Second, we have hit a number of programs that by default invoke fork followed

by exec (see §§ 5.7 and 5.8), e.g., Postgres, or are dependent on the dynamic loader.

Third, we have run into issues with proprietary applications available in only binary

form, e.g., user-level libraries for GPUs. UKL needs the source code to recompile and

link with the kernel.

6.1.2 Hardware support

One of our goals with UKL was to support the entire hardware compatibility list

(HCL) of unmodified Linux (§ 4.1.3). We ensured that Linux boot-up process (which

does hardware discovery and device setup) was not modified, except at specific points

to enable UKL functionality (§ 5.3). Our experience with running UKL shows that

this goal was achieved; we have not run into any compatibility issues and have booted

or kexeced to UKL on a wide variety of x86-64 servers, virtualization platforms, and

laptops with different Intel and Brocade and virtual NICs, as well as NVMe, SATA

controllers, and virtual block devices. The scripts and tools used to deploy and

manage regular Linux machines were used for UKL deployments without modification.

We have not been able to exploit GPUs without access to the source code for key

libraries.

6.1.3 Ecosystem

UKL aims to preserve Linux’s ecosystem of tools, utilities, and its community

(§ 4.1.4), and our experience shows that this goal was also achieved. As expected, we
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Project LoC Files Subsystems Outcome

Popcorn 7,763 64 14 Out of tree

NetGPU 3,827 45 14 Rejected

DAMON 3,805 24 3 Accepted

KML 3,177 70 16 Out of tree

BPFStruct 2,639 32 10 Accepted

BPFDump 2,343 32 8 Accepted

ArmMTE 1,764 63 14 Accepted

NFTOffload 1,579 56 24 Accepted

UKL 550 33 10 -

KRSI 1,085 29 11 Accepted

LoopFS 891 27 5 Rejected

FSGSBASE 562 16 9 Accepted

BPFDisp 501 11 9 Accepted

ArmAsym 370 13 9 Rejected

BPFSleep 315 23 9 Accepted

IOURestrictions 194 2 2 Accepted

CapPerfMon 98 18 14 Accepted

Table 6.1: Comparison of UKL patch to a selection of Linux features
described in Linux Weekly News (LWN) articles in 2020. We show
patch size, files touched (how complex it is to reason about), subsystems
impacted (number of upstream kernel maintainers who need to review
and approve it), and the current status of the change.
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have had no difficulty running hundreds of unmodified binaries as normal user-level

processes, including all the standard UNIX utilities, bash, different profilers, perf,

and eBPF tools. This has been extremely critical in building UKL, i.e., we use all

the debugging tools and techniques available in Linux. We have been able to profile

UKL workloads with perf and able to identify code paths that could be squashed for

performance benefits (see fig. 5·1).

The UKL patch size for the base model is around 550 LoC, and the full UKL patch

with all the configurations we have explored so far is 1250 lines. We have spent several

months discussing and presenting the concept of unikernels and the UKL approach

to kernel developers within Red Hat. We posted the base model as an RFC to the

public Linux kernel mailing list in October 2022 [12]. We had several commenters

with specific technical suggestions that can be readily addressed and one maintainer

with extensive and constructive feedback that we will be incorporating. Only one

maintainer seemed strongly opposed for philosophical reasons, but even he did not

reject the patch.

To provide context for the size of the UKL patch, table 6.1 compares the base

UKL patch to a selection of Linux features described in Linux Weekly News (LWN)

[73] articles in 2020. UKL’s patch size is smaller, and it modifies fewer files and

Linux subsystems than many other patches which have been accepted into Linux.

For comparison, the KML[64] patch, used in the recent Lupine work, which runs

applications in kernel mode is 3177 LoC, a complexity that may have contributed to

the patch not being accepted upstream. While UKL goes beyond the optimizations

that KML does, the UKL base model can be compared to KML. The UKL base model

and KML both run applications in kernel mode and replace syscalls with function

calls. UKL base goes beyond this and also links the applications with the kernel.

So one question we had was why the implementation of the UKL base model was so
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much simpler compared to KML. After reviewing the code, we realized this simplicity

is due to three fortuitous changes since KML was introduced. First, the UKL base

model takes advantage of recent changes to the Linux kernel that make the changes

to assembly much less intrusive. Second, the UKL base model supports only x64-64,

while KML was introduced when it was necessary to support i386 to be relevant.

Third, the UKL base model does not deal with older hardware, like the i8259 PIC,

that had to be supported by KML. All the optimizations explored in UKL so far go

beyond KML, enabling the broader specializations we talk about later, but the patch

for them is still only 1250 LoC, well below KML’s.

6.2 Experimental Setup

Unless otherwise stated, all experiments in this thesis are run on Dell R620 servers

configured with 128G of RAM across two sockets on a single NUMA node. Each socket

contains an Intel Xeon CPU E5-2660 0 @ 2.20GHz with 8 cores. The processors are

configured to disable Turbo Boost, hyper-threads, sleep states, and dynamic frequency

scaling. They are connected through a 10Gb link and use Broadcom NetXtreme II

BCM57800 1/10 Gigabit Ethernet NICs. Multi-node experiments use identically

configured nodes attached to the same top-of-rack switch to reduce external noise.

We use identical application versions, Linux kernel v5.14 and glibc v2.31 for Linux

and UKL for all experiments. Further, we use similar Linux configurations (modulo

the UKL options) and boot command line options for Linux and UKL.

6.3 Microbenchmarks

We want to investigate the performance benefits of each individual optimization ex-

plored in UKL so far. In this section, we use microbenchmarks to analyze and at-

tribute performance benefits to different optimizations. We analyze the latency of
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simple system calls (§ 6.3.1), the effect on latency if input size to those system calls is

increased (§ 6.3.2), and the latency of page faults with different configuration options

for UKL (§ 6.3.3). We compare different configuration options for UKL against un-

modified Linux, which sits at the general-purpose end of the generality-specialization

spectrum, to see if these optimizations move the system towards the specialization

end. We find that the advantage of one of the fundamental characteristics of uniker-

nels, i.e., linking the application into the kernel, is, with modern hardware, in fact,

small. Second, if we bypass Linux entry and exit code on system calls, the perfor-

mance advantages can be significant, even for system calls that do substantial work;

more than 80% for smaller system calls, e.g., getppid and 24% for system calls which

spend more time in the kernel, i.e., 8KByte recvfrom() system calls. Third, optimiz-

ing page faults for applications linked in the kernel address space can be a significant

advantage.

We use a Linux benchmark suite called LEBench [86] to evaluate the effect of

different optimizations. LEBench measures the latency of many commonly used Linux

system calls (e.g., read, write, mmap) as well as the latency of common operations

like page fault handling. We modified LEBench to make the results repeatable across

runs, add more determinism and improve its output. As one example of the changes

we made, originally, LEBench used malloc to allocate different buffers, e.g., the buffer

to read data into from a file to measure the latency of the read system call. Using

malloc could affect reproducibility because it uses brk or mmap to allocate buffers

depending on their size. Smaller buffers, allocated on the heap through brk call,

have a higher chance of being allocated on pages already accessed earlier, and thus

already faulted in, compared to larger buffers allocated through mmap call. When

data is read into the buffers allocated through mmap, additional time is spent in page

fault handling every time a new page is accessed, which alters the results of the read
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system call. We modified LEBench to use mmap for all allocations. We also ensured

all buffers were allocated at the same location in memory and that they were faulted

into memory by accessing them beforehand.

6.3.1 System call base performance

We measure the latency of five commonly used system calls, i.e., getppid, read,

write, sendto, and recvfrom. We compare the UKL base model and UKL BYP to

unmodified Linux. We hypothesize that the UKL base model (§ 4.2.1) would perform

only slightly better than unmodified Linux because, on modern hardware, the benefit

of replacing syscall instruction with call instruction is not expected to be large,

while UKL BYP (§ 5.12) would offer more significant performance gains due to bypassing

Linux entry and exit code.

We use LEBench [86] to measure the latency of each system call for each system

at least 10,000 times. To ensure that we only measure the intended operation, all

buffers to store timing results are pre-allocated and pre-faulted into memory. We do

the same with buffers required for reading and writing data for read, write, sendto,

and recvfrom system calls. For read system call, we open a file and read 1 byte into

a buffer. The file is located in a memory-based file system to avoid the cost of disk

access. For write system call, we write 1 byte from a buffer into a file. For sendto

system call, we call fork to create a child process. The parent and child open sockets

for communication and transmit 1 byte in each run, and we measure the latency on

the sender’s side. For recvfrom system call, we again fork a child and open sockets.

But the sender sends all the data before we measure the latency of recvfrom at the

receiver’s side. We do several runs before collecting numbers to warm up the system.

Figure fig. 6·1 shows the results. As expected, the advantage of the UKL base

model over Linux is marginal (less than 5%) because the syscall instruction on

modern systems is so optimized that replacing it with call instruction does not
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Figure 6·1: Comparison of Linux, UKL base model, and UKL BYP
for simple system calls. With modern hardware, the UKL advantage
of avoiding the system call overhead is modest (<5%). However, there
appears to be a significant advantage for simple calls with UKL BYP,
which bypasses the entry and exit code on transitions between applica-
tion and kernel.
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provide huge benefits. The real win comes with the UKL BYP configuration option,

which shows, compared to Linux, 83% improvement in getppid, 49% for read, 40%

for write, and 37% for both sendto and recvfrom system calls. These results show

that Linux entry and exit code is the primary source of latency in system calls, as

opposed to the hardware cost of the syscall instruction, and UKL BYP can greatly

benefit workloads that make many small system calls.

6.3.2 Large requests

After evaluating base system call latency in § 6.3.1, we now want to measure the effect

of increasing the input size on the latency of read, write, sendto, and recvfrom sys-

tem calls. Based on results in § 6.3.1, we hypothesize that the UKL base model would

have a negligible advantage over Linux, but UKL BYP may show some improvement

over Linux.

We again use LEBench [86] to measure the latency. Description of how LEBench

measures the latency of read, write, sendto, and recvfrom system calls is provided

in the previous section (§ 6.3.1). We increase the input size from 1 byte to 8 Kbytes,

with 256-byte increments. The experiment is repeated 10,000 times for each size for

each system (Linux, UKL base model, and UKL BYP). The results for read and write

system calls are shown in fig. 6·2 and results for sendto and recvfrom system calls

are shown in fig. 6·3.

Figures 6·2 and 6·3 show that the UKL base model provides, as expected, neg-

ligible performance improvement over Linux, and UKL BYP offers some performance

improvement. The performance improvement given by UKL BYP is due to bypassing

the entry and exit code and is not affected by the system call input size. So UKL BYP

offsets the system call latency by the same amount irrespective of input size, resulting

in a diminishing percentage gain as larger input sizes increase the time spent in kernel

code. Figures 6·2 and 6·3 show the percentage improvement of UKL BYP over Linux in
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Figure 6·2: Comparison of Linux, UKL base model, and UKL with
bypass configuration for read and write system calls. With increasing
payload for each system call, the UKL base model (orange line) shows
modest improvement over Linux, but there is a significant advantage for
UKL BYP (green line). The percentage improvement for UKL BYP (shaded
area) over Linux decreases as payload increases but is still significant
for 8KB payload.
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advantage for UKL BYP (green line). The percentage improvement for
UKL BYP (shaded area) over Linux decreases as payload increases but is
still significant for 8KB payload.
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the shaded region and right size vertical axis. We can see the percentage improvement

decreasing as the input size increase, but even for sizes up to 8 Kbytes, the percentage

improvement is still significant, i.e., between 11% and 22%. This means that UKL

BYP can also benefit workloads that make system calls with larger payloads.

It is interesting to contrast our results with those from the recent Lupine § 3.2.3.3

Linux, which shows (like us) that the benefit of replacing syscall instruction with

call instruction is minimal (less than 5%). From these results, authors of Lupine

Linux conclude that the benefit of the transition between application and kernel code

is minimal. But our results suggest that the major performance gain comes not from

eliminating the hardware cost but from eliminating all the checks on the transition

between the application and kernel code. Reducing this overhead significantly impacts

even expensive system calls.

6.3.3 Page Fault handling

UKL provides two configuration options to handle stack page faults, i.e., UKL PF DF

and UKL PF SS (see § 5.11 for details). UKL PF DF handles stack page faults on a double

fault stack and does not change the handling of non-stack page faults. UKL PF SS,

on the other hand, handles all stack and non-stack page faults on a dedicated stack.

We want to see if these options affect the latency of page fault handling compared

to unmodified Linux. Added to these, the UKL RET configuration option (see § 5.9)

optimizes the return path from all interrupts, exceptions, and faults. It would be

interesting to see its effect on page fault latency. We hypothesize that there would

not be a significant difference between Linux, UKL PF DF and UKL PF SS because all

three involve a stack switch to a dedicated stack; Linux switches from user stack to

kernel stack, UKL PF DF switches from user stack to double fault stack, and UKL PF

SS switches from user stack to a dedicated stack (see § 5.11 for details). We expect

UKL PF DF and UKL PF SS to perform slightly better than Linux because these don’t
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Figure 6·4: Latency of stack page faults; UKL PF DF handles prob-
lematic page faults on a double fault stack, and UKL PF SS handles
all page faults on a dedicated stack showing slight improvement over
Linux. UKL RET PF DF is further configured to use ret instead of
iret when returning from page faults and shows a higher improvement
over Linux.

involve a privilege switch on page faults, while Linux does. UKL RET is expected to

show a bigger performance advantage because the return path of Linux, UKL PF DF

and UKL PF SS involves a iret while UKL RET involves a ret.

We use LEBench [86] to measure the stack page fault latency. We allocate a char

array on the stack and measure the latency of writing only one char after every 4096

bytes (page size), i.e., the latency of faulting in each page of the stack. If we simply

repeat this experiment, we would not be measuring stack page fault latency because,

after the first run, the initial stack pages would already be faulted in memory. With

increasing array size, only one extra page fault will be incurred. To ensure that we

measure the latency of faulting in each page of the stack every time we repeat the

experiment, we call fork each time to create a new process, and then we measure
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the stack page fault latency in the child process. We use pipes to send data from the

child to the parent after the run is over, after which the child exits. We repeat this

experiment for array sizes ranging from 10 pages to 100 pages, with an increment of

ten pages.

Figure fig. 6·4 the latency of stack page faults in Linux, UKL PF DF, UKL PF SS and

UKL RET PF DF which is UKL RET configuration option added on top of the UKL PF DF.

Linux, UKL PF DF and UKL PF SS, all include a stack switch on page faults. UKL PF

DF and UKL PF SS show lower latency than Linux, as expected, due to kernel mode

execution, i.e., not having to switch the privilege level on page faults. UKL PF DF and

UKL PF SS should theoretically show the same latency, but UKL PF DF shows slightly

lower latency for larger number of faults. A reason for this can be additional non-stack

related page faults that might occur while running the benchmark. These non-stack

page faults are handled on the stack already in use in UKL PF DF, but for UKL PF SS,

all page faults, stack or non-stack, involve a switch to dedicated IST stack. Care has

been taken to ensure that these non-stack faults are not too frequent, which is why

UKL PF DF shows only marginally lower latency than UKL PF SS. The real advantage

comes by using the UKL RET configuration option. It optimizes the return path by

using ret instead of iret. When it is applied on top of UKL PF DF, shown as UKL

RET PF DF in fig. 6·4, it shows lower latency compared to Linux, UKL PF DF and UKL

PF SS, especially if the number of page faults increases. UKL RET would also improve

the latency of other interrupts (e.g., timer interrupt) that might occur while the

benchmark is running, further improving performance.

6.4 I/O Latency Benchmark

Applications which are latency sensitive, e.g., high-frequency trading, require high-

speed I/O. Section 6.3 showed the impact of different optimizations on system call
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Read Write

System Mean
Throughput

(Mb/s)
Mean

Throughput

(Mb/s)

Linux 324K 42.14 323K 42.09

UKL RET BYP 441K 57.37 439K 57.2

Improvement 36.1 % 35.9 %

Table 6.2: Mean operation count and throughput in Mb/s of fio when
run with Linux and UKL RET BYP. UKL showed a 36% improvement
in operation count and throughput.

latency. This section explores how those optimizations, and the resulting speed-up in

system call latency, impact I/O latency.

To study I/O latency with UKL, we used fio [19], a flexible I/O benchmarking

tool. We configured fio with an I/O depth of 1, so that any speed-ups directly

translate to latency gains, performing randomly interleaved 4Kb reads and writes

using direct I/O to an 8GB file. This experiment was done on a 2021 Lenovo X1

laptop with 64G of RAM and a 1T NVMe disk formatted with EXT4. Since each

request has to wait for the prior one to finish, improvement in the latency of the

requests directly translates into an increase in the number of requests serviced in a

fixed period of time. We compare the throughput of Linux with UKL RET BYP. As with

earlier experiments, the hypothesis was that UKL RET BYP would outperform Linux.

The results are shown in table 6.2. We can see that UKL RET BYP provides a 36%

performance advantage over Linux for read and write operations. This shows that

UKL can have a large impact on latency-sensitive applications.
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6.5 Single Threaded Application - Redis

In this section, we want to evaluate the performance benefits of UKL and its opti-

mizations on real-world applications. We select Redis [85], a widely used in-memory

database, as our target application because it enables comparison to other unikernels.

Redis can be configured to run as a single-threaded application; it does not use fork

or exec and does not have any dependencies on any complex library except glibc.

Due to these reasons, Redis has been widely used to test specializable systems [54, 56].

6.5.1 Comparison with other Specialized Systems

In this section, we compare UKL’s performance against other specializable systems.

We reuse the experimental setup done by Unikraft[54] for this experiment; the Redis

server was deployed on Unikraft, Lupine, and various configurations of UKL inside

a single-core virtual machine. Implementation details of UKL RET BYP can be found

in §§ 5.9 and 5.12 and those of UKL RET BYP (shortcut) can be found in § 5.14.

To replicate the full setup, redis-benchmark was used to generate workload and was

deployed outside the virtual machine, on the host, with 30 connections, 100k requests,

and pipelining of 16 requests. We also include Linux 4.0 as the baseline comparison

for Lupine since Lupine uses the KML [64] patch, which was last implemented for

Linux 4.0, and we include Linux 5.14 as a baseline comparison for UKL because that’s

the version of Linux we use for UKL. Figure 6·5 shows Redis throughput for SETs and

fig. 6·6 shows Redis throughput for GETs.

For the virtualized, single-core experiments, we expect Unikraft to outperform

other systems because it is a unikernel written from scratch, designed for performance.

We expect Lupine to not show a significant advantage over Linux 4.0 because, in our

experience, substituting syscall instructions with call and kernel mode execution

provides only marginal improvement. UKL base model labeled UKL in the figs. 6·5
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Figure 6·5: Redis SET throughput comparison of UKL with
Unikraft [54] and Lupine [56]. We provide Linux 4.0 as a baseline com-
parison for Lupine and Linux 5.14 as a baseline comparison for UKL.
We reuse the setup done by Unikraft[54] for this experiment where the
Redis server was running on these systems inside a single-core virtual
machine. The client ran redis-benchmark outside the virtual machine,
on the host, with 30 connections, 100k requests, and pipelining 16 re-
quests.
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Figure 6·6: Redis GET throughput comparison of UKL with
Unikraft [54] and Lupine [56]. We provide Linux 4.0 as a baseline com-
parison for Lupine and Linux 5.14 as a baseline comparison for UKL.
We reuse the setup done by Unikraft[54] for this experiment where the
Redis server was running on these systems inside a single-core virtual
machine. The client ran redis-benchmark outside the virtual machine,
on the host, with 30 connections, 100k requests, and pipelining 16 re-
quests.
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and 6·6 is similar to Lupine in this regard, except it also links the application and

kernel code together. Similarly, we expect the UKL base model not to show colossal

performance improvement over Linux 5.14. We expect UKL RET BYP to show some

improvement over Linux 5.0 because it bypasses the Linux entry and exit code (§§ 5.9

and 5.12), and UKL RET BYP (shortcut) to show a more significant advantage over

Linux 5.14 because it bypasses not just the entry and exit code, but also the VFS

layer (§ 5.14).

Figures 6·5 and 6·6 show the results. As expected, Unikraft shows high throughput

(0.9M req/s for SETs and 1M req/s for GETs), better than any other system. The

reason for this performance (§ 3.2.1.5) is the specialized libraries, developed from

scratch, for optimized I/O, memory allocation, scheduling, and synchronization. We

see, as expected, Lupine and the UKL base model show no advantage over their

respective comparison points. Linux 5.14 underperforms compared to Linux 4.0,

and there can be many reasons for this; the configuration options used to build

Linux 4.0 are the same as the ones used for Lupine (to ensure fair comparison).

These configuration options are pruned for performance, i.e., no SMP support and

turning off all options related to bare-metal boot. This makes Linux 4.0 much lighter

than Linux 5.14, which is configured with the default Linux configuration options,

allowing it to boot bare-metal. Further, the difference in kernel versions 4.0 and 5.14

is huge, and the code changes can also be responsible for the difference in performance.

Further, Redis deployed on Linux 4.0 uses musl C library, whereas Redis deployed

on Linux 5.14 uses glibc, which can also be a reason for the performance difference.

The unexpected result is that UKL RET BYP shows no improvement over Linux 5.14,

although it bypasses the Linux kernel entry and exit code. This means that the cost

of Linux entry and exit code in a virtualized setup is not high enough to register

a performance improvement if bypassed, but this requires further investigation. As
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Figure 6·7: Repeat of the experiment in fig. 6·5 (Redis SET through-
put), except with Linux 5.14 and UKL RET BYP (shortcut) run in a
2 core virtual machine, with one core isolated through isolcpus boot
parameter. The Redis server, which is single-threaded, was pinned on
this isolated core through taskset utility. Providing an extra core
improves Linux 5.14 and UKL RET BYP (shortcut) performance.

expected, UKL RET BYP (shortcut) shows around 5% improvement over Linux 5.14

for SETs and around 7% improvement for GETs. This shows that specializing a general-

purpose operating system can buy back 5% to 7% performance improvement that a

highly specialized system, written from scratch, can provide. On top of this, UKL

RET BYP (shortcut) also preserves application and hardware compatibility, and the

ecosystem of tools, utilities, and the developer community, that a from-scratch system

cannot.

Further, figs. 6·7 and 6·8 point to an interesting bit about the experimental setup

and the systems being compared together. Unikraft (§ 3.2.1.5) only supports a single
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core and a single process/thread. Similarly, Lupine is configured to have no SMP

support, i.e., it also only supports a single core. UKL, on the other hand, is built

with configuration options that allow the same kernel to be deployed bare metal, use

multiple cores, and run multiple processes, which can be multi-threaded (building

UKL with minimal configuration options is possible, but orthogonal to this research,

because we want to preserve the generality as much as possible while specializing the

system). Using the ps utility on UKL showed a large number of kernel background

threads that contend with Redis for CPU time. To remove this contention, we re-

ran the same experiment but provided two cores. Through Linux boot parameter

isolcpus, we isolated one of those cores so nothing would be scheduled on that core,

and using the taskset utility, we pinned Redis to that core.

Figures 6·7 and 6·8 show the results of these runs. Unikraft or Lupine don’t use

extra cores, and when run with an extra core, they showed no performance differ-

ence. Linux 5.14 running on two cores with Redis pinned to a dedicated core shows

0.77M reqs/s SET throughput and 0.94M reqs/s GET throughput. This shows that

when there is no contention for CPU, unmodified Linux can perform better, and that

leaves Unikraft, a highly specialized system written from scratch, only 18% better for

SETs and 14% better for GETs. It must be noted here that all this performance advan-

tage is not just due to removing CPU contention; some of it might be due to interrupt

processing parallelism, i.e., network interrupts can now be services on two cores in-

stead of one. For UKL RET BYP (shortcut), we similarly isolate a core and pin Redis

to that core, and get 0.82M reqs/s throughput for SETs and 1M reqs/s throughput for

GETs, which is more than 6% better in both cases compared to Linux 5.14 running in

this setup. Compared to UKL RET BYP (shortcut), Unikraft’s throughput is around

11% better for SETs and 8% better for GETs. This shows the huge opportunity UKL

provides, i.e., with a few optimizations, the performance is within 10% of a highly
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Figure 6·8: Repeat of the experiment in fig. 6·6 (Redis GET through-
put), except with Linux 5.14 and UKL RET BYP (shortcut) run in a
2 core virtual machine, with one core isolated through isolcpus boot
parameter. The Redis server, which is single-threaded, was pinned on
this isolated core through taskset utility. Providing an extra core
improves Linux 5.14 and UKL RET BYP (shortcut) performance.
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Linux 5.14
UKL RET BYP

(shortcut)
% Improv.

SET 0.81 0.84 4.73%

GET 0.92 1.00 8.53%

Table 6.3: Throughput of Redis SETs and GETs in Million reqs/sec
for Linux 5.14 and UKL RET BYP (shortcut) running bare-metal. UKL
RET BYP (shortcut) shows more than 4% improvement for SETs and
more than 8% improvement for GETs over Linux. redis benchmark is
used to generate traffic.

specialized unikernel written from scratch. If further optimizations are explored, the

performance of UKL will increase further. All of these optimizations are done with

minimal changes to Linux. In contrast, if a from-scratch system like Unikraft needs

to explore further changes, it requires a higher time and engineering investment. Due

to UKL preserving generality, even when specialized, we can use Linux utilities like

taskset etc., which is not possible on other specializable systems. This provides

UKL a huge advantage, i.e., familiar tools and utilities can be used to manage and

tune UKL instances.

An operator, developer, or system administrator who knows how to deploy and

manage Linux instances can use UKL for performance improvements while still using

all the familiar tools and utilities. A small amount of specialization over Linux brings

the performance within around 10% of a highly specialized unikernel written from

scratch. The trade-off is getting 10% extra performance but throwing out Linux’s

battle-tested code, its community, and application and hardware compatibility. UKL

shows that an incremental approach that preserves generality can provide a significant

gain even with modest changes.

In § 6.5.2 we present a detailed analysis of Redis running on UKL bare-metal by

using the memtier benchmark, a benchmarking tool which, like redis-benchmark,
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is also developed by RedisLabs [57], the developers of Redis. We don’t use

redis-benchmark because, according to its documentation [26], “The redis-

benchmark program is a quick and useful way to get some figures and evaluate the

performance of a Redis instance on a given hardware. However, by default, it does

not represent the maximum throughput a Redis instance can sustain.” Memtier bench-

mark, on the other hand, is recommended for benchmarking Redis [7].

But before we change benchmarks, we quickly wanted to gauge UKL’s performance

with redis-benchmark. Table 6.3 shows the performance of Linux 5.14 and UKL RET

BYP (shortcut), with both systems running on 2 physical cores and one of those

cores isolated for Redis. We can see that UKL RET BYP (shortcut) provides more

than 4% improvement for SETs and more than 8% improvement for GETs over Linux.

As we will see later in § 6.5.2, UKL shows even higher improvement over Linux when

using the memtier benchmark.

6.5.2 Bare Metal Experiment

To evaluate the bare-metal performance advantages of Redis with UKL, we com-

pare the UKL base model (§ 4.2.1), UKL RET BYP (§§ 5.9 and 5.12) and UKL RET

BYP (shortcut) (§ 5.14) with unmodified Linux. For this experiment, instead of

redis-benchmark, used in § 6.5.1, we use the memtier benchmark which generates

more realistic load than redis-benchmark [7], and can provide the best latency and

throughput that Redis can provide.

Based on our microbenchmark (§ 6.3) results, we expect the UKL base model to

show a marginal advantage over Linux and UKL RET BYP to outperform the UKL base

model. Further, we hypothesize the UKL RET BYP (shortcut) will outperform UKL

RET BYP because of bypassing the VFS layer.

We build and deploy unmodified Linux on a bare metal node that will be the

server (see § 6.2 for hardware and network description) and connect it over a VLAN to
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another bare metal node running Fedora 30, which will host the Memtier benchmark

(client). We build Redis as a regular userspace process, link it statically with the

identical versions of glibc and other libraries used for UKL builds, and deploy it

on the server. We configure the memtier benchmark to create three threads, each

creating 100 clients. Each client generates 100,000 requests for the Redis server. We

also tried many other configurations but had to find the one that would drive the

Redis server as much as possible without saturating the 10Gb network link between

the client and the server (otherwise, the results would be affected by network delays).

For the UKL experiments, we kept the Memtier client configured the same and built

and deployed the server with Redis compiled with UKL base model, UKL RET BYP and

UKL RET BYP (shortcut).

Figure 6·9 shows the results of our experiment; we plot the probability density

and cumulative density function for Linux, UKL base model, UKL RET BYP and UKL

RET BYP (shortcut). Average and 99th percentile tail latency are also shown. As

expected, the UKL base model shows a negligible advantage over Linux. UKL RET BYP

outperforms Linux and UKL base model, both in average and tail latency. Table 6.4

shows that UKL RET BYP has an 11% better tail latency and a 12% improvement

in throughput over Linux. Also, UKL RET BYP (shortcut) outperforms both UKL

RET BYP and Linux. UKL RET BYP (shortcut) shows a 22% improvement in tail

latency and 26% improvement in throughput over Linux (table 6.4). These results

show that the shortcuts identified in § 5.14 provided huge performance improvements.

Also, these results show that although configuration-based optimizations like UKL

RET BYP improve performance, more significant gains can be had if applications are

modified to use custom paths inside the kernel, e.g., UKL RET BYP (shortcut). These

results show the value of having a system that can run tools like perf to understand

exactly where performance gains are possible. Deeper specialization can then be
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Figure 6·9: Probability Density (purple bars) and CDF (orange
line) of Redis deployed on Linux, UKL, UKL RET BYP and UKL RET BYP

(shortcut) and tested with the Memtier benchmark. Average latency
(broken red line) and 99th percentile tail latency (broken purple line)
are also shown.
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99 percentile tail
latency

Throughput

System (ms) Improv. (Kb/s) Improv.

Linux 3.26 - 6375.20 -

UKL base model 3.25 0.3% 6479.20 1.6%

UKL RET BYP 2.91 11% 7154.68 12%

UKL RET BYP

(shortcut)
2.54 22% 8022.54 26%

Table 6.4: Redis throughput and latency improvements of UKL base
model, UKL RET BYP and UKL RET BYP (shortcut) over Linux

identified for an application where we know a-priori that we can call a specific internal

function and avoid all the general purpose code in the kernel. The kernel can be

specialized according to the application’s needs and pull the entire system towards

the specialization end of the generality-specialization spectrum (§ 3.4).

6.5.3 perf Analysis of Redis

To better understand where the gains in Redis results (§ 6.5.2) come from, we use

perf [9] to profile Redis running on unmodified Linux, UKL base model, UKL RET BYP

and UKL RET BYP (shortcut). We re-run the same bare metal experiment described

in § 6.5.2. We run the experiment on the nodes described in § 6.2. To recap, fig. 6·10

shows the high-level architecture of the node. It has a single NUMA node with two

sockets (or packages), and each socket contains 8 cores. We disable hyperthreading,

so each core runs a single thread. Each core has a 32KB L1 instruction cache, a 32KB

L1 data cache, and a unified 256KB L2 cache. All 8 cores on a socket share a 20MB

last-level cache. We pin the Redis server on one of these cores through the taskset

utility. In this context, we present the perf output in tables 6.5 to 6.9, and discuss

it below.
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Figure 6·10: A description of the node we use for Redis experiments,
created through the lstopo utility, which shows a single NUMA node
with 2 sockets (or packages), each containing 8 cores. Each core has
separate 32KB L1 instruction and data caches and a 256KB unified L2
cache. All 8 cores on a socket share a 20MB L3 or last-level cache.
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From table 6.5, the first thing to note is the total number of instructions exe-

cuted. We see a tiny increase in instructions executed between Linux and UKL base

model (0.57%), which makes sense because, while the UKL base model replaces the

syscall instructions with call instructions, it actually adds a few new instructions

in the transition code between application and Linux kernel for environment tracking

(see § 5.4) and to ensure that the register state being stored on the stack is correct (see

§ 5.5) during those transitions. Then we see a slight decrease in instructions executed

in UKL RET BYP compared to Linux (0.21%); this is due to bypassing the transition

code between applications and the kernel (see § 5.12). We see a much more signif-

icant reduction in the number of instructions executed in UKL RET BYP (shortcut)

(12.72%); this is because here we bypass not just the transition code between the

application and kernel, we also bypass the VFS layer and call the relevant TCP send

and receive functions directly from Redis send and receive functions, respectively.

Since sends and receives are the majority of work that Redis does, optimizing these

paths significantly reduces the total number of instructions executed.

The number of CPU cycles taken by the UKL base model compared to Linux fol-

lows the same trend as the total number of instructions executed, i.e., a slight increase

(0.44%). The reduction in CPU cycles taken by UKL RET BYP (8.36%) compared to

Linux is much more significant than the reduction in the number of instructions.

This points to the fact that the instructions that were bypassed, i.e., the entry and

exit code in transitions, were extremely inefficient. Bypassing that code has given

a considerable performance advantage. Similarly, UKL RET BYP (shortcut), when

compared to Linux, shows a disproportionally more significant reduction of CPU

cycles taken (21.86%) than the reduction in instructions executed (12.72%). This

includes all the efficiency gotten by UKL RET BYP and further includes the efficiency

gained by bypassing the VFS layer. This reduction in CPU cycles translates directly
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Linux UKL UKL RET

BYP

UKL RET BYP

(shortcut)

Instructions 358.61 B 360.64 B 357.84 B 313.01 B

Reduc. vs Linux -0.57% 0.21% 12.72%

CPU Cycles 438.19 B 440.12 B 401.55 B 342.39 B

Reduc. vs Linux -0.44% 8.36% 21.86%

Instructions/Cycle 0.82 0.82 0.89 0.91

Imp. over Linux 0.12% 8.89% 11.71%

Time (s) 200.87 201.85 184.04 156.93

Reduc. vs Linux -0.49% 8.38% 21.87%

Table 6.5: Total number of instructions executed and CPU cycles (and
time) taken by Redis running on Linux, UKL base model, UKL RET BYP

and UKL RET BYP (shortcut). The instructions per cycle ratio is also
shown.

to a decrease in time taken, as shown in table 6.5. And since CPU cycles taken

by UKL RET BYP and UKL RET BYP (shortcut) decrease more than the reduction in

instruction executed, we see improved instructions per cycle ratio for UKL RET BYP,

which has 0.89 instructions per cycle (an improvement of 8.89% over Linux), and

UKL RET BYP (shortcut), which has 0.91 instructions per cycle (an improvement of

11.71% over Linux). We will discuss the possible reasons for this jump in efficiency

for UKL RET BYP and UKL RET BYP (shortcut) in the paragraphs below.

In table 6.6, we can see how all these systems fared as far as branch prediction is

concerned, to discuss if it can be one of the factors for improved efficiency of UKL RET

BYP and UKL RET BYP (shortcut). UKL base model shows a slight increase in the

number of total branches encountered compared to Linux, which can be explained by

the slight increase in the number of instructions executed. UKL RET BYP encountered

the same number of branches as Linux and had the same percentage of branches mis-
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Linux UKL UKL RET

BYP

UKL RET BYP

(shortcut)

Branches 72.02 B 72.37 B 72.09 B 63.16 B

Reduc. vs Linux -0.47% -0.09% 12.31%

Branches Mispred. 0.34 B 0.42 B 0.34 B 0.09 B

% Mispred. 0.47% 0.58% 0.47% 0.15%

Table 6.6: Branches encountered and mispredicted by Linux, UKL
base model, UKL RET BYP and UKL RET BYP (shortcut) while running
Redis.

predicted as Linux (0.47%). This means that branch prediction did not play a role in

the efficiency gotten by, at least, UKL RET BYP. UKL RET BYP (shortcut) encountered

12.31% fewer branches than Linux and had one-third the number of mispredictions

(0.15% compared to 0.47% for Linux). The lower percentage of mispredicted branches

for UKL RET BYP (shortcut) can be a factor in its improved efficiency, especially be-

cause branch misprediction can cause a pipeline flush and cost many cycles. But

we have to be careful because the percentage of mispredicted branches in Linux is

already very low (0.47%), so the room for improvement for UKL RET BYP (shortcut)

is naturally minuscule.

Moving on to L1 cache performance, we can see from fig. 6·10 that the core has

two separate 32KB L1 caches for instruction (icache) and data (dcache). Table 6.7

shows that UKL has better L1 icache efficiency Linux. UKL base model has 6.46%

fewer icache misses compared to Linux, although it has been close to Linux, or slightly

worse, in all metrics discussed earlier. This shows that not switching privilege domains

every time a system call or interrupt occurs improves icache efficiency. UKL RET BYP

shows 2.28% fewer icache misses than Linux, but not as good as the UKL base model.

That might be due to a run-to-run perturbation, for the lack of a better explanation.
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Linux UKL UKL RET

BYP

UKL RET BYP

(shortcut)

L1 iCache Load Misses 10.28 B 9.62 B 10.05 B 5.21 B

Reduc. vs Linux 6.46% 2.28% 49.32%

L1 dCache Loads 106.92 B 107.86 B 106.16 B 92.05 B

L1 dCache Load Misses 6.75 B 7.26 B 7.07 B 6.14 B

L1 dCache Stores 61.94 B 62.83 B 59.2 B 49.72 B

L1 dCache Store Misses 1.87 B 1.95 B 1.91 B 1.82 B

L1 dCache Total 168.86 B 170.69 B 165.37 B 141.77 B

Reduc. vs Linux -1.08% 2.07% 16.04%

L1 dCache Tot. Misses 8.62 B 9.21 B 8.98 B 7.96 B

Miss % 5.10% 5.40% 5.43% 5.61%

Table 6.7: An analysis of L1 cache performance for Linux, UKL base
model, UKL RET BYP and UKL RET BYP (shortcut) while running Re-
dis. A breakdown into instruction and data cache accesses and misses
is also shown.
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The real result is UKL RET BYP (shortcut) which shows almost 50% fewer icache

misses than Linux. This means that after bypassing the entry and exit code and

the VFS layer, UKL RET BYP (shortcut) not only has 12.72% fewer instructions to

execute (table 6.5) than Linux, it also does so by fitting those instructions in the

icache better, i.e., it misses the icache half as much as Linux.

Table 6.7 gives us interesting insights into L1 dcache performance as well. UKL

base model accesses the L1 dcache slightly more times than Linux, as expected, due

to a higher number of total instructions. UKL RET BYP shows a 2% lesser number of

L1 dcache accesses compared to Linux. This might be because fewer instructions

touch fewer kernel data structures, leading to fewer accesses to dcache. Again the

real improvement is in UKL RET BYP (shortcut), which accesses L1 dcache 16% less

than Linux. We know that the VFS layer touches a lot of kernel data structures

to translate a generic file descriptor to a network socket and route the code path

from generic reads and writes to TCP sends and receives, respectively. Bypassing all

that code also means that lesser data needs to be accessed, leading to fewer dcache

accesses in UKL RET BYP (shortcut). Although the L1 dcache miss percentage is

almost the same for all four systems, because UKL RET BYP (shortcut) has fewer L1

dcache accesses, to begin with, the actual number of times L1 dcache misses is lower

than Linux, i.e., 7.96 B compared to 8.62 B. Due to the fewer misses, UKL RET BYP

(shortcut) saves the cost of accessing the L2 cache. So better L1 cache efficiency

can be a factor in improved UKL RET BYP (shortcut) performance.

Table 6.8 shows that the number of data TLB accesses for all the systems is almost

the same as the total L1 dcache accesses of those systems (from table 6.7). This is

because the L1 cache is virtually indexed, physically tagged, so each L1 access would

also involve a TLB access. Since the actual number of dTLB misses is the same for

UKL RET BYP (shortcut) as compared to Linux, this does not explain the improved
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Linux UKL UKL RET

BYP

UKL RET BYP

(shortcut)

dTLB Accesses 169.08 B 170.89 B 165.56 B 141.96 B

Reduc. vs Linux -1.07% 2.08% 16.04%

dTLB Misses 0.64 B 0.82 B 0.85 B 0.65 B

Miss % 0.38% 0.48% 0.51% 0.46%

Table 6.8: Data TLB performance of Redis running on Linux, UKL
base model, UKL RET BYP and UKL RET BYP (shortcut).

performance of UKL RET BYP (shortcut).

Table 6.9 shows the number of last-level cache access and misses. The CPU cycles

and time taken for each system, earlier shown in table 6.5, are provided again for

quick reference. From table 6.7, we know that UKL RET BYP and especially UKL RET

BYP (shortcut) had better L1 instruction and data cache efficiency. Table 6.9 shows

the effect of that on the last-level cache, which is combined for instructions and data.

We see a similar total number of accesses in Linux and the UKL base model. UKL

RET BYP shows an 8.7% reduction in the total number of last-level memory accesses

compared to Linux. This means that, due to bypassing the entry and exit code, UKL

RET BYP had fewer instructions (better L1 icache efficiency), which touched fewer

kernel data (better L1 dcache efficiency). That improved the L2 cache efficiency as

well, i.e., better L2 cache hit rate and thus lower last-level cache accesses. The same

is the case of UKL RET BYP (shortcut); better L1 cache efficiency led to better L2

cache efficiency, which meant 21.28% lower last-level cache accesses. Better L1 and L2

efficiency and a lower total number of accesses to the last-level cache translate directly

to fewer CPU cycles and less time taken. To be precise, 8.77% fewer last-level cache

accesses led to 8.36% improvement in UKL RET BYP and 21.28% fewer last-level cache

accesses led to 21.86% improvement for UKL RET BYP (shortcut). These numbers
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Linux UKL UKL RET

BYP

UKL RET BYP

(shortcut)

LLC Accesses 6.07 B 6.16 B 5.54 B 4.78 B

Reduc. vs Linux -1.44% 8.77% 21.28%

LLC Misses 1.41 B 1.4 B 0.85 B 0.79 B

Miss % 23.16% 22.72% 15.38% 16.59%

CPU Cycles 438.19 B 440.12 B 401.55 B 342.39 B

Reduc. vs Linux -0.44% 8.36% 21.86%

Time (s) 200.87 201.85 184.04 156.93

Reduc. vs Linux -0.49% 8.38% 21.87%

Table 6.9: Last-level cache accesses and misses for Redis running on
Linux, UKL base model, UKL RET BYP and UKL RET BYP (shortcut).
The CPU cycles and time taken for each system, already shown in
table 6.5, is provided again for quick reference.

suggest that UKL’s gains come from better L1 and L2 cache efficiency compared to

Linux.

6.6 Multithreaded Application - Memcached

So far, we have tested Redis, a single-threaded application. We now want to evaluate

UKL’s performance when targeting a more complex application, Memcached [69].

Memcached is a multi-threaded key-value store that relies heavily on the pthreads

library and glibc’s internal synchronization mechanisms. It is also dependent on

libevent [6], an event notification library that must be compiled and linked with.

Memcached is an interesting application because unikernels generally don’t support

applications that require complex features, and some systems [88] require Memcached

to be ported.
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Figure 6·11: 99% tail latency for Memcached against increasing load.
Memcached is configured to run with 4 threads, pinned to 4 cores,
and deployed inside a 6 core VM. The client, i.e., memtier benchamrk,
was also configured with 4 threads, each pinned to a separate core
and deployed natively on a different physical node, and both nodes
connected through a physical network. This figure shows the 99th per-
centile tail latency of Memcached on different systems as the number
of connections per thread in memtier benchmark was increased to sim-
ulate increasing load. UKL RET BYP (shortcut) shows lower latency
than Linux, even at a higher load (see table 6.10 for details on latency
numbers and percentage improvement). UKL base model and UKL RET

BYP also show a smaller improvement over Linux in most cases.
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We deploy Memcached like it is mostly deployed in data centers, i.e., in a VM,

and the client deployed on a separate physical node, sending requests over a physical

network. We deploy Memcached inside a 6 core VM; we ensure that all the vCPUs are

pinned to separate physical cores on the host. We configure Memcached to run with 4

threads, each thread pinned to a separate vCPU. Each of the systems, i.e., Linux and

different configurations of UKL, are built with virtio network para-virtualization

drivers. On the host end, we use the vhost mechanism to share network queues

between the host and the guest, taking the QEMU userspace out of the critical path.

This gives the VM a very high-speed network. Inside the VM, we pin the virtio

network queues to the separate vCPUs as well to avoid cross-core interference due to

network interrupts.

On a separate physical node, we run the memtier benchmark on Fedora 30. We

configure the benchmark to also have 4 threads, each pinned to a separate physical

core, and generate a traffic of 100,000 requests. We increase the number of connections

per thread from 2 to 10, to increase the load on Memcached server and measure

the 99th percentile tail latency. We repeat each experiment 10 times and show an

average in fig. 6·11 with error bars. The detailed breakdown of Linux and UKL RET BYP

(shortcut) latency is shown in table 6.10, along with the percentage improvement

over Linux.

From fig. 6·11 and table 6.10 we can see that UKL, especially UKL RET BYP

(shortcut) shows upto 10% improvement over Linux, even when experiencing higher

load. UKL base model and UKL RET BYP are very close to Linux in tail latency, espe-

cially at lower loads. This can be because when the network is not fully saturated, the

improvement of the UKL base model and UKL RET BYP get amortized. UKL RET BYP

shows improvement over Linux when the load on the system increases, especially after

8 connections per thread. This experiment shows us that UKL, unlike many other
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Conns. per

Thread
Linux

UKL RET BYP

(shortcut)
% Improv.

1 0.22 0.22 0.36%

2 0.27 0.25 6.33%

3 0.33 0.29 10.76%

4 0.40 0.36 10.36%

5 0.50 0.47 7.30%

6 0.61 0.56 8.78%

7 0.71 0.64 9.90%

8 0.82 0.73 10.01%

9 0.94 0.84 10.60%

10 1.03 0.94 8.60%

Table 6.10: 99th percentile tail latency, in msec, of Memcached run-
ning on Linux and UKL RET BYP (shortcut). Percentage improvement
of UKL RET BYP (shortcut) over Linux is also shown. UKL RET BYP

(shortcut) gets upto 10% tail latency improvement over Linux, even
as the load on the Memcached server increases.
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specializable systems, is capable of running complex multi-threaded applications and

also provides performance improvement for them.

6.7 Key Takeaways

With UKL, we preserve Linux’s application and hardware compatibility, along with

its ecosystem of tools, utilities and community of developers and operators. UKL base

model can be deployed wherever regular Linux can, and we have run many unmodified

applications with it after a recompilation and relinking step. The changes required in

Linux and glibc are minimal, which allows us to try for its upstream acceptance so

the community can maintain and extend it. Although the performance improvements

are negligible with the UKL base model, the real win is preserving the generality,

something many specializable systems cannot achieve. As optimizations are added to

UKL, the set of target applications shrinks, but the remaining applications experience

increasing performance gains. Configuration-based optimizations can be turned on for

many applications and provide decent gains. Significant performance improvements

are possible by co-optimizing the application and the kernel together. Through this

evaluation section, we have demonstrated that a general-purpose operating system

can be specialized while preserving its application and hardware compatibility and

the ecosystem around it.
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Chapter 7

Conclusion

UKL explores the generality-specialization spectrum between general-purpose oper-

ating systems and specializable systems. Its most basic version links a target appli-

cation with the Linux kernel, executes it in kernel mode, and replaces system calls

with function calls. It shows minimal performance benefits but retains Linux’s en-

tire application and hardware compatibility, along with its battle-tested code base,

community, and ecosystem of tools and utilities. Further, it integrates optimizations

explored by specializable systems to Linux, e.g., faster transitions between applica-

tion and kernel code, avoiding stack switches, run-to-completion modes, and allowing

applications to bypass kernel state machines and directly call kernel functions. The

total number of code changes to Linux and glibc are modest, and it is possible to

achieve substantial performance advantages for real workloads, e.g., 26% improve-

ment in Redis throughput while improving tail latency by 22%. UKL supports both

virtualized platforms and bare-metal platforms. Operators can configure and control

UKL using the same tools they are familiar with, and developers can use standard

Linux kernel tools like eBPF and perf to analyze their programs.

UKL has the word unikernel in its name but differs in several interesting ways

from unikernels. First, while application and kernel code are statically linked together,

UKL provides very different execution environments for each, enabling applications to

run in UKL with no modifications while preserving the often unwritten invariants of

the Linux kernel. Second, UKL enables a knowledgeable developer to incrementally
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optimize performance by modifying the application to directly take advantage of

kernel capabilities, violating the normal assumptions of kernel versus application code.

Third, processes can run on top of UKL, enabling the entire ecosystem of Linux tools

and scripting to just work.

While the set of changes to create UKL ended up being small, it has taken several

years to get to this point. The design decisions are a result of multiple, typically much

more pervasive, changes to Linux. The experience gained through those iterations

resulted in several direction changes and learning how the desired optimizations could

be integrated into Linux. Interestingly, the very modularity of Linux that enables a

broad community to participate makes it very difficult to understand how to incor-

porate a change like UKL, but it can also be harnessed to enable the change in a very

small number of lines of code.

This thesis is just the start of integrating performance optimizations in UKL.

Through experience and knowledge of Linux, a series of simple optimizations that

can be readily adopted have become apparent beyond the current efforts. For ex-

ample, introducing and exploiting zero-copy interfaces to the applications, reducing

some of the privacy assumptions implicit in the BSD socket interface when only one

application consumes incoming data, etc.

These kernel-centric optimizations are just the start. From an application per-

spective, UKL will provide a natural path for improving performance and reducing

the complexity of concurrent workloads. Often the burden falls onto the user code. It

is hard to determine whether synchronization is needed from the user level, while the

controlling entities usually live in the kernel. If the user code moves into the kernel

and has the same privileges, some operations might become faster or possible in the

first place. For instance, in a garbage collector, it might be necessary to prevent or

at least detect whether concurrent accesses happen. With easy and fast access to the
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memory infrastructure (e.g., page tables) and the scheduler, many situations in which

explicit, slow synchronization is needed might get away with detecting and cleaning

up violations of the assumptions.

This is just the beginning of this research direction, and the possibilities are limit-

less. UKL can serve as the go-to way applications are deployed in the cloud, starting

with full compatibility of Linux and adding optimizations specific to the workloads.

Developers would not have to choose between the compatibility benefits of Linux and

the performance advantages of specializable systems. UKL can serve as a framework

where new optimizations in Linux can be implemented and tested. One does not have

to be a kernel developer; optimizations can be implemented as regular userspace code

and linked into the kernel. UKL can also allow driver development in userspace and

enable application developers to dive deep into the kernel and call functions directly

instead of being limited to the system call API. UKL can be how specializable systems

finally get mainstream adoption, ushering in the era of specialization while standing

on the shoulders of generality.



Bibliography

[1] dead or alive: Linux libos project in 2016. https://github.com/thehajime/
blog/issues/1. Accessed on 2021-10-7.

[2] Dpdk - data plane development kit. https://www.dpdk.org/. Accessed on
2021-10-7.

[3] ebpf. https://ebpf.io/. (Accessed on 1/18/2023).

[4] Efficient io with io uring. https : //kernel . dk/ io uring .pdf. (Accessed on
1/18/2023).

[5] Kernel virtual machine (kvm). https://www.linux-kvm.org/page/Main Page.
(Accessed on 11/25/2022).

[6] libevent – an event notification library. https://libevent.org/. (Accessed on
1/27/2023).

[7] memtier benchmark: A high-throughput benchmarking tool for
redis & memcached. https : / / redis . com / blog / memtier
benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/.
(Accessed on 2/15/2023).

[8] Overview of the linux virtual file system. https://www.kernel.org/doc/html/
latest/filesystems/vfs.html. (Accessed on 1/27/2023).

[9] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/
index.php/Main Page. (Accessed on 1/27/2023).

[10] Qemu - a generic and open source machine emulator and virtualizer. https:
//www.qemu.org/. (Accessed on 11/25/2022).

[11] Re: [regression w/ patch] media commit causes user space to misbahave (was:
Re: Linux 3.8-rc1). https://lkml.org/lkml/2012/12/23/75. (Accessed on
12/19/2022).

[12] [rfc ukl 00/10] unikernel linux (ukl). https : / / lore . kernel . org / lkml /
20221003222133.20948-1-aliraza@bu.edu/. (Accessed on 12/28/2022).

[13] Solo5 - a sandboxed execution environment for unikernels. https://github.com/
solo5/solo5. Accessed on 2021-10-7.

124

https://github.com/thehajime/blog/issues/1
https://github.com/thehajime/blog/issues/1
https://www.dpdk.org/
https://ebpf.io/
https://kernel.dk/io_uring.pdf
https://www.linux-kvm.org/page/Main_Page
https://libevent.org/
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.qemu.org/
https://www.qemu.org/
https://lkml.org/lkml/2012/12/23/75
https://lore.kernel.org/lkml/20221003222133.20948-1-aliraza@bu.edu/
https://lore.kernel.org/lkml/20221003222133.20948-1-aliraza@bu.edu/
https://github.com/solo5/solo5
https://github.com/solo5/solo5


125

[14] X-containers. https://www.x-containers.org/home. (Accessed on 12/14/2022).

[15] Storage Performance Development Kit. https://spdk.io/, 2018. (Accessed on
01/16/2019).

[16] Amazon. https://aws.amazon.com/ec2/nitro/, 2022. (Accessed 10/19/2022).

[17] Glenn Ammons, Jonathan Appavoo, Maria Butrico, Dilma Da Silva, David
Grove, Kiyokuni Kawachiya, Orran Krieger, Bryan Rosenburg, Eric Van Hens-
bergen, and Robert W Wisniewski. Libra: a library operating system for a jvm
in a virtualized execution environment. In Proceedings of the 3rd international
conference on Virtual execution environments, pages 44–54, 2007.

[18] Thomas E Anderson. The case for application-specific operating systems. Uni-
versity of California, Berkeley, Computer Science Division, 1993.

[19] Jens Axboe. https://fio.readthedocs.io/en/latest/fio doc.html. (Accessed on
10/13/2022).

[20] Arindam Banerji, John M Tracey, and David L Cohn. Protected shared li-
braries—a new approach to modularity and sharing. In Proceedings of the 1997
USENIX Technical Conference, pages 59–75, 1997.

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. ACM SIGOPS operating systems review, 37(5):164–177, 2003.

[22] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
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escu, Costi Răducanu, et al. Unikraft: fast, specialized unikernels the easy way.
In Proceedings of the Sixteenth European Conference on Computer Systems,
pages 376–394, 2021.

[55] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri Volchkov, Flo-
rian Schmidt, Kenichi Yasukata, Michio Honda, and Felipe Huici. Unikernels
everywhere: The case for elastic cdns. In Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
pages 15–29, 2017.

[56] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A linux
in unikernel clothing. In Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–15, 2020.

[57] Redis Labs. https://redis.com/. (Accessed on 01/28/2023).

[58] Stefan Lankes, Simon Pickartz, and Jens Breitbart. Hermitcore: a unikernel for
extreme scale computing. In Proceedings of the 6th International Workshop on
Runtime and Operating Systems for Supercomputers, pages 1–8, 2016.

https://redis.com/


129

[59] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,
David Evers, Robin Fairbairns, and Eoin Hyden. The design and implemen-
tation of an operating system to support distributed multimedia applications.
IEEE journal on selected areas in communications, 14(7):1280–1297, 1996.

[60] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. Se-
crecy: Secure collaborative analytics in untrusted clouds. to apear NSDI 2023,
2023.

[61] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky.
{MICA}: A holistic approach to fast {In-Memory}{Key-Value} storage. In
11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[62] LKML. https://lkml.org/lkml/2022/10/3/1087, 2022. (Accessed 10/19/2022).

[63] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. ACM SIGARCH Com-
puter Architecture News, 41(1):461–472, 2013.

[64] Toshiyuki Maeda and Akinori Yonezawa. Kernel mode linux: Toward an oper-
ating system protected by a type theory. In Annual Asian Computing Science
Conference, pages 3–17. Springer, 2003.

[65] Ilias Marinos, Robert NM Watson, and Mark Handley. Network stack special-
ization for performance. ACM SIGCOMM Computer Communication Review,
44(4):175–186, 2014.

[66] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network
function virtualization. In 11th {USENIX} symposium on networked systems
design and implementation ({NSDI} 14), pages 459–473, 2014.

[67] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean
Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans,
Steve Gribble, et al. Snap: A microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles, pages
399–413, 2019.

[68] Paul E McKenney and John D Slingwine. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed Computing
and Systems, volume 509518, 1998.

[69] Memcached. https://memcached.org/. (Accessed on 05/30/2022).

https://lkml.org/lkml/2022/10/3/1087
https://memcached.org/


130
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