
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

1998-09-01

Isolation of non-secure software from

secure software to limit virus infection

Greg Blonder. "Isolation of non-secure software from secure software to limit virus infection."

U.S. Patent 5,802,275-A.

https://hdl.handle.net/2144/36286

Downloaded from DSpace Repository, DSpace Institution's institutional repository

United States Patent (19)
Blonder

54

75

(73)

21

22
(51)
52
58)

56

SOLATION OF NON-SECURE SOFTWARE
FROM SECURE SOFTWARE TO LIMIT
WRUS INFECTION

Inventor: Greg E. Blonder, Summit, N.J.

Assignee: Lucent Technologies Inc., Murray Hill,
N.J.

Appl. No.: 263,850
Filed: Jun. 22, 1994

Int. Cl. G06F 1300; G11B 23/28
U.S. Cl. 395/186; 380/4; 380/25
Field of Search 395/575, 700,

395/186, 187.01, 188.01; 380/4, 3, 25,
50, 23; 364/286-4, 286.5,286.3

References Cited

U.S. PATENT DOCUMENTS

4,168,396 9/1979 Best ... 178/22
4,465,901 8/1984 Best 17822.08
4562,305 12/1985 Gaffney, Jr. .. 17822.08
4,847,902 7/1989 Hampson 380/4
4,864,616 9/1989 Pond et al. 330/25
5,008,936 4/1991 Hamilton et al. 380/50
5,109,413 4/1992 Comerford et al. 3304
5,133,065 7/1992 Chefetz et al. 395,575
5,224,166 6/1993 Hartman, Jr. 380/50
5,278,901 1/1994 Shich et al. 3804
5,337,357 8/1994 Chou et al. ...
5,359,659 10/1994 Rosenthal 380/4

IIII
USOO5802275A

11 Patent Number: 5,802,275
(45) Date of Patent: Sep. 1, 1998

5,361,359 11/1994 Tajalli et al. 395/700
FOREIGN PATENT DOCUMENTS

0570.123 11/1993 European Pat. Off. G06F 12/14
153747 3/1991 Taiwan.
167755 9/1991 Taiwan G06F 9/44

94.07204 3/1994 WIPO G06F 15/21
9422242 9/1994 WIPO H04B 10/10

Primary Examiner-Robert W. Beausoliel, Jr.
Assistant Examiner-Norman M. Wright
Attorney, Agent, or Firm-David Volejnicek
57 ABSTRACT

A personal digital assistant (PDA) receives and executes
both encrypted and unencrypted programs. Encrypted pro
grams are fairly secure from virus infection, while unen
crypted programs are not. To prevent contamination of the
PDA with infected encrypted programs, only those
encrypted programs that are keyed to the individual PDA's
unique device identifier can be decrypted and executed by
that PDA. To prevent non-secure programs from corrupting
secure programs and their data, programs that were received
unencrypted are prevented from modifying programs that
were received encrypted as well as data generated by their
execution. When a user suspects a virus infection, the user
pushes a special button on the PDA that prevents execution
of programs that were received unencrypted and hence are
suspected of being infected, while allowing continued
execution of programs that were received encrypted and
hence are presumed to be secure.

9 Claims, 3 Drawing Sheets

5,802,275 Sheet 1 of 3 Sep. 1, 1998 U.S. Patent

101-r| 700 ||

ANONEN

|0||
/

U.S. Patent

FIG.

Sep. 1, 1998 Sheet 2 of 3 5,802,275

2

200 / INVOKE SOFTWARE
PURCHASE

PROGRAM 500

2021 ACCESS SERVER y.

204 IDENTIFY DESERED \,.....
SOFTWARE TO SERVER

206J PASS DEVICE ID \,.....
TO SERVER

208

203

ACCESSED
205

RECEIVE SOFTWARE
IDENTTFER AND

DEVICED

ISIDENTIFIED DEVICE \ AUTHORIZED TO RECEIVE
IDENTIFIED SOFTWARE

ENCRYPT IDENTIFIED
SOFTWARE WITH

ENCRYPTED KEY BASED
ON DEVICE ID

210

213
H---- 212

RECEIVE ENCRYPTED
26 SOFTWAR SOFTWARE TO DEVICE

is lar STORE RECEIVE) 25
SOFTWARE IN SOFTWARE IN LOCAL 24

ANOR WEMORY 228. -- (A)FROM FIG. 3
NOISE SOFTWAREACCEPTABLY SRECEIVEDAN

V ENCRYPTED 1 (SOFTWARE ACCEPTABLY
20 YES." ENCRYPTED? OF WAR

DESTORED 218 219
SAR 229 SECURE SOFTWARE J SOFTWARE WITH

?krker rth DECRYPTION KEY 1220 REJECT \ CEND) BASED ON DEVICE ID
| RECEIVED
\SOFTWARE/ STEEEEEED

SOFTWARE IN
MAIN MEMORY

DENTIFY STORED
SOFTWAREAS 1224

SECURE SOFTWARE

CENDD

U.S. Patent Sep. 1, 1998 Sheet 3 of 3 5,802,275

INVOKE SOFTWARE
PURCHASE

PROGRAM 500
SO

SOURCE
ACCESSED

305
RECEIVE SOFTWARE

IDENTIFTER

308 IS REQUESTING DEVICE \ 0.
(E TO RECEIVE

ACCESS SOFTWARE
SOURCE

IDENTIFY DESRED
SOFTWARE TO SOURCE

302

04
O

IDENTIFIED SOFTWARE

PASS CLEAR
SOFTWARE TO DEVICE

RECEIVE CLEAR L........
SOFTWARE

STORE RECEIVED
SOFTWARE IN LOCA

MEMORY

S
RECEIVED SOFTWARE GA) TO FIG. 2

ENCRYPTED?
No'

STORE RECEIVED
SOFTWARE IN
MAN WEMORY

Y E S

38

F.C.. 4
400

402
REQUE ORY WORD ACCESS

ISWORD SECURE2

IS REQUESTING PROGRAM SECURE2 is

IS IT A WRITE ACCESS
YES 408

40YCDENY ACCESS A LOW ACCESS

404

5,802,275
1

SOLATION OF NON-SECURE SOFTWARE
FROM SECURE SOFTWARE TO LIMIT

WRUS NFECTION

TECHNICAL FIELD

This invention relates to stored-program controlled
machines and to software virus counter-measures in such
machines.

BACKGROUND OF THE INVENTION

Stored-program controlled machines, especially personal
computers (PCs) and personal digital assistants (PDAs), are
becoming widely owned and operated in an environment
where software is increasingly freely shared between users.
In this environment, software viruses are likely to spread as
rapidly as any disease would in a corresponding environ
ment of living organisms. Effective ways to reduce the
damage of virus infections are therefore becoming ever
more important.

Presently, most software intended for wide distribution is
sold "shrink-wrapped". That is, each copy of the software is
identical to all other copies, and the copies run on machines
that are fungible for purposes of executing individual copies
of the software. When a machine gets infected with a
software virus, special virus-detection software may be used
to identify and eliminate the virus and its effects. A balance
of sorts exists: viruses are easy to write because each target
program is identical, but infections can be easily detected
because, once a particular virus is found, its "signature” can
be tracked to other machines. However, this balance is easily
upset when a virus is quickly disseminated, such as often
happens in an environment of widespread software sharing
between users. Before the virus' signature can be distributed
to the virus-detection software, many or even most machines
in the environment may become infected. This may be a
particular problem with PDAs. For example, PDAs might be
used by students who share information throughout the day.
Wireless infra-red communications make such sharing
simple and fast. A new virus might easily sweep through a
schoolin days, long before the virus-detection software can
be adapted to recognize the new threat.

Preventing users from sharing software with each other is
one effective way of preventing the spread of software
viruses. For example, each machine may be provided with a
built-in unique identifier, and a software supplier may pro
vide software only in encrypted form that requires a par
ticular key, such as a particular machine's unique identifier,
for decryption. In this manner, the supplier can restrict the
use of each copy of the software to only one particular target
machine. Since only the target machine can decrypt an
individual copy of the encrypted software, the software
cannot be shared, and hence a virus that infects a copy of the
software cannot readily spread to other machines. Clearly,
this greatly slows the rate of infection.

Until now, most software suppliers have avoided distrib
uting copies of software that are keyed to individual
machines, primarily because it would be a nightmare for
retail stores to stock appropriate wares. With today's high
speed data networks and PDAs with convenient wireless
connections, individually-keyed encrypted software could
be easily distributed and downloaded into target machines,
and quickly be decrypted by today's fast microprocessors.
However, in order for the protection provided by the keying
mechanism to remain effective, this would require all of the
software to be distributed through either a single or a limited
number of secure and trustworthy distribution channels who

S

35

45

55

65

2
would be entrusted with knowledge of individual machines'
identifiers and who would be relied upon to key copies of
software for the individual target machines. One likely such
distribution channel would be the manufacturer of the target
machines. But software suppliers are likely to object to
participating in a distribution channel for their products that
they would not control.

SUMMARY OF THE INVENTION

This invention is directed to solving these and other
problems and disadvantages of the prior art. Generally
according to the invention, both encrypted and unencrypted
(clear) software is allowed to enter, and execute on, an
individual machine. While the acceptance of clear software
exposes the machine to being invaded by a virus, the damage
that such a virus may inflict is limited by means of an
arrangement such as an actuator that, when it has been
actuated, isolates the clear software from the machine, for
example by preventing the machine from accepting, or
executing accepted, clear software, without affecting soft
ware that was received in encrypted form. Preferably, clear
software is only allowed to read, but is not allowed to write
over, data created or protected by the encrypted software.
Also preferably, the clear software is not allowed to write
over the encrypted software's portion of memory.

Specifically according to the invention, a program
execution apparatus comprises a receiver for receiving both
encrypted programs and unencrypted programs, storage for
storing the received programs, a program executor for
executing the stored programs, and an arrangement that
selectively prevents the program executor from executing
the stored programs that were received unencrypted while it
allows the program executor to execute the stored programs
that were received encrypted. Illustratively, the arrangement
comprises a manually-actuatable actuator that, when
actuated, prevents the program executor from executing the
stored programs that were received unencrypted.

Encrypted programs are deemed to be fairly secure from
virus infection, while unencrypted programs are not. Thus,
when a virus infection of the program-execution apparatus is
suspected, the abovementioned arrangement is engaged to
prevent execution of the programs that were received unen
crypted and hence are suspected of being infected by virus.
Even while execution of the programs that were received
unencrypted is prevented, execution is allowed of programs
that were received encrypted and hence are presumed to not
be infected. In this manner, the non-secure programs and
their likely virus infection are isolated from the apparatus
without interfering with functioning of the apparatus that is
not likely to have been affected by the infection.

Preferably, to prevent unauthorized sharing of encrypted
programs and thereby to prevent any possibility of contami
nation of an individual program-execution apparatus with a
virus-infected encrypted program from another program
execution apparatus, each individual program-execution
apparatus has its own unique apparatus identifier. The pro
gram executor executes only unencrypted programs, and
each program-execution apparatus further includes a
decryptor that decrypts into unencrypted programs only
those of the received encrypted programs that are encrypted
via an encryption scheme that is based on the apparatus
identifier of that particular apparatus.

Further preferably, to prevent the non-secure programs
those received in unencrypted form-from corrupting
secure programs-those received in encrypted form-and
their data, programs that were received unencrypted are

5,802,275
3

prevented from modifying programs that were received
encrypted as well as data generated by their execution.
These and other advantages and features of the invention

will become more apparent from the following description
of an illustrative embodiment of the invention taken together
with the drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of an illustrative telecommu
nication system and of a personal digital assistant thereof,
which includes an illustrative embodiment of the invention;

FIG. 2 is a flow diagram of an illustrative procedure for
obtaining encrypted software at a PDA of the system of FIG.
1;

FIG. 3 is a flow diagram of an illustrative procedure for
obtaining clear software at a PDA of the system of FIG. 1;
and

FIG. 4 is a flow diagram of a procedure for preventing
clear software from changing data or instructions of
encrypted software in the system of FIG. 1.

DETALED DESCRIPTION

FIG. 1 shows an illustrative telecommunications system
that comprises a plurality of PDAs 107-108. The PDAs
107-108 are interconnected with each other and with other
communications entities, such as a server 105 and a bulletin
board 106, by a network 114. Connection of PDAs 107-108
to network 114 is either wired, such as via telephone lines,
or wireless, such as via infrared (IR) links. As described so
far, the telecommunications system of FIG. 1 and its ele
ments are conventional.
PDAs 107 and 108 are also substantially conventional in

structure. For illustration, the structure of a representative
PDA 108 is shown in FIG. 1. PDA 108 comprises a central
processing unit (CPU) 109 for executing programs, a
decryption engine 103 for decrypting encrypted information,
a local memory 104 for storing data and programs that are
presently needed by CPU 109 and decryption engine 103, a
peripheral controller that interfaces CPU 109 to a keyboard
101 and a display 100, a main memory 102 for storing all
data and programs required by PDA 108, and a main
memory controller 111 for interfacing CPU 109 to main
memory 102. Elements 103, 104, 109, 110, and 111 are
interconnected for communication by a bus 113. Also con
nected to bus 113 is a transceiver modem 112 that commu
nicatively couples PDA 108 to network 114.
According to the invention, programs distributed in both

encrypted and clear (unencrypted) form are allowed to
reside and selectively execute on PDA 108. An illustrative
procedure for obtaining and installing encrypted software is
flow-charted in FIG. 2, while an illustrative procedure for
obtaining and installing clear software is flowcharted in FIG.
3

If the user of PDA 108 wishes to purchase for PDA 108
a new software product that is distributed in encrypted form,
the user invokes execution of a software-purchase program
500 on PDA 108, at step 200. Execution of program 500
causes modem 112 to access (call) the vendor's server 105
through network 114, at step 202. Once connected to server
105, at step 203, program 500 passes the identifier (e.g.,
name, or catalog number) of the desired software product to
server 105, at step 204, and also passes a unique device
identifier (ID) of PDA 108 to server 105, at step 206. In
response to receipt of the software identifier and device ID,
at step 205, server 105 checks a database to ensure that the

10

15

25

35

45

55

65

4
identified PDA 108 is authorized to receive the identified
software, at step 208. For example, server 105 checks
whether PDA 108 has pre-paid for the software, or has a
valid account with server 105 which can be debited by the
amount of the purchase price.
Assuming that PDA 108 is found at step 208 to be

authorized to receive the identified software, server 105
encrypts the identified software product with an encryption
key that is based on the received D, at step 210, and passes
the encrypted software to PDA 108 via network 114, at step
212. Server 105 then makes a record of this transaction, at
step 215. In response to receipt of the software by PDA 108,
at step 213, program 500 causes the received encrypted
software to be stored in local memory 194, at step 214, and
activates decryption engine 103.

In a conventional manner, such as recognition of a valid
header or checksum and/or instruction set, decryption
engine 103 determines whether the received software is
acceptably encrypted, at step 218. This step will detect, and
reject, unencrypted software as well as encrypted software
which has been modified subsequently to being encrypted. It
will also reject encrypted software that has been encrypted
with an encryption key that is based on the device D of a
machine other than the receiving machine. If the software is
not acceptably encrypted, it is rejected, at step 219. If the
software is found to be acceptably encrypted, decryption
engine 103 then uses a decryption key that is based on the
ID of PDA108 to decrypt the received software, at step 220.
The fact that both the encryption and decryption keys are
based on the ID of PDA 108 ensures that only PDA 108 and
no other PDA can decrypt the encrypted software. Decryp
tion engine 103 then stores the decrypted software in main
memory 102, at step 222, and causes this software to be
identified as secure software, at step 224. For example,
decryption engine 103 identifies this software as secure
software to main memory controller 111, and main memory
controller 111 stores this information for future use. Or,
decryption engine sets a special security bit 151, that is
included with every word 150 in main memory 102, for all
memory words 150 that store the decrypted software. Any
data created by execution of this secure software and stored
in main memory 102 will also be identified as secure, in like
2.

Alternatively, as shownin dashed lines in FIG.2, upon its
receipt by PDA 108 at step 213, the received software is
stored in encrypted form in main memory 102, at step 226,
is checked for being acceptably encrypted, at step 228, and
if it is found to be acceptably encrypted, is identified as
secure software, e.g., by means of setting security bit 151 of
main memory words 150 that store the encrypted software,
at step 230. If found to not be acceptably encrypted, the
software is rejected, at step 229. Decryption engine 103 then
decrypts the stored encrypted software each time that execu
tion of that software is invoked. This is particularly useful
when main memory 102 is an external memory (e.g., a
PCMCIAflash memory card), removable from PDA 108 and
connectable to another PDA. Had the software been stored
in decrypted form on the removable memory, a virus could
be introduced by changing both the code and the security bit
151. Storage in encrypted form prevents tampering. (Note
that the use of a security code in this case is merely a matter
of convenience, since decryption engine 103 still checks if
the software is encrypted.)

if the user of PDA 108 wishes to obtain for PDA 108 a
new software product that is distributed in clear form, the
user invokes execution of the software purchase program
500 on PDA 108, at step 300. Execution of program 500

5,802,275
S

causes modem 112 to access a vendor's server 105 or a
bulletin board 106 from which the software is obtainable, at
step 302. Once connected to the source of the software, at
step 303, program 500 passes the identifier of the desired
software product to the source, at step 304. In response to
receipt of the software identifier, at step 305, the source
optionally engages PDA 108 in communications to deter
mine whether PDA 108 is authorized to receive the identi
fied software, at step 308. For example, the source may
request PDA 108 to provide the device ID of PDA 108, and
may then use this ID to undertake the same determination as
was described for step 208 of FIG. 2. Assuming that the
check of step 308 either is not performed, or is performed
and successfully passes, the software source passes the
desired software to PDA 108 via network 114, at step 312.
In response to receipt of this software by PDA 108, at step
313, program 500 causes the received software to be stored
in local memory 104, at step 314, and activates decryption
engine 103.

In the conventional manner described for step 218 of FIG.
2, decryption engine 103 determines whether the received
software is not encrypted, at step 318. If the software is
found to be encrypted, steps 218 et seq. of FIG. 2 are
invoked. If the software is found to not be encrypted,
decryption engine 103 stores the received unencrypted soft
ware in main memory 102, at step 222. The software is not
identified as secure, e.g., bits 151 of words 150 that store the
software are not set. Any data created by execution of this
software will likewise not be identified as secure.

Alternatively, PDA 108 can also receive clear software
from another PDA via a conventional file transfer.

During execution of programs by PDA 108, only pro
grams that are identified as secure are allowed to change any
words 150 (either data words or instruction words) that are
identified as secure. Clear programs are allowed to change
words 150 that are not identified as secure, but clear pro
grams may only read words 150 that are identified as secure.
This is illustrated in FIG. 4.
Whenever an executing program causes CPU 109 to

request access to a word 150 of main memory 102, execu
tion of a secure program 600 is invoked, at step 400.
Program 600 checks whether the word 150 that is sought to
be accessed is identified (see, e.g., discussion of step 224 of
FIG. 2) as secure, at step 402. If not, the access is allowed,
at step 408; if so, program 600 checks whether the request
ing programis identified as a secure program, at step 404. If
so, the access is allowed, at step 408; if not, program 600
checks whether the access is a read or a write access, at step
406. If it is a read access, it is allowed, at step 408; if it is
a write access, it is denied, at step 410.

fat any time PDA 108 appears to be infected with a virus
(e.g., it exhibits erratic behavior, performs unusually slowly,
etc.), the user of PDA108 presses a button 152 on PDA 108.
Button 152 is interfaced to CPU 109, and pressing of button
152 prevents CPU 109 from executing clear software.
Illustratively, pressing of button 152 sends a command to
CPU 109 that directs CPU 109 to stop executing any
software that is notidentified as secure. Effectively, pressing
of button 152 isolates the clear software, which is the most
likely software to beinfected by virus, and hence isolates the
virus itself. Execution of secure software is allowed to
proceed unimpeded.

Alternatively, infection with a virus may also be detected
automatically by PDA 108, for example, by execution of
maintenance and diagnostic software, which may then auto
matically undertake the requisite action to isolate the clear
software.

O

15

35

45

50

55

60

6
Of course, various changes and modifications to the

illustrative embodiment described above will be apparent to
those skilled in the art. For example, instead of each word
150 of main memory 102 being marked with a security bit,
the marking may be done on a per-blockbasis whereby each
block has either a security bit or a security word associated
therewith. Or, encrypted and clear software may be stored in
different memory portions, or even in different memories,
each one of which is identified either as secure or as clear.
Also, the secure software may choose not to set the security
indication for data that it creates, thereby allowing clear
software to modify that data.

Furthermore, if PDA 108 is ever lost by its user, server
105 can reload the encrypted software into a replacement
PDA purchased by the user, because server 105 has main
tained a record of previous sales of encrypted software to
this user (see step 215 of FIG. 2). Similarly, if the user of
PDA 108 replaces PDA 108 with an upgraded unit, server
105 can load the upgraded unit with new, upgraded versions
of the encrypted software that the user had owned. In either
case, however, the user loses the clear software, unless the
user has made a backup copy thereof. Server 105 may
optionally provide users with a backup service, whereby
users periodically access server 105 and transfer their non
secure files, as well as secure datafiles, to server 105, which
then stores these files until such time as the users request
server 105 to transfer them back to their PDAs. Such
changes and modifications can be made without departing
from the spirit and the scope of the invention and without
diminishing its attendant advantages. It is therefore intended
that such changes and modifications be covered by the
following claims.

I claim:
1. A program-execution apparatus comprising:
means for receiving both encrypted programs and unen

crypted programs;
means for storing the received programs;
means for executing the stored programs; and
means for selectively preventing the executing means
from executing the stored programs that were received
unencrypted, while allowing the executing means to
execute the stored programs that were received
encrypted.

2. The apparatus of claim 1 wherein:
the preventing and allowing means comprise
a manually-actuatable actuator that, when actuated, pre

vents the executing means from executing the stored
programs that were received unencrypted.

3. The apparatus of claim 1 having a unique apparatus
identifier, wherein

the executing means execute only unencrypted programs;
and

the apparatus further comprises
means for decrypting into unencrypted programs only

those of the received encrypted programs that are
encrypted via an encryption arrangement that is based
on said unique apparatus identifier.

4. The apparatus of claim 1 wherein execution of a
program may modify another program, further comprising:

means for preventing the programs that were received
unencrypted from modifying the programs that were
received encrypted.

5. The apparatus of claim 1 wherein execution of a
program may modify either another program or data gener
ated by the other program, wherein:

5,802,275
7

the storing means include
means for storing data generated by execution of the

stored programs by the executing means;
means for identifying both those stored programs that
were received encrypted and those stored data that were
generated by execution of the programs that were
received encrypted; and

means for preventing the programs that were received
unencrypted from modifying both the identified pro
grams and the identified data.

6. A program-execution apparatus having a unique appa
ratus identifier and comprising:

a receiver for receiving both encrypted programs and
unencrypted programs;

a decryption engine for decrypting, into unencrypted
programs, only those of the encrypted programs that
are encrypted via an encryption arrangement that is
based on said unique apparatus identifier;

a memory for storing both the received programs and data
generated by execution of the received programs;

a processor for executing only unencrypted said stored
programs, wherein execution of an unencrypted stored
program may modify either another stored program or
data generated by the other stored program;

10

15

8
means for identifying both those stored programs that

were received encrypted and those stored data that were
generated by execution of the programs that were
received encrypted;

means for preventing the programs that were received
unencrypted from modifying both the identified pro
grams and the identified data; and

means for selectively preventing the processor from
executing the stored programs not identified by the
identifying means while allowing the processor to
execute the stored programs identified by the identify
ing means.

7. The apparatus of claim 6 wherein:
the preventing and allowing means comprise
a manually-activable actuator that, when actuated, pre

vents the processor from executing the stored programs
not identified by the identifying means.

8. The apparatus of claim 6 wherein:
the apparatus is portable, and
the receiver is a wireless receiver.
9. The apparatus of claim 8 wherein:
the portable apparatus is a personal digital assistant, and
the wireless receiver is an infrared receiver.

a at it sk

