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Dissipation of micro- and nano-scale mechanical structures is dominated by quantum-mechanical
tunneling of two-level defects intrinsically present in the system. We find that at high frequencies—
usually, for smaller, micron-scale structures—a novel mechanism of phonon pumping of two-level
defects gives rise to weakly temperature-dependent internal friction, Q−1, concomitant to the effects
observed in recent experiments. Due to their size, comparable to or shorter than the emitted
phonon wavelength, these structures suffer from superradiance-enhanced dissipation by the collective
relaxation of a large number of two-level defects contained within the wavelength.

PACS numbers: 62.65.+k, 62.20.Dc, 62.40.+i

Physical properties of physically- and chemically-
engineered micromechanical systems are of immense fun-
damental and technical interest [1]. Some of the recent
spectacular examples of micromechanical structures in-
clude the measurement of vortex motion in high-Tc su-
perconductors [2], biomolecular recognition [3], actuation
of sensors via Casimir force [4], and shuttling of electron
charge in a quantum dot [5]. Important to all these ex-
periments is the oscillation of a particular or a set of
micron-sized resonators at a resonance frequency deter-
mined by the geometry and material properties. Changes
in the ”resonant” oscillation frequency or the oscillation
amplitude mostly determine the magnitude of the force of
interest, to which the micromechanical structure is cou-
pled. Detrimental to the detection of force is the damping
of the resonant structure, quantified by quality factor Q
or dissipation Q−1.

The essential problem inherent to the types of force
measurement mentioned above is the low quality fac-
tor Q, observed in small resonators. In many experi-
ments, intrinsic two-level defects[6, 7] are found to be
the dominant cause of internal friction Q−1 in crystalline
resonators [8, 9, 10]. The observed linear temperature
dependence of Q−1 ∝ T [8] could be explained assum-
ing reasonable density of defects within a linear response
theory of two-level systems (TLS)[11, 12]. Despite the
success of the TLS mechanism, dissipation at low tem-
peratures continues to hold many challenges, notably the
observation of a weak temperature dependence [10] and
the non-monotonic dependence of Q−1(T ) in silicon res-
onators [13]. Most recent experiments merely add to the
list of problems yet to be understood.

Previous theoretical works on the acoustic response of
TLS use the linear response approximation or adiabatic
approximation for nonlinear response[14, 15]. The ques-
tion we would like to explore is whether the anomaly
can be explained in terms of TLS if both assumptions
are abandoned. For dissipation in micromechanical res-
onators, such issues become terribly important, as a new
parameter space emerges with decreasing size. For ex-

ample, emitted phonon wavelength becomes much longer
(≫ 1µm) compared to the system size at low temper-
atures, bringing novel correlation effects[16], extremely
relavant to mesoscopic structures.
In this work, we evaluate internal friction Q−1 when

the two-level defects operate non-linearly and non-
adiabatically. We show that the nonlinear response of
Q−1 results in a large contribution at low tempera-
tures at high driving frequencies due to the process of
phonon pumping. We propose and demonstrate a mech-
anism of how Q−1 can be significantly enhanced by the
phonon pumping process through cooperative emission

of phonons. Cooperative emission becomes possible be-
cause of the long wavelength of the emitted phonons,
which allows the correlated decay of two-level systems
contained within the wavelength. Our theory provides a
mechanism for enhanced dissipation in micromechanical
resonators within the context of two-level systems.
The Hamiltonian of a TLS is fully characterized by the

asymmetry energy ∆ and the tunneling matrix element
∆0. The asymmetry energy of a TLS is the energy split-
ting due to the static strain ± 1

2∆s and the applied time-
dependent strain field ǫ0 cosωt: ∆(t) = ∆s +2γǫ0 cosωt,
where γ is the constant of coupling between the acoustic
wave and the asymmetry energy. Friction due to thermal
phonons is described by the Hamiltonian for the single
TLS coupled to phonon fields[7];

H =
∆s + 2γǫ0 cosωt

2
σz +

∆0

2
σx +

∑

q,α

h̄ωα(q)a
†
q,αaq,α

+
∑

q,α

γα

√

qh̄

2ρVvα
σz(aq,α + a†−q,α), (1)

where V and ρ are the volume and the mass density of
the resonator, vα is the sound velocity for polarization α,
aq,α(a

†
q,α) is the phonon annihilation(creation) operator.

γα is the coupling constant which relates the change in
the asymmetry energy to the local elastic strain.
In crystalline materials with many TLSs, it is known

that the static asymmetry energy ∆s has a wide distribu-
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tion due to the randomness of local strain, while tunnel-
ing splitting energy ∆0 has a well-defined value[11]. For
simplicity, we consider a rectangular distribution[12] of
∆s with n number of TLS per unit volume in 0 < ∆s <
∆max

s . The underlying assumption, h̄ω ≪ γǫ0 ≪ ∆max
s ,

holds in most experiments.
The internal friction Q−1 is related to the energy loss

per unit volume δE in a cycle of the acoustic wave ;
Q−1 = δE

2πE0

, where E0 = 2ρǫ20v
2 is the acoustic wave

energy stored per unit volume[7]. The time-averaged
phonon emission power P̄ (∆s, T ) of a TLS is related to

Q−1: Q−1(T ) = n
2ρv2

1
ǫ2
0
ω

∫∆max

s

0 P̄ (∆s, T )d∆s. Further-

more, we divide the two-level systems into two kinds
based on their asymmetry energy ∆s: (i) ∆s < 2γǫ0, and
(ii) ∆s > 2γǫ0; which contribute to the total dissipation
according to Q−1(T ) = Q−1

1 +Q−1
2 :

Q−1
1 (T ) =

n

2ρv2
1

ǫ20ω

∫ 2γǫ0

0

P̄ (∆s, T )d∆s (2)

Q−1
2 (T ) =

n

2ρv2
1

ǫ20ω

∫ ∆max

s

2γǫ0

P̄ (∆s, T )d∆s. (3)

In linear response theory where ǫ0 is infinitesimally small,
all the TLS belong to category (ii), and Q−1

1 = 0. How-
ever, even a small experimental value of ǫ0 = 10−6 will
give rise to nonlinear behavior[8], which implies that TLS
with ∆s < 2γǫ0 may also play an important role[12].
Usually a time-dependent unitary transformation U

is used for solving time-dependent Hamiltonian in the
nonlinear regime, so that the TLS has time-dependent
energy levels given as ± 1

2E(t),(E(t) =
√

∆(t)2 +∆2
0).

In the standard adiabatic limit[14, 15] used to explain
the low-frequency experiments, the acoustic field fre-
quency is assumed to be very low so that the additional
term due to the unitary transformation −ih̄U † ∂U

∂t =

σy
∆0γǫ0
E(t)2 h̄ω sinωt can be safely neglected. In contrast,

here we consider the high frequency regime where the
matrix element of this additional term can not be ne-
glected in comparison to the diagonal term 1

2E(t)σz even
at the level-crossing point E(t) = ∆0:

γǫ0h̄ω

∆0
≫ ∆0. (4)

Under this condition, as the tunneling motion between
the two sites is not fast compared to the rapid time evo-
lution of the acoustic wave, it is not useful to take the
TLS bonding states of the two sites as the basis states.
Instead, it is more natural to consider the localized basis
states in each local potential minimum and consider the
tunneling term 1

2∆0σx as a perturbation.
We treat the coupling to the acoustic wave adiabati-

cally and treat the tunneling term and the coupling to
the thermal phonon pertubatively. The approximation
is guaranteed by the fact TLS-phonon interaction can be
treated pertubatively whenever the two-level approxima-
tion is valid[18]. Let |l > and |r > be the left and the

right localized states respectively. The leading term for
the transition from one state to the other is the second
order process involving the tunnelling and emission (ab-
sorption) of a phonon; at low temperatures single phonon
process dominates. The thermal averaged relaxation rate
is written as

1

τ(∆)
= A∆2

0∆coth
( ∆

2kBT

)

, (5)

where A =
∑

α
γ2

α

2πh̄4v5
α
ρ
. Here we assume the Debye

density of states of phonon with a linear dispersion:
ωα = vαq.
Time evolution of the occupation number nr(= 1 −

nl) follows the rate equation[14] for the time-dependent
asymmetry energy ∆(t) = 2γǫ0 cosωt+∆s:

dnr

dt
= −

nr − n
(0)
r

τ(∆(t))
; n(0)

r (t) = 1/(eβ∆(t) + 1), (6)

where β = 1/kBT . The typical process is depicted in
Fig. 1. In the regime ∆s < 2γǫ0, the two energy levels
cross, and at this point population inversion arises. Note
that the population inversion process ( A → B → C )
is followed by the spontaneous emission of phonon (C →
D). The high-frequency assumption of Eq.(4) is crucial
for the pumping process near the level-crossing point. In
the conventional adiabatic limit (γǫ0h̄ω/∆0 ≪ ∆0) with
TLS energies of ± 1

2E(t), level crossing is avoided and the
TLS in the low (high) energy state remains mostly in the
low(high) energy state.
The time-averaged phonon emission power[14] can be

obtained by solving (Eq.6) for nr(t);

P̄ (∆s, T ) = −
ω

2π

∫ 2π

ω

0

dt∆(t)
dnr(t)

dt
. (7)

For the general case of asymmetric TLS, numerical in-
tegration of Eq.(6) gives P̄ as a function of the static
asymmetry energy ∆s and temperature T , and Eq.(2)
subsequently gives Q−1

1 . For the particular case of sym-
metric TLS (∆s = 0), Eq.(7) can be rewritten using an
analytic solution of nr(t) at T = 0;

P̄ =
2γ2ǫ20A∆

2
0

πω

∫ π

2ω

− π

2ω

cos2 ωt
exp( sinωt

ωτǫ
)

cosh(1/ωτǫ)
dt (8)

where τǫ is a typical relaxation time scale of symmetric
TLS at zero temperature when ωτǫ > 1;

1

τǫ
= 2A∆2

0γǫ0. (9)

When ∆s > 2γǫ0, the TLS always stays in the lower en-
ergy state at zero temperature, hence the TLS does not
emit a phonon in its steady state, P̄ (∆s > 2γǫ0, T =
0) = 0. Since P̄ (∆s, T = 0) is a smoothly-decaying
function of ∆s, an analytic formula for Q−1

1 (T = 0) can
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FIG. 1: The schematic diagram describes the energy-pumping
process of the two-level atom from the acoustic wave to
phonons. The crossing curves represent the time evolution
of the two energy levels with the energy gap of ∆(t) =
2γǫ0 cosωt+∆s. The energy diagrams of the two-level atom
as a function of the configuration coordinates are depicted in
the upper panel.

be obtained using the approximation
∫ 2γǫ0
0

P̄ (∆s, T =
0)d∆s ≈ γǫ0(P̄ (0, 0) + P̄ (γǫ0, 0)) = γǫ0P̄ (0, 0). From
Eq.(8), the zero temperature internal friction Q−1

1 is
found to be

Q−1
1 (T = 0) ≈

nγ2

ρv2
sech(

1

ωτǫ
)I1(

1

ωτǫ
), (10)

where I1(x) is the first kind modified Bessel function of
order 1.
Now let us turn to Q−1

2 . For weak strain 2γǫ0 < ∆s,
where the energy levels do not cross, phonon pumping
process does not take place. This is the regime where
the usual linear response theory is a good approxima-
tion for describing internal friction. In the linear re-
sponse theory[6, 11], Q−1

2 (T ) in Eq.(3) for kBT ≫ h̄ω >
h̄/τ(∆0) can be written as[6]

Q−1
2 (T ) =

nγ2

ρv2kBT

1

ω

∫ ∆max

s

2γǫ0

∆2

E2
sech2(

E

2kBT
)τ−1(E)d∆,(11)

where E =
√

∆2 +∆2
0. For ∆0 ≪ γǫ0 ≪ ∆max

s , an
expression for Q−1

2 is easily found:

Q−1
2 (T ) =

nγ2

ρv2
2

ωτǫ
f
(kBT

2γǫ0

)

, (12)

where f(x) is an almost linear function, defined by
f(x) = x

∫∞

1/x dt
t

sinh t .

Fig. 2 shows the temperature dependence of Q−1 =
Q−1

1 +Q−1
2 for ωτǫ = 1, calculated from Eqs.(2,3,6,7 and

0 1 2
kBT/2γε0

0

1

2

3

Q
−

1  [n
γ2 /ρ

υ2 ]

Q
−1

Q1

−1

Q2

−1

FIG. 2: The internal friction Q−1 = Q−1

1
+Q−1

2
as a function

of temperature for ωτǫ = 1.

12). Q−1 shows a weak temperature dependence with de-
creasing temperature, as Q−1

1 becomes more important
than Q−1

2 at low temperatures. The low-temperature
saturation value of Q−1 for ωτǫ ≥ 1 is well approx-
imated by ∼ 0.3(1/ωτǫ)(nγ

2/ρv2). Now, let us esti-
mate τǫ from experimental data[8]. Since nγ2/ρv2 is
roughly the high-temperature saturation[6] value of Q−1,
for the single-crystalline silicon data in Ref.[8], we esti-
mate nγ2/ρv2 ∼ 10−6 − 10−5 from the experiments at
ω ∼ 103 − 104Hz. Since the low temperature satura-
tion value of Q−1 was found to be ∼ 10−7 − 10−6 for
these frequencies, we estimate ωτǫ ∼ 1, which means
τǫ ∼ 10−3 − 10−4sec. However, these values of τǫ are
anomalously small compared to the direct estimate us-
ing Eq.(9)with reasonable values of parameters[6, 7, 11].
By using γ ∼ 1eV, ǫ0 ∼ 10−6, A = 108s−1k−3

B into Eq.(9),
we get τǫ ∼ 1 sec. In other words, the low-temperature
dissipation in experiments[8] is anomalously larger than
our direct theoretical estimation.

Here we propose and discuss the origin of the anoma-
lously small relaxation time τǫ. We believe that the coop-
erative emission [17] of phonons provides a natural mech-
anism for the short relaxation time. In Dicke superradi-
ance [17], N number of two-level atoms within a distance
shorter than the emitted photon wavelength emit pho-
tons cooperatively, therefore the lifetime of the atom in
the excited state is effectively reduced by a factor of N .
In the usual treatment of phonon emission of TLS, as we
have done so far, the emission of phonon is calculated by
assuming that the TLSs are totally independent. How-
ever, this assumption is not valid when a number of TLS
are contained within a distance shorter than the wave-
length of the emitted phonon. This phonon wavelength,
λph ∼ h̄vs

γǫ0
(vs is the sound velocity), can be considerably
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larger (
>
∼ µm), leading to the cooperative emission from

a large number of two-level systems.
Now let us consider N two-level systems within a vol-

ume λ3
ph. In the context of phonon emission, pumping

of the two-level system is done by the acoustic wave
applied to the resonator. The many-TLS Hamiltonian
in Eq.(1) can be generalized to H = H0 + Htun +

HTLS−ph where H0 = HTLS +Hph = 1
2∆(t)

∑N
i=1 σi,z +

∑

q,α h̄ωα(q)a
†
q,αaq,α, Htun = ∆0

2

∑N
i=1 σi,x, and

HTLS−ph =
N
∑

i=1

∑

q,α

γα

√

qh̄

2ρVvα
σi,z(aq,α + a†−q,α). (13)

The many-TLS state
∣

∣l, l, l, ...l
〉

, where all the TLS are
in the l state, is the maximally excited state or the ground
state. We consider the set of many-TLS states generated
from HTLS−ph +Htun, which are

∣

∣M
〉

=

√

(N/2−M)!

N !(N/2 +M)!

(

N
∑

i=1

σ+
i

)N/2+M
∣

∣l, l, l, ...l
〉

,(14)

where M = −N/2,−N/2 + 1,−N/2 + 2, ..., N/2. These
states satisfy HTLS(t)

∣

∣M
〉

= M∆(t)
∣

∣M
〉

. As in the case
of a single TLS, a perturbation analysis finds the transi-
tion rate wM±1,M from

∣

∣M
〉

to
∣

∣M ± 1
〉

: to be

wM±1,M (t) = w(∓∆(t))

(

N

2
∓M

)(

N

2
±M + 1

)

,(15)

where

w(∆) = A∆2
0

∆

1− exp(−∆/kBT )
(16)

Here, we have used the relation
〈

M ± 1
∣

∣

∑N
i=1 σ

±
i

∣

∣M
〉

=
√

(

N/2∓M)
(

N/2±M + 1). Now the following rate

equation for the many-TLS remains to be solved numer-
ically:

dnM

dt
= wM,M+1(t)nM+1 − wM−1,M (t)nM

+ wM,M−1(t)nM−1 − wM+1,M (t)nM , (17)

The time-averaged power P̄N emitted by N number of
TLS can be obtained as:

P̄N = −
ω

2π

∫ 2π/ω

0

dt

N/2
∑

M=−N/2

M∆(t)
dnM (t)

dt
. (18)

Note that for phonons independently emitted by the
TLS, P̄N is simply proportional to the number N ; P̄N =
NP̄ . However, in cooperative emission, the lifetime of the
excited state of a single TLS is N times shorter, hence the
phonon emission power of a single TLS should be N times
larger when ωτǫ > 1[19]. This means that P̄N should be

0 5 10 15
N

0

1

2

P
N
[γ

ε 0ω
] Cooperative

Emission

Individual
Emission

FIG. 3: The time-averaged phonon emission power P̄N of N
symmetric TLSs (∆s = 0) at T = 0.1γǫ0/kB and ωτǫ = 20,
which was numerically calculated using Eq.(18).

proportional to N2 for ωτǫ > 1. Our numerical results
indeed show that the P̄N has a quadratic dependence of
N (see Fig. 3.)
When N number of TLS are within λph, one obtains

Q−1
1 by replacing P̄ with its effective value P̄ ∗ = P̄N/N .

The enhanced phonon emission power due to superradi-
ance P̄ ∗ ∼ NP̄ then provides a natural explanation of the
anomalously-large internal friction at low temperatures.
Including the phonon superradiance effect, Eq.(10) for
ωτǫ > 1 can be rewritten as

Q−1(T = 0) = Q−1
1 (T = 0) ∼

1

ωτ∗ǫ

nγ2

ρv2
, (19)

where τ∗ǫ ≈ τǫ/N is the renormalized relaxation time
and N is the number of cooperating TLSs. Thus, the
enhancement of Q−1 at low temperature by a factor of
103−104 compared to our initial estimate in the indepen-
dent TLS model (Eq.(10)) indicates that a large number
of ∼ 103− 104 TLS emit phonons cooperatively. By tak-
ing λph ∼ 10µm from λph = h̄vs

γǫ0
, the total number of

TLSs in the volume λ3
ph is ∼ 105 according to Ref.[11]

or ∼ 103 according to Ref.[12], which is reasonably large
enough number for the cooperative emission by 103 TLSs.
In conclusion, we formulate a theory of internal friction

of micro- and nano-mechanical resonators, which invokes
intrinsic two-level defects in the nonlinear regime at high
frequencies. As temperature decreases, the mechanical
friction crosses over from the linear regime to the non-
linear regime, resulting in the saturation behavior as T
goes to zero. Because of the phonon superradiance, the
low-temperature saturation value of Q−1 is strongly en-
hanced by a factor given by the number of two-level sys-
tems contained within the emitted phonon wavelength.
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