
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

2011-12-30

Safe compositional modeling and

analysis of constrained flow networks

(MA thesis)

Soule, Nate. "Safe Compositional Modeling And Analysis Of Constrained Flow Networks (MA

Thesis)", Technical Report BUCS-TR-2011-030, Computer Science Department, Boston

University, December 30, 2011. [Available from: http://hdl.handle.net/2144/11387]

https://hdl.handle.net/2144/11387

Downloaded from OpenBU. Boston University's institutional repository.

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Thesis

SAFE COMPOSITIONAL MODELING AND ANALYSIS OF

CONSTRAINED FLOW NETWORKS

by

NATE SOULE

B.S., Computer Science, Tufts University, 2002

Submitted in partial fulfillment of the

requirements for the degree of

Master of Arts

2012

c© Copyright by
NATE SOULE
2012

Approved by

First Reader
Assaf Kfoury, Ph.D.
Professor of Computer Science

Second Reader
Azer Bestavros, Ph.D.
Professor of Computer Science

ACKNOWLEDGMENTS

A very special thank you to my advisors and mentors Professors Assaf Kfoury and Azer

Bestavros. Their ideas, inspiration, encouragement, and friendship have made, and con-

tinue to make this journey an exciting and enjoyable one. Their past and present work is

the foundation upon which I have built. Thank you also to Andrei Lapets, Vatche Ishakian,

and the rest of the iBench team for their help, guidance, and support.

Thank you to my wife Katie, and daughter Maya, whose unlimitted patience and un-

waivering support have allowed me to pursue my goals.

iv

SAFE COMPOSITIONAL MODELING AND ANALYSIS OF

CONSTRAINED FLOW NETWORKS

NATE SOULE

ABSTRACT

Constrained flow network models represent systems where flows exists between nodes,

and constraints exist to regulate those flows. Smart grids, vehicular road travel, computer

networks, and cloud-based resource distribution, among other domains all have natural

representations in this manner. As these systems grow in size and complexity, traditional

analysis and certification of safety invariants becomes increasingly costly. In addition to-

day’s techniques require the system to be fully specified in order to perform meaningful

analysis. The NetSketch formalism and toolset introduce a lightweight framework for

modeling and analysis of constrained flow networks that overcomes these issues. NetS-

ketch offers a processing method based on type-theoretic notions that enables large scale

safety verification by allowing for compositional, as opposed to whole-system, analysis. By

inferring types for sub-graphs of the modeled networks, not only can cost of analysis be

greatly reduced, but analysis of composite modules containing incomplete or underspecified

components can be conducted. The NetSketch tool exposes the power of this formalism

in an intuitive web-based graphical user interface. This work describes the formalism, a

type system, as well as an implementation. In addition potential use cases for this type

of modeling and analysis are investigated, and connections are drawn to existing modeling

tools and techniques.

v

Contents

1 Introduction and Overview 1

1.1 Introduction . 1

2 The Formalism 4

2.1 Overview . 4

2.2 Domain Specific Language . 5

3 Types 7

3.1 Overview . 7

3.2 Current Type System . 8

3.2.1 Input Port Type Inference . 9

3.2.2 Output Port Type Inference . 11

3.3 Alternate Typings . 13

3.3.1 Adaptive Types . 14

3.3.2 Unions of Hyperrectangles . 20

4 NetSketch Tool 23

4.1 Overview and Usage . 23

4.2 Interface and User Experience . 24

4.2.1 Creating Modules . 24

4.2.2 Connecting Modules . 25

4.2.3 Inferring Types . 26

4.2.4 Persistence . 27

4.3 Architecture . 28

4.3.1 User Interface . 29

4.3.2 Core Engine . 29

5 Use Cases 32

5.1 Introduction . 32

5.2 Domain: Cloud Service Level Agreements (SLA) 33

vi

5.3 Domain: System Design . 41

6 Related Systems 46

6.1 Harnessing Modelica . 47

6.1.1 Modelica as a Computation Platform 47

6.1.2 Translation to Modelica . 48

6.1.3 Minimal Covering Set . 50

6.1.4 Translation . 60

6.1.5 Simulation . 62

6.1.6 Example . 65

7 Conclusions 67

Bibliography 71

vii

List of Tables

6.1 Cases in linear search for P and {a, b, c} . 58

6.2 Haskell-like representation of Modelica constructs 60

6.3 Output format from translation . 61

viii

List of Figures

2.1 Rules for Untyped Network Sketches. 5

3.1 Input Type Generation . 9

3.2 Output Type Generation . 12

3.3 Two maximally enclosed hyperrectangles of equal size. 14

3.4 A network with no ports bound, followed by that same network with a single

port bound. 16

3.5 Union of hyperrectangles approximating the feasible region of a constraint

set (from the view of a single variable). 21

3.6 A tree representing the case based type of a network. 22

4.1 View of a network consisting of 3 connected modules in the NetSketch tool. 24

4.2 Type inference window with two connected modules selected for typing. . . 26

4.3 Architecture of NetSketch Tool . 28

5.1 Instance specifications . 35

5.2 NetSketch model of a cloud configuration depicting both infrastructure provider,

and cloud consumer components. 36

5.3 NetSketch model of a cloud configuration for verifying infrastructure meets

the requirements of an instance type. 38

5.4 NetSketch model of a cloud deployment for use in inferring the most appro-

priate instance type. 40

5.5 Instance specifications . 41

5.6 NetSketch model of a system of processes communicating via queue based

message passing. 43

6.1 Two source modules, a merge, and a sink. 51

6.2 Tree view of the network in Figure 6.1 . 52

6.3 Sub-optimal efficient algorithm . 54

ix

6.4 A simple network to be examined via the optimal minimal covering set

algorithm . 55

6.5 Function Definitions . 56

6.6 Optimal inefficient algorithm . 57

6.7 Translation algorithm . 62

6.8 Example Model . 63

x

Chapter 1

Introduction and Overview

1.1 Introduction

Many large scale systems can be modeled as assemblies of subsystems, each of which

produces, consumes, or regulates a flow. Such models can contain variables and constraints

over those variables representing the safe operation of the system. Networks that may

be represented in this manner cross many domains within software, hardware, electrical,

material, structural and other areas. Electric grids, vehicular road networks, and computer

networks are all modeled cleanly in this structure; in addition, so are less immediately

obvious examples, such as the governance of service level agreements (SLAs) in cloud

computing environments. In the case of SLAs, a physical processor may generate a flow

that is regulated by schedulers and consumed by computing processes. In electric grids,

power plants may act as nodes producing flow, with transmission lines, and transformers

routing and regulating flow to commercial and residential customers (who may in turn act

not only as sinks, but as sources when, for example, they have solar panels). Verification of

safety invariants across such a system is a critical analysis task, but this task can quickly

grow costly as the size and complexity of a model increases. Many systems must also be

modeled without the full knowledge of parts of their internals. This may be the case for

reasons of privacy (an entity other than the modeler owns/controls part of the system),

2

timeline (the unknown part of the model is yet to be developed), organizational structure

(the model is being created by a large group), among others. Further, various parts of a

model may have their constraints best represetned using differing calculi. All three of these

issues (cost, unknowns, heterogeneous constraint languages) prove to be challenges for the

traditional modeling and analysis methods over constrained flow networks. The NetSketch

formalism and accompanying tool offer a constraint-based modeling solution capable of

handling such challenges in a light-weight, user friendly maner.

The nodes in a constrained flow network may contain arbitrarily complex constraints

that serve to connect its components and regulate its operation. Solving for a set of feasible

values for the variables of the system will produce the inputs and outputs that constitute

“safe” usage. This is a desirable task both from a modeling perspective: ensuring or

discovering the range of safe values, and from a design perspective: considering alternative

“what if” scenarios and inspecting their properties in search of optimal values. In large

systems the size and complexity of the set of constraints and variables under consideration

can limit or even prohibit whole-system analysis. To allow for an analysis under these

circumstances, NetSketch employs concepts from type theory to simplify the constraints

of the network at various levels of the system’s composition. A type is inferred for various

subsets of the network under consideration. Each sub-network of nodes can then, for the

purposes of analysis, be replaced with an opaque container that exposes only the ports

at its interfaces. This new component is then regulated by a type at each of its ports.

By considering only the types, and not the potentially complex set of internal constraints,

it is possible to more efficiently analyze this new component in the context of the larger

network, and to determine safe ways to connect this component to others during a design

process.

In this paper we describe the NetSketch formalism, a selection of possible type sys-

tems, and the current implementation of this formalism. In addition we make connections

between this work and the broader constraint-based modeling domain, and begin to investi-

gate potential use cases. In Chapter 2 we describe the domain specific language at the heart

3

of NetSketch. Next, in Chapter 3 we explore the type system and inference algorithms

used in the current implmentation, as well as some alternative designs. In Chapter 4 we

describe the NetSketch tool and its architecture. Chapter 5 explores potential use cases for

the type of modeling and analysis avaiable through NetSketch. In Chapter 6 we investigate

the relation of NetSketch to current constraint-based modeling solutions, examining both

how they can be used to provide functionality to NetSketch, and how NetSketch models

could fit within their frameworks. Finally, we end with concluding remarks.

Chapter 2

The Formalism

2.1 Overview

In a constrained flow network each node of the system may impose constraints on its inputs

and outputs. The network and its entire constraint set form an exact model1. Any whole-

system analysis of the network must compute the solution space of the constraint set for

the given network. Our compositional approach uses types to approximate the constraints

on the interface of each node or group of nodes. In this way sub-systems can be analyzed

individually at an exact level, whereas the whole system can be analyzed based solely on

the results of the sub-system analyses rather than the entire set of constraints. Similar to

the benefits provided by modular source code analysis [1] this method allows for efficient

analysis of large systems even when the cost of a whole system evaluation might have scaled

non-linearly with the size of the system. Further, the compositional aspect of this method

allows for analysis to occur in cases where it otherwise would require more information i.e.,

in incomplete systems. When a portion of the overall system has unknown constraints, but

a known interface, NetSketch can infer the types that will allow safe operation of the system

using the rest of the network and its connectivity to the incomplete “hole”.

1Here by “exact” we mean with respect to those properties under consideration in the model. Any model
is by neccessity an approximation of the system being represented.

5

Hole
(X, In,Out) ∈ Γ

Γ ` (X, In,Out, { })

Module
(A, In,Out,Con) module

Γ ` (B, I, O, {C})
(B, I, O,C) = ′(A, In,Out,Con)

Connect
Γ ` (M, I1, O1, C1) Γ ` (N , I2, O2, C2)

Γ ` (conn(θ,M,N), I, O, C)

θ ⊆1-1 O1× I2, I = I1 ∪ (I2−range(θ)), O = (O1−domain(θ)) ∪O2,
C = {C1 ∪ C2 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1, C2 ∈ C2}

Loop
Γ ` (M, I1, O1, C1)

Γ ` (loop(θ,M), I, O, C)
θ ⊆1-1 O1× I1, I = I1−range(θ), O = O1−domain(θ),

C = {C1 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1}

Let
Γ ` (Mk, Ik, Ok, Ck) for 1 6 k 6 n Γ ∪ {(X, In,Out)} ` (N , I, O, C)

Γ `
`

let X∈ {M1, . . . ,Mn} in N , I, O, C′
´

C′ =
n
C ∪ Ĉ ∪ { p = ϕ(p) | p ∈ Ik } ∪ { p = ψ(p) | p ∈ Ok }

˛̨̨
1 6 k 6 n, C ∈ C, Ĉ ∈ Ck, ϕ : Ik → In, ψ : Ok → Out

o

Figure 2.1: Rules for Untyped Network Sketches.

2.2 Domain Specific Language

The NetSketch formalism defines a domain specific language for describing constrained

flow networks. In its original form [2] the DSL consists of five main constructs: Module,

Hole, Connect, Loop, and Let. These are described below, and the corresponding rules for

constructing network descriptions are depicted in Figure 2.1.

Module Module defines a new node in the network. This node is atomic i.e., not com-

posed of other nodes. Its definition consists of listing the input and output ports, along

with any constraints that exist to regulate traffic through this node via these ports.

Hole A hole in a network describes an area whose constraints can not be listed in a flat

manner as with a module. This may be the case for one of two reasons. The first is that the

hole represents a part of the network that is incomplete (e.g., not yet designed or unknown

to the modeler). It provides the information that is known about this hole (only the number

of inputs and outputs) without the need to fully specify the constraints. NetSketch then

enables its users to infer the minimal requirements to be expected of (or to be imposed

6

on) such holes. This enables the design of a system to proceed based only on the promised

functionality of missing parts. The second usage pattern for a hole occurs when any of a

number of interchangeable components should be allowed to fill the hole, and the modeler

wishes to ensure satisfaction of safety invariants regardless of which component is actually

placed in the hole at any given point (see the let construct below).

Connect Connect allows for two distinct networks to be combined into a larger network.

This construct binds a subset of the output ports of one network to a subset of the input

ports of another. The result is a new network that can in turn be composed with others.

Loop Loop allows for the connection of an output port of a network with an input port

of the same network.

Let Let is used to specify a set of networks that may be placed in a given network hole.

Any of the given networks, placed in any potential orientation, should allow for the safe

operation of the larger system as a whole.2

2Alternative semantics for the Let construct can be imagined (such as “any one of the given networks
should allow the system to operate safely”), and have been explored under other names.

Chapter 3

Types

3.1 Overview

In NetSketch, types, akin to those in traditional programming languages, are used to

represent approximations of the underlying exact networks. Just as the compiler, via

the type system, in a staticly typed programming language can provide certain safety

guarantees based on type information alone, so too can the NetSketch processing engine

determine safe operations based on its typings. Here instead of applying these types to

expressions in a program’s text, we apply a type to each port on the interface of a subsystem

within the model. These types then act to describe the safe values that can be fed into,

or expected out of a particular subsystem. Using this information a sub-typing relation is

used to determine safe composition of networks.

The types inferred are approximations, however they are safe approximations in that

anything proved about a typed representation of the network is indeed true of the under-

lying exact network. This system is thus sound, though in most cases will not be complete

(i.e. there may exist properties that hold in in the underlying exact network, but that can

not be proved or are not allowed in the typed version).

In NetSketch a user selects the appropriate subsystem boundaries and a type is then

inferred based on the implicit constraints inherent in the topology, and the explicit con-

8

straints of the selected network. The user may select this boundary based on the existence

of logical components within a model, or based on the computational cost of analyzing a

network of a given size (of course as the size of the sub-systems selected approximate the

size of the entire network, the compositional analysis of NetSketch degrades into whole-

system analysis).

The formalism itself does not dictate any one given type system, nor any particular

set of allowed constraint languages. Scott in [3] defines a type system as consisting of

both a way to define types that can be associated with elements from a language, and a

set of rules for type equivalence, compatibility, and inference. Any number of different

type systems that fulfill these requirements could be used with the NetSketch formalism

to provide the verification properties desired. Below, in Section 3.2 are details of the

type system and constraint language used in the current implementation of NetSketch. In

Section 3.3 alternative type systems are considered.

3.2 Current Type System

In the current implementation of NetSketch (as described in Chapter 4) the available

constraint language allows for linear equations and inequalities. The job of a type is to

approximate these constraints in a way that is both as precise as possible, and that is

represented in a significantly more efficient and usable form. Here by a more efficient

form we mean a representation that allows for quick analysis to determine the network’s

eligibility for composition with other typed modules, and by usable form it is meant that

this form provides an intuitive and helpful summarization of the constraints to the user.

To this end the implementation infers open/closed intervals on the real line as the type of

a given port.

An input port X with type [Xmin, Xmax] indicates that the network in question will be

guaranteed to operate safely with respect to its constraints if the range of values coming

in via port X is between Xmin and Xmax, and all other input ports take in values that

9

respect their types. An output port Y with type [Ymin, Ymax] indicates that the network

in question will be guaranteed to output via Y values between Ymin and Ymax.

Infering types from sets of untyped modules involves transforming these linear con-

straints into intervals over R. This process is divided into two high-level steps: input port

type inference, and output port type inference. As the output type inference can use the

results of the input types to create more precise results, these sub-processes are performed

in the order listed above.

3.2.1 Input Port Type Inference

In order to generate types for the input ports of a set of modules, it helps to visualize the

set of linear constraints that define the set as a convex hull. Figure 3.1 shows such a hull in

2-space (i.e., for a set of constraints over two input variables). Here we see four constraints

labeled Constraint 1 through Constraint 4. The convex hull formed by their intersection

defines the set of feasible input values.

Figure 3.1: Input Type Generation

10

To create intervals for the input variables we need to find a largest enclosed hyper-

rectangle1 within the convex hull. Each dimension of this hyper-rectangle will then rep-

resent one of the input ports, and the boundaries of the hyper-rectangle will become the

interval-based type. A maximally enclosed hyper-rectangle is not necessarily unique for any

given convex hull. A unique area is required, however, so as to ensure a consistant typing

scheme. Various options exists for techniques to select a single typing from among these

non-unique hyper-rectangles. On the more expressive and accurate side, options exist such

as selecting a subset of the possible enclosed hyper-rectangles and defining the type as their

union. Work on the use of dynamic adaptive types is underway as described in Section 3.3.

For this implementation, a process was used that involves asking the user to provide a

center point for the hyper-rectangle, along with a multi-dimensional aspect ratio relating

all input variables. This aspect ratio in effect defines the shape of the hyper-rectangle. In

Figure 3.1 the center point (x, y) is displayed along with the aspect ratio relating x to y.

Given a center point and an aspect ratio, a unique enclosed hyper-rectangle can be

identified given the set of linear constraints for the modules. Intuitively this can be visu-

alized (in 2 or 3-space) as enlarging a hyper-rectangle (that begins as a single point at the

given center point) in increments defined by the given aspect ratio until the hyper-rectangle

intersects with the convex hull defined by the linear constraints of the module set. Pro-

grammatically, this is accomplished by determining the set of diagonals defined by the

hyper-rectangle (labeled Diagonal 1, and Diagonal 2 in Figure 3.1). There exist 2n−1 such

diagonals for an n-dimensional hyper-rectangle. Given the center point and aspect ratio of

the desired hyper-rectangle, expressions describing the diagonals can be created trivially in

parametric form (which the system later converts to the standard linear equation form for

use with an existing linear programming solver). With these diagonals defined, the closest

intersection (to the center point) with the given linear constraints is then located using

linear programming. Four of the eight potential intersection points in Figure 3.1 are high-

1In this paper all hyper-rectangles are axis-aligned. For brevity we use the term “hyper-rectangle” to
‘refer to “axis-aligned hyper-rectangle” throughout.

11

lighted with circles. Once the closest intersection point Ix,y is identified a hyper-rectangle

of dimensions |Ix − Cx| by |Iy − Cy| centered at (Cx, Cy) can be defined. The bounds of

this hyper-rectangle on any given axis represent the bounds of the interval for that axis’s

variable. This example was given in 2-space for visual clarity, but the principles extend to

n dimensions where n ≥ 2 (special case coding exists to handle n = 1).

The discussion to this point has assumed that we already have the set of linear con-

straints to use when generating the input type. It must be noted, however, that the set

of linear constraints defined by the user does not equal the set used for these constraints.

This is the case for two reasons. First, the set of linear constraints defined by the user does

not explicitly contain the equality constraints requiring connected ports between modules

to equal each other. These constraints are implied by the use of the Connect or Loop

constructs (or when in the context of the implementation of NetSketch, in the visual con-

nections drawn between modules and made explicit in the inner workings of the NetSketch

tool). Secondly, when specifying the set of linear constraints for a given module, the user

may well define constraints relating the input and output ports. The generation of the max-

imally enclosed hyper-rectangle as described above requires the constraints to be restricted

to only contain variables from the input ports. To accommodate this need the NetSketch

tool first performs a projection of the given constraints, plus the implicit connection con-

straints, onto only those dimensions representing the input variables. For example, given

input ports I = {a, b, c}, output ports O = {x, y, z}, and a set of linear constraints C over

I∪O, the system will project C onto the 3-dimensional space of I. The resulting constraint

set is used in the generation of the maximally enclosed hyper-rectangle.

3.2.2 Output Port Type Inference

As with input type inference, here it is helpful to visualize the linear constraints as forming

a convex hull as depicted in Figure 3.2. To determine the feasible output values, unlike the

maximally enclosed hyper-rectangle needed for input ports, a minimally enclosing hyper-

rectangle must be identified. The determination of this hyper-rectangle is significantly

12

simpler than for that of its input counterpart: an optimal enclosing is unique, so a center

point and aspect ratios are not required.

Figure 3.2: Output Type Generation

The hyper-rectangle can be computed by using linear programming to solve the system

of equations and inequalities, first with the objective function Maximize(v), then again with

the objective function Minimize(v) for each output variable v. The solution that maximizes

v will become the upper bound for the variable’s type, and the solution that minimizes v

will become the lower bound (i.e., ∀v ∈ I, type(v) = [SolutionMin,SolutionMax]).

As mentioned previously, the constraints used when calculating the output types should

include those generated as the input types. The intervals created during input type gen-

eration are therefore converted into simple linear constraints (e.g., x : [0, 100] becomes

two constraints: x ≥ 0, and x ≤ 100). These constraints are then added to the original

constraints for use in determining the output types. Without these extra constraints, the

result would be correct, but the range of values for the output types would be wider than

13

they truly need to be: in all but the most pathological cases, the valid input values will

have been restricted during conversion to intervals.

3.3 Alternate Typings

In the current version of the NetSketch implementation constraints consist of linear equa-

tions and inequalities. This results in the constraint sets representing convex hulls. To

infer an input type (a set of “safe” values for input to the network) based on an interval

typing system, a maximally enclosed axis-aligned hyper-rectangle may be identified. Such

a system allows for efficient type checking. It, however, also suffers from two issues:

• Non-unique maximally enclosed axis-aligned hyperrectangles may exist

• Overly conservative approximations of the feasible region

The first item refers to the fact that in any given convex hull there may be more

than one maximally enclosed hyperrectangle as depicted in Figure 3.3. Since the system

uses intervals as the types for individual ports, the user is required to provide further

information in order to select among the possible hyperrectangles. In the current version

of the tool the user is prompted for a center point and aspect ratio. Given these two

values a unique enclosed axis-aligned hyperrectangle can be identified. The requirement

of these extra elements may be viewed positively or negatively depending upon the needs

of the user. In some scenarios a type interval centered around a key point known to the

user may in fact be more desirable than the global optimal type interval, which may in

fact not include the user’s preferred region. In this case the use of a user provided center

point is indeed desirable. Similarly the user may have some preference between the various

ports in regards to which are favored for maximization of their corresponding intervals,

or there may exist a natural trade-off between dimensions (3 extra units of dimension x

may result in the same benefit as 1 extra unit of dimension y). In these types of cases the

multidimensional aspect ratio is also a desirable configuration point. In other scenarios the

user may not have a known point/region of interest, or desired relationship between the

14

dimensions. In these cases unfortunately the user is required to think geometrically about

the domain they are modelling. This may involve a paradigm shift which can become

unwieldy for dimensions higher than 3. Further, when no known/desired region of interest

exists, the center point and aspect ratio provided by the user may in fact lead to non-

optimal solutions (the resulting enclosed hyperrectangle may not be maximal for the given

convex hull).

Figure 3.3: Two maximally enclosed hyperrectangles of equal size.

In addition, as alluded to in the 2nd point above, and as can be seen in Figure 3.3,

any given hyperrectangle may be quite a conservative approximation of the feasible region,

disallowing many “safe” inputs. For example given the constraint set {x + y ≤ 20, x ≥

0, y ≥ 0} a maximally enclosed hyperrectangle would be defined by the center point (5,5)

and the aspect ratio 1:1. This would result in types for x and y of: x : [0, 10], y : [0, 10].

This disallows the binding of x to an output port of type [2, 17], for example, despite the

fact that this is indeed safe given the new condition that y be in the interval [0, 3].

3.3.1 Adaptive Types

What the above example highlights is the potential for the types in NetSketch to be more

flexible or the system to provide more guidance by allowing the types to be inferred in a

more adaptive manner. Here by adaptive we mean that the exact value of the type itself

may change as the state of the system changes (where state in this context refers to the

current set of connections for the network in question). The type, dictating the allowed

range of values for a given variable, will change as the network that the port is a part

15

of is restricted or made less restrictive by the act of creating and destroying connections

(as described below this benefit may come at the cost of the imposition of an ordering

of construction/analysis, and so may need to be considered in a restricted form). In the

above example, x has one type before any connections are made to y. Namely x can take

on values in the range [0, 20]. Likewise given no connection has been made to x, y can

take on the range [0, 20]. Once one of these ports is connected, however, the type of the

remaining unconnected port is impacted. If, for example, x is connected to an output port

that guarantees its value to be in the range [5, 12], y will have an updated type of [0, 8].

Figure 3.4 depicts this dynamic nature of input port types in an example over a system

of 5 constraints. Here we can see that before any connections are made both x and y can

range over the full width and full height respectively of the convex hull. Once x is bound,

in this case to a port guaranteeing input will be in the range [20, 27], the type for y is

updated to show the safe range given that x respects the range [20, 27].

While this approach adds significant flexibility and likely a more precise result, it intro-

duces one critical issue that in its base form is at odds with the underpinnings of NetSketch.

Here the order in which a model is consutrcted or analyzed does indeed impact the resulting

type, and thus the resulting allowed configurations. NetSketch is a compositional system,

which makes a stronger statement than simply being modular. The NetSketch formalism

is designed such that the order of analysis and construction do not impact the resulting

model - the system and user are free to analyze and construct in any order. The adaptive

types described here would violate that premise if left unchanged. In some scenarios it may

be acceptable to impose a specific ordering. More often however, this form of typing could

be applicable if used simply as an out-of-band tool of exploration for a safe type. After the

exploration resulted in a defined hyperrectangle the center point and aspect ratio could be

reported to the user, who could then include this in the description of the actual network

outside of this “exploratory” mode.

The type of a port in this adaptive typing scheme is then defined as a function that can

be used in subsequent connections. Shown below is a type description in Haskell notation:

16

Figure 3.4: A network with no ports bound, followed by that same network with a single
port bound.

InputPortTypeFunction :: Interval→ Maybe State→ Maybe State

Intuitively this says that the type of a given input port is a function given two param-

eters:

• An interval representing the new restriction being added (i.e. the type of the port

being connected to)

17

• The current state of the ports

This function given these parameters will then return an updated state if one is possible.

The type Maybe, used here, is borrowed from Haskell to indicate that a State may be

returned, but one may not be possible, in which case Nothing is returned.

Here State is defined as ([Variable],HyperRectangle). This represents a pair with the

first element as a list of bound variables (for those ports that are already connected), and

the second element representing the hyperrectangle of allowed values (for all variables un-

der consideration). Continuing with the example from above, when no connections have

yet been made a variable x can have a connection created (and in the process type checked)

by applying to it the interval representing the type of the other port in the new connection,

and an initial state:

x [0, 8] ([], [x : [0, 20], y : [0, 20])

Here we are applying two parameters to x. The first is the interval [0,8] indicating

we wish to connect x to an output port with type [0,8]. The second represents an ini-

tial state. The initial state has the first element of the pair as an empty list indiciating

that no connections yet exist, and a hyperrectangle defining the allowed intervals for each

variable before any connections have been made. This initial state is inferred using linear

programming to find the minimum and maximum of each variable in the system given the

constraint set.

The function representing x’s type will, in this case, return a new state: ([x], [x : [0, 8], y :

[0, 12]]). This new state indicates that x has been bound, and that the hyperrectangle

defining valid ranges now states that x can be between 0 and 8, and y can been between 0

and 12. The state returned from this function call to x will then serve as the current state

to any future type checking needed for y. In this way a fully type checked network is the

result of a chain of calls beginning with a seed value, i.e.

18

fold

(\currentState → \(var,interval) → var interval currentState)

initiatState variableBindings

We can see that to simply query a port to determine its instantaneous type (i.e. the

type given the current set of connections), just involves checking the current state. To

check the safety of a desired connection just involves application of that connection and

the current state to the type representing the port2.

An alternative approach that simplifies the type signature from one perspective could

also be used. In this method the type of a port is:

InputPortTypeFunction :: Interval→ Maybe [(Variable, InputPortTypeFunction)]

Here an initial function generates a list of port type functions with the initial state

embeded within them. Calls to a port type function then take an Interval, and return a

new list of pairs of a variable name, and a port type function with updated state embed-

ded within. In this way state is never explicitly passed around, but instead new functions

representing the port type are generated upon each new connection. Since state is no

longer excplicitly passed, checking the instantaneous type of a port without going through

the process of updating state is not possible. To accomodate for this the return type of

the port type functions could be a list of triples, rather than pairs, with the new element

representing the instantaneous type.

Note that as currently described if used alone (i.e. not in the exploratory mode de-

scribed above, and instead used in a system where an ordering is imposed) these typing

schemes provide for less robust scaling than the current design in a system allowing for

infinite recursion of typed networks (i.e. a group of typed networks can be itself given a

2A Haskell based implementation exists for this adaptive type system, though it has not been integrated
with the current tool.

19

type, and that type included in future typings, ad infinitum). This is due to the fact that

given a module with n inputs, until that module has connected ≥ n−1 of those inputs, the

original constraint set must be kept (once n− 1 inputs are connected all ports are bound

to exact intervals and the linear constraints can be disregarded for any subsequent typing).

In this case if a network contained multiple unbound input ports during each successive

typing, the set of linear constraints may not be reduced. This is likely still acceptable in

many cases as the size of sub-graphs of the network that become typed networks are likely

to be small groupings (and thus more likely to contain small constraint sets) in comparison

to the overall network, thus the size of the constraints sets may remain managable. The

stronger drawback is instead based on the already mentioned loss of the order-independent

compositional nature of the system.

Function Logic

The logic executed as part of the function that embodies the port type operates as follows:

• Add the variable being connected to the list of bound variables

• Generate two sets of constraints, minConstr and maxConstr as:

minConstr : for each bound variable (var, (min, max)) generate a constraint

var = min

maxConstr : for each bound variable (var, (min, max)) generate a constraint

var = max

• For each variable v in the set of all constraints C of the sub-graph under consideration,

use linear programming to find the interval defined by:

[Max(minMin,minMax),Min(maxMin,maxMax)] where:

minMin = Minimize v subject to C ++ minConstr

minMax = Minimize v subject to C ++ maxConstr

maxMin = Maximize v subject to C ++ minConstr

maxMax = Maximize v subject to C ++ maxConstr

20

3.3.2 Unions of Hyperrectangles

An alternative option that allows for adaptive types, but front loads the entire inference

computation is to use a union of adjacent (or potentially overlapping) hyperrectangles to

approximate the feasible region as seen in Figure 3.5. This approach, similar to the more

general adaptive case, is order specific (i.e. different types will be inferred based on the or-

der of connections made). This system therefore may find usage as an exploratory/guidance

mechanism, but without refinement/extension can not be used as a replacement for the cur-

rent system without violating the compositional (modular and order independent) nature

of NetSketch.

The use of a union of hyperrectangles implies that a connection to an input port for a

given variable will match against one or more of the hyperrectangles defined as the input

port’s type. A hyperrectangle representing the overlapping union of these hyperrectangles

will then define what the valid values for the remaining ports are going forward (and this

process will continue iteratively for each new port binding). Since this union allows different

values for each variable depending upon which of the hyperrectangles a port actually gets

bound to, a “view” exists for each variable. A view in this context is a case based inductive

structure that provides options for each variable given the state of the variable from which

the view is constructed. For example in a two variable scenario, with x and y, a view

would exist from the perspective of x which would describe what values y could take given

various ranges of values for x. Those ranges would correspond to the hyperrectangles built,

stacked along the x dimension. A second view would exist from the perspective of y. The

number of hyperrectangles to generate for each view would be a parameter of the system,

and would dictate how precise the approximation is.

Since this type system is to be adaptive, additional information must be kept after the

initial type inference, however, by using unions of hyperrecntables we can keep a tree of

intervals representing all views rather than the linear constraints, as depicted in Figure 3.6.

Here we see a system of 3 variables, with two paths fully illustrated. The two paths begin

21

Figure 3.5: Union of hyperrectangles approximating the feasible region of a constraint set
(from the view of a single variable).

with variable x, and denote that if x is between 0 and 2 then there are two new views to

consider, one from the perspective of variable y, and one from variable z. If after binding

the port for x, the user decides to bind y, then we see that if y is between 4 and 8, that z

must be between 0 and 2. Alternatively, if after binding the port for x, the user decides to

bind z, we see that y must be between 0 and 7. It is possible for the actual desired ranges

of a connection to fall within a given case-interval, or across multiple intervals. In the first

scenario the tree can be used as is. In the latter scenario the resulting values to use are

not those described in the tree, but are derived from those in the tree using the maximum

of the minimums given, and the minimum of the maximums given as the bounds to use.

The trade offs to be made when considering the more general adaptive type system

described earlier versus this system of unions of hyperrectangles are related to precision,

timing, and storage. The system employing the union of hyperrectangles is less precise,

in general, than the earlier system described. Since the number of hyperrectangles is

configurable, of course this can become more and more precise as this count moves towards

infinitity. For partially unbounded constraint sets, however, a union of hyperrectangles

must neccessarily be artificially cut off in order to achieve a finite tree representing the

views, leading to a less precise representation than the general model. From a timing

perspective the two systems each offer different approaches. In the case of the general

system, a small amount of non-trivial computation is performed at each point that a port

22

Figure 3.6: A tree representing the case based type of a network.

is connected. In the union of hyperrectangles approach the computation is all front loaded,

with a longer initial calculation, but all subsequent bindings work simply from the tree

generated. In terms of storage, the union of hyperrectangles can be more compact if there

are many constraints over few variables, but for most realistic scenarios will be greatly

more verbose as it must keep an exponentially growing tree, as opposed to a structure

containing the linear constraints and the current state of the system.

Chapter 4

NetSketch Tool

4.1 Overview and Usage

An implementation of the NetSketch formalism has been created to allow users to ex-

press NetSketch concepts via a graphical interface.1 While the NetSketch domain specific

language for constructing networks is simple and intuitive, a graphical environment more

closely matches typical users’ mental models, and allows for more efficient and error-free

modeling than direct use of the textual language. As with any formal analysis system, a

low learning curve, and user friendly interface can greatly impact usability and adoption

of a system. Thus with NetSketch these principles have been a core of the design from the

start. The NetSketch tool offers users the ability to visually create and define modules, add

modules from a library of pre-built components, and to create connections among these

elements to form network sketches. Holes may be defined, and optionaly configured using

a GUI interpretation of the Let construct. Sub-networks may have types inferred for them,

and an infinite recursion of type inference can take place for models of greater and greater

abstraction.

1The tool can be found under Projects → NetSketch at the following URL: http://www.cs.bu.edu/
groups/ibench/.

24

4.2 Interface and User Experience

Figure 4.1: View of a network consisting of 3 connected modules in the NetSketch tool.

Figure 4.1 shows a screen of the NetSketch tool in action. Depicted are three modules

from the domain of vehicular traffic: a merge, a fork, and a 2-way cross intersection. The

interface of the tool is divided into two main areas. The top represents the canvas onto

which users will place modules and create connections between these modules to create

networks. The bottom section presents the details of the currently selected module, along

with any environment constants.

4.2.1 Creating Modules

A user can begin defining a network by first introducing new modules. This can be accom-

plished by creating a new module from scratch (i.e., with no ports or constraints defined),

or by selecting from a library of pre-defined modules and network sketches. Modules from

the library come pre-built with a set number of ports (input or output variables), and a base

set of linear constraints describing their operational requirements. Both blank and library

modules can then be extended by adding, deleting, and modifying ports and constraints.

Ports are only given meaning when included in the constraints of the module containing

25

the port. Thus, port creation is inferred during constraint definition. As a user creates

a new constraint, x + y = z for example, the system performs syntactic analysis of the

constraint to determine its variables, and automatically updates the list of ports for the

module. As constraints are created, modified, and removed, the available ports for the

given module will be added or removed as appropriate. Once a port is defined, it must be

classified as either an input or an output port2. Classifying a port as an input or output

causes it to be drawn on the canvas. Input ports align to the left of a module, and output

ports to the right.

4.2.2 Connecting Modules

Once constraints are defined, and ports classified a module is ready for interfacing with

other modules and networks. The modules can be visually dragged around the canvas

to allow for appropriate positioning in relation to other modules with which potential

connections exist or to indicate logical groupings/relations. To connect two modules a user

creates a line by dragging from the port of one modules to the port of another (or among

ports on the same module to create a loop). If port P1 is connected to port P2 then either

P1 is an input port, or P2 is an input port, but not both (i.e., an exclusive-or relationship).

Once two ports are connected their binding status in the Variables area of the screen

is updated from false to true and the screen visually indicates this with a line between

the ports; an arrow indicates the direction of flow, and both ends of the connection are

shaded. Though not represented explicitly in the Constraints area of the screen, an

implicit constraint is created for every port connection: an equality constraint Pn = Pm is

implied for every connection of port Pn to port Pm.

As only the constraints of a single module are displayed on the screen at any given

time, variable names need not be unique across a network. Internally, NetSketch performs

variable renaming by prepending the module name to the variable name. From the user’s

2In future implementations the ability to have internal variables that are neither input or output will
be allowed.

26

perspective only the module specific variable name (i.e., x, not fork 1.x) is displayed.

This is possible and safe because the system guarantees unique module names through a

global counter added to each module name.

4.2.3 Inferring Types

Figure 4.2: Type inference window with two connected modules selected for typing.

When a connected set of modules is in a stable state the user can choose to infer a

type for that set. By selecting an option from the menubar a type inference window will

open. This window, as shown in Figure 4.2, allows the user to select among the available

modules. A type can be created for a single module if the user determines a typed version

is easier to manipulate and use than an untyped one, or a subset of connected modules may

be collectively typed. The decision regarding the level of granularity in type generation

is an important one. This represents the point where exact analysis is replaced with

compositional analysis.

At some point the constraint sets in a network of untyped modules may get sufficiently

complex such that compositional analysis becomes the preferred (if not only) method for

analysis. We define this point as the constraint threshold. The constraint threshold may

be determined in any number of ways that might be beneficial to the user (e.g., number

of nodes, number of connections, number of constraints, number of variables within the

constraints, time taken to bound the feasible region of the solution, the shape of the

constraints). Presently, our implementation of NetSketch leaves the decision regarding the

value of this threshold to the user.

27

Once typed, a network is replaced visually by a single container - slightly shaded to

differentiate it from untyped modules on the canvas. The new container has ports for just

the unbound ports on the interface of the underlying exact network that it replaces. This

process can be infinitely recrusive, in that a network of typed modules can itself be given

a type. The constraints shown in the bottom portion of the screen are replaced with the

intervals inferred for each port.

The types inferred for a set of modules are non-empty intervals over R. For each non-

connected port P exposed within the set of modules being typed, an interval of the form

P : [Pmin, Pmax] will be generated. Given the current type inference algorithms, optimal

typings of this form can not be guaranteed to be uniquely generated for the input variables

without further guidance from the user. In this implementation, this guidance takes the

form of a center point and an aspect ratio relating all input variables. See Section 3.2

for the reasons behind this requirement and the details of the center-point/aspect-ratio

solution, and Section 3.3 for a description of work underway to alleviate this need.

With types inferred, what were formerly potentially complex and numerous constraints

are now simple intervals that can be viewed, composed, and analyzed efficiently. In ad-

dition, with this level of typing, unknowns in the network can easily be left as holes that

can have their typings inferred without further specification simply by connecting them

appropriately to defined modules and networks. Holes can be created in a fashion similar

to that of modules, with the exception that ports are listed explicitly as opposed to being

inferred from the constraint set. The Let construct of the formalism, which describes which

modules may be placed in a hole, is applied in the tool via the ability to select existing

components from the library as potential hole replacements.

4.2.4 Persistence

At any point the user can chose to save their canvas in a persistent form. The tool will

convert the internal representation of the model into JavaScript Object Notation (JSON),

and prompt the user to open or save the generated JSON file. Users can then later load

28

their saved modules from disk to continue their modeling/analysis effort.

4.3 Architecture

The NetSketch tool architecture is comprised of a client component and a server component

as represented by the User Interface and Core Engine boxes respectively in Figure 4.3.

Figure 4.3: Architecture of NetSketch Tool

The client-server paradigm was employed to allow for a lightweight web deployment,

while still retaining a non-browser-resident server component for the linear programming

and other computationally heavy tasks. The client and server communicate over HTTP

using AJAX-style requests.

29

4.3.1 User Interface

The user interface was built using pure JavaScript and HTML. Standalone executables of-

fering graphical user interface capabilities were considered (Java, Python), but ultimately

a web-based solution was chosen due to a desire for an easily accessible, easily updat-

able, zero-installation solution. While other web-based platforms (JavaFX, Silverlight,

Air, Flash) contain more robust graphical capabilities, it was determined that JavaScript

and HTML alone could provide the required GUI capabilities and would avoid attaching

the project to a heavyweight proprietary framework.

In order to alleviate some of the burden of ensuring cross-browser compatibility, and

development of a rich set of widgets, the ExtJS JavaScript Framework [4] was employed

to provide the basic GUI elements. ExtJS is an open source framework that provides a

wide array of user interface components as well as JavaScript utilities for DOM (Document

Object Model) manipulation, and a simple AJAX model.

In addition to ExtJS, JSGL (the JavaScript Graphics Library) [5], a pure JavaScript

vector graphics toolkit, was used. JSGL provided the vector graphics capabilities needed

to draw modules, their ports, and the connections between them. JSGL, as with ExtJS,

also serves to hide cross browser incompatibilities.

4.3.2 Core Engine

The core of the NetSketch tool is implemented as a server-side component. The server is

written in Haskell, with much of the heavy mathematical processing being delegated to

external C-based modules, or to an implementation of the Modelica platform. The main

executable makes use of the Happstack Web Framework [6]. NetSketch uses the built in

HTTP server functionality of Happstack to expose the NetSketch API over the web as

a form of RESTful web service [7]. HTTP GET requests can be constructed to provide

the NetSketch server with the description of the network (including ports, connections,

and constraints) in a format based on the domain specific language defined in the work

30

outlining the NetSketch formalism [2].

Once the HTTP server component has received a request it is passed to the untyped

language engine for parsing. The untyped language engine parses the request based on

the NetSketch untyped language DSL, and passes the text representing linear constraints

to the constraint language engine. The grammars for both the NetSketch untyped DSL,

and the linear constraint language are defined in annotated BackusNaur Form (BNF). The

Haskell parser generator Happy [8] was used to generate parsers based on these grammars.

Beyond the parsing functionality, each language engine provides functionality related to

the manipulation of its respective language (e.g., simplifying and removing redundancy

from linear constraints).

After a successful parse, the structure representing the network described in the request

is sent to the type generation engine. This module first performs input type generation,

followed by output type generation. Input type generation must first project the constraints

onto a subset of the original dimensions (specifically those corresponding to the input

ports). This projection is done using two external C/C++-based modules: CDD+ [9] and

Domcheck [10]. CDD+ is a C++ implementation of the Double Description Method for

vertex and extreme ray enumeration. Domcheck is a program that computes minimal linear

descriptions of projections of polytopes. These modules are distributed as C/C++ source

code. The only modifications made were to Domcheck in order to allow non-interactive

execution (i.e., to call in batch without a user present).

Both the output type generator, and the input type generator (after projection) make

use of linear programming techniques to identify boundaries of the generated types. The

linear programming can be accomplished via one of two mechanisms. The original imple-

mentation used a Haskell wrapper, hmatrix-glpk [11], around the GNU Linear Program-

ming Kit (GLPK) [12]. The GLPK is a C-based callable library providing routines for

linear programming, mixed integer programming, and other related problems. NetSketch

makes use of the GLPK’s implementation of the Simplex method. HMatrix-GLPK pro-

vides a pure Haskell interface to this and a select set of other features from GLPK. The

31

second mechanism was developed after creating the HModelica Haskell library (see Section

6.1). In this method NetSketch makes calls via HModelica to an instance of the Open-

Modelica [13] platform. Here Modelica code is executed to perform the required linear

programming tasks. By using OpenModelica 3, external libraries (hmatrix, hmatrix-glpk,

and glpk) were no longer required, simplifying the code base. Given the problem domain,

an optimized version of the simplex method, the network simplex method, may be used in

many instances. When type inference occurs over a network consisting of linear equations

and inequalities where all coefficients are either 0, 1, or -1, this alternative family of algo-

rithms may be used. Here performance can be two orders of magnitude faster [14] than

standard simplex method implementations. This dramatic improvement in running time,

while important, has not been a critical factor in the current NetSketch implementation,

as the size of sub-systems being typed is usually small enough that the standard simplex

implementations used provide sufficient performance.

Chapter 5

Use Cases

5.1 Introduction

In order to understand a system, and to best guide its development, it is often critical to

understand how the system might be used. He we outline several use cases for the NetS-

ketch formalism and depict them using the current implementation. These descriptions

are structured around domains and associated use cases. Each domain provides a brief

background, followed by a list of use cases - each of which presents:

• A description of the actor in the use case

• The actor’s goal

• A URL pointing to related executable models

• The details of a particular problem instance

• An example of solving the problem instance using NetSketch

Each use case is necessarily (for illustrative purposes) a small example of what would

likely be much larger and more complex modeling scenarios. One of NetSketch’s core

strengths is its ability to scale analyses to large models. These uses cases are intended to

show the type, and ease of modeling and analysis in NetSketch, and make evident how

these actions would scale along with the model.

33

Wherever possible the examples use linear constraints to model the problem domain

so as to be executable in the current version of the implementation1. Where clear benefit

from the use of nonlinear constraints was evident, this restriction was abandoned, and is

explicitly stated.

5.2 Domain: Cloud Service Level Agreements (SLA)

Background

As cloud computing becomes more pervasive, and more business critical tasks are delegated

to the cloud, satisfaction of service level agreements becomes increasingly critical [15–17].

As a prominent player in this space Amazon’s cloud offerings must be subject to strict

SLAs to provide confidence in their systems. The Amazon Elastic Compute Cloud (EC2)

provides compute capacity to end users via virtual machines. Users select from a predefined

set of virtual machine instance types depending on their processing needs. Each instance

type is bound by a given minimum specification, and associated pricing model. An EC2

standard ”small” instance type, for example, guarantees 1.7 GB of memory, a virtual

single core processor capable of providing 1 EC2 Compute Unit (ECU), and 160 GB of

local storage. One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2

GHz 2007 Opteron or 2007 Xeon processor. Note that the Amazon cloud environment

is used here to provide concrete examples, however the same prinicples described apply

equally well to other cloud based frameworks.

Use Case 1

Actor: Cloud Infrastructure Provider

Goal: Find resource configurations that meet the service level agreement (SLA) require-

ments of a given user VM instance type.

1The NetSketch formalism takes a constraint language as a parameter. The current tool is constructed
to work with linear constraints.

34

URL: http://csr.bu.edu/netsketch/NetSketchClient.html?loadModel=Cloud Producer

Problem Description: A great many configurations of software and phsyical hardware

can meet the demands specified in the SLA for any given EC2 instance type. From a

technical perspective Amazon need not restrict itself to a particular set of real or virtual

components (consistency among components for maintenance and cost drivers is of course

a motivating factor in any business model). Thus when designing new configurations to

back a given instance type a great deal of lattitude in selection exists. Each potential

configuration must be analyzed to ensure that it provides the minimum resources outlined

in the instance description. Further, it is in the best interest of Amazon to maximize

the financial income from the hardware and software they provide, and thus they must

also strive to ensure they are not over provisioning the systems (by either minimizing cost

via changing/reducing the provided hardware, or by maximizing profit by increasing the

number of virtual instances running on that hardware). Thus relatively tight bounds must

be adheared to. This problem can be approached from two opposite directions. A set

number of user instances could be selected, and then a configuration searched for that will

satisfy these instances. Alternatively a configuration could be established and analyzed to

determine the number and type of user instances that could be safely supported by such a

configuration.

Example Here we will walk through an example of the problem type defined above. For

the sake of brevity this example will be kept to a small size, though the concepts described

extend to more elaborate and complex scenarios (indeed one of NetSketch’s core strengths

is the ability to analyze large systems). In this example a cloud infrastructure provider

would like to test if a particular hardware configuration can support three instances of

virtual machines: two of type “Small” and one of type “Large”. The requirements for

these instances are outlined in Figure 5.12.

2The requirements were selected for the purpose of example from the Amazon instance types listing [18],
which may change over time.

35

Instance Type CPU (ECU) RAM (GB) Storage (GB)
Small 1 1.7 160
Large 4 7.5 850

Figure 5.1: Instance specifications

Here we will concentrate on modeling the CPU requirements. RAM, disk storage, and

other resource requirements (e.g. network) would be modeled similarly and could be done

within the same NetSketch model. Linear constraints are used here, though if real-time

processes were to be included in the model, nonlinear constraints may be better suited to

the problem. For an example of what form periodic nonlinear constraints might take, see

Section 5.3.

To begin we define a phsyical machine on which the virtual machines will run. As we

are concentrating on processor requirements we define this machine by its CPU’s. Within

the NetSketch environment we access the menu Library → Cloud Infrastructure, and

select Phsyical CPU. Here we repeat this process 4 times to define a 4-processor machine.

In the typical case today these processors are all uniform, however as described in work from

the Barrelfish project [19] heterogeneous systems may well provide a more suitable way to

meet future processing demands. To demonstrate that homogeneity is not a requirement

of the modeling system we will define a heterogeneous system.

The decision of units in Netsketch is left to the modeler. Here, for simplicity, we will

work directly with Amazon’s Elastic Compute Unit, the ECU. Each processor has a port

representing the cycles it produces (in terms of ECU). The variable out represents this

port. We define CPU0 and CPU1 to have out = 2, and CPU2, and CPU3 to have out = 1.

We introduce a node representing the hypervisor, which will serve to regulate (schedule)

which preocesses receive which shares of the total processing power of the physical machine.

We select the Mux-Demux component from the Cloud Infrastructure library. This is a

parameterized library element and thus we are prompted to provide the number of inputs,

and the number of outputs (with the system building the appropriate constraints based on

36

Figure 5.2: NetSketch model of a cloud configuration depicting both infrastructure
provider, and cloud consumer components.

our answers)3. We have 4 processors that we wish to divide among 3 virtual machines, thus

we select 4 and 3 respectively. As depicted in Figure 5.2 we will modify the constraints of

this node to capture the notion that two of our virtual processors are pinned to physical

processors, while the remaining two virtual processors can float between the remaining

physical processors.

The input ports of the Hypervisor node are labelled ina, inb, inc, ind and the output ports

outab, outc, outd. We’ll route the 2 2-ECU processors to the large instance virtual machine,

which requires 4 ECU’s, and pin each of the 1-ECU processors to the two small instances.

To do this we modify the contraints of Hypervisor to be:

ina + inb = outab

inc = outc

ind = outd

We desire the output outab to be routed to a single machine, but one with two virtual

3The ability to parameterize is not a hardcoded feature of this library element. NetSketch library
elements use functions as first class descriptive elements when defining a library model. Thus when the
number or relationship of inputs and outputs may vary based on user input this is simply encoded in the
function describing the component’s inputs, outputs, and/or constraints.

37

processors. We model this by again using the Mux-Demux parameterized library component

to create a 1 input, 2 output node. This is connected to the outab port of the Hypervisor.

We then create two virtual CPU’s by adding them from the Cloud Consumer library, and

connect them to the outputs of the demultiplexer. These library components introduce

a new global environment constant, VrtOhd to represent the virtualization overhead cost.

The constraints thus regulate the virtual processor to output the cycles it receives from

the physical processor, minus a percentage described by VrtOhd. The two processors for

the small instance virtual machines are added to the model in a similar way, but connected

directly to the hypervisor via outc and outd respectively. In this way they have each been

pinned to a single physical processor.

Figure 5.2 depicts the above scenario, with additional model elements representing vir-

tual machine operating system schedulers connected to the virtual processors, and these

schedulers connected to particular processes. This system could then be analyzed for sat-

isfaction of the processes’ requirements given the physical and virtual structure described.

This, however, represents the modeling activities of two separate groups: cloud infras-

tructre providers (owning the physical resources and virtual infrastructure), and cloud

infrastructure consumers (defining their process requirements). A more practical represen-

tation is portrayed in Figure 5.3. Here library components representing the specifications

of small and large instances are placed on the canvas, replacing the individual processes

with a higher level of abstraction. These components contain constraints that require their

inputs to meet the minimum requirements of their respective VM instance types, and are

thus connected to the output from the 3 virtual machines.

Performing type inference on the entire network will tell us if the system meets its

requirements. If no type can be inferred then no range of values on any of the unbound

ports can lead to guaranteed safe operation (here safe meaning that the SLA is met). As

described the system may not actually be safe. The virtualization overhead represented

in the processor constraints on each virtual processor means that the output cycles from

these nodes will always be less than the input cycles. Thus while a total of 6 ECU’s are

38

Figure 5.3: NetSketch model of a cloud configuration for verifying infrastructure meets the
requirements of an instance type.

generated by the physical processors, and a total of 6 are required, the system leaks some

of this processing power to virtualization maintenance tasks. In this case this may actually

be acceptable, as an ECU is defined as providing the compute power of a 1.0 - 1.2 Ghz

CPU, and thus provides a small amount of allowed variance. In Figure 5.3 this is captured

via the AlwdVar environment variable, which has been referenced in each of the instance

specification nodes.

Inferring a type for the entire system is not unreasonable in this small example, however

doing so essentially reduces the analysis to work on whole-system rather than compositional

principles. The true power of NetSketch comes from its ability to use types to allow for

greater scalability. As you extend this example to a larger more realistic network, the model

in Figure 5.3 would likely be one of many substructures in the entire cloud infrasutrcture.

This substructure could be given a type and thus easily reused and composed with other

substructures. Formations of disk arrays, network devices/connections, compute nodes,

etc. could thus be connected in various ways and recursively typed at various levels of

abstraction (cores → processors → servers → racks → data centers, etc) and tested to

determine how many instances they support, or how well they support a given instance

39

set. When operating on typed models, even very large networks can be analyzed efficiently,

allowing for many what-if scenarios to be tested.

Use Case 2

Actor: Cloud Consumer

Goal: Determine the cheapest instance type that will support application requirements.

URL: http://csr.bu.edu/netsketch/NetSketchClient.html?loadModel=Cloud Consumer

Problem Description: A user desiring to deploy their web application to Amazon’s

cloud environment must select an instance type from a variety of options. Each option

provides different compute capacities, and different pricing. The user wishes to minimize

the cost of this cloud deployment while also guaranteeing that their minimum requirements

for the web application will be satisifed. The user knows the processes required for their

application, and the resource requirments of these processes. They wish to determine the

most cost effective, safe, option for their instance selection.

Example Here an example of a model describing cloud consumer instance type selection

will be presented. Again here for illustrative purposes only a small model will be described,

but the designs documented extended to larger and more complex scenarios.

We will construct a model for a simple web application consisting of 3 core pro-

cesses/applications:

1. An HTTP server - Apache HTTP Server

2. A Java Web Container - Tomcat

3. A RDBMS - MySQL

As in the previous example we will draw largely from NetSketch’s library components,

modifying where required. We begin by creating an instance of the Resource Allocator

40

Figure 5.4: NetSketch model of a cloud deployment for use in inferring the most appropriate
instance type.

component. This will allow us to model receiving compute capacity, as well as RAM, disk

storage, and network bandwidth on the input ports, and scheduling/routing that capacity

to 1 or more processes. Since the library cannot predict the number of attached processes

to model, the Resource Allocator is a parameterized component. Upon selecting it from

the NetSketch library we are prompted to provide the number of processes that we wish

to connect to this new component. For this example we select 3 in order to represent the

processes listed above.

Next we create nodes to represent processes by selecting Cloud Consumer → Process

from the library menu. We do this 3 times, giving each process a descriptive name. The

Resource Allocator component has 4 outputs for each of the 3 processes representing

CPU, RAM, disk storage, and network bandwidth. Connecting these outputs to the corre-

sponding inputs on each process effectively allows routing of each commodity through the

allocator.

We now specify the minimum requirements that each of our processes needs in order

to operate safely. Here safety may be defined as allowing the processes to execute, or more

likely allowing the processes to operate at the speed desired under the load expected (i.e.,

MySQL may be able to operate given some minimum amount of RAM, CPU, disk, and

41

network bandwidth, but may need higher levels of some or all of those resources to operate

at acceptable performance levels given a particular maximum load).

For this example we specify the minimum requirements as shown in Figure 5.5. No

requirements of network bandwidth are listed here as no streaming or intensive throughput

use cases are being modeled for this particular application.

Process CPU (ECU) RAM (GB) Storage (GB) Network (Mb/s)
Apache HTTP Server 0.2 205 3.5 0

Tomcat 0.25 185 1.8 0
MySQL 0.4 300 4 0

Figure 5.5: Instance specifications

Figure 5.4 depicts this model connected to an Amazon Small Instance. In this way

type inference can be used to determine if the model is safe (i.e. the small instance

provides enough resource capacity to meet the minimum requirements of the processes).

Alternatively the model without the Amazon small instance present could have a type

inferred and then this type could be compared to the available instance types to find the

best match. A potential extension to the tool could automate this by allowing the user to

select an objective function for finding the best match (i.e. smallest encompassing bounds,

etc) given a set of candidates.

5.3 Domain: System Design

Background

In the design of systems various components are composed and connected to allow data

and processing to flow in a desired manner. Each component will produce, consume, or

store data - or potentially will exhibit a combination of these behaviors. Examples of such

systems can be found in operating system design, enterprise application design, among

others. This can be generalized to systems described by queueing network models [20, 21].

42

Use Case 1

Actor System Designer

Goal Determine required maximum queue depths for a system of processes connected

via data flowing through queues.

URL: http://csr.bu.edu/netsketch/NetSketchClient.html?loadModel=Processes And Queues

Problem Description A system architect has designed a series of processes that will

interact via passing messages through queues. The maximum rate at which each process

will produce messages and the minimum at which each will consume messages is known.

A certain amount of resources must be allocated to each queue. The designers desire to

limit this resource allocation to the minimum requried to support the expected maximum

usage of the system. To do so they must establish the maximum queue depth given the

stated rates of consumption and production of messages.

Example In this example a system of 6 processes communicating via 2 queues is modeled

and analyzed to determine safe maximum queue depths. To best capture the operation of

this system, nonlinear constraints are used. This form of constraints fits well within the

NetSketch formalism, but is not executable in the current implementation.

In this model the message production and consumption are periodic. Each process

produces/consumes m messages every t milliseconds. m and t are modelled explicitly as

outputs or inputs corresponding to production and consumption respectively. A single

process could have multiple streams of messages being produced and/or consumed, and

thus may have a series of ports m0...mn and to...tn. Queues have similar input and output

ports for allowing messages to flow into, and out of the queue.

In this model we use two library elements, System Process and Queue from the

Systems library. Processes and queues are added to the canvas as shown in Figure 5.6. Pro-

cesses may have simple constraints which explicitly describe their input or output rates.

43

Proc1 in Figure 5.6 for example has outa (the number of messages) bound to 100, and

outaPeriod (the period) bound to 1000, indicating that this process produces 100 messages

every 1000 milliseconds.

Figure 5.6: NetSketch model of a system of processes communicating via queue based
message passing.

While a given queue may accumulate messages over the short term, the system designer

wants to ensure that in the long term all messages put on the queue are eventually pro-

cessed. This property is modeled, for Queue 2 for example as:

ina
inaPeriod + inb

inbPeriod ≤
outab

outabPeriod

The designer may further include a constraint to dictate that the depth of a given queue

never goes beyond a certain threshold. Queue 5 for example may contain this constraint:

44

500 ≥

max(ina + inb,

((floor(outaPeriod
inaPeriod

) ∗ ina) + (floor(outaPeriod
inbPeriod

) ∗ inb))− ((floor(outaPeriod−1
outaPeriod

) ∗ outa) + (floor(outaPeriod−1
outbPeriod

) ∗ outb)),

((floor(outbPeriod
inaPeriod

) ∗ ina) + (floor(outbPeriod
inbPeriod

) ∗ inb))− ((floor(outbPeriod−1
outaPeriod

) ∗ outa) + (floor(outbPeriod−1
outbPeriod

) ∗ outb)))

which uses a ternary max() function to ensure that for the system to be safe it must

have a message depth of no more than 500. Alternatively, as the case is in this example,

the designer may ask the NetSketch system to determine for them what the maximum

safe depth is. One way to accomplish this is by adding a new output port to the queue

representing the queue depth. This port, maxdepth would be regulated by a constraint of:

maxdepth =

max(ina + inb,

((floor(outaPeriod
inaPeriod

) ∗ ina) + (floor(outaPeriod
inbPeriod

) ∗ inb))− ((floor(outaPeriod−1
outaPeriod

) ∗ outa) + (floor(outaPeriod−1
outbPeriod

) ∗ outb)),

((floor(outbPeriod
inaPeriod

) ∗ ina) + (floor(outbPeriod
inbPeriod

) ∗ inb))− ((floor(outbPeriod−1
outaPeriod

) ∗ outa) + (floor(outbPeriod−1
outbPeriod

) ∗ outb)))

In this way the designer can then infer a type for the system, including this unbound

output port, and thus determine the safe range of values for the queue depth. An extension

of the current implementation to allow for internal variables would provide an alternative

mechanism for defining and inferring the maximum queue depth.

NetSketch’s use of compositional analysis techniques brings reasoning about large scale

versions of these and other scenarios that may have been formerly intractable into the realm

of real world practicality. The NetSketch toolset exposes this power via a lightweight, user

friendly mechanism. The use cases presented here illustrate just a sample of the domains

45

and scenarios that can be naturally represented as equation/inequality based constrained

flow networks, and thus modeled and analysed in the NetSketch framework.

Chapter 6

Related Systems

It is important during the development of any system to determine its relationship to

the other systems in its context or domain. Well-established constraint-based modeling

systems exist today. NetSketch shares a variety of similarities with these tools, but also

bears numerous non-trivial differences. The types-based nature of NetSketch sets it apart

from many systems in this space. In addition its ability to scale via configurable levels

of approximation and abstraction, and analyze systems with under-specified components

makes it unique among other related frameworks.

Other notable differences stem from the fact that NetSketch in its current form does

not explicitly consider time. Many other constraint-based modeling tools, such as Modelica

[22], are largely centered around time and use simulation over time as their main form of

analysis. Some work has been done to show that a variation of NetSketch can be created

to more natively incorporate the concept of time. Here, variables of the constraints are

replaced by functions of the same name that accept a time variable as an argument. Given

the simulation-based nature of these time dependent modeling systems, other differences

from NetSketch are likely to exist, such as the need for balanced systems and constraints

restricted to equations (rather than equations and inequalities) as in Modelica.

Despite such differences, the overlap that does exist offers a great opportunity for

various forms of integration. Here, rather than focus on the differences, we focus on

47

exploiting that area of overlap to the benefit of NetSketch and other systems. In particular

we examine two types of relationships: those where NetSketch can consume the services of

other systems, and those were NetSketch models can be translated such that they can be

analyzed, simulated, or otherwise used in related systems.

In the first category we have examined the functionality of related systems to see if

sub-problems handled by NetSketch could be done more simply, efficiently, powerfully, or

elegantly by farming out this functionality to existing systems. In this vein we looked at

systems like the ECLiPSe constraint logic programming platform [23] for their ability to

solve constraints.

In the second category we have examined the relationship between model types of

NetSketch and other systems to see how a NetSketch model could be tranformed in a way

that would allow it to be executed in the related system.

In both cases we examined a variety of systems (ECLiPSe, Ptolemy II [24], Model-

ica [22]), but concentrated our efforts on a particular modeling and simulation platform:

Modelica.

6.1 Harnessing Modelica

Modelica is an object oriented, equation based modeling language [25]. It is managed

by the Modelica Association, though free as well as commercial implementations of the

execution environment are developed and maintained by 3rd party organizations.

6.1.1 Modelica as a Computation Platform

Modelica offers a wealth of functionality as well as a robust library. The extensive library

provides both reusable models and reusable functions spanning many domains. This library

can be of use to both NetSketch modelers (see section 6.1.2), and to the NetSketch tool

implementation itself.

Modelica and the functions defined in the Modelica library can be used directly by

48

the NetSketch implementation as a processing engine. For example, the NetSketch engine

requires frequent use of linear programming techniques, namely the simplex method. A

function implementing this has been defined in Modelica code and can therefore be used

by NetSketch to “farm out” some of the more mathematically heavy computations.

To gain access to the power of Modelica from within the NetSketch tool, a reusable

Haskell library was developed to expose the functionality of the OpenModelica [13] imple-

mentation to Haskell code. This library, HModelica, enables Haskell developers to create,

manipulate, and simulate Modelica models, in addtion to directly executing functions writ-

ten in the Modelica language. Through the use of this library the NetSketch simplex code

was replaced with calls to OpenModelica, alleviating the need for a number of Haskell- and

C-based libraries that previously were tasked with this work. Having a single platform and

access mechanism for performing these types of tasks simplifies the NetSketch code base,

and this impact will continue to grow as the set of tasks handed to Modelica increases.

The library exposes the OpenModelica API in two ways. The primary mechanism is

in place for a subset of the OpenModelica API calls. These functions are implemented as

type-safe calls with full translation to and from Haskell types. Second, for any functions not

implemented in this manner (the number continues to decrease as development continues),

a single function is implemented allowing the caller to send commands to Modelica as a

string, and then to receive the results as a string. This allows for the execution of any

arbitrary Modelica command.

HModelica has the potential to open Modelica up to the community of Haskell devel-

opers. As such, its use can extend outside of NetSketch. To that end the library is being

added to the Haskell package repository HackageDB [26]. Here, it will be available for

public download and use in the Cabal package format.

6.1.2 Translation to Modelica

Modelica and NetSketch share enough in common that a translation between the two can

be defined. Here, we concentrate on the translation from NetSketch to Modelica; however, a

49

subset of the models developed in Modelica (those with linear constraints) could be directly

translated into typed NetSketch networks. This would provide NetSketch users with access

to a wider array of pre-built components. A translation in this direction would map

Modelica classes and related definitions to NetSketch module definitions with connections

between classes and compositions of modules accomplished via NetSketch Connect and

Loop constructs. A formal definition of such a mapping is being considered for future

work.

The reverse direction, a translation from NetSketch to Modelica, generates models that

can be used to perform simulation as a safety analysis tool. NetSketch and Modelica

overlap to a great extent in their structured representation of models and constraints.

Modelica, however, has two facets that limit the ability to do a direct translation from

a NetSketch model. First, the constraints governing a Modelica model are restricted to

equations [27]. NetSketch constraints are in fact a parameter of the formalism and so are

open ended. Even if the constraint space selected is the linear constraint model in use by

the current implementation, inequalities are allowed alongside equations. Removing this

difference does not alone allow for a direct translation, however, as systems of constraints in

Modelica must also be balanced (that is, not over or underdetermined) according to certain

rules [27]. Modelica is also largely a tool for simulation with respect to time. This basis

contributes to the difficulty of porting NetSketch models, as in its current form NetSketch

does not explicitly represent time (though it can be encoded in the type of commodity

represented by the flow).

Acknowledging the above difficulties, this section outlines an approach that accommo-

dates the differences in the frameworks while allowing for a meaningful translation. In this

approach, NetSketch models are analyzed to determine a subset of the system’s variables

such that this new set can act as a driver for the entire constrained flow network. Elements

of this minimal covering set are bound to parameters that can take a single value (i.e.,

per variable, per simulation). The resulting parameterized model is then transformed into

a Modelica model and can be used to test the safety of the system when specific values

50

(or ranges) for the parameters are provided. In this way, specific instances, or multi-

dimensional ranges of instances, can be analyzed both for satisfaction of safety constraints

and for examination of complete internal state given a partial specification.

6.1.3 Minimal Covering Set

Due to the inability to include inequality statements directly in the area of a Modelica

model that governs the simulation, an alternative approach must be used. One option is

to include the constraints on the right-hand side of an equation as a boolean expression.

This approach can be used to ensure validity by introducing a new variable to represent

the satisfaction of the constraint set. For example, the constraint x + y ≤ 20 can be

considered by the system using a statement such as: isValid = x+ y ≤ 20. In this way, the

variable isValid will be true when it is the case that x+y ≤ 20, and false otherwise. We are

not aware of a native Modelica mechanism (functionality intrinsic in the simulation-based

nature of the system) for solving the set of equations/inequalities in order to determine

for what values of x and y this statement holds. Modelica’s coding language is indeed

powerful enough to express algorithms for performing these mathematical calculations,

but taking that approach simply uses the procedural aspects of Modelica to replace the

Haskell/C code that exists currently for type inference. In this case we do not gain an

advantage over the current implementation and have instead simply re-implemented the

algorithm in a less mainstream language. What we can do with these new statements,

however, is simulate the system under consideration given specific concrete values for x

and y (continuing the example above) and ensure that the constraints hold. This would be

of only marginal benefit if this binding to concrete values was required for all variables in

the system. Instead, we can define a minimum covering set SMin ⊆ I∪O where I and O are

the sets of (external and internal) inputs and outputs of a system. SMin is the smallest set

of variables that, when considered along with the other constraints of the system (including

the connections between modules), can completely determine the flow if they are bound to

concrete values.

51

As an example, consider Figure 6.1. Here, six variables, a,b,c,d,e,f , and a constraint

set exist to regulate flow within the system. Since M0 conserves flow via the constraint

c + d = e we need only bind two variables (e.g., a, and b), to concrete values in order to

determine the entire system. Since c, d, e, and f all depend on a and b to determine their

values, these variables need not be considered when providing concrete values to drive a

Modelica simulation. In this way, the NetSketch model can be analyzed to determine a

minimal covering set SMin, and can then be transformed into a Modelica model with SMin

as parameters.

A minimal covering set is not necessarily unique. In the above example setting SMin =

{a, f} (among other possibilities), creates a cover of the same size as {a, b}, and will

also allow all variables to be determined. The algorithms described in this section find a

single minimal cover; however, with simple extensions they could be modified to return all

minimal covers, allowing the user to select the most desirable one for their purposes before

proceeding with the translation.

Figure 6.1: Two source modules, a merge, and a sink.

To determine the minimal covering set, consider the NetSketch networks described in

tree form as in Figure 6.2.1 Two algorithms will be described. The first produces a set that

is not always minimal, but is efficient (polynomial) in its runtime. The second is always

minimal, but in isolation may run in exponential time. A hybrid approach is also described

1Non-connected networks (and thus non-tree) may exist in parallel. In this case, these algorithms can
be applied to each portion of the network separately.

52

Conn

Src0 Conn

Src1 Conn

M0 Sink0

Figure 6.2: Tree view of the network in Figure 6.1

that uses the first algorithm to produce a baseline from which the second algorithm can

start, potentially leading to a large reduction in running time.

Sub-Optimal Efficient Algorithm

This algorithm operates efficiently, as it is based on notions of causality (i.e., flow through

input ports may impact values at output ports, but not vice versa), and thus the model

may be analyzed in one direction. When translating to an acausal system such as Modelica,

however, such an assumption may not be made (i.e., a downstream variable may indeed

restrict one upstream). Thus, this algorithm will produce a reduced set of variables, but

this set may in fact not be minimal, as flow in both directions must be considered. Note

that it is not sufficient to simply run this algorithm twice, once for the forward direction and

once for the reverse, and then to select the minimum of the two results. Each subgraph

of the network may independently benefit most (i.e., the variable set is reduced to the

smallest size) from one direction or the other, and thus both directions must be considered

simultaneously to achieve a minimum value.

Two passes must be made of the tree representing the NetSketch model. The first

pass will build two transition relations RI and RE . RE(X,xo, Y, yi) describes transitions

between nodes (from output port xo on node X to input port yi on node Y). RI(X,xi, xo)

53

will indicate that flow can travel internally through node X from input port xi to output

port xo via equation constraints. RI and RO will be used to assist processing in the second

pass. These relations will be constructed by walking the tree and adding new elements to

RE whenever a Connect or Loop node is encountered, and a new element to RI whenever

a Module node is encountered with equation-based (i.e., not inequality-based) constraints.

These constructs define the connections within and between modules and are thus precisely

those to be considered when building the transition relations.

The second pass of the tree will actually build the minimal covering set.2 The high-

level description in Figure 6.3 defines this algorithm. Since the set of nodes of size N in

the tree is scanned twice, with each pass performing constant or linear (with respect to N)

operations, this algorithm is O(N2).

Optimal Inefficient Algorithm

To overcome the potentially suboptimal nature of the above algorithm, an alternative is

introduced. The algorithm below will find the true minimal covering set(s), and thus is

acausal in nature. However, it may have an exponential worst-case running time with

respect to the number of variables in the system. A hybrid approach is also described that

attempts to take advantage of the speed of the first algorithm and the completeness of the

second.

Conceptually, this algorithm first builds a context of propositional statements. Each

statement defines whether having a known value for a variable or set of variables necessarily

determines the value of another variable. For example, if the output port variable x is

connected to the input port variable y then the presence of a binding to a concrete value

(directly or indirectly) for x implies that we have an indirect binding to a concrete value

for y. The same holds in the opposite direction.

Consider Figure 6.4. Here, five modules are connected to form a network. Arrows

2Note that here the term minimal is misused slightly, as the covering set produced, while reduced, may
not always be minimal.

54

• Perform a full search of the tree, maintaining an initially empty set SMin. For
each node perform the following action based on the node-type:

Module

– Examine the constraint set of this module and select those variables v
where v /∈ SMin.

– For each variable v consider it’s flow type (i.e. Input, Output), and it’s
connection status (i.e. Bound, Unbound). If v is:
∗ Input ∧ Unbound: Add v to SMin

∗ Input ∧ Bound: use the relations RI and RE from above to deter-
mine if it is on a cycle, and no other nodes on the cycle are already
in SMin. If these properties hold then add to SMin.
∗ Output ∧ Bound: Construct an initially empty set CUsed. Check

if v is related to an input via an equality constraint where that
constraint is not in CUsed. If such a relationship exists, add the
related constraint to CUsed, else add v to SMin. In this way each
equality constraint can only exclude a single output variable.

Hole

– If the hole is free: add all ouput and unbound input ports to SMin.
– If the hole is bound, then a set of constraints exists corresponding to

all isomorphisms of the allowed modules (those specified in a Let state-
ment). Use the algorithm for modules (defined above) using a pseudo
module representing this hole attached to the mentioned constraint set.

Figure 6.3: Sub-optimal efficient algorithm

between ports represent NetSketch Connect constructs. Since output port a, for example,

is connected to input port b, an implicit constraint of a = b exists. Thus, if we have a

value for one, we can determine a value for the other, leading to the propositional logic

statement a↔ b. Following this logic across the entire constraint set we get the following

55

Figure 6.4: A simple network to be examined via the optimal minimal covering set algo-
rithm

base set of statements for Figure 6.4:

a ↔ b (6.1)

b ↔ c (6.2)

c ↔ g (6.3)

d ↔ e (6.4)

f ↔ h (6.5)

g, h → i (6.6)

g, i → h (6.7)

h, i → g (6.8)

> → d (6.9)

Equations that directly relate two variables (including those defined implicitly by Con-

nect statements) result in bi-directional implication, as in the first five lines above. Equa-

tions relating n variables result in all combinations of n − 1 variables implying the single

other variable (single direction implication), as in lines (6.6), (6.7), and (6.8) above. If

multiple equations relate overlapping sets of variables the n − 1 variables on the left side

of the implication may be reduced (to n − 2, n − 3, etc). In the best case the system is

fully determined and thus we do not need to bind any of its variables to concrete values,

as the system does so for us. If an equation relates a single variable to a constant we can

56

add a statement such as the one in line (6.9) above. Inequality constraints do not con-

tribute to the set. The algorithm for producing a minimal covering set is formally stated

in Figure 6.6.

• Vars(C): a unary function that returns the distinct variable names in a constraint.
Formally, given a constraint C of the form c0x0+c1x1+...+cnxn OP cn+1xn+ 1+
...+ cmxm where OP ∈ {≥,≤,=}, Vars(C) will return {x0...xn...xm}.

• Constrs(M): a unary function that given a representation of a module as param-
eter M, returns the set of all constraints contained within M.

• EqnRel(C, M): a binary function that given a constraint represented by pa-
rameter C will return a related set, E, consisting of all equation based constraints
in Constrs(M) such that ∀Ei ∈ E : Vars(Ei) ∩ Vars(C) 6= � ∧ Ei 6= C. Infor-
mally: for each equation based constraint C in a module there is a set of other
equation based constraints, E, that does not contain C and whose members have
overlapping variables with respect to C.

• Conj(S): a unary function that given a set, S, returns a conjunction of all elements
in S. Formally Conj(s0, s1, ...sn) = so ∧ s1... ∧ sn.

Figure 6.5: Function Definitions

Upon completion of this part of the algorithm a set of propositional statements P will

have been created. P will represent a set of rules describing how variable value determina-

tion can be conducted. That is, each element in P will describe how knowledge of a value

for a variable (or set of variables) implies knowledge of the value of another variable. In

addition, P will contain intrinsic truths in the system (e.g., if x = 50 is a constraint then

a propositional atom representing x will be assumed to be true, as the value of x is known

without further binding or inference).

Given P , the problem of producing a minimal cover is now reduced to finding the

minimum set of propositional atoms SMin that must be explicitly assumed to be true in

order to make SMin ∧P ` Conj(Vars(CTotal)) valid, where CTotal is the set of all constraints

in the system and Conj is the conjuction of those variables (see Figure 6.5 for a formal

definition). The set SMin corresponds to a minimal set of variables that, given concrete

values, will determine the entire system.

Various algorithms can be defined for finding this minimal set of propositional atoms.

57

• Walk the tree representing the network, visiting each node. Maintain an initially
empty list of propositional sentences: P, and an initially empty set of metadata
about bound Holes: Bound. For each node perform the following action based on
the node-type:

Module

– For each equation based constraint C let E = EqnRel(C) (see Figure 6.5
for function definitions) and apply this routine:
∗ If |Vars(C)| = 1, add the single variable in C,to P.
∗ If |Vars(C)| = 2, add v1 ↔ v2 to P where v1, v2 are the two variables

in C.
∗ If |Vars(C)| = n where n > 2, then add an implies statement for

every
(n
n−1

)
combination of n− 1 variables, where the left hand side

consists of the n− 1 variables, and the right hand side is the single
remaining variable. In addition perform an analysis of the other
k constraints defined for that module (where k ≥ 0) in order to
determine if other related constraints allow for stronger implication
statements.3

Connect or Loop

– Add v1 ↔ v2 to V where v1, v2 are the two variables being connected.

Let

– Add the pair (H,ModPsuedo) to the set Bound. Here H is the hole men-
tioned in the Let statement, and ModPseduo is a new module constructed
by considering the conjuction of all the constraints in the isomorphisms
of the allowed modules defined in the Let statement.

Hole

– If the hole, H is in the set of the first elements of the pairs in the set
Bound then use the algorithm for modules (defined above) applied to
the 2nd element of the pair containing H.

Figure 6.6: Optimal inefficient algorithm

Here, three are briefly described:

Linear Search The most straightforward algorithm involves examining all subsets of

atoms in the system of a given size starting with 0, and increasing up to the set which

includes all atoms. Let n = |Vars(CTotal)|. This algorithm simply tests P ∧ Vi[j] `

Conj(Vars(CTotal)) in a nested loop with i as the loop iteration counter increasing from

0 to n, and j as the inner loop iteration counter increasing from 0 to
(
n
i

)
. Here, Vi[j] repre-

58

sents the jth element of the ordered set of all i-combinations of variables from Vars(CTotal)

(any ordering of each set is acceptable). For example, given P and a set of variables

{a, b, c}, this would involve testing all the cases in Table 6.1.

P ` Conj(Vars(CTotal)) i = 0 j = 0

P ∧ a ` Conj(Vars(CTotal)) i = 1 j = 0

P ∧ b ` Conj(Vars(CTotal)) i = 1 j = 1

P ∧ c ` Conj(Vars(CTotal)) i = 1 j = 2

P ∧ a ∧ b ` Conj(Vars(CTotal)) i = 2 j = 0

P ∧ a ∧ c ` Conj(Vars(CTotal)) i = 2 j = 1

P ∧ b ∧ c ` Conj(Vars(CTotal)) i = 2 j = 2

P ∧ a ∧ b ∧ c ` Conj(Vars(CTotal)) i = 3 j = 0

Table 6.1: Cases in linear search for P and {a, b, c}

In the best case no additional atoms beyond the statements in P would need to be

added to the conjunction on the left-hand side. In this case the first test passes and the

algorithm stops, producing an empty set SMin. In the worst case, P is empty (the network

contained no equation based constraints, and was comprised of a single module), requiring

all three variables a, b, and c to be added to SMin in order to imply Conj(Vars(CTotal)).

Binary Search A version of binary search can be used to expedite the process of finding

a minimal cover. Here, as in the linear search, we perform tests of subsets of conjucts of

atoms from the system along with P , to see if these imply the conjunction of all atoms in

the system. The difference is only in the search order. Rather than checking all subsets of

size 0, 1, ...n we select the size of the sets to test according to a binary search. A call to the

3To do this combine C with each constraint Ei ∈ E by solving Ei for each overlapping variable of C
(generating a set of equations) and for each substituting the resulting expression into C. This forms a set
of size > 0 of new equations. Repeat this process recursively by applying it to the result of each element in
the new set along with the tail of E. At the completion of this process a set of new equations, all consistent
with the original set, will have been generated. Generate implication statements for this set using the
procedure described above, though in this pass the expansion of the equation set will not be required. Note
that equations generated further down the recursion stack may make previous equations redundant (i.e.,
a ∧ b → c becomes unnecessary if a → c is added to the context). An efficient implementation of this
algorithm would detect these and remove the redundant information.

59

binary search algorithm passes parameter values for the minimum and maximum of the

range currently under consideration. Initially the set of sizes to consider is [0...n] where n is

defined as in the linear search. We narrow this range through recursive calls to the binary

search function. For each test given min and max as parameters we find the midpoint m of

the range and perform the checks P ∧ Vm[j] ` Conj(Vars(CTotal)) for all values of j, where

0 ≤ j ≤
(
n
m

)
. If none of the checks pass, then we know that no conjunct of atoms of size

m in addition to P can imply the set of all atoms, and thus |SMin| > m. Accordingly

we recursively perform this routine on the right side of the range (i.e. [m + 1,max]). If,

however, one of the tests of size m did pass, then we know that |SMin| ≤ m. Since the

true smallest size may be smaller than m we must test the half of the range to the left of

the midpoint (i.e. [min,m]) via a recursive application of this process. If the range at any

given instance of the recursion is represented by [RangeMin,RangeMax] then the recursion

can stop when RangeMax − RangeMin ≤ 2. In this case, we test the remaining values in

the range and select the lowest one as the size of SMin.

Hybrid Search In the hybrid search we perform either the linear or binary search as

above; however, we use the sub-optimal efficient algorithm described previously as a guide.

Since the sub-optimal algorithm runs quickly and gives us an answer that is likely to

be close to the minimum, we can use the size of this answer as a starting point. For a

linear search, we would thus search linearly from 0 to at most the size of the result of

the sub-optimal algorithm. For a binary search, we would use the size of the result of the

sub-optimal algorithm as the maximum value of the range to initially test, as opposed to

using [0, n].

Implementation

Each of these algorithms have been implemented in Haskell. The propositional logic proof

engine exists both as pure Haskell code (emphasizing simplicity, i.e. one runtime as prolog

is implemented within Haskell), and as a Haskell interface to SWI Prolog via hswip[28]

60

(emphasizing efficiency via the faster prolog implementation).

6.1.4 Translation

With a minimal covering set defined, a relatively straightforward translation can proceed.

The translation again walks the tree representing the NetSketch network. A set of Mod-

elica classes are constructed from NetSketch modules and holes, and their constraints are

represented using a combination of the equation section of each class, and a boolean vari-

able present in a single “driver” class. The driver class will be the class that directs the

simulation (analogous to a main() function in a procedural language). The algorithm is

presented in Figure 6.7 at a high level.

ModelicaClass
modifiers :: [String]
parentClassNames :: [String]
variables :: [Variable]
constraints :: [Constraint]
connections :: [Connection]

Variable
modifiers :: [String]
type :: Type
name :: String
initializer :: String

Type = InputPort | OutputPort

Constraint = String

Connection = ((ModelicaClass,Variable), (ModelicaClass,Variable))

Table 6.2: Haskell-like representation of Modelica constructs

Elements representing Modelica classes, variables, and connections are described using

the abstract data types (presented in a Haskell-like syntax) in Table 6.1.4.

61

package PACKAGE_NAME

connector OutPort = output Real;

connector InPort = input Real;

<<Repeated for each class in the set of classes:>>

class CLASS_NAME

<<list variables in the form:>> [PARAMETER] TYPE NAME

equation

CONSTRAINTS

end CLASS_NAME

class Driver

<<List each module represented in the set of driver connections here:>>

CLASS_NAME CLASS_INSTANCE_NAME[(INITIALIZERS)];

Boolean valid;

equation

<<For each connection in the set of driver connections add:>>

connect(CLASS_INSTANCE_NAME.VARIABLE_NAME, CLASS_INSTANCE_NAME.VARIABLE_NAME)

valid = if (<<Conjuction of all constraints in driver’s constraint set>>)

then true

else false;

end Driver

end PACKAGE_NAME

Table 6.3: Output format from translation

62

• Perform a full search of the tree maintaining an initially empty set, C of what will
become Modelica classes, along with a single extra Modelica class, d, representing
the driver class of the simulation. For each node perform the following action
based on the node-type:

Loop Update d to add a new connection to its connections attribute. If the
child of the loop construct is not a base module, but instead a composite net-
work, that sub-network will need to be examined to find the two (potentially
the same) base modules which are actually involved in the connection.

Connect Update d to add a new connection. If either or both of the children
of the Connection construct are not base modules, but instead a composite
network(s), each non-base sub-network will need to be examined to find the
two base modules which are actually involved in the connection.

Module Construct a new ModelicaClass instance, C and add it to C. Any
equation based constraints in the Module will be added to C’s constraints
section. Any inequality constraints will be added to the constraints section
of d (for later use as part of the boolean expression defining the variable
valid). For each variable v in the constraints of the module:

– If v ∈ SMin then add it to C’s variables section with the parameter
modifier.

– If v /∈ SMin then add it to C’s variables section.
– If the variable represents an input port then the new variable in C will

have type InPort (defined above). If the variable represents an output
port then the new variable in C will have type OutPort (defined above).

Hole Construct a new ModelcaClass instance, C and add it to C.
– If the hole is free then for all ports add the variable to C’s variable

section, and for those ports that are in SMin include the parameter
modifier. If the variable represents an input port then the new variable
in C will have type InPort. If the variable represents an output port
then the new variable in C will have type OutPort.

– If the hole is bound then a constraint set exists corresponding to all iso-
morphisms of the allowed modules (those specified in the let statement).
Use the algorithm defined (above) for modules using a pseudo module
constructed using the ports of this hole attached to the constraint set
mentioned.

• Output a string in the format shown in Table 6.3.

Figure 6.7: Translation algorithm

6.1.5 Simulation

With a Modelica model now available, the system is ready to be simulated. The purpose

of the simulation is to determine the safety of the system given a specific set of bindings for

63

the minimal covering set of variables. The user would set these bindings in the initializers

of the appropriate module instances in the driver class. The output of importance to the

simulation will be the value of the variable valid. This variable will be true when the

system is safe, and false when the system is not (given the set of bindings). Since the

system is not meant to change state over time, the value of valid can be examined at any

time after time 0 (and thus the simulation need only run for a minimum amount of time).

The above description defines a safety check on a single instance of the model where

all parameters (which correspond to the variables in SMin) are bound. In small models

this can be extended to check finite ranges for each parameterized variable in the model.

A simple, but inefficient mechanism for this could be achieved by considering the cross

product of the discretized ranges of these variables. This would allow for an exhaustive

check to be executed by running multiple (parallel or sequential) simulations of the model

(one for each element of the cross product). In order for this to be achievable the finite

ranges must be converted to finite sets which involves setting a precision level so that a

continuous range of real values can be transformed into a discrete set.

Figure 6.8: Example Model

64

Due to the nature of the constraints in the current implementation (linear, conjunctive)

gaps of unsafe values can not exist within a range of safe values (i.e., the constraints

represent a convex hull). Therefore, a more efficient mechanism exists to check the ranges:

it suffices to check combinations of the maximum and minimum’s of all the ranges.

For each variable the ranges of values to simulate must be determined. One option

would be to request the user to provide values. In NetSketch terms this corresponds to

the users estimating a set of types, and the framework determining if those types are

indeed safe. Alternatively, this range selection could be automated; however, calculating

the ranges would involve the same process as calculating interval types (as is done in the

current system). A hybrid approach could consist of prompting the user for an overly wide

range (or allowing the system to guess one), and performing simulations as part of a search

on that range to narrow down an appropriate sub-range.

Single simulation time on a dual core AMD II X2 M300 with 4 GB RAM running

OpenModelica 1.7.0 on Ubuntu 11.04 takes approximately 3.6 seconds for a small model

of 10 variables across 6 modules. Of this time, only approximately 10 milliseconds is

used for the actual simulation, with the rest going largely towards compilation time.

Since the parameters can be updated without recompiling (in OpenModelica via updat-

ing [ModelName].init.txt), running many simulations will be quite fast (approximately

327 simulations can occur before simulation time exceeds compilation time, assuming file

manipulations to update parameters cost 1 ms). Since each simulation will run with each

parameterized variable in SMin bound to either the minimum or maximum of its range,

there are 2k possible scenarios to test, where k = |SMin|. This exponential factor quickly

limits the practical use of a complete multi-dimensional range test for all but small inputs.

The cost of a simulation set is COMPL + (SIM + FILE UPD) ∗ (2k) where COMPL is a pa-

rameter representing the initial compilation time on a given system for a given model, SIM

represents simulation time for that model, and FILE UPD represents the time to update the

parameters file in between each simulation (note the size of the ranges is not a factor in the

running time). So on a system where a particular model compiles in 3500 ms, simulates in

65

10 ms, and file updates cost 1 ms, the equations becomes 3500+(11∗2k). This means that

a model over 5 variables will take 3852 ms to completely check (assuming all finite ranges),

but a model over 20 variables will take approximately 3.2 hours, and one over 100 variables

will take more than 4 ∗ 1020 years. Thus while small models can be checked completely

given finite ranges, large models will be restricted to what-if scenarios over single instances.

6.1.6 Example

Consider the model depicted in Figure 6.8. This model represents a system consisting of

two logically composed components. Component 1 models two servers producing content,

which is then multiplexed onto a single connection and sent through a pass-through node.

Component 2 receives content, passes it through node P1, demultiplexes it, and sends it

to two receiving clients, Sink0 and Sink1. The two components P0 and P1 are connected

using an “external” connection, as indicated by the dotted line between them.

Within NetSketch this system would be modelled by creating (or re-using from a library)

Component 1 and Component 2, possibly created by different modelers. Each component

would have a type inferred for it. The type would describe the unbound ports at the com-

posite component’s interface. Here, Component 1 would simply have a single typed output

port (corresponding to g in the diagram), with an interval type of [0, 150]. Component 2

would have a single typed input port on its interface (corresponding to h in the diagram),

with an interval type of [0, 125].

Since the type T2 of Component 2 is not compatible with the type T1 of Component 1

(here meaning T2 is not an enclosing interval of T1), the NetSketch system would not allow

the connection between the two components to be created. We can see that while [0, 150]

and [0, 125] do overlap (indicating there are safe values that would allow the systems to

be integrated under some scenarios) there are in fact values (namely those in the range

[126, 150]) that could be produced by Component 1, but could not safely be handled by

Component 2.

Realizing this, a modeler may determine that the composition is unsafe and seek out

66

alternatives, while a designer may modify the network layout or the system internals. For

example, a designer may be able to modify the system in such a way that port a on Src0

may be restricted to output no more than 10 units. In this case a new type is inferred

for Component 1 resulting in an interval of [0, 110]. Now T2 is indeed compatible with T1

since [0, 125] encloses [0, 110], and the two networks can therefore be connected.

A translation to Modelica could be performed on the resulting two-module typed net-

work, however for illustrative purposes we examine this system as a whole (ignoring any

structure imposed by grouping modules into the entities Component 1 and Component 2).

The minimal covering set, SMin, will be generated as {a, b, l}. In this way, the variables in

{a, b, l} become parameters of the resulting Modelica model, and will be bound to concrete

values to allow for simulations. If values are specified for the variables in {a, b, l}, the

entire system will be determined. In this toy example, it is clear which bindings for these

parameters will make the system safe, but in larger, more realistic networks in which this is

less obvious simulations will help determine exact safe conditions. A single set of bindings

may be tested for a “what-if” scenario, or a range of values may be tested to determine

the safe boundaries. Furthermore, exact values of non-bound variables can be examined

post-simulation to see the state of the system internals given a particular instance of the

model.

Chapter 7

Conclusions

In this work we have presented NetSketch, a system for modeling and analyzing con-

strained flow networks. In Chapter 1 we reviewed the problems with traditional whole-

system analysis methods, and introduced NetSketch as a potential solution. The inability

of whole system analysis to scale as the model in question grow in both size and num-

ber/complexity of constraints, limits or slows current modeling efforts of large systems.

In addition whole-system analysis requires all modules to have their constraints explicitly

expressed, disallowing meaningful analysis over networks containing unknown or under-

specified components. We outlined how the compositional nature of Netsketch can address

the issue of scalability by allowing for the computationally intensive parts of modeling and

analysis to be constrained to small sub-graphs of the network. In addition the composi-

tional properties of Netsketch in combination with its type based approach can alleviate the

requirement for fully defining models before analysis can occur. In Chapter 2 we reviewed

the theoretical underpinnings based on a new type theory and type system, and discussed

the domain specific language for constructing networks. The use of types in NetSketch

was compared with that of traditional programming languages and we saw that many of

the same principles are at play. Just as how in a staticly typed progamming language

the compiler can provide certain safety guarantees based on types alone, in NetSketch the

type system can allow us to discard the underlying topology and constraints and focus on

68

simple types to ensure our safety invariants hold. We saw how the five simple constructs

Module, Connect, Loop, Hole, and Let allow us to build up networks in a compositional

manner. The two primary uses of holes were discussed: as placeholders for unknowns in

the network, and as placeholders for interchangeable components. We took a more con-

crete look at the algorithms and methodologies behind the current type system in Chapter

3. Types as open/closed intervals over the real line were presented as approximations of

linear constraints. A method for inferring such types based on maximally enclosing and

maximally encolsed axis aligned hyperrectangles was presented, before discussing some of

its limitations and possible alternatives. In Chapter 4 we looked at the implementation of

NetSketch first from the perspective of an end user wishing to make use of the web based

toolset, and then from the view of a system architect. The JavaScript, Haskell, and C/C++

components of the tool were discussed, as well as some of the intuition for these particular

choices. Chapter 5 explored some potential use cases for NetSketch in the domains of com-

pute resource service level agreements (SLAs), as well as system process communication

over queues. Finally in Chapter 6 we examined the relationship of NetSketch to other con-

straint based modeling tools. These were investigated both as computation platforms, and

as a basis for performing translation from NetSketch. The Modelica simulation platform

was considered in detail, and algorithms outlining the required steps for translation were

presented.

NetSketch presents modelers with the ability to trade off exactness for the possibility to

work with systems consisting of large constraint sets that would otherwise be intractable.

Through abstraction, encapsulation, and composition NetSketch takes a non-monolithic

approach to the problem and in so doing also opens up other benefits such as allowing for a

heterogeneous set of calculii to regulate the model, or analysis over under-defined systems

to occur. Other formalisms and methods, such as [29], seek to enable early detection of

problems in a model by applying types to constraint sets in a modular way, but are intended

for providing assurances that compilation prior to analysis/simulation will succeed. In

contrast the use of types in NetSketch directly supports the analysis of the model itself.

69

NetSketch was designed and developed with the desire to be a lightweight mechanism

for formal modeling. Despite its basis in a rigorous formalism, every effort was made to hide

these details and complexity from the end user. Our belief is that to be of true practical

value to a group that may include non-experts, a formal system must not require detailed

knowledge of the underlying mathematical principles. Instead the interface should provide

a friendly mapping from concepts known to the user to the intricacies of the formalism.

These principles embodied in other areas of formal reasoning such as model checkers [30–

32], model finders [33], and type systems [34] can be contrasted with the heavier weight

approaches common in much of current research on formal methods and the foundations of

programming languages (such as the work on automated proof assistants [35], or the work

on calculi for distributing computing [36]). Other work on compositional approaches to

modeling based on interactions at the interface of modules has been explored via interface

theories [37], but differs from this work in its basis in automata as opposed to type theoretic

notions. We believe the ease of use of the current NetSketch implementation, coupled with

the power it exposes via both its automatic verification and through the ability for human

interpretation of the meaning of the resulting types - highlights the potential for this type

of lightweight approach to formal analysis.

Many areas of continued work related to NetSketch exist. These include refinements,

enhancements, and extensions to the formalism itself, to the toolset and its underlying al-

gorithms, and to the relationship between NetSketch and other systems. An investigation

of the potential constraint languages and their solution algorithms (as expressed in surveys

of constraint solving such as [38]), as well as possible type systems that could be applied

to NetSketch - could reveal far more expresive model definition capabilities. Alternate or

extended semantics for elements of the DSL, such as additional forms of the Let construct

to allow for one-must-satisfy vs all-must satisfy interpretations, could likewise allow for

more powerful expressions within the formalism. The toolset could be extended to allow

even more natural representation of the underlying formalism, and to include further ease-

of-use features. Direct translation to Modelica and other modeling systems from within

70

the tool could allow for hybrid approaches to analysis where both NetSketch style verifi-

cation as well as simulation based approaches could lead to even stronger guarantees of

safety. In addition, further investigation and elaboration on uses cases could serve to help

direct future efforts and allow for a better understanding of the system’s natural patterns.

This type of extension can also lead to a continued build-out of the NetSketch library of

components and networks.

Bibliography

[1] D. Jackson and M. Rinard, “Software analysis: a roadmap”, in Proceedings of the

Conference on The Future of Software Engineering (ACM, New York, NY, USA,

2000), ICSE ’00, pp. 133–145, ISBN 1-58113-253-0, URL http://doi.acm.org/10.

1145/336512.336545.

[2] A. Bestavros, A. Kfoury, A. Lapets, and M. Ocean, “Safe Compositional Network

Sketches: Formalism”, Tech. Rep., Department of Computer Science, Boston Univer-

sity, Boston, MA, USA (2009), tech. Rep. BUCS-TR-2009-029, October 1, 2009.

[3] M. L. Scott, Programming Language Pragmatics (Morgan Kaufmann, 1999).

[4] Sencha, “Sencha - Ext JS - Client-side Javascript Framework”,

http://www.sencha.com/products/js/ (2011).

[5] T. Rehorek, “JavaScript Graphics Library (JSGL) official homepage”,

http://www.jsgl.org/doku.php (2011).

[6] M. Elder and J. Shaw, “Happstack - A Haskell Web Framework”,

http://happstack.com/index.html (2011).

[7] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs. ”big”’

web services: making the right architectural decision”, in Proceeding of the 17th

international conference on World Wide Web (ACM, New York, NY, USA, 2008),

WWW ’08, pp. 805–814, ISBN 978-1-60558-085-2, URL http://doi.acm.org/10.

1145/1367497.1367606.

72

[8] A. Gill and S. Marlow, “Happy - The Parser Generator for Haskell”,

http://www.haskell.org/happy/ (2011).

[9] K. Fukuda, “cdd and cddplus homepage”,

http://www.ifor.math.ethz.ch/∼fukuda/cdd home/cdd.html (2011), swiss Federal In-

stitute of Technology.

[10] F. Margot, “Francois Margot Homepage”,

http://wpweb2.tepper.cmu.edu/fmargot/ (2011), carnegie Mellon.

[11] A. Ruiz, “HackageDB: hmatrix-glpk-0.2.1”,

http://hackage.haskell.org/package/hmatrix-glpk (2011).

[12] G. P. Developers, “GLPK GNU Project”,

http://www.gnu.org/software/glpk/ (2011).

[13] O. S. M. C. (OSMC), “Welcome to OpenModelica”,

http://www.openmodelica.org/ (2011).

[14] J. W. Chinneck, Practical optimization: a gentle introduction (Electronic Document,

2004).

[15] P. Patel, A. Ranabahu, and A. Sheth, “Service level agreement in cloud computing”, in

Cloud Workshops at OOPSLA09, 2009 (2009), URL http://knoesis.wright.edu/

aboutus/visitors/summer2009/PatelReport.pdf.

[16] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud computing: Vision,

hype, and reality for delivering it services as computing utilities”, in The 10th Inter-

national Conference on High Performance and Communications(HPCC 08) (2008),

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5767932.

[17] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis,

“Flexible use of cloud resources through profit maximization and price discrimina-

tion”, in Data Engineering (ICDE), 2011 IEEE 27th International Conference on Data

73

Engineering (2011), pp. 75–86, ISBN 978-1-4244-8959-6, URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=5767932.

[18] Amazon, “Amazon EC2 instance types”,

http://aws.amazon.com/ec2/instance-types/ (2011).

[19] A. Schpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and R. Isaacs,

“Embracing diversity in the barrelfish manycore operating system”, in Proceedings of

the Workshop on Managed Many-Core Systems (2008).

[20] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System

Performance: Computer System Analysis Using Queueing Network Models (Prentice-

Hall, Inc., 1984).

[21] S. Balsamo, V. D. N. Person, and P. Inverardi, “A review on queueing net-

work models with finite capacity queues for software architectures performance

prediction”, Performance Evaluation 51, 269 (2003), ISSN 0166-5316, Queueing

Networks with Blocking, URL http://www.sciencedirect.com/science/article/

pii/S0166531602000998.

[22] M. Association, “Modelica and the Modelica Association”,

https://www.modelica.org/ (2011).

[23] A. Niederlinski, A Quick and Gentle Guide to Constraint Logic Programming with

ECLiPSe (pkjs.com.pl, 2011).

[24] U. of California at Berkeley, “Ptolemy ii”,

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm (2011).

[25] H. Elmqvist., S. Mattsson., and M. Otter, “Object-oriented and hybrid modeling in

modelica”, Journal Europen des systmes automatiss 35, 1 (2001).

[26] H. Community, “Hackagedb”,

http://hackage.haskell.org (2011).

74

[27] M. Association, “Modelica Language Specification 3.2”, Tech. Rep., Modelica Associ-

ation (2010), http://www.modelica.org/documents/ModelicaSpec32.pdf.

[28] E. Tarasov, “HackageDB: hswip-0.3”,

http://hackage.haskell.org/package/hswip (2011).

[29] H. Nilsson, “Type-based structural analysis for modular systems of equations”, in

Proceedings of the 2nd International Workshop on Equation-Based Object-Oriented

Languages and Tools (2008).

[30] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning About

Systems (Cambridge University Press, 2004).

[31] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “A nusmv: A new symbolic

model checker”, International Journal on Software Tools for Technology Transfer

(STTT) 2 (2000).

[32] G. J. Holzmann, “The model checker SPIN”, IEEE Transactions On Software Engi-

neering 23 (1997).

[33] D. Jackson, “Alloy: A lightweight object modelling notation”, ACM Transactions on

Software Engineering and Methodology (TOSEM’02) 11, 256 (2002).

[34] B. C. Pierce, Types and Programming Languages (MIT Press, 2002).

[35] L. C. Paulson, Isabelle: A Generic Theorem Prover, vol. LNCS 828 (Springer-Verlag,

1994).

[36] G. Boudol, “The λ-calculus in direct style”, in Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (ACM, New

York, NY, USA, 1997), POPL ’97, pp. 228–242, ISBN 0-89791-853-3, URL http:

//doi.acm.org/10.1145/263699.263726.

75

[37] L. de Alfaro and T. A. Henzinger, “Interface automata”, in Proceedings of the 8th

European software engineering conference held jointly with 9th ACM SIGSOFT in-

ternational symposium on Foundations of software engineering (ACM, New York,

NY, USA, 2001), ESEC/FSE-9, pp. 109–120, ISBN 1-58113-390-1, URL http:

//doi.acm.org/10.1145/503209.503226.

[38] A. Neumaier, “Complete search in continuous global optimization and constraint sat-

isfaction”, Acta Numerica pp. 271–369 (2004), Cambridge University Press.

