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Abstract
Background: Alcohol consumption is commonly used as a primary outcome in randomized
alcohol treatment studies. The distribution of alcohol consumption is highly skewed, particularly in
subjects with alcohol dependence.

Methods: In this paper, we will consider the use of count models for outcomes in a randomized
clinical trial setting. These include the Poisson, over-dispersed Poisson, negative binomial, zero-
inflated Poisson and zero-inflated negative binomial. We compare the Type-I error rate of these
methods in a series of simulation studies of a randomized clinical trial, and apply the methods to
the ASAP (Addressing the Spectrum of Alcohol Problems) trial.

Results: Standard Poisson models provide a poor fit for alcohol consumption data from our
motivating example, and did not preserve Type-I error rates for the randomized group comparison
when the true distribution was over-dispersed Poisson. For the ASAP trial, where the distribution
of alcohol consumption featured extensive over-dispersion, there was little indication of significant
randomization group differences, except when the standard Poisson model was fit.

Conclusion: As with any analysis, it is important to choose appropriate statistical models. In
simulation studies and in the motivating example, the standard Poisson was not robust when fit to
over-dispersed count data, and did not maintain the appropriate Type-I error rate. To
appropriately model alcohol consumption, more flexible count models should be routinely
employed.

Background
Count outcomes are common in randomized studies of
alcohol treatment. Subjects may be queried about their
daily consumption of alcohol, measured as a number of
drinks over a recent period [1] (typically 30 days), and
these values are used to estimate average drinking per day.

In this setting, estimating differences between treatment
group and control group is of primary interest.

A challenge in modeling consumption outcomes is to
appropriately account for the distribution of drinking.
These distributions are characterized by a large number of
zeros (abstinent subjects) along with a long right tail
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(heavy drinking subjects). An extensive literature
describes models for counts [2-8], and they have been
commonly applied in economic analyses, traffic acci-
dents, and health services utilization. Many routines are
now available in general purpose statistical software (e.g.
Stata) [8]. A natural model for counts is the single-param-
eter Poisson distribution. One disadvantage of the Pois-
son is that it makes strong assumptions regarding the
distribution of the underlying data (in particular, that the
mean equals the variance). While these assumptions are
tenable in some settings, they are less appropriate for alco-
hol consumption. Extensions of the Poisson, such as the
over-dispersed Poisson, negative binomial and two stage
(hurdle) or zero inflated models have been proposed [2-
5].

Our methods are motivated by the analysis of the ASAP
(Addressing the Spectrum of Alcohol Problems) study, a
randomized clinical trial comparing a brief motivational
interview to usual care for a sample of inpatients with
unhealthy alcohol use at an urban hospital [9]. These sub-
jects were followed to see if there were differences in
drinking outcomes that could be attributed to rand-
omized group assignment.

In this paper, we will demonstrate the limitations of the
standard Poisson model in the presence of over-disper-
sion. We begin by describing several count models for
alcohol outcomes, compare their performance in a series
of simulated randomized trials, apply them to the ASAP
study, and conclude with some general recommenda-
tions.

Methods
Statistical methods for the analysis of count outcomes
We begin by introducing notation to be used throughout.
Let Yij denote the number of events for the jth subject (j =
1,..., ni) in the ith group (i = 1, 2), where ni is the number
of subjects in the ith group. Typically in a randomized trial
n1 and n2 are approximately equal.

The Poisson distribution is one of the simplest models for
count data. Let λij indicate the average number of events
(in this case drinks consumed) in a given time interval for
subject j in group i, where f(Yij = k|λij) is the probability of
observing k events. The Poisson distribution [8,10] is
denoted:

for k = 0, 1, 2, ..., i = 1, 2, and j = 1,..., ni where λij > 0 and

we assume that λij = λi for all j (i.e. all subjects in a given

group have the same rate of drinking). The λ parameter

uniquely specifies this distribution, and is equal to the
expected value (mean) and variance (i.e. E[Yij] = Var(Yij) =

λij for all i and j). The maximum likelihood estimate

(MLE) of i is given by i. In this setting, the test of ran-

domized group effects for the Poisson model is a test of

the null hypothesis that λ1 = λ2.

One limitation of this model is that it may be overly sim-
plistic and may not provide an adequate fit to consump-
tion data of the type that we consider. The constraint that
the variance is equal to the mean may lead to incorrect test
results.

Consider as an example the data from the ASAP study con-
trol group at 3 months. For this dataset, non-integer count
values are possible. These arise when subjects consume a
number of drinks not divisible by 30 (in the case of 30-
day assessments). One approach in this situation would
be to model the number of drinks consumed in a 30 day
period, or utilize the non-integer values. Sometimes even
the 30 day value is non-integer because people report a
drink size that is then translated into standard drinks. The
maximum likelihood estimates of the probability distri-
butions remains the same for non-integer values, though
it is necessary to move each non-integer observed value to
the next integer (using a ceiling function) to be plotted.
For the models that we discuss, we can plug non-integer
values into the software and still get sensible results.

Figure 1 displays the observed distribution and superim-

posed Poisson with 1 = 1 = 4.98 using the prcounts

routine in Stata [8]. The axis for the number of drinks per
day after 3 months was limited to 25 drinks to improve
readability (the maximum observed count was 48.6).
There is a pronounced lack of fit to this model, particu-
larly for values of less than 10 drinks per day. For the ASAP
data, the assumption that the mean is equal to the vari-
ance is not tenable. In fact, the observed variance (71.7) is
more than an order of magnitude larger than the mean.
Also, note that there is some evidence for digit preference
(even numbers are more common than odd numbers).

One approach to loosen the restrictive variance assump-
tion involves use of an empirical (or robust or sandwich)
variance estimator [11-13] to account for the over-disper-
sion. This more flexible extension of the Poisson allows
the variance to be unconstrained. The over-dispersed Pois-
son option is available in a number of general purpose
statistics packages (e.g. the robust option in Stata).

Another approach is to fit a negative binomial (two
parameter) count model (NB) [5-8,10]. One common
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parametrization of the negative binomial distribution is
given by:

where Γ(·) denotes the Gamma function, λi > 0 and θi >

0. We note that E[Yij] = λi and Var(Yij) = λi +  * θi = λ i *

(1 + λi * θi) for all i and j and that Var(Yij) > E[Yij]. It can

be shown that the negative binomial can be derived in
terms of a Poisson random variable where the parameter

λi varies according to a gamma distribution.

The negative binomial model is attractive because it
allows the relaxation of strong assumptions regarding the
relationship between the mean and the variance. This flex-
ibility comes at some cost, since a two-parameter model is
inherently more complicated to interpret.

Other models have been proposed that allow for an extra
abundance of subjects with no consumption. In alcohol
consumption outcomes, there may be subjects who are
"non-susceptible" (e.g. abstinent). These "zero-inflation"
(or "hurdle") models account for subjects who are struc-
tural zeros (e.g., abstinent subjects thought of as "non-
susceptible") [2,3]. Conditional on being susceptible
(with some probability), the distribution is assumed to be
Poisson or negative binomial.
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Observed value of drinks per day for the control group of the ASAP study at 3 months, plus the estimated Poisson fit to these data (1 = 4.98)Figure 1
Observed value of drinks per day for the control group of the ASAP study at 3 months, plus the estimated Poisson fit to these 

data ( 1 = 4.98).
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Zero-inflated Poisson (ZIP) models [3] separately esti-
mate a parameter pi that governs the proportion of non-
susceptible subjects in the ith group:

for 0 <pi < 1 and λi > 0 where I(k = 0) is equal to 1 when k
= 0, and equal to 0 otherwise. By distinguishing Always-0
(with probability pi) and Not Always-0 group (with proba-
bility (1 - pi ) * exp(-λi)) for abstainers and drinkers who
didn't drink during the reporting period, respectively, it
can incorporate an overabundance of zeros [8]. Condi-
tional on being a Not Always-0, counts are given by the
Poisson distribution. This approach has been generalized
to a regression framework, and implemented in general
purpose statistical software (e.g. zip in Stata).

In many settings, the assumption that after accounting for
the zeros the remaining counts are Poisson may not be
tenable. The zero-inflated negative binomial (ZINB)
allows for over-dispersion in this manner, though at the
cost of more parameters.

Another approach to the modeling of count data involves
use of a linear model (assuming that the observations are
approximately Gaussian). While this is an extremely flex-
ible model that is typically robust to misspecification
(since the mean and variance are not linked), the linear
model is less attractive because it may predict negative val-
ues of drinking given the skewness of the distribution. Use
of a linear model is also inefficient if the variance is a func-
tion of the mean.

Simulation study
To better understand the behavior of these methods in a
known situation, we conducted a series of simulation
studies with parameters derived from the motivating
example. These simulation studies were designed to
address the question of whether or not the models were
robust to misspecification of the underlying count distri-
bution. More formally, we wanted to assess whether these
models preserved the appropriate Type-I error rate (the
probability of rejecting the null hypothesis when it is true)
when there are no true differences between groups (i.e. do
they reject the null at the appropriate α level).

For each set of parameters within a simulation, 100 obser-
vations were generated in each of two groups, to mimic a
randomized clinical trial setting. The amount of alcohol
consumption, in drinks per day was the outcome. For
each simulated dataset a series of models (Poisson, nega-
tive binomial and zero-inflated Poisson) were fit. This

process was repeated 2500 times for each set of parame-
ters, where E[Yi] = λ = 5 (taken from the ASAP control
group) and an α level of 0.05 was used. For the simulation
of Poisson data the variance was equal to the mean. Neg-
ative binomial distributions were simulated using three
arbitrary variances (13.3, 40 and 70), with the latter value
comparable to the observed variance from the ASAP con-
trol group. The zero-inflated model had a probability of
0.2 of being a structural zero, and Poisson with λ = 5 oth-
erwise. The true distributions for the simulations are dis-
played in Figure 2. Models were fit using the Poisson
distribution, over-dispersed Poisson using an empirical
variance estimator, negative binomial and zero inflated
Poisson. We estimated the probability that each model
rejected the null hypothesis and constructed a 99% confi-
dence interval around this estimate. The code for the sim-
ulations is available upon request from the first author.

ASAP study
The ASAP study was a randomized clinical trial of the
effectiveness of a brief motivational intervention [14] on
alcohol consumption among a group of hospitalized
patients at Boston Medical Center. Details of the recruit-
ment procedures, inclusion criteria, description of sample
and results of the RCT have been published [15]. The
Institutional Review Board of Boston University Medical
Center approved this study, and the Institutional Review
Board of Smith College approved the secondary analyses.
After consenting to enroll, all subjects received an inter-
viewer-administered baseline assessment prior to rand-
omization into the control or intervention group. Subjects
were randomly assigned to control or intervention group
using a blocked randomization procedure. Intervention
subjects participated in a brief motivational interview
with a counselor (less than half an hour). Control subjects
received usual care.

Follow-up was planned at 3-month and 12-month time-
points. Because the subjects came from a transient and
hard-to-reach population, the researchers employed
exhaustive techniques to track subjects over the follow-up
period. The two primary alcohol-related outcomes were
measures of alcohol consumption and linkage to appro-
priate alcohol treatment; for these secondary analyses we
focus solely on treatment differences in alcohol consump-
tion. The outcome of interest was the average number of
standard drinks consumed per day in the past thirty days
as reported using the Timeline Followback method [1] at
the 3 and 12-month interviews. For the purpose of this
secondary analysis we consider the 3 month time point;
similar results were seen utilizing 12 month data (not
reported here).

Eight models were fit comparing treatment to control for
the ASAP study:
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Poisson standard Poisson model,

Over-dispersed Poisson Poisson model with empirical
("robust") variance estimator,

NB negative binomial,

ZIP zero-inflated Poisson, shared inflation parameter esti-
mated for both randomized groups (p1 = p2),

ZINB zero-inflated negative binomial, shared inflation
parameter estimated for both randomized groups (p1 =
p2),

TTEST two-sample unequal variance t-test,

WILCOXON Wilcoxon-Mann-Whitney, a non-parametric
two-sample comparison procedure suitable for ordinal
data, and

PERMUTE two-sample permutation test.

Results
Simulation studies
In the simulation studies we assessed the behavior of
models when the null hypothesis was true (there were no
differences between alcohol consumption for groups 1
and 2). We note that the ZIP model failed to converge for
more than a quarter of the simulations from the standard
Poisson distribution. This is likely due to the fact that
many datasets had no zeros whatsoever (for the Poisson
distribution with λ = 5, the probability that a dataset has
no zeros whatsoever is equal to (1 - exp(-5))100 = 0.51).

Graphical display of the five distributions, all with rate parameter 5, used in the simulations (Poisson [Var = 5], negative bino-mial [NB13, Var = 13], negative binomial [NB40, Var = 40], negative binomial [NB 70, Var = 70] and zero-inflated Poisson [ZIP, p = 0.2, Var = 8])Figure 2
Graphical display of the five distributions, all with rate parameter 5, used in the simulations (Poisson [Var = 5], negative bino-
mial [NB13, Var = 13], negative binomial [NB40, Var = 40], negative binomial [NB 70, Var = 70] and zero-inflated Poisson [ZIP, 
p = 0.2, Var = 8]).
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Table 1 displays the estimated Type I error rate (when
there is no difference between the groups) when α was set
to 0.05. The negative binomial model was conservative
when the underlying data were zero-inflated. When the
underlying distributions were not Poisson, the Poisson
model did not maintain the appropriate Type I error rate.
When the count models were over-dispersed by a factor of
more than 2 (i.e. Var(Yi) > 2 * E[Yi]), the Poisson model
rejected more than 22% of the time. When the over-dis-
persion was more extreme (factor of 8 and 14), the Type I
error rate was 47% and 58%, respectively. The severe lack
of robustness of the Poisson model in this setting is a seri-
ous concern.

ASAP study
Of 341 subjects enrolled in the clinical trial, 169 subjects
were randomized to the control group and the other 172
into the intervention group. The mean age of the subjects
was 44.3 (SD = 10.7). Twenty-nine percent were women,
45% were Black, 39% White, 9% Hispanic, and 7% Other.
Sixty-three percent were unemployed during the past
three months and 25% of the subjects were homeless at
one point during the past three months. Four percent of
the subjects met criteria for current (past year) alcohol
abuse and 77% were alcohol dependent.

We analyze the 3-month follow-up data for which 271
subjects were observed (141 control, 130 treatment), for

an overall response rate of 79%. Table 2 displays the dis-
tribution of drinks per day at baseline and 3-month fol-
low-up separately for each group. As noted earlier,
drinking outcomes are highly skewed to the right, with
some extremely large values. These extreme values are
plausible given the large number of dependent drinkers in
the sample, many of whom have developed tolerance (the
need to consume large amounts of alcohol to induce
effects). We also note that reported drinking quantities
decreased for both groups between baseline and 3-month
outcome.

Table 3 displays the results from the ASAP study using a
variety of count models. Use of the Poisson model yielded
a statistically significant p-value, in contrast to the other
methods (all other p-values > 0.45).

Figure 3 displays the observed and predicted counts for
the Poisson, negative binomial, and ZIP models, while
Figure 4 displays the plot of (observed minus expected)
for the Poisson, negative binomial and ZIP models for the
control group. The standard Poisson model provides an
unsatisfactory fit, and is not appropriate for the analysis of
this dataset. The fit of the zero-inflated Poisson is
improved, particularly for modeling the probability of no
drinking, but remains unsatisfactory over most of the
remaining values. The negative binomial provides an
excellent fit for these data, and that there is no indication

Table 1: Estimated probability (and 99% CI) of rejecting the null hypothesis when there is no true difference between groups for a 
variety of statistical models and underlying distributions (results that do not include the alpha level of 0.05 are bolded)

Analysis model fit

True Distribution: Poisson ODP NB ZIP

Poisson (Var = 5) .053 (.041,.064) .054 (.042,.066) .047 (.036,.058) .055* (.043,.067)
NB (Var = 13) .225 (.204,.247) .049 (.038,.060) .049 (.038,.060) .050 (.039,.061)
NB (Var = 40) .467 (.441,.493) .047 (.036,.058) .044 (.033,.055) .046 (.036,.057)
NB (Var = 70) .584 (.558,.609) .052 (.041,.063) .048 (.037,.059) .062 (.049,.074)
ZIP (Var = 8) .179 (.159,.199) .058 (.046,.070) .031 (.022,.040) .051 (.040,.063)

all distributions except ZIP have E[Yi] = λ = 5, for ZIP E[Yi] = 0.8 * 5 = 4.
ODP (over-dispersed Poisson); NB (negative binomial); ZIP (zero-inflated Poisson)
* For the true distribution under the Poisson, the ZIP model failed to converge for n = 672 of the simulations.

Table 2: Distribution of drinking outcome by timepoint and randomization group

Base line 3 Months

C (n = 169) T (n = 72) C (n = 141) T (n = 130)

MIN 0.17 0 0 0
25th percentile 1.14 1.32 0.17 0.13

MEDIAN 3.47 3.85 1.8 1.6
75th percentile 8.23 9.12 6.1 5.7

MAX 61.77 60 48.6 38.43
mean (SD) 6.95 (9.58) 6.68 (8.44) 4.98 (8.47) 4.36 (6.47)
Page 6 of 9
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that any further zero-inflation is needed, since the model
already overpredicts zeros (hence the predicted values for
the NB and ZINB would be identical).

In this setting, there was little indication from the
observed plots that there were significant group differ-
ences. As seen in the simulation studies, the Poisson may

Observed and predicted values from the ASAP study at 3 months for control and treatment groups for each of four models: Wilcoxon, Poisson, negative binomial and zero-inflated PoissonFigure 3
Observed and predicted values from the ASAP study at 3 months for control and treatment groups for each of four models: 
Wilcoxon, Poisson, negative binomial and zero-inflated Poisson.
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Table 3: p-values for the ASAP randomization group effect at 3 months for a variety of count models

MODEL p-value

Poisson .018
over-dispersed Poisson .489

Negative binomial .458
zero-inflated Poisson .542

zero-inflated negative binomial .489
t-test .495

Wilcoxon .805
Permutation .746
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not have preserved the appropriate Type I error rate due to
the extremely large values of drinking for some subjects.
The Appendix includes the Stata commands to fit these
models and the output, along with the code to generate
observed and predicted plots using the prcounts routine.

Discussion and conclusion
A number of models have been proposed for the analysis
of count data, and these models are now available in gen-
eral purpose statistical packages. We have described these
methods in the context of modeling reports of alcohol
consumption, where a large proportion of respondents
report no drinking, and a small number of respondents
typically account for an extreme amount of drinking.

For the analysis of the ASAP study, we found that the
standard Poisson had an extremely poor fit, and yielded a
statistically significant p-value (in contrast to all of the

other models, which had highly non-significant results).
The unrealistic assumption that the expected rate of drink-
ing is the same for all subjects may partially account for
the poor fit of the Poisson distribution. We caution
against use of the Poisson for this analysis. The negative
binomial fit particularly well, and we saw no evidence for
zero-inflation.

In settings where there are excess zeros, zero-inflation
models are attractive. One advantage of these models is
that they can estimate the probability of being a zero as a
function of covariates, as well as allowing the rate param-
eter to be a function of covariates. In an alcohol study, the
intervention may be hypothesized to affect the abstinence
proportion as well as the rate parameter for drinkers. Ad-
hoc methods in this setting might involve estimating the
proportion of drinkers at follow-up, and in a separate
model, estimating the amount of drinking amongst the

Observed minus expected values from the ASAP study at 3 months as a function of count for the Poisson, negative binomial and zero-inflated PoissonFigure 4
Observed minus expected values from the ASAP study at 3 months as a function of count for the Poisson, negative binomial 
and zero-inflated Poisson.
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subset of subjects who reported any drinking. A more
principled approach involves the simultaneous estima-
tion of the zero-inflation factor (testing p1 = p2) and the
rate parameter (testing λ1 = λ2). Slymen and colleagues [2]
adopted this approach by simultaneously fitting separate
models for what they describe as the "logistic" component
and the "Poisson" component, and this approach is also
detailed in books by Winkelmann [7] as well as Cameron
and Trivedi [4].

The results of the simulation studies and the secondary
analyses of the ASAP study demonstrated the importance
of appropriately modeling count outcomes. We caution
against the use of the standard Poisson model when the
mean and variance are not equal. Extensions of the Pois-
son (incorporating an over-dispersion parameter or use of
the negative binomial distribution and/or zero-inflated
models) are now available in general purpose statistical
software, and address many of the shortcomings of the
overly simplistic Poisson model.

As always, analysts are obliged to look at their data and
utilize models that provide an appropriate fit in their sit-
uation. In particular, for models of alcohol consumption,
attention should be paid to the functional form of the out-
come to ensure that underlying assumptions of the meth-
ods utilized are met.
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