
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

2012-04-15

Transistor scaled HPC application performance

Appavoo, Jonathan; Schatzberg, Dan. "Transistor Scaled HPC Application Performance",

Technical Report BUCS-TR-2012-009, Computer Science Department, Boston University, April

15, 2012. [Available from: http://hdl.handle.net/2144/11397]

https://hdl.handle.net/2144/11397

Downloaded from OpenBU. Boston University's institutional repository.

Transistor Scaled HPC Application Performance
Technical Report BUCS-TR-2012-009

Jonathan Appavoo & Dan Schatzberg, Boston University
{jappavoo,dschatz}@bu.edu

This material is based upon work supported in part by the Department of Energy Office of Science
under its agreement number DE-SC0005365 and upon work supported in part by National Science
Foundation award #1012798.

Transistor Scaled HPC Application Performance
Jonathan Appavoo & Dan Schatzberg, Boston University

{jappavoo,dschatz}@bu.edu

We propose a radically new, biologically inspired, model of extreme scale computer on which ap-
plication performance automatically scales with the transistor count even in the face of component
failures. Today high performance computers are massively parallel systems composed of potentially
hundreds of thousands of traditional processor cores, formed from trillions of transistors, consuming
megawatts of power. Unfortunately, increasing the number of cores in a system, unlike increasing
clock frequencies, does not automatically translate to application level improvements. No general
auto-parallelization techniques or tools exist for HPC systems. To obtain application improvements,
HPC application programmers must manually cope with the challenge of multicore programming
and the significant drop in reliability associated with the sheer number of transistors.

Drawing on biological inspiration, the basic premise behind this work is that computation can
be dramatically accelerated by integrating a very large-scale, system-wide, predictive associative
memory into the operation of the computer. The memory effectively turns computation into a
form of pattern recognition and prediction whose result can be used to avoid significant fractions of
computation. To be effective the expectation is that the memory will require billions of concurrent
devices akin to biological cortical systems, where each device implements a small amount of storage,
computation and localized communication.

As typified by the recent announcement of the Lyric GP5 Probability Processor, very efficient
scalable hardware for pattern recognition and prediction are on the horizon. One class of such
devices, called neuromorphic, was pioneered by Carver Mead in the 80’s to provide a path for
breaking the power, scaling, and reliability barriers associated with standard digital VLSI tech-
nology. Recent neuromorphic research examples include work at Stanford, MIT, and the DARPA
Sponsored SyNAPSE Project. These devices operate transistors as unclocked analog devices orga-
nized to implement pattern recognition and prediction several orders of magnitude more efficiently
than functionally equivalent digital counterparts. Abstractly, the devices can be used to implement
modern machine learning or statistical inference. When exposed to data as a time-varying signal,
the devices learn and store patterns in the data at multiple time scales and constantly provide
predictions about what the signal will do in the future. This kind of function can be seen as a form
of predictive associative memory.

In this paper we describe our model and initial plans for exploring it.

High Performance Computing (HPC) application demand continues to surpass HPC system
capacity. Serious challenges in power, reliability, and programability face us in continuing to scale
HPC capacity[33, 72, 71].

Our goal is the exploration of a new class of extreme scale system that enables application
performance to grow automatically with the size of the system.

We want to move the burden of obtaining high performance from the application programmer to
the system for traditionally challenging HPC applications such as those represented by Graph500[2]
and even for applications that are difficult to express as a parallel program such as SST/macro[44].
This paper suggests a radically different approach to constructing an HPC system that: (i) is
programmed easily but on which application performance scales with the number of transistors, (ii)
is resilient to device failures, and (iii) consumes pico-watts per transistor. Our aim is a system that
efficiently remembers and utilizes past execution to accelerate applications.

We suggest the use of a predictive associative memory, composed of billions of neuron
like devices, to efficiently and transparently accelerate high performance computation,
through memory recall from a vast base of computation it learns.

This research is high risk, since the anticipated results are not guaranteed, but the potential benefits
of a positive result to high performance computing are tremendous:

An HPC system that does not require multi-core programming, application performance
that scales simply by making the machine larger, seamless robustness to individual tran-
sistor failures, and efficiency in power consumption.

We are motivated by our own experience working on high performance scalable systems software[13,
11, 12] where: low-level runtime statistics of execution were used to identify “hot” computation
and significant scalable improvements were achieved by using this knowledge to cache results in
specialized scalable data structures that carefully controlled communication costs. Based on this
experience, we observe that:

A functional trace of a cpu, containing opcodes along with operands and interrupts, re-
veals the underlying state changes that correspond to the computation being performed.
We can leverage this observation to construct an alternative execution model in which we
constantly: (i) monitor the cpu’s actions and learn the state transition associated with
statistically significant sequences of operations, and (ii) use any existing learnt sequences
to predict the future state change associated with the currently observed operations. When
sufficient constraints are met, we can synthesize a single update to the system’s state
based on the prediction without further execution, effectively performing the computation
by associative memory recall. If enough structure exists and the mechanisms for learn-
ing and recall are efficient, it may be possible to realize dramatic automated gains in
performance that are proportional to the size of the associative memory.

The payoff we are seeking is:

A system that automatically eliminates increasingly larger fractions of application compu-
tation based on information gleaned over seconds, minutes, hours, and years — allowing
programmers to focus on expressing their computational problem and not how to program
the machine efficiently. Time to solution is significantly and automatically optimized by
the system.

1

This research seeks to quantify the benefit in power efficiency and productivity to be gained by
the execution model, and will further attempt to quantify the overhead in area, power and cost of
the proposed learning mechanisms. A key to the approach is that the execution model can lead
to a system model in which the predictive associative memory function can be implemented with
devices that have biological-scale efficiency and robustness. Specifically, the execution model can
be seen as a signal processing generalization of memoization[27] that could use neuromorphic[66]
devices for efficient implementation. Where memoization is the caching and recall of results from
prior calculations to yield speedups and neuromorphic refers to devices that use transistors as analog
components to implement neural processing.

Michie introduced memoization in his 1968 paper[27] with the following statement:
“It would be useful if computers could learn from experience and thus automatically
improve the efficiency of their own programs during execution... When I write a clumsy
program for a contemporary computer a thousand runs on the machine do not re-educate
my handiwork. On every execution, each time-wasting blemish and crudity, each needless
test and redundant evaluation, is meticulously reproduced.”

He goes on to observe that finding a function’s value for a given input can either be done by
calculation (rule) or recalled from memory (rote) but in either case the result is the same. He states
that evaluation on a computer should,

“on each given occasion proceed either by rule, or by rote, or by a blend of the two, solely
as dictated by the expediency of the moment... and that the rule versus rote decisions
shall be handled by the machine behind the scenes”

Researchers working on large-scale commercial data-center applications, written in a specific data
parallel language, are exploring memoization as a way of improving performance[61]. Their results
indicate that in some cases execution time can be reduced from 23 hours down to 10-20 minutes.

While the execution model implied by memoization is appealing, the standard realization as a
language-level, programmer-driven, technique does not seem obviously applicable to HPC. The use
of a restricted functional language or restrictions on the types of computations does not seem feasible
for HPC. Also, the use of a complex language runtime would impose base performance penalties
and rule out low-level expert programmer optimization. Our signal processing generalization, in
contrast, operates transparently on low-level instruction stream signals. Our approach identifies
and extracts hot paths composed of instructions and data from all layers of software, and caches
their entire side effects as changes in system state. Hot path execution can then be eliminated by
directly synthesizing a single update to the system state based on the cache information. While this
approach may be viable as a system-level model, several key questions arise with its actual utility
to applications:

1. Is there sufficient regular structure in HPC execution and data, such that caching portions of
computation will be possible and prove useful?

2. In particular, can this approach serve as a building block for actual HPC application perfor-
mance gains?

3. Does a real HPC application and its associated real data present sufficient opportunities for
a system to automatically identify and replace portions of its execution with learned state
changes?

4. Can a large long-term, persistent, associative memory of state changes yield application per-
formance improvements that scales with the size of the memory?

These are the fundamental scientific questions that our work explores.

2

At the heart of the above approach is the predictive associative memory and its related statistical
processes such as learning, pattern recognition and recall. Even if the answers to the above questions
are positive, the associative memory and its functionality have to be efficient and viable at large
scales. An extreme scale system might require a memory composed of billions of devices. Not only
must the associative memory and its operations perform well and scale in terms of capacity, but
also it must scale in terms of power consumption and reliability. It is likely that the devices for
the associative memory will have to surpass current technologies in density, robustness, and power
efficiency.

In the 80’s, Carver Mead pioneered a class of device, called “neuromorphic”[57], to provide a
path for breaking the power, scaling and reliability barriers associated with standard digital VLSI
technologies. Recent neuromorphic research examples include work at Stanford[19], MIT[63], Johns
Hopkins[7], and the DARPA sponsored SyNAPSE Project[6]. These devices operate transistors as
unclocked analog devices organized to mimic neurobiological circuits several orders of magnitude
more efficiently than equivalent digital counterparts. They are also by design robust to failures
through the use of distributed and replicated structure similar to the neural circuits they model.
One specific neuromorphic computational paradigm is cortically inspired associative memory and
recall[24, 50, 39, 9, 8].

As a concrete example consider the neuromorphic associative memory chip implemented by
Pouliquen et al.[60]. The authors demonstrate that their chip is capable of performing an associative
recall using approximately 100nJ , or 1/6000 of the 600µJ consumed by a traditional processor
performing the same function. While challenges still exist for commercially viable, general-purpose
neuromophic associative memory chips, announced products, such as the Lyric GP5[4] Probability
Processor and memresistor chips[43, 56], are poised to revolutionize pattern matching and memory
function. In addition, machine learning researchers are exploring scalable predictive associative
memories capable of implementation with neuromorphic devices and providing the kind of predictive
associative memory our model would need[35, 42, 41, 65].

Our execution model leads to a system model that we describe in Section 2. The main focus
is to establish that viable HPC application improvements would be enabled by these models. Our
approach is to investigate the core premise that a challenging HPC application can benefit from the
execution model of our system. Specifically, building upon our prototype compute node simulator,
we plan to experimentally quantify the key questions stated on page 2. We will work up from simple
calibration workloads to HPC kernels and finally explore Graph500 applications and the discrete
event simulator SST/macro. Section 3 describes our method along with the project timeline and
resources. As a prerequisite, we start with a more detailed development of our execution model.

1 Motivation and Background
Our signal interpretation of memoization and the associated idea of using neuromorphic devices for
its implementation have been developed over the last eight years. Recently, at Boston University
we have been constructing a prototype system level simulator to help us explore these ideas. This
prototype and the manner in which it will be extended and used for this work will be discussed in
more detail in Section 3. In this section we will provide a brief intuition for the ideas using data
from the simulator and then provide some context for the development of the ideas. We conclude
the section with a formal description of the optimization that our model provides; this is presented
as the impetus for our system model, as well as indicating how we will explore the key questions of
this research.

3

Our execution model aims to exploit patterns, or more formally redundancy, in computer ex-
ecution. A system will update its state by mixing traditional program execution and associative
memory recall. From this perspective, the effectiveness of such a hybrid system depends on the
amount of redundancy present in execution and then of course the ability to recognize and exploit
that redundancy.

Consider a simple set of experiments in which we obtain a signal that captures the entire execu-
tion of a uniprocessor node running Linux for some workloads. A small portion of such a signal is
depicted in Figure 1a. Each operation that the cpu can perform, including all instructions executed
from all layers of software and all system events such as clock and I/O interrupts, are assigned a
unique y value. Our signal recording mechanism precisely records the time at which each operation
is started. Given a serialized cpu model, we get a simple one dimensional signal. For simplicity,
the figure plots the data as a sequence, where the order in which the operations occurred is shown
on the x-axis. To get a rough feel for how much redundancy is potentially present, we can use a
standard compression program, gzip[3], to compress the y value recordings and compare the size to
the original.

(a) portion of node operation signal

0%

25%

50%

75%

100%

random.org boot DGEMM SST/Macro graph500

1.4%2.4%0.8%2.6%

71.0%

(b) gzip compression
Figure 1

Figure 1b, plots the compression results gathered with
our current prototype simulator for four scenarios; boot,
DGEMM, SST/macro and Graph500. In the boot sce-
nario, we power on the node and let it boot into a full
general purpose Linux installation and then have it im-
mediately shut itself down, tracing the entire process.
In the second scenario, we trace the execution of a sim-
ple Fortran program that invokes the standard BLAS[1]
DGEMM routine (with three 200 × 200 matrices of ran-
dom values and alpha of -1 and beta of 1). In the third
experiment, we run a test application of the discrete event
simulation SST/macro[44]. In the final experiment we
run a small-scale Graph500[2] code. Compressing the
traces yields output sizes that are, respectively, 2.63%,
0.8%, 2.4% and 1.4% of the orignal traces. The figure
includes a 100000 random event data file generated from
random.org [38] that includes redundancy due to our data
format (two bytes per event with only 492 unique event
types recorded during the boot experiment). We see that
a random source of events compresses to approximately
70% of the original size. While one must be careful not to
draw too many conclusions from this data, it does at least

imply to us that a great deal of redundancy potentially exists in execution and it may be detectable
via raw execution traces.

1.1 Background
This subsection presents a brief summary of the development of our key observations, as well as
the questions that these observations have raised. Over the last several years, at the University of
Toronto and IBM, we have been working on scalable systems. While constructing and optimizing
general purpose scalable systems software[11, 13, 12, 15, 31, 51] for large scale multiprocessors[37,
47], three observations stood out:

4

1. The larger the scale of the system, the more one is driven to architectures that utilize larger
and larger numbers of simplified computational nodes that incorporate a small number of pro-
cessors and some fixed amount of memory. The hardware and software of such systems must
focus on locality of communications. In the hardware, this results in interconnect topologies
that scale by limiting or avoiding global buses and connecting each node to a limited number
of physically proximate nodes, often introducing hierarchical structures for global communica-
tions. This drives one to use distributed systems software techniques that limit communication
and focus on using communication between small physically local sets of nodes. Unfortunately,
as the scale increases, it becomes more complex to develop high-performance software with-
out significantly restricting its features. More and more of the programmer’s effort is spent
on either explicitly or implicitly managing communication rather than expressing a simple
description of steps to solve the desired problem. Ultimately, the system may increase in
computational power but only for a smaller and smaller set of limited computational tasks
that can be programmed to that scale. Additionally, as the scale of the system crosses a
certain threshold, the attendant decrease in mean time to interrupt (MTTI) further reduces
programmability and drives one to even more specialized software.

2. Given the complexity of software and dynamics of I/O, optimizing for scalable end-to-end
performance is driven by understanding what forms the “hot paths” so that communications
can be moved from them to colder, less critical paths. This requires one to consider what
is executing, how often, where the hot paths start and end, their life-times, and how they
interact. These questions ultimately become a question of the temporal statistics of the
system behavior and its external interactions that ultimately are the origin of all execution
paths.

3. Finally, that the most effective common optimization is to exploit hot path information to
introduce some form of scalable caching that avoids the hot computation altogether, essen-
tially doing a dynamic runtime space-time tradeoff. As such, focusing on scalable hash-tables
and their related search algorithms and mechanisms proved very useful[12, 13]. We also ob-
served that this kind of optimization was general and independent of parallelism, improving
performance whether the applications were parallel or not.

These observations led to the following preliminary questions. Can system wide, transparent, end-
to-end performance optimization be itself the parallel application such that the real application’s
performance improves with the scale of the system without parallel programming? Is there a
computational optimization task that continues to scale as the hardware parameters are pushed
that could be used to speed up general purpose computation rather than directly implementing it?
Could identification of hot paths and associated caching be such a task and could it be integrated
into the basic operations of the system? These questions ultimately led to our execution and system
models and the key questions on Page 2.

Many areas of computer science, including HPC, try to consider and exploit the statistical
structure in runtime behavior[26, 28, 73, 25, 29, 10, 23]. From the hardware perspective, branch
prediction, data and instruction caching, trace caches, and more advanced techniques[18, 48, 58, 67,
68, 69, 70] all attempt to exploit repeated patterns. However, these approaches are very limited in
their scale and applicability given the limited temporal windows and type of events they consider.
The dynamic compilation community also attempts to exploit runtime statistics. Influenced by
the trace cache methods of Dynamo[17], related work[21, 22, 40] and our own experience[14] with
SIMOS[62], we started considering such forms of instruction tracing and caching for system wide

5

optimization. However, we quickly found that the main focus of these techniques is to improve code
quality and not ultimately determine why code was executing with respect to interactions across all
software layers, data and external sources. Further, the techniques focused so heavily on inferring
information from addresses and program semantics that they did not pay close enough attention to
what the computers were doing as a statistical phenomena. We were much more interested in an
approach that would lead to a holistic system model and permit a physics or information theory-
like treatment of the system’s behavior. A scalable system could be constructed that would exploit
redundancy in a system’s execution in the form of a transparent memory, or cache, of execution.

In the systems research area, the renewed interest in virtualization has brought with it interest in
exploiting tracing and logging for various functions from debugging[49] and intrusion detection[30] to
deterministic computation[16]. However, the only work that we know of that starts to consider the
trace data as a complete artifact to infer structure in execution is Tralfamadore[54]. Tralfamadore,
however, does not attempt to rigorously quantify the structure or exploit it for automatic runtime
improvements. Trace analysis in Tralfamadore, at this point, is used only as a means of assisting
software developers in understanding how their programs execute.

Other systems researchers have been turning to machine learning techniques to provide guidance
on how to optimize system behavior. In particular they treat logs[76] and profile data[32, 73, 20] as
inputs to machine learning algorithms. These algorithms are then used to identify cases in which
a system is performing unexpectedly or to tune system parameters, such as scheduling parameters
or compilation flags. We do not know of any researchers that have sought a systematic way of
integrating machine learning mechanisms into the computational model itself.

Recent work by Shen’s group[74, 46] attempts to exploit statistics in both instruction and data to
guide dynamic compiler based program optimization. While we strongly support the use of statistics,
we contend that taking a systems level approach is more likely to lead to a fully automated solution
that can exploit structure across all layers, is language agnostic, and can be HPC viable. Based on
their results, Tain et al.[74] states that a statistical based approach enables “Holism”. They define
holism as the ability to predict entire program, and potentially system, behavior and thus enable
whole program and system optimization. However, the validation of this claim is left as future
work. Furthermore, no intuition is given as to how a system wide dynamic compilation layer can be
constructed that is both language agnostic, transparent and could meet the performance challenges
of an HPC workload.

Our work has independently developed with this “Holism” view point in mind. When exploring
the trace based approaches in the context of the entire systems optimization a key insight was
made. Namely that a computer’s entire operation could be treated as a low-level unified temporal
signal that we refer to as an Execution Signal (ES). An ES can be recorded and analyzed to
quantify and identify statistical structure in the entire system behavior. An ES could reveal how the
programs, data, external events and the machine model interact as a unified statistical process in
time. Furthermore, feature analysis of this signal may be synonymous with hot path identification
and their associated state changes. An ES may also capture the statistics of the input data values
and external events influencing and causing the hot paths, without knowing their actual sources.
Waterland[75] observed that an ES interpretation was analogous to a physics based dynamical
systems treatment of the computer’s operation. We later found that Giunti[36] had also suggested a
dynamical systems analogy and that Bradley et al.[59] are presently pursuing a dynamical systems
approaches to processor analysis.

Three critical aspects to the ES interpretation are stated below:
1. An Execution Signal captures all operation as a temporally unified signal (for practical reasons

6

it may be decomposed into many signals but all related through a common time base). A
common clock should be used to record all operations that are interesting with respect to
the programmed behavior (rather than idiosyncrasies of the hardware implementation[59]).
The two obvious equivalent execution signals would be an operation trace and a state trace.
Where the operation trace is of every instruction (not instruction addresses) and associated
data operands (actual data values, again, not addresses) along with all external interrupts
(external events that the computer is constructed to respond too) recorded with respect to a
common unified clock. A state trace records the entire state of the machine against a common
clock. For example, at time 0 the entire state that is recorded would be the initial value of
all registers and memory. On every state change the time and state of the machine would
be recorded. The resulting path traced by either signal captures all structure in the system’s
behavior.

2. The operation of any modern von Neumann machine can be viewed as an Execution Signal
and analyzed for structure without understanding the details or semantics of the instruction
set.

3. Redundancy in an Execution Signal can be used to identify state transitions that may be
worth caching. Execution Signals from different programs that compute the same result (lead
to common values of some identified portion of the machine state) can be compared with
respect to redundancy.

Execution Signals provide us with a concrete signal processing interpretation of execution. This
gives us a context for recasting memoization and a basis for neuromorphic device realization.

1.2 Application Performance, State Transition and Execution Compression
Now that we have a better feel for how these ideas developed and relate to other work we can more
precisely define our execution model in terms of a formalism that we can use to guide our system
model and experimental quantification.

We shall define an application as all components of the system, both hardware and software,
that performs a desired computation C. Assume a sequential machineM that defines a state vector
S and a set of possible actions or operations O = (o0, ..., ok) on S. S is a vector that is a constituent
of the values of every device that composes M . For example, the state of all registers, memory, I/O
registers and I/O devices are contained in S. At any given time only one o ∈ O can be active or
executing. The duration of time that an operation takes to execute (complete) is a function d(o, S).
It should be noted d is a nontrivial function as it depends not only on implementation attributes
of the machine but also on current state. We observe that an application, once started, defines a
sequence A = (a0, a1, . . . , an) where ai ∈ O. As such, a0 is the first operation executed by A and
an is the last. The time to solution for A, TA, is defined to be

TA =
n∑

i=0

d(ai, Si) (1)

Where Si is that value of S prior to ai being executed. For the sake of this discussion we restrict
ourselves to applications that produce a “result” to C in a finite length sequence either due to a
termination test passing or by imposing a restriction on either the length of the sequence or on TA.

One of the key goals of a high performance system is to yield solutions to computations in a
time frame that would be intractable otherwise. There are three typical approaches to shortening
an application’s time to solution:

7

1. Reduce the duration d(ai, Si). The common approach here is to improve features of M , by
increasing clock frequency, reducing memory latency or exploiting instruction level parallelism
through pipelining. The advantage of this approach is that it requires no changes to the
programming model or software.

2. Decompose A into subsequences that do not depend on each other and hence can be executed
in parallel. This of course requires extending M by replicating its components and adding
interconnection facilities for the additional required communication. The decomposition may
not be straight forward, or even possible. The approach typically introduces significant com-
plexity to both the software and hardware and can impose considerable cost on application
programmers.

3. Construct a new application, A′, that computes C such that TA′ < TA. In general we think of
this as a transform on A to produce a sequence A′ of operations that has shorter duration, or
a construction of A′ that results from a different algorithm that requires fundamentally fewer
operations such that length(A′) << length(A), or a combination of both approaches. We
typically think of the former as code quality improvements implemented by compilation tools
and expert machine programmers while the latter we see as algorithm changes that require
fundamental application and design knowledge.

This work seeks an orthogonal approach that can be transparently applied independent of the
others. The goal is to automatically eliminate redundant portions of a sequence based both on
information gathered from the execution of prior applications as well as all prior executions of the
current application.

More specifically one can observe that each ai of A represents a change in state, S, from the
value Si prior to ai being executed to Si+1 after it was executed. With this in mind, repetitions of
a subsequence α = ap...aq ∈ A may imply that the change from Sp to Sq+1 is a difference in S that
can be cached and applied to S more efficiently than re-executing α. From this perspective we are
looking to shorten TA by deleting portions of A while synthesizing a direct update to S based on
cached values. We call this kind of optimization a form of Execution Compression. While the gzip
compression results of Figure 1b cannot be interpreted as Execution Compression, they do suggest
that real execution can have dramatic redundancy (97-99%) even within a single run. If we can
translate even some fraction of this redundancy into deletions we may be able to realize equally
dramatic performance gains.

2 Model : Programmable Computation Cortex Machine
In this section we describe our system model for a new HPC system that attempts to exploit Execu-
tion Compression, introduced in the prior section. As stated in the introduction, our model realizes
our signal processing generalization of memoization using neuromorphic devices. To do this, the
model uses a large, shared associative memory to accelerate the operation of its computational nodes
using Execution Compression. Our model, which we shall refer to as a Programmable Computation
Cortex Machine (PCCM) is composed of four layers as illustrated in Figure 2. The bottom layer,
Software Stack, is the entire software that an application executes, including all operating systems,
library and application software. This can be thought of as the binary image of what one would load
onto a computational node of a system. Above Software Stack is the Virtual Node Instances (VNI)
layer and is composed of one or more virtual node instances that form a standard programmable
interface to the system. The software composing the Software Stack is constructed to conform to the
VNI specification. As an example, the VNI of our prototype system is a uniprocessor x86 compute

8

node composed of memory (including a ROM bios), a local storage device, and an interconnect
interface. The SS of our prototype is an arbitrary x86 software stack specified as a harddisk image.
For most experiments, this stack is composed of a Linux distribution plus application binaries. As
stated, in our prototype system we have chosen to utilize an x86 based VNI interface in order to be
able to construct application Software Stack images from the rich existing body of x86 software.

Computation Cortex (CC)
(Neuromorphic Layer)

Translating Optimizing Machine Monitor (TOMM)
Hybrid Layer (Standard Digitial Components +

Software that creates VNI's while interfacing and
utilizing CC)

Virtual Node
Instances (VNI's)

 Software
Stack (SS)

Execution
Signal Feedback

Optimizations
(state udpates)

Figure 2: Programmable Computation Cortex Ma-
chine (PCCM)

The next two upper layers form the core of
what is new in the PCCM model. At the top
is a large scalable predictive associative mem-
ory called the Computation Cortex (CC). Our
design goal is that the CC and its interfaces be
realized with neuromorphic devices. In particu-
lar we design our system model around the CC
performing signal processing-based associative
memory. Its input is in the form of Execution
Signals and its automatic and continuous feed-
back is in the form of state predictions. The CC
is a system wide shared structure. Ultimately,
we expect it to constitute the majority of the
system. Its function is to learn, store, and recall
redundant computation based on Execution Sig-
nals (ES’s) fed to it. Abstractly, one can think

of the CC like a global hash table or database in which the immediate state associated with the
source of an ES is a lookup or query. A result from the query is a feedback signal that is a set
of future states (potentially expressed as a difference or function of the query state). If the set is
composed of zero states, then the CC has no useful knowledge yet of the current state. If the set
has one state then the CC knows that the current state will result in exactly one future state and
the source of the ES can be updated directly to its state. If the set is composed of multiple states
then lookup result is a prediction of a possible set of future states of the VNI associated with the
ES. The CC is intended to be a long term structure for which at least some part of it will persist at
an installation for the life time of the system. As such, at least some of its state will be accumulated
not only over multiple nodes, but also over multiple application executions and multiple different
applications. The main experimental goal is to establish that the ES of at least one node for at
least some subcomputation of a real world HPC application has sufficient structure that the PCCM
model would be viable and effective.

Below the CC is a machine monitor layer, the Translating Optimizing Machine Monitor (TOMM),
that is responsible for creating and managing the VNIs, translating their operation into a form that
can be fed to the CC, interpreting the feedback from the CC, and implementing optimizations
to the VNI’s state. As illustrated by the arrows on the left and right of the diagram TOMM is
responsible for implementing the two information flows. Each VNI represents a state vector that
TOMM creates and manages. Unlike standard virtual machine monitors, TOMM’s goal is not the
over-commitment or multiplexing of physical resources – instead, its goal is to create VNIs such
that the operation of each VNI can be translated into an Execution Signal for pre-processing and
forwarding to the CC. The operation of the VNI can then be optimized based on feedback from the
CC. In the long run, the TOMM layer, may be implemented entirely in hardware. For the moment,
we expect TOMM to be implemented as a combination of hardware and software much like current

9

virtual machine monitors.1.

Probes

Nerves

OptimizerTranslator

Actuators

Feedback

p

t

n f

o

a

CC

 VNI

p

t

n f

o

a

VNI

p

t

n f

o

a

VNI

p

t

n f

o

a

 VNI

p

t

n f

o

a

Virtual Interconnect

TOMM

TOMM Component

t

Execution
Signal (ES)

Plot of individual ES Components

 VNI
External

I/O

Probes

Temporal signals
from each probe

translator

Figure 3: TOMM

Figure 3 illustrates our initial view
of how the TOMM layer will be de-
composed. Our goal is that the main
shared global layer of the system is the
CC, as its function and implementa-
tion are intended to be directly scal-
able with the size of the system. As
such, the TOMM is designed to be a
distributed layer composed of TOMM
components that are associated with
each VNI of the system. Each compo-
nent will be designed to operate inde-
pendently, without direct communica-
tion or coordination with each other.
Unlike a Virtual Machine Monitor, a
TOMM component manages a single
VNI using a set of dedicated physical
resources. One can think of a TOMM
component as an extended standard
HPC compute node that transpar-
ently interconnects to the common CC. As part of the VNI construction, a TOMM component
integrates probes into the VNI that produce streams of values for actions that are taken by the
VNI. A TOMM component has a translator subcomponent that translates the values from the
probes into an a set of signals, with a common time base (bottom of Figure 3). These signals con-
stitute the Execution Signal for the VNI. The signals are fed to initial signal pre-processing stages
that operate on a specific component of the ES to aid in the processing by the CC. We refer to
these stages as nerves as we see them akin to the biological processing stages that do modal-specific
signal processing, potentially filtering and extracting specific features to aid in recognition of key
points in the signal by the associative memory function of the CC. Conversely, a TOMM component
also processes the feedback stream from the CC. The feedback stream represents future possible
values of some or all of the VNI’s state. The feedback is processed by a subcomponent called the
optimizer. The optimizer is responsible for determining if and how to update the VNI’s state based
on the feedback. While we would like the optimizer in the common case to be able to directly
apply the feedback as an update to the VNI state, we recognize that it may in general have more
complex optimization mechanisms that use the feedback. For example, the optimizer may utilize
the feedback to implement a form of speculative execution, where VNI instances are created and
seeded to explore each predicted state. The optimizer uses a set of actuators that allow it to change
the various portions of the VNI state in a safe, efficient and predictable way.

3 Method
Practically we seek to quantify the value of our execution model on application performance and
secondly the implementation viability given our associated system model. To do this, we build on
the descriptions of Execution Compression from Section 1.2 and the PCCM system model from

1Such as Intel’s VT support and hardware tracing and monitoring facilities

10

Section 2. Our overall method is a quantitative experimental approach that employs simulation.
We break the work down into three objectives and related phases:

1. Simulation Infrastructure Development
2. Execution Signal Prototyping, Validation and Analytics Development
3. Experimental Exploration

While the above are discussed below in isolation, the expectation is that the steps will overlap and
also be executed iteratively.

The goal of our simulation infrastructure is to create accurate data and enable a flexible workflow.
We split our workflow into two phases:

1. Execution Signal generation and recording, and
2. Execution Signal analysis and Execution Compression simulation

The first phase uses a TOMM simulator on which we can prototype various probes and translators
to construct and record a complete ES from a fully functional x86 VNI that is capable of running
complete x86 software stacks. To this end, we have constructed an initial TOMM simulator illus-
trated in the bottom portion of Figure 4. The second phase of our workflow takes ES recordings
and explores them with a set of analytics and potential neuromorphically viable CC algorithms in
order to quantify the potential for PCCM Execution Compression. Given the sheer sizes of realistic
ES recordings and the compute intensive nature of the analytics this second phase of work will be
conducted on Blue Gene systems.

Disk

TOMM-Bochs
Simulator

ethernetkbd+vga

ES Archive and
Database

ES Analitics, CC Algorithms,
& Optimization Simulations

Blue Gene

psml-be0

psml-fe0.bu.edu

Workload

ES Spool
Devices

Figure 4: Simulation and Workflow

The first goal of the infrastructure phase will be to
complete our TOMM simulator and replicate it so that
multiple ES’s from interacting VNIs can be studied. Our
current simulator uses a combination of hardware and
software. We have added a low overhead probe and
recording infrastructure to Bochs[53], an open x86 full
system simulator. Bochs is a configurable simulator capa-
ble of simulating not only the processor but also all I/O
devices such that it can boot and run arbitrary x86 soft-
ware including Linux, Windows and potentially research
based operating systems such as Kitten[52], 2 along with
their entire application software stacks. We run our mod-
ified version, which we call TOMM-Bochs on a dedicated
hardware system (psml-be0) that has been carefully con-
figured to ensure that the probe data can be recorded for
about 3.5 hours of execution time with no pauses and a
small perturbation to the simulation. To do this we have

constructed a high-performance multi-core in-memory probe log and a raw multi-disk striping mech-
anism.

Our current version of Tomm-Bochs implements a high precision hardware based timestamp
source and two probes: one for processor interrupts and the other for processor instructions. The
current goal we are working on is to extend our TOMM simulation infrastructure to get a complete
set of probe data that will allow us to construct a complete and accurate Execution Signal. To

2We can configure Bochs as an HPC compute node stripping it of any unnecessary io devices such as mice, display
and keyboard.

11

do this, we will include probe data that accounts for all operand data by adding two more probes,
one for the operands for each instruction and the other for memory and io port writes. In order
to achieve this we are currently upgrading psml-be0 with a 1TB solid-state-disk and are developing
new probe implementations. Our goal is to be in the position that once funding is secured we will
finalize our single node TOMM simulator configuration and be able to construct a set of 4 TOMM
simulators each capable of producing complete and accurate probe data streams.

For the second workflow phase, Execution Signal analysis and Execution Compression simulation
we will construct a set of analytics to compute metrics discussed later. In addition, we will explore
one or more of the following learning mechanisms, depending on time and resources: Deep Belief
Nets[42], Causal-State Splitting Reconstruction[64, 65], Hierarchical Temporal Memory[35, 34, 45]
and Cogent Confabulation[41]. All methods explored will be evaluated for their effectiveness in
automating Execution Compression and implication to neuromorphic realization.

Prior to our experimental exploration, we shall use a set of controlled synthetic applications to
develop a prototype Execution Signal specification from our probe data, with which we will validate
accuracy and correctness of the Execution Signal, and develop our set of analytics. To date we have
constructed two simple synthetic applications that we can use to gather Execution Signal recordings
that have a well understood structure.

The first is a simple server and client that exchange request and response packets directly using
the node’s interconnect. The client takes a request stream as input along with timing information
as to when to send the requests to the server. It then produces, as output, the responses from the
server along with when they were received. The server reads requests from the client and computes
a simple function such as factorial on the request value and returns the result to the client. The
server is run on our TOMM simulator and probe data is gathered for the entire operation. The
server can be configured to compute the function in one of several ways including a table lookup.
The server is simple enough that it can be run either on top of Linux or directly from the boot
loader with no OS. The second workload is a simple program that invokes DGEMM with specific
matrix values and specific values of alpha and beta.

Our plan is to run both workloads with controlled inputs that force varying degrees of complexity
and redundancy in the Execution Signal. We will then evaluate the recordings for the four factors
described in the next subsection, and validate that they are effective for quantifying the opportunities
for Execution Compression. Using the first workload, we can precisely test our infrastructure and
experimental method given the known structure we have engineered through the control of the
input sets and node software environment. Using the second workload, effectiveness with a less
controlled environment will be explored. We will also simulate the potential for automating deletion
identification, state recall and update, using one or more of the learning methods identified above.
We intend to study the redundancy in an ES from not only a single application run, but also across
multiple runs and across differing applications.

The goal of the experimental phase is to explore the potential of the PCCM model by exper-
imentally investigating the conjectures about computation and associated optimizations that the
model might enable. We first briefly outline the general method we intend to follow and then discuss
the specific HPC application driven evaluation. This section utilizes the terminology defined and
discussed in Sections 1.2 and 2.

While the PCCM model might use the CC to enable several forms of optimization we focus on
Execution Compression via the deletion of portions of an application’s execution as was introduced in
section 1.2. We now define a deletion, in the context of the PCCM model, to be the situation where

12

portions of a VNI’s future operation can be deterministically known and thus avoided or deleted and
the VNI state simply accelerated to a future synthesized state. As such this optimization process
requires utilizing the CC to recognize that a deletion is possible, generating the future state and
updating the VNI. The goal is to establish that a PCCM system could conceivably stitch deletions
into the operation of the VNI for a net improvement in performance.

Specifically we focus on exploring the potential for automatically improving the time to solution
for an application without the requirement for reprogramming.

There are three main experimental goals we intend to pursue:
1. Validate the underlying conjecture for deletions; identify that deterministic portions of A exist

and establish that they manifest themselves in the Execution Signal generated by a realistic
VNI, at least for some restricted class of computation.

2. Show that for at least some applications, deletions can be performed, even if by hand, and
lead to significant saving in time to solution.

3. Show that it is realistic to expect a PCCM system to learn at least some subset of the
potential deletions for a workload, through the utilization of appropriate probes, nervers and
CC analytics and storage, and that it is also realistic for the TOMM to apply them.

PCCMTA
= V NI((1− λ)A) + CC(λA) (2)

Given a simulated PCCM structure, the experimental framework we propose employs Equation 2 as
a simple time to solution model in which we explore deletion optimizations that permit a fraction,
λ, of A, an application, to be deleted based on CC driven TOMM updates. The functions V NI()
and CC(), respectively, are the time that it takes the VNI to execute portions of A and the time
it takes the CC to recall the portions of A that it was able to identify as redundant and for the
TOMM to update the state of the VNI based on the feedback from CC. Given Equation 2, there
are four main factors we will evaluate for a PCCM prototype for a given application:

1. What is the set of subsequences of A that can be deleted? To determine this, we will need
to define, for each experiment, criteria for identifying repetitive changes in the VNI state.
Identifying candidate sets of deletions for a given experimental application is of interest inde-
pendent of the PCCM model. The set represents hot paths that would be useful to anyone
working on optimizing the application.

2. What fraction of V NI(A) can be deleted? Given that we have a functioning VNI, albeit
a simulator, it gives us a consistent baseline that we can use to experimentally measure a
relative cost for these values. This ratio defines an upper bound for the improvement that our
experimental PCCM could achieve. However, independent of the PCCM model, this data will
be useful to any research on these applications.

3. What is the set of actual deletions that can be identified and realized and how does it compare
to the set of all subsequences that can be deleted? To answer this question we will construct ES
analytics that simulate potential methods for processing the ES recordings and identifying a
potential set of deletions. We expect to include at least one or more of the learning mechanisms
identified earlier in the analytics methods.

4. For each realized deletion, d, what is the ratio CC(d)/V NI(d)? This ratio defines the effec-
tiveness of execution by recall versus computation. This set of ratios will be used to evaluate
the ability of the PCCM model to actually achieve time to solution improvements for a given
ES recording. We will be able to explore how various performance parameters associated with
the PCCM model would affect the final runtime of the applications. In particular it lets us
define an envelope that a PCCM model would have to meet in order to realize a net gain in
performance.

13

Once we have validated our infrastructure and experimental process using our synthetic control
applications, we will explore standard HPC primitives and kernels using both controlled and ap-
plication data. Given that the VNIs of our TOMM simulators are standard x86 instances we can
use standard Linux implementations of BLAS routines. We will begin by building on our DGEMM
control application to look at other isolated BLAS routines. We will then move on to looking at one
or two benchmark HPC application kernels drawn from the HPC Challenge[55] and or LAPACK
suites. We are seeking a complementary approach to optimization efforts such as PLASMA[5]. We
hope to establish that our system can look for and exploit redundancy no matter what the base
implementation. Our aim will be to quantify the four experimental factors described above as well
as their sensitivity to both the data and implementations and then look at the effectiveness of
the learning methods. Eventually, we hope that our approach will alleviate the human optimiza-
tion burden and developers will be able to rely on the system’s ability to constantly improve the
performance. Our model, however, in no way precludes human optimization.

The larger application goal is to evaluate the potential for PCCM based execution compression to
improve the performance of a complex larger HPC application such as a Discrete Event Simulation
(DES) system. For exploration we have have been experimenting with the SST/macro simulator.
SST/macro has been carefully designed and developed to provide a flexible and accurate base
simulation infrastructure that can be used for several important DOE ASCR efforts (CERF, CECC,
FOX) . It enables accurate macro-scale simulations of both skeletonized MPI and non-MPI programs
with ranks ranging from 105 − 106 nodes. However, SST/macro itself is a sequential application.
Our goal is to evaluate if the PCCM model can essentially turn SST/macro into an HPC application
whose performance would be transparently improved, thus effectively allowing it to simulate larger
node ranks for some application.

As part of our involvement in the Fault Oblivious eXaScale (FOX) project, our group at BU
is working with developers of SST/macro to simulate both a target application and system soft-
ware stack. Using this knowledge, we have experimented with running SST/macro on our current
TOMM simulator and gathering probe data for one of the simple test simulations that comes with
SST/macro. Figure1b, includes compression results for probe data gathered from a default ten
iteration test SST/macro simulation of an MPI ping-pong application run on a fat-tree network of
1000 nodes. This gives us the confidence to know that the TOMM simulator we are developing will
be sufficient to gather the necessary data for our Execution Compression analysis.

It should be noted that, given the potential complexity that a real SST/macro simulation, or
other suitably complex DES simulation, may represent in terms of an Execution Signal, we will
likely need to decompose the analysis into an incremental and iterative set of experiments. Our
expectation is that we may need to vary and study different components of a DES in isolation,
building up to complete evaluation.

References

[1] BLAS. http://www.netlib.org/blas/.

[2] Graph 500. http://www.graph500.org/.

[3] Gzip - GNU Project - Free Software Foundation. http://www.gnu.org/software/gzip/.

[4] Lyric Semiconductor | Technology: Probability Processor. http://www.lyricsemiconductor.
com/technology-processor.htm.

14

http://www.netlib.org/blas/
http://www.graph500.org/
http://www.gnu.org/software/gzip/
http://www.lyricsemiconductor.com/technology-processor.htm
http://www.lyricsemiconductor.com/technology-processor.htm

[5] The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) Project. http:
//icl.cs.utk.edu/plasma/index.html.

[6] The SyNAPSE Project | Outreach And Impacts | CELEST | NSF Science of Learning Center.
http://celest.bu.edu/outreach-and-impacts/the-synapse-project.

[7] Andreas Andreou. Adreas G. Andreou. http://www.ece.jhu.edu/faculty/andreou/AGA/.

[8] Andreas G. Andreou. Neuromorphic architectures: challenges and opportunites in the years to
come. http://mind.nd.edu/news/WorkshopSlides/11_Andreou.pdf.

[9] Andreas G. Andreou. Stochastic Computational Associative Memories: Neuromor-
phic Architectures Beyond Moore’s Law. http://mind.nd.edu/news/WorkshopAbstracts/
Abstract-Andreou.pdf.

[10] Clint Whaley Antoine, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimiza-
tion of software and the atlas project. Parallel Computing, 27:2001, 2000.

[11] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva, O. Krieger, M. A.
Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger, P. McKenney, M. Ostrowski, B. Rosen-
burg, M. Stumm, and J. Xenidis. Enabling autonomic behavior in systems software with hot
swapping. IBM Syst. J., 42(1):60–76, 2003.

[12] Jonathan Appavoo. Clustered objects. PhD thesis, University of Toronto, Toronto, Ont.,
Canada, Canada, 2005.

[13] Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Marc Auslander, Michal Ostrowski, Bryan
Rosenburg, Amos Waterland, Robert W. Wisniewski, Jimi Xenidis, Michael Stumm, and Livio
Soares. Experience distributing objects in an smmp os. ACM Trans. Comput. Syst., 25(3):6,
2007.

[14] Jonathan Appavoo and Supervisor Michael Stumm. Clustered objects: Initial design, imple-
mentation and evaluation, 1998.

[15] Jonathan Appavoo, Volkmar Uhlig, and Amos Waterland. Project kittyhawk: building a
global-scale computer: Blue Gene/P as a generic computing platform. SIGOPS Oper. Syst.
Rev., 42(1):77–84, 2008.

[16] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-enforced deter-
ministic parallelism. In In Proceedings of the 9th Symposium on Operating Systems Design and
Implementation (OSDI, pages 193–206, 2010.

[17] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent dynamic
optimization system. ACM SIGPLAN Notices, 35(5):1–12, 2000.

[18] Saisanthosh Balakrishnan and Gurindar S. Sohi. Exploiting value locality in physical register
files. In Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 36, pages 265–, Washington, DC, USA, 2003. IEEE Computer Society.

[19] Kwabena Boahen. Brains in Silicon. http://www.stanford.edu/group/brainsinsilicon/
index.html.

15

http://icl.cs.utk.edu/plasma/index.html
http://icl.cs.utk.edu/plasma/index.html
http://celest.bu.edu/outreach-and-impacts/the-synapse-project
http://www.ece.jhu.edu/faculty/andreou/AGA/
http://mind.nd.edu/news/WorkshopSlides/11_Andreou.pdf
http://mind.nd.edu/news/WorkshopAbstracts/Abstract-Andreou.pdf
http://mind.nd.edu/news/WorkshopAbstracts/Abstract-Andreou.pdf
http://www.stanford.edu/group/brainsinsilicon/index.html
http://www.stanford.edu/group/brainsinsilicon/index.html

[20] Eric A. Brewer. High-level optimization via automated statistical modeling. SIGPLAN Not.,
30:80–91, August 1995.

[21] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for adaptive
dynamic optimization. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, CGO ’03, pages 265–275, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[22] Prashanth P. Bungale and Chi-Keung Luk. Pinos: a programmable framework for whole-
system dynamic instrumentation. In Proceedings of the 3rd international conference on Virtual
execution environments, VEE ’07, pages 137–147, New York, NY, USA, 2007. ACM.

[23] Zizhong Chen, Jack Dongarra, Piotr Luszczek, and Kenneth Roche. Self-adapting software for
numerical linear algebra and lapack for clusters. Parallel Comput., 29:1723–1743, November
2003.

[24] Lawrence Chisvin and R. James Duckworth. Content-addressable and associative memory:
Alternatives to the ubiquitous ram. Computer, 22:51–64, July 1989.

[25] Javier Cuenca, Domingo Giménez, and José González. Architecture of an automatically tuned
linear algebra library. Parallel Comput., 30:187–210, February 2004.

[26] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid
Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation optimiza-
tion and auto-tuning on state-of-the-art multicore architectures. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA,
2008. IEEE Press.

[27] Michie Donald. "memo" functions and machine learning. Nature, 218:19–22, April 1968.

[28] J. Dongarra, G. Bosilca, Z. Chen, V. Eijkhout, G. E. Fagg, E. Fuentes, J. Langou, P. Luszczek,
J. Pjesivac-Grbovic, K. Seymour, H. You, and S. S. Vadhiyar. Self-adapting numerical software
(sans) effort. IBM J. Res. Dev., 50:223–238, March 2006.

[29] Jack Dongarra and Victor Eijkhout. Self-adapting numerical software and automatic tuning
of heuristics. In Proceedings of the 2003 international conference on Computational science,
ICCS’03, pages 759–767, Berlin, Heidelberg, 2003. Springer-Verlag.

[30] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine logging and replay. In In Proceed-
ings of the 2002 Symposium on Operating Systems Design and Implementation, pages 211–224,
2002.

[31] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado: Maximizing
locality and concurrency in a shared memory multiprocessor operating system. In In Proceedings
of the 3rd Symposium on Operating Systems Design and Implementation (OSDI, pages 87–100,
1999.

16

[32] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. A case for machine
learning to optimize multicore performance. In Proceedings of the First USENIX conference
on Hot topics in parallelism, HotPar’09, pages 1–1, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

[33] Al Geist and Robert Lucas. Major computer science challenges at exascale. Int. J. High
Perform. Comput. Appl., 23:427–436, November 2009.

[34] Dileep George. How the brain might work: A hierarchical and temporal model for learning and
recognition [ph.d]. In Stanford University, 2008.

[35] Dileep George and Jeff Hawkins. Towards a mathematical theory of cortical micro-circuits.
PLoS Comput Biol, 5(10):e1000532, 10 2009.

[36] Marco Giunti. Computation, dynamics, and cognition. Oxford University Press, Inc., New
York, NY, USA, 1997.

[37] A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless, N. Manjikian,
S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic. Design and implementation of the numachine
multiprocessor. In DAC ’98: Proceedings of the 35th annual Design Automation Conference,
pages 66–69, New York, NY, USA, 1998. ACM.

[38] Mads Haahr. RANDOM.ORG - True Random Number Service. http://www.random.org.

[39] Mohamad H. Hassoun, editor. Associative neural memories. Oxford University Press, Inc.,
New York, NY, USA, 1993.

[40] Kim Hazelwood. Code Cache Management in Dynamic Optimization Systems. PhD thesis,
Harvard University, 2004.

[41] Robert Hecht-Nielsen. Neural networks letter: Cogent confabulation. Neural Netw., 18(2):111–
115, 2005.

[42] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Comput., 18(7):1527–1554, 2006.

[43] HP. Press Release: HP Collaborates with Hynix to Bring the Memristor to Market in Next-
generation Memory. http://www.hp.com/hpinfo/newsroom/press/2010/100831c.html, Aug
2010.

[44] Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali Pinar, David A.
Evensky, and Jackson Mayo. A simulator for large-scale parallel architectures. International
Journal of Parallel and Distributed Systems, 1(2):57–73, 2010.

[45] Hawkins Jeffery. On Intelligence. Times Books, 2004.

[46] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, Feng Mao, Malcom Gethers, Xipeng Shen, and
Yaoqing Gao. Exploiting statistical correlations for proactive prediction of program behaviors.
In CGO ’10: Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, pages 248–256, New York, NY, USA, 2010. ACM.

17

http://www.random.org
http://www.hp.com/hpinfo/newsroom/press/2010/100831c.html

[47] IBM journal of Research and Development staff. Overview of the IBM Blue Gene/P project.
IBM J. Res. Dev., 52(1/2):199–220, 2008.

[48] Jinpyo Kim, Wei-Chung Hsu, Pen-Chung Yew, Sreekumar R. Nair, and Robert Y. Geva.
Entropy-based profile characterization and classification for automatic profile management.
In Asia-Pacific Computer Systems Architecture Conference, pages 40–51, 2007.

[49] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating systems with
time-traveling virtual machines. In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’05, pages 1–1, Berkeley, CA, USA, 2005. USENIX Association.

[50] T. Kohonen. Self-organization and associative memory: 3rd edition. Springer-Verlag New York,
Inc., New York, NY, USA, 1989.

[51] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski, Jimi Xenidis,
Dilma Da Silva, Michal Ostrowski, Jonathan Appavoo, Maria Butrico, Mark Mergen, Amos
Waterland, and Volkmar Uhlig. K42: Building a complete operating system. In Proc. of the
First European Systems Conference, Leuven, Belgium, April 2006.

[52] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke, S. Jaconette,
M. Levenhagen, and R. Brightwell. Palacios and kitten: New high performance operating
systems for scalable virtualized and native supercomputing. In IPDPS ’10: Proceedings of the
24th IEEE International Parallel and Distributed Processing Symposium, 2010.

[53] Kevin P. Lawton. Bochs: A portable pc emulator for unix/x. Linux J., page 7.

[54] Geoffrey Lefebvre, Brendan Cully, Michael J. Feeley, Norman C. Hutchinson, and Andrew
Warfield. Tralfamadore: unifying source code and execution experience. In EuroSys ’09:
Proceedings of the 4th ACM European conference on Computer systems, pages 199–204, New
York, NY, USA, 2009. ACM.

[55] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F Lucas, Rolf
Rabenseifner, and Daisuke Takahashi. The hpc challenge (hpcc) benchmark suite. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 213, New York, NY,
USA, 2006. ACM.

[56] LaPedus Mark. HP and Hynix to commercialize the mem-
ristor. http://www.eetimes.com/electronics-news/4207222/
HP--Hynix-move-to-commercialize-the-memristor-semiconductor, Aug 2010.

[57] Carver Mead. Neuromorphic electronic systems. In Proc. IEEE, 78:16291636, 1990.

[58] Andreas Moshovos, Dionisios N. Pnevmatikatos, and Amirali Baniasadi. Slice-processors: an
implementation of operation-based prediction. In Proceedings of the 15th international confer-
ence on Supercomputing, ICS ’01, pages 321–334, New York, NY, USA, 2001. ACM.

[59] Todd Mytkowicz, Amer Diwan, and Elizabeth Bradley. Computer systems are dynamical
systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(3):033124, 2009.

18

http://www.eetimes.com/electronics-news/4207222/HP--Hynix-move-to-commercialize-the-memristor-semiconductor
http://www.eetimes.com/electronics-news/4207222/HP--Hynix-move-to-commercialize-the-memristor-semiconductor

[60] Philippe O. Pouliquen, Andreas G. Andreou, and Kim Strohbehn. Winner-takes-all associative
memory: A hamming distance vector quantizer. Analog Integr. Circuits Signal Process., 13:211–
222, May 1997.

[61] Gunda Pradeep, Ravindranath Lenin, Thekkath Chandramohan, Yu Yuan, and Zhuang Li.
Nectar: Automatic management of data and computation in datacenters. In In Proceedings
of the 9th Symposium on Operating Systems Design and Implementation (OSDI, pages 75–88,
2010.

[62] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod. Using the SimOS
machine simulator to study complex computer systems. ACM Trans. Model. Comput. Simul.,
7:78–103, January 1997.

[63] Rahul Sarpeshkar. RLE - Analog VLSI and Biological Systems Group - ULTRA LOW POWER
BIOELECTRONICS. http://www.rle.mit.edu/avbs/.

[64] Cosma Rohilla Shalizi and Kristina Lisa Klinkner. Blind construction of optimal nonlinear
recursive predictors for discrete sequences. In Max Chickering and Joseph Y. Halpern, editors,
Uncertainty in Artificial Intelligence: Proceedings of the Twentieth Conference (UAI 2004),
pages 504–511, Arlington, Virginia, 2004. AUAI Press.

[65] Cosma Rohilla Shalizi, Kristina Lisa Shalizi, and James P. Crutchfield. An algorithm for
pattern discovery in time series. CoRR, cs.LG/0210025, 2002.

[66] M A Sivilotti, M R Emerling, and C A Mead. VLSI architectures for implementation of neural
networks. In AIP Conference Proceedings 151 on Neural Networks for Computing, pages 408–
413, Woodbury, NY, USA, 1987. American Institute of Physics Inc.

[67] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In Proceedings of the 24th
annual international symposium on Computer architecture, ISCA ’97, pages 194–205, New
York, NY, USA, 1997. ACM.

[68] Gurindar S. Sohi and Amir Roth. Speculative multithreaded processors. Computer, 34(4):66–
73, 2001.

[69] Ram Srinivasan, Jeanine Cook, and Olaf Lubeck. Ultra-fast cpu performance prediction: Ex-
tending the monte carlo approach. Computer Architecture and High Performance Computing,
Symposium on, 0:107–116, 2006.

[70] Ram Srinivasan, Eitan Frachtenberg, Olaf Lubeck, Scott Pakin, and Jeanine Cook. An Idealistic
Neuro-PPM Branch Predictor. The Journal of Instruction-Level Parallelism, 9, May 2007.

[71] DARPA/IPTO Study. ExaScale Computing Software Study: Software Chal-
lenges in Extreme Scale Systems. http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSS%20report%20101909.pdf, Sept 2009.

[72] DARPA/IPTO Study. ExaScale Computing Study: Technology Challenges in Achieving Exas-
cale Systems. http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/
exascale_final_report_100208.pdf, Sept 2009.

19

http://www.rle.mit.edu/avbs/
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf

[73] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M. Amato, and
Lawrence Rauchwerger. A framework for adaptive algorithm selection in STAPL. In Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’05, pages 277–288, New York, NY, USA, 2005. ACM.

[74] Kai Tian, Yunlian Jiang, Eddy Z. Zhang, and Xipeng Shen. An input-centric paradigm for
program dynamic optimizations. In OOPSLA ’10: Proceedings of the ACM international con-
ference on Object oriented programming systems languages and applications, pages 125–139,
New York, NY, USA, 2010. ACM.

[75] Amos Waterland. Personal communication.

[76] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Mining console logs
for large-scale system problem detection. In SysML’08: Proceedings of the Third conference
on Tackling computer systems problems with machine learning techniques, pages 4–4, Berkeley,
CA, USA, 2008. USENIX Association.

20

