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ABSTRACT

The replica exchange method (REM) has been widely used in the computer simulation of

complex systems, such as proteins, glasses, and atomic clusters, where conventional methods

based on sampling the canonical ensemble struggle to attain ergodicity over a rugged energy

landscape characterized by multiple minima separated by high energy barriers. While the

standard temperature REM (tREM) has proven to be highly effective in the equilibrium

sampling of stable single phase states, tREM is seriously challenged in the vicinity of a

first-order phase transition.

The generalized Replica Exchange Method (gREM) was developed to address these out-

standing computational problems and provide a method for simulating strong phase tran-

sitions in condensed matter systems. The central idea behind gREM is to incorporate the

merit of generalized ensemble sampling into the replica exchange paradigm. The key ingre-

dients of gREM are parameterized effective sampling weights, which smoothly join ordered

and disordered phases with a succession of unimodal energy distributions that transform

unstable or metastable energy states of the canonical ensemble into stable states that can

be fully characterized. The inverse mapping between the sampling weights and the effective

v



temperature provides a sure way to design the effective sampling weights and achieve ergodic

sampling.

Various applications of gREM are presented, including studies of the solid-liquid phase

change of an adapted Dzugutov model of glass formation, the mechanism of spinodal decom-

position in the vapor-liquid transition of a simple fluid, and the apparent crossover from a

first-order to continuous transition with increasing density in the freezing of a nanofilm of wa-

ter confined between featureless and atomistic surfaces. Extensive gREM simulations com-

bined with the Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM)

demonstrate the effectiveness of the approach and provide comprehensive characterization

of thermodynamic and structural properties intrinsic to phase transitions in these diverse

systems.
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Chapter 1

Introduction

1.1 Temperature Replica-Exchange Method (tREM)

Molecular Dynamics (MD) and Monte Carlo (MC) simulations are the two major approaches

to explore the equilibrium properties of systems including liquids, bimolecules, and materials.

However, straightforward MD or MC struggles to achieve ergodic sampling in systems with

rugged potential energy landscapes characterized by multiple minima separated by high

barriers [2, 3, 4]. It has been an objective of extensive studies to develop enhanced sampling

algorithms that improve the sampling capacity of MC and MD simulations.

MC and MD simulations in an extended ensemble alogrithm represent one poweful ap-

proach for achieving efficient conformational sampling in diverse molecular systems. Three

well-known extended-ensemble algorithms are the multicanonical algorithm (MUCA) [5, 6],

temperature Replica Exchange Method (tREM) [7], and simulated tempering (ST) [8].

Among them, tREM is often used because the weight factor is known a prior (i.e., the

Boltzmann factor), while those for MUCA and ST must be determined before the simula-

tion.

In tREM [9, 10, 11, 7, 12, 13, 3], a set of statistically independent canonical molecular

dynamics (MD) or Monte Carlo (MC) simulations are run in parallel at specified temper-

atures. Exchanges of configurations between neighboring replicas are performed subject to

detailed balance. Broken ergodicity at low temperatures is significantly alleviated via con-

figurational exchanges with high temperature replicas, which facilitate sampling the relevant

configurational space without trapping.

tREM has been widely used in the computer simulation of diverse complex systems such

as atomic clusters [14, 15], glasses [16, 17, 18], proteins [10, 11, 19, 20, 13, 21] and lipid

bilayers [22].



2

1.2 Challenges for simulating strong phase transitions

While tREM has proven to be highly effective in equilibrium sampling of stable phase states,

it is less applicable to systems involving strong phase transitions, in which a large energy gap

may separate two macroscopic phases [23, 12, 24, 25, 26]. Canonical energy distributions in

tREM are effectively disjoint and characterized by an energy gap corresponding to a latent

heat. Since the acceptence probability of replica exchanges is determined by the energy

overlap of neighboring replicas, an energy gap between PT<Tc(E) and PT>Tc(E) around the

critical temperature Tc, PT (E) being the canonical probability density function (PDF) at

temperature T , significantly impairs replica exchanges. The acceptance of replica exchanges

for a pair of inverse temperatures, β and β′, close to βc = 1/Tc, becomes exponentially

suppressed as A(βE;β′E′) = min[1, e∆β(E′−E)] ≈ e−|∆β∆E|, where ∆β = β′ − β and ∆E is

the energy gap.

The failure in exploring strong phase transitions is intimately connected to a “convex

intruder” in the microcanonical entropy, S(E). The anomalous behavior in S(E) translates

into a negative slope region, the so-called “backbending” or “S-loop” [24] in the statistical

temperature, TS . The existence of the backbending has been verified in recent experiments

on nuclear fragmentation [27] and cluster melting [28], and its physical origin has been

attributed to avoiding a “static” phase coexistence due to the free energy cost of forming

interfaces.

The energy function E(T ) is triple-valued in T in the “backbending” region, which means

that for a given temperature in that region, three states are available to the system, including

two stable states in the pure phase and one unstable state in the coexistence phase, as

manifested in the bimodal structure of the probability density function, PT (E). The states

in the vicinity of strong first order phase transition are intrinsically unstable for the canonical

ensemble [29, 30, 31, 32, 33]. Depending on the starting structure, the system may sample

one of the two stable states, but rarely samples the unstable state.



3

1.3 Generalized Replica Exchange Method (gREM)

The generalized Replica Exchange Method (gREM) [34] has been developed to realize the

full power of replica exchange. gREM incorporates the merit of sampling from a generalized

ensemble into the replica exchange paradigm. It utilizes a noncanonical ensemble to avoid

the instability in the negative slope region in TS(E). A general framework was developed

to systematically parameterize the sampling weights in gREM from the equilibrium phase

simulation in the tREM [34]. The simplicity in the parameterization is one advantage of

gREM over methods like WL-MUCA (Wang-Lauda Multicanonical), in which the sampling

weight is not known a priori and requires a long iterative process.

Employing an inverse mapping strategy, the generalized ensemble weights are deter-

mined from effective temperatures optimally parameterized to form unique and stable cross-

ing points with the statistical temperature. This yields a succession of unimodal energy

distribution functions across the phase transition region and smoothly join the ordered and

disordered phases. While the metastable and unstable states are inaccessible to tREM simu-

lation, they are transformed into stable states through in the generalized ensemble in gREM

simulation. Enhanced sampling across the metastable and unstable states is then achieved

without the need to identify a “good” order parameter as for biased sampling.

Illustrative simulations on a Potts spin model [34] compared the performance of gREM

and tREM around a typical first-order phase transition. tREM simulations showed two

effectively disjoint sampling domains, strongly impairing the replica exchange across the

phase transition region. Simulations using gREM with varying system size and simulation

conditions demonstrate a comprehensive sampling for phase-coexistence states. gREM pro-

vides an order of magnitude accerlation of tunneling transitions (the round trip between the

lowest and highest energy) over the WL-MUCA. It was also shown that gREM produced a

correct canonical thermodynamics via reweighting at much smaller computational cost.

gREM was originally formulated in the constant volume ensemble in the benchmark

work for the Potts spin system. In this work, we extend gREM to the isobaric-isothermal
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ensemble to include volume fluctuation. We further apply gREM to the simulation of phase

transitions in several systems, including the adapted Dzugutov model systems, Lennard-

Jones fluids, and the coarsed-grained water bilayer confined in a slit nanopore. Through

these applications, we investigate a diversity of phase transitions associated with these sys-

tems, and thoroughly characterized the thermodynamic and structural properties of the pure

phase as well as the transition states (found in regions of metastable or unstable states in the

canonical ensemble). The enhanced sampling achieved in simulations of a variety of phase

transitions demonstrates the effectiveness of gREM and provides valuable insights into the

phase behavior of these diverse systems.
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Chapter 2

Methodology

2.1 Generalized Replica Exchange Method at constant volume

The generalized Replica Exchange Method (gREM) [34] combines generalized ensembles

with replica exchanges in order to provide enhanced sampling in the vicinity of a strong

phase transition.

Near the phase change region, the energy distribution, Pα(E), becomes bimodal due

to a large energy or volume gap separating two phases, where α denotes a replica index.

Sampling unstable or metastable, phase-mixed configurations becomes a rare event due to a

large free energy barrier. The fundamental idea of gREM is to systematically design a set of

generalized ensembles, Wα(E), so that unstable or metastable enthalpy states corresponding

to the phase change region are transformed into stable ones, resulting in a unimodal Pα(E).

In the most general case, the energy distribution associated with Wα is determined as

Pα(E) = Ω(E)Wα(E) (2.1)

where Ω(E) is the density of states in energy. By defining entropy, S(E) = lnΩ(E) (kB = 1),

analogous to the entropy in the microcanonical ensemble, Eq.(2.1) further transforms into

exp{S(E)−wα(E)} = exp{−βFα(E)}, Fα(E) being the generalized free energy density and

wα = − lnWα being the generalized effective potential. The generalized partition function

is obtained as Zα(β) =
∫

dEe−βFα(E).

The key quantity in gREM is the effective temperature in the generalized ensemble,

Tα(E;λα) = [∂wα/∂E]−1, which completely determines the generalized sampling weight up

to a constant through the inverse mapping relation

lnWα(E) = −

∫ E 1

Tα(E′;λα)
dE′ (2.2)
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where λα is a set of parameters characterizing the effective temperature. It is possible to

identify conditions for the effective temperature ensuring that the underlying unstable state

will be transformed into the stable energy state with a unimodal probability density function

(PDF), Pα(E).

A necessary and sufficient condition on Tα(E;λα) is derived by identifying an extremum,

E∗
α, of a generalized free energy density, βFα(E) = wα(E) − S(E),

Tα(E
∗
α;λα) = TS(E

∗
α) = T ∗

α, (2.3)

where TS(E) = [∂S/∂E]−1 is the statistical temperature in energy analogous to the statisti-

cal temperature in the microcanonical ensemble and E∗
α is the crossing point between Tα(E)

and TS(E). By identifying a stability condition

βF ′′
α(E

∗
α) = (γS − γα)/T

∗
α
2, (2.4)

where γS = T ′
S(E

∗
α), γα = T ′

α(E
∗
α), and the prime denotes differentiation with respect to

E, we find that a unimodal PDF can arise about the unique crossing point, E∗
α, between

TS(E) and Tα(E;λα), subject to the condition that γα(E
∗
α) < γS(E

∗
α). A schematic plot of

the effective temperatures that form unique crossing points with the statistical temperature

with the backbending behavior across the transition region is shown in Fig. 2.1.

In gREM, exchange between neighboring replicas is performed in which replicas rep-

resent noncanonical ensembles characterized by the effective temperature Tα(E;λα)(α =

1, 2, ...,M). As the parameter λα varies, Tα(E;λα) covers a range of temperature between

T1 and TM , T1 and TM being the lowest and highest temperature. Based on the one-to-one

correspondence, the sampling weight Wα(E,λα) is completely determined by the inverse

mapping in Eq. (2.2).

The simplest parameterization scheme for forming stable crossing points between the

effective temperature, Tα(E;λα), and the statistical temperature, TS(E), is to align linear
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T
S
(E

)

E

Figure 2.1: The black solid curve is a schematic plot of the statistical temperature,
TS(E), with a backbending region. The set of parallel dashed lines represent the
linear effective temperatures of gREM.

effective temperatures in parallel with the constant slope, γ, as

Tα(E;λα) = λα + γ(E − E0), (2.5)

the control parameter λα being the T -intercept at an arbitrarily chosen E0. To form the

unique stable crossing point E∗
α in each replica, γ must be less than the minimum slope

γmin
S , γmin

S = min{T ′
S(E)} being the minimum slope of TS(E) for the sampled energy region.

Since TS(E) is monotonically increasing except for the phase change region, in most cases

a proper γ is easily guessed from the approximate TS(E) by connecting a few points of

[Ẽ(T ), T ], Ẽ(T ) being an average energy of a short canonical run at T . For example, γ can

be simply chosen as γ = (TM − T1)/(Ẽ1 − ẼM ), T1 and TM being the lowest and highest

temperature, and Ẽα = Ẽ(Tα).

Once γ is fixed, the dynamic range of λα is determined to cover the interesting temper-

ature range between T1 and TM as λ1 = T1 and λM = TM − γ(ẼM − Ẽ1), with E0 = Ẽ1.

The first and Mth effective temperatures are chosen to cross [Ẽ1, T1] and [ẼM , TM ], respec-
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tively. The intermediate values of λα (1 < α < M) are determined by equally dividing the

parameter space as

λα = λ1 + (α− 1)∆λ (2.6)

and ∆λ = (λM − λ1)/(M − 1).

The linear effective temperature of Eq. (2.5) produces the generalized sampling weights

as

Wα(E;λα) ∼ [λα + γ(E − E0)]
−1/γ . (2.7)

Detailed simulation protocols of the gREM are defined by the following three steps.

(i) Perform short canonical runs at several temperatures between T1 and TM to determine

the data set, [Ẽα, Tα]. Select a proper γ to be less than the minimum slope of the statistical

temperature TS , and determine λα by employing Eq.(2.6) between λ1 = T1 and λM =

TM − γ(ẼM − Ẽ1), with E0 = Ẽ1.

(ii) Run the gREM simulation in each replica by making Monte Carlo trial moves in

configuration space with the acceptance probability

Aintra(x → x
′) = min[1, ewα(E)−wα(E′)], (2.8)

where the effective potential wα(E) = −lnWα, Wα being the sampling weight.

A Monte Carlo trial move consists of an attempted single particle displacement. For

constant pressure ensemble, the volume move is also performed after N trial single particle

displacements are made, where N equals the number of particles.

After all replicas finished N attempted single particle displacements and a trial volume

move, attempt a replica exchange between neighboring replicas with the acceptance

Ainter(α;xx
′) = min [1, exp(∆α)] , (2.9)

with ∆α = wα+1(E
′)− wα+1(E) + wα(E)− wα(E

′).
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(iii) Once a sufficiently long production run has been performed, calculate the entropy es-

timate S̃(E) by joining multiple generalized ensemble runs via the weighted histogram anal-

ysis method (WHAM) [35] or statistical temperature weighted histogram analysis method

(ST-WHAM) [36].

2.2 Generalized Replica Exchange Method at constant pressure

To incorporate volume fluctuations in the simulation of solid-liquid phase change, we extend

the gREM to the isothermal-isobaric ensemble. In contrast to the constant volume ensemble

where the internal energy, E, of the system is a natural dynamic variable at the fixed volume

V , the enthalpy H = E + PV , which describes the thermal energy change when a process

occurs at constant pressure, P , becomes the key dynamical variable in the constant pressure

ensemble.

We focus on the density of states Ω(H;P ) as a function of the enthapy as

Ω(H;P ) =

∫

dV

∫

d3rδ[H − (E + PV )], (2.10)

with the entropy S(H;P ) = kB lnΩ(H;P ). We apply the inverse mapping strategy to design

optimal Tsallis weights Wα(H;λα) from the effective temperature Tα(E) = λα+γ(H−H0) in

the two-dimensional (H,T ) plane. With a proper choice of γ, Tα(E) will form stable crossing

points with TS(E) at H∗
α, Tα(H

∗
α) = TS(H

∗
α) = T ∗

α, allowing direct access to metastable and

unstable states in the phase transition region.

2.3 Statistical Temperature Weighted Histogram Analysis Method (ST-

WHAM)

Since each replica in gREM samples a configurational space with the non-canonical sampling

weight, all simulation results should be combined to estimate correct canonical averages via

a reweighting. The Statistical Temperature Weighted Histogram Analysis Method (ST-
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WHAM) [36, 37, 38] is utilized to combine multiple generalized ensemble runs to determine

the entropy estimate. Once the entropy is determined, all canonical thermodynamic aver-

ages are determined for any temperature by the reweighting technique. Contrary to the

conventional Weighted Histogram Analysis Method (WHAM) [35], ST-WHAM does not re-

quire an iterative process to determine relevant partition functions, and directly determines

the inverse statistical temperature estimate, βS(E) = 1/TS(E), by utilizing the sampling

weights used in the gREM simulations, Wα(E), and associated histograms of energy, hα(E),

which are the results of gREM simulations.

The entropy estimate S(E) or corresponding density of states estimate is computed from

a numerical integration of βS(E) = ∂S(E)/∂E, enabling a substantial acceleration of the

data analysis without loss in accuracy. The ST-WHAM estimate for the inverse statistical

temperature is obtained as

βS =
∑

α

fα(E)

(

∂lnhα
∂E

−
∂lnWα

∂E

)

, (2.11)

where hα(E) is the energy histogram in replica α, fα(E) = hα(E)/
∑

α hα(E) is the simu-

lated histogram fraction. Due to the rapid variation of βS for small E a direct integration

of βS is not desirable so we first approximate the statistical temperature TS(E) on equally

spaced energy grids, allowing a piecewise analytical integration [36]. All canonical thermo-

dynamic properties are completely determined from the calculated S(E).

The Helmholtz free energy density at a given temperature T is calculated by FT (E) =

E−TS(E) and the reweighted probability density function is given by PT (E) = e−FT (E)/T =

eS(E)−E/T . The canonical expectation value for any quantity is computed as

〈A(T )〉 =

∫

dEeS(E)−βEA(E)
∫

dEeS(E)−βE
, (2.12)
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and the canonical heat capacity is estimated through the energy fluctuation as

C(T ) =
〈E(T )2〉 − 〈E(T )〉2

kBT 2
. (2.13)

If the constant pressure ensemble is used instead of the constant volume ensemble, the

natural dynamical variable is replaced by the enthalpy instead of energy in all the equations

shown above for ST-WHAM.
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Chapter 3

Exploring the solid-liquid phase change of an adapted

Dzugutov model using generalized Replica Exchange Method

3.1 Introduction

We apply gREM to explore the phase change properties of an adapted Dzutugov model

system. This is a one-component system with a model metallic pair potential and is kown to

be an ideal glass former that avoids crystallization at any cooling rate [39, 40]. The molecular

dynamics simulation performed by Elenius and Dzugutov [40] reported a polyamorphous

phase transition from a liquid to a phase with a mesoscopic-range order similar to that of a

smectic liquid crystal and the rate of structural relaxation characteristic of the glassy state.

In this chapter, we test the effectiveness of gREM for achieving enhanced sampling while

exploring thermodynamic changes and structural transformations associated with the phase

change in the adapted Dzugutov model system1.

3.2 Methods

3.2.1 Simple monatomic Dzugutov model

We apply gREM to study the solid-liquid phase change properties of a single-component

system with an adapted Dzugutov potential (donoted as Z2) [39, 41]. The Z2 potential has

the form

V (r) = a
eαr

r3
cos(2kF r) + b(

σ

r
)n + V0 (3.1)

for r < rc and 0 otherwise. We use the position of the third minimum in the function as our

cutoff distance, rc, and V0 is defined through the equation V (rc) = 0. V0 acts to shift the

1Much of the material presented in this chapter appears in Q. Lu, J. Kim and J. E. Straub,
Journal of Physical Chemistry B, 116, 8654 (2012)
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Table 3.1: Values of the parameters for the Z2 potential.

a α kF b σ n rc V0

1.04 0.33 4.139 4.2× 106 0.348 14.5 2.64488 0.13391543

potential so that it vanishes at the third minimum, thus making the function and its first

derivative continuous at the cutoff. The potential is plotted in Fig. 3.1 together with the

Lennard-Jones potential, and the values of the parameters for the potential [41, 40] are given

in Table 3.1. We use a system of 500 identical particles and set the pressure to be P = 0.40

for all replicas in order to simulate the NPT ensemble rather than NVT ensemble explored

previously for this model system [39]. Using constant pressure simulation in the vicinity

of a phase change, the system is free to transform completely into the state of lowest free

energy, which may not be achieved in constant volume simulation. All simulation results are

expressed in reduced units of length and energy which are defined by the Z2 pair potential,

the main repulsive part of which closely approximates that of the Lennard-Jones potential.

Considering the Lennard-Jones potential as a model potential of argon, and the mass of the

argon atom as the unit of mass, the reduced units of length and energy can be estimated as

0.34 nm and 0.238 kcal/mol [40].

The Z2 potential was designed to imitate effective interionic interactions in liquid metals

with characteristic Friedel oscillations [42, 43]. The first term in the potential has a form

similar to that expected for the effective interaction between metal ions screened by electrons.

Friedel oscillations are present with wave vector 2kF , where kF corresponds to the wave

vector at the Fermi level. The second term adds a repulsive interaction that suppresses

the oscillations at small r. The potential has been found to induce a pronounced local

icosahedral ordering of the nearest neighbors due to the design of its short-range attraction,

while the repulsion incorporated in the longer-range interaction inhibits bulk packing of

icosahedra.
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Figure 3.1: The Z2 potential (Ref. 22,23) used in this study (solid line) compared
to the Lennard-Jones potential (dashed line). Plotted after Fig. 1 in Ref. 23.

3.2.2 Measuring the sampling convergence using the ergodic measure

The energy metric is a convenient quantity to assess the time intervals needed for effective

ergodicity to be established by following the dynamics of a system using two distinct initial

conditions [44]. The energy metric d(t) is defined in terms of time averages of energies of

individual particles. The time-averaged potential energy of particle j over a trajectory is

computed as

ej(t) =
1

t

∫ t

0
Ej(s)ds (3.2)

where Ej(s) is the energy of particle j at time s on the trajectory. Because the potential

energy in this study is pairwise additive, Ej(s) is one-half of the sum of all potential-energy

terms involving particle j. Two independent initial states of the system are chosen, and

these are labeled a and b. The energy metric, d(t), is given by the square of the energy
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difference between the energy averages of the particles over the two trajectories, namely,

d(t) =
1

N

N
∑

j=1

[eja(t)− ejb(t)]
2 (3.3)

where the sum runs over all N particles of the system. For an ergodic system, we expect

that limt→τ [eja(t) − ejb(t)] → 0 for each particle j. This is because the time averages for

the system reach their equilibrium values in a time τ independent of any initial condition.

In practice, an acceptable estimate for τ is obtained by determining when d(τ)/d(0) = 0.01

is satisfied [44].

The behavior of d(t) for times greater than a transient time tI is characterized by a

single parameter, DE , "diffusion constant” associated with the rate of exploration of phase

space. The decay of d(t) for t > tI has been shown to obey the dynamical scaling form

d(t) = d(0)f(tDE) (3.4)

where

f(x) =











1 x → 0

1/x x ≫ 1

The reciprocal of DE is roughly the time required for effective ergodicity to be obtained.

To apply the ergodic measure in the replica exchange method, one must compute the

measure for each replica separately, because the replicas are at different temperatures and the

sampling speeds will, in general, depend on temperature or underlying generalized ensemble.

Two independent initial states are given to each replica α = 1, ...,M , and the two trajectories

(a, α) and (b, α) are generated. The energy metric for replica α is computed as

dα(t) =
1

N

N
∑

j=1

[eαja(t)− eαjb(t)]
2 (3.5)
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where eαja is the time averaged energy of particle j, computed using Eq. (3.2), and the

superscript α indicates replica α.

3.2.3 Probing structure change using pair distribution functions

The radial distribution function is computed from the simulation trajectories as

g(r) =
1

ρ0N

〈

∑

i=1

∑

j 6=i

δ(r − rij)
〉

(3.6)

where ρ0 is the bulk density, rij is the distance between atom i and j , and 〈· · · 〉 denotes an

ensemble average.

Let us denote the first minimum of g(r) as r1. The coordination number, which is the

average number of neighbors, CN , up to a distance r1, can be computed as [45]

CN = 4πρ0

∫ r1

0
r2g(r)dr (3.7)

as the area under the first peak of r2g(r) is proportional to the number of particles in the

first coordination shell.

The static structure factor S(Q) is related to a Fourier transform of the radial distribu-

tion function g(r) [46, 47] according to

S(Q) = 1 + 4πρ0

∫ L

0
r2

(

sin(Qr)

Qr

)

[g(r) − 1]dr (3.8)

The wave vector Q is defined as Q = 2πk/L, where k is an integer that ranges from 1 to

N, N is the total number of particles, and L is the length of periodic boundary box. S(Q)

provides a measure of the correlation length of the density fluctuations.
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3.2.4 Identifying structural symmetry through bond orientational order

parameters

Bond orientational order parameters [48, 49, 50] based on spherical harmonics, also known

as Steinhardt order parameters, are often used to determine crystal structures in molecular

simulations. In computational studies of crystallization from an undercooled liquid, one

must distinguish particles that are part of the crystal from those that belong to the liquid.

Ideally, such an assignment is based on the local environment of the particles only. One

method, which is independent of the specific crystal structure and does not require the

definition of a reference frame, is provided by the following algorithm based on spherical

harmonics.

The complex vector qlm(i) of particle i is defined as qlm(i) = 1
Nb(i)

∑Nb(i)
j=1 Ylm(rij), where,

Nb(i) is the number of nearest neighbors of particle i,the functions Ylm(rij) are the spherical

harmonics, and rij is the vector from particle i to particle j. To make the order parameters

invariant with respect to rotations of the reference frame, the third-order invariants are

defined as

wl(i) =
∑

m1+m2+m3=0







l l l

m1 m2 m3






qlm1

(i)qlm2
(i)qlm3

(i) (3.9)

where the coefficients (· · · ) are the Wigner 3j symbols. We refer to the normalized quantity

ŵl ≡
wl

(

∑

m |qlm|2
)3/2

. (3.10)

Using this approach, one can determine the type of crystalline structure occuring around

each individual particle.
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3.3 Results and Discussion

3.3.1 Effective temperatures and generalized ensemble distributions

To determine the dynamic range of λα and the optimal value of γ we first performed short

canonical Monte Carlo simulations for 2×104 MC sweeps (MCS), at T1 = 0.3 and TM = 0.6,

which determine H̃1 = −0.7157 and H̃M = 2.0128. One MC sweep includes N trial moves,

N is the number of particles, and M is the total number of replicas (M = 31). The value

of γ is computed as γ = (TM − T1)/(H̃1 − H̃M) ≈ −0.11. Setting H0 = H̃1 in Eq. (2.5), the

dynamic range of λα, between λ1 = T1 and λM = TM − γ(H̃M − H̃1), depends on γ. For

γ = −0.11, λ1 ≈ 0.30 and λM ≈ 0.72.

The generalized sampling weights can be determined by Eq. (2.7) once the parameters γ

and λα are known. Replica exchanges were attempted after every replica completed one MC

sweep. Resulting effective temperatures (solid lines) in 3.2(a) were chosen to fully span the

phase change region. For comparison, we also plot the exact TS(H), which was determined

by the statistical temperature weighted histogram analysis method (ST-WHAM) [36]. All

relevant parameters in the gREM have been chosen based on short canonical runs at T1 and

TM and full knowledge of TS(H) is not necessary.

Since Tα(H;λα) was designed to form a unique, stable crossing point, H∗
α, with TS(H),

the resulting generalized probability distribution functions (GPDFs) in 3.2(b) are rapidly

localized around a given H∗
α with a Gaussian shape, and naturally bridge between ordered

and disordered phases with unimodal energy distributions across the change region. Since

Pα(H) is sharply peaked at H∗
α, T (H∗

α;λα) = TS(H
∗
α), the set of most probable energies,

[H∗
α, T

∗
α ], asymptotically converges toward a locus of TS(H). Indeed, the profile of [H∗

α, T
∗
α ]

shows a perfect coincidence with TS(H) determined by ST-WHAM, and exactly corresponds

to crossing points between TS(H) and Tα(H;λα) in 3.2(a). For convenience, the most

probable energy H∗
α was approximated by the average energy summed over the αth replica.

For each individual replica, the enthalpy distribution function Pα(H) has a single peak
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around H∗
α with a Gaussian shape.

Figure 3.2: (a) Most probable energy set [H∗
α, T

∗
α] (red squares) determined by

gREM for 107 MCS, and statistical temperature TS(H) (black solid line). Here H∗
α

is the average enthalpy of replica α and T ∗
α is the effective temperature. The parallel

dashed lines represent T (H ;λα) linear effective temperatures of replica α. (b) Prob-
ability distribution functions Pα(H). In both (a) and (b), α = 1, 6, 11, 16, 21, 27, 31
from left to right. Same colors are applied for the same simulations in both panels.

3.3.2 Sampling speed evaluated using the ergodic measure

We have demonstrated the effectiveness of gREM to achieve comprehensive sampling. In this

section we examine the sampling efficiency of gREM compared with traditional tREM using
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ergodic measure to quantify the sampling speed and rate of convergence of thermodynamic

averages.

The energy metric and reciprocal metric are computed using Eqs. (3.2) and (3.3) by

following two sets of energy trajectories with two independent initial conditions. As stated

earlier, the energy metric for an ergodic system is expected to behave as d(t)
d(0) =

1
DEt so that

reciprocal metric scales as d(0)
d(t) = DEt. The diffusion constant, DE , measures the sampling

speed in phase space. Our results in Fig. 3.3 confirm that the reciprocal metric is a linear

function of time for both tREM and gREM, and the slope of the reciprocal metric of gREM,

which gives the diffusion constant DE , is nearly two times greater than that of tREM.

Figure 3.3: Energy metric d(t)/d(0) and reciprocal metric d(0)/d(t) of tREM (black
dash line) and gREM (red solid line) are shown for the 17th replica. The simulation
time t is scaled by τ , the equilibrium time step, which equals to 3× 104 MC sweeps.

We computed the diffusion constants DE(α) of all replicas (α = 1, ...,M) for tREM

and gREM. In tREM, temperature of αth replica is Tα = T1 + (α − 1)∆T , where ∆T =

(TM − T1)/(M − 1), T1 and TM being the lowest and highest temperature. In gREM,
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the most probable effective temperature T ∗
α was computed by Eq. (2.5) as Tα(H;λα) =

λα + γ(H∗
α −H0), where the most probable enthalpy H∗

α was approximated by the average

enthalpy summed over the αth replica. As the DE and temperature of each replica are

known, we can plot DE against the temperature at that replica. Fig. 3.4 presents the

DE of tREM and gREM as a function of temperature within T=[0.3,0.55]. Similar results

were observed for gREM and tREM. At low temperatures T = [0.3, 0.45], DE stays at

a low value when temperature increases. Once temperature goes beyond T = 0.47, DE

begins to increase dramatically. There is a three order of magnitude difference between the

diffusion constant DE of the lowest and highest temperature. This indicates that the system

undergoes a phase change from liquid to amorphous solid upon cooling from T = 0.6 to 0.3.

Note that the reciprocal of DE in Fig. 3.4 also provides an estimated time scale for each

replica to reach effective ergodicity.

Figure 3.4: The temperature variation of diffusion constant DE for both gREM
(red) and tREM (black). The vertical arrow indicates the melting temperature.
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3.3.3 Investigation of liquid-solid phase change

The thermodynamic phase change and phase change temperature were investigated, struc-

turally by calculating the radial distribution function, and thermodynamically by computing

the temperature variation of the specific heat.

The radial distribution function g(r) is an appropriate tool to describe the short-range

order in a monatomic liquid, providing the probability density of finding two atoms in the

liquid at a separation r. The computed g(r) of the liquid displays a prominent first peak

centered at the nearest-neighbor spacing in the crystalline solid indicating the existence of

substantial short-range order g(r). The short-range ordering decreases at high temperature

due to thermal fluctuation and increases at low temperature. As shown in Fig. 3.5 (a) from

the bottom to the top curve, the first peak of g(r) grows taller as temperature decreases.

The second and third peaks also become more visible as temperature drops. Meanwhile, the

location of each peak remains the same regardless of the temperature. It is worthwhile to

point out that even at the lowest temperature T=0.3, g(r) shows characteristics of the liquid

state. In the crystalline state, g(r) has an infinite number of sharp peaks whose separations

and heights are characteristic of the lattice structure. In the liquid state, the second peak

is less prominent and the third peak is hardly visible in g(r), indicating a lack of long-range

order. Correlations in particle positions rapidly die out in a liquid and g(r) approaches unity

over a distance of a few particle diameters.

The static structure factor S(Q) can be computed through the Fourier transform of the

radial distribution function g(r) by Eq. (3.8). Fig. 3.5 (b) presents the results of S(Q)

showing that at all temperatures S(Q) has a nearest neighbor peak located around Q ≈ 2π.

Below the location of the nearest neighbor peak, there is an additional low-Q prepeak, indi-

cating the formation of the clustering and the resulting residual repulsive interaction between

clusters. The presence of the low-Q prepeak in S(Q) at a finite wavevector, highlights the

presence of an additional characteristic length scale in this system[51]. Under cooling, the

height of the prepeak increases and the width becomes narrower. However, the similarity
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Figure 3.5: (a)Radial distribution function g(r) and (b) structure factor S(Q)at
four different temperatures as noted in (a), where r is distance and Q is wavevector.
The same color scheme is used for the same temperature in both (a) and (b).

of the curves indicates that we observe a phase change between two similarly structured

phases.

The coordination number (CN) measures the average number of nearest neighbors, and

reflects the degree of short-range order in a system. Fig. 3.6 shows the temperature variation
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of the coordination number, which shows a gradual decrease as the temperature increases. At

low temperature T = 0.3, CN ≈ 10 indicating that on average each particle has 10 nearest

neighbors. The short-range ordering is characteristic of the solid state, but as discussed

earlier, the steady decay of g(r) to unity at large distances indicates the lack of long-range

ordering. The nature of the low temperature state is determined to be an amorphous solid

state. As temperature increases, CN drops dramatically, reflecting the system is melting

near a characteristic temperature around T = 0.47.

Figure 3.6: Temperature variation of coordination number (CN) and specific heat
(Cp) near the phase change temperature in black and red lines respectively.

The temperature variation of the specific heat at constant pressure, Cp, is also shown in

Fig. 3.6, displays a pronounced maximum at T = 0.47. The appearance of excess specific

heat under cooling is an indication of the development of bonded structure, and a common

precursor of bond percolation [42, 43]. The maximum of Cp, as well as the low-Q prepeak

of S(Q), is commonly observed in the context of gelation in colloidal systems [52, 51].
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The maximum temperature Tm = 0.47 is in agreement with the phase change temperature

derived from the coordination number.

3.3.4 Assessing icosahedral cluster formation using bond order parame-

ters

Figure 3.7: The number of particles showing local icosahedral structure NIh scaled
by the total number of particles (N) in the system as a function of temperature
between T=[0.3,0.6]. The error bars are defined as the standard deviation from 9 sets
of independent results.

Bond-orientational order parameters were computed to determine the nature of the local

symmetry underlying the local order observed at low temperatures. The four bond order

parameters q4, q6, ŵ4 and ŵ6 are generally sufficient to identify crystal structures reflecting

fcc,bcc,hcp and Ih (icosahedra) structure. We focus on icosahedral local ordering which is a

pronounced feature of this adpated Dzugutov model system. Local icosahedral ordering is

characterized by large negative values of ŵ6, up to ŵ6 = −0.1675 for a perfect icosahedron

[48].

The value of ŵ6 for each individual particle is computed using Eq. (3.9). If ŵ6 ≤ −0.165,
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Figure 3.8: The distribution of bond order parameter ŵ6 at four temperatures
T=0.3, 0.4, 0.5, 0.6, (a, b, c, d) respectively. The red dashed line is the reference
value of ŵ6 for the ideal icosahedral symmetry.

the particle is counted as icosahedrally ordered, and its nearest neighbors within a cutoff

radius of 1.5 are also included in the icosahedral cluster. In Fig. 3.7 we present the computed

temperature variation in the number of icosahedrally coordinated particles, NIh, scaled by

system size N . The value of NIh/N remains almost temperature independent for T > 0.5,

and grows rapidly with cooling below T = 0.47, which is also the location of the maximum

in the the specfic heat, Cp. This phase change temperature is coincident with the bond

percolation threshold, where the bonds are defined between pairs of atoms that are nearest

neighbors in icosahedral clusters. At low temperature T = 0.3, nearly 50% of the particles

belong to icosahedral clusters.

Fig. 3.8 shows the distributions of ŵ6 at four temperatures across the phase change

range. The reference value for ideal icosahedral ordering is plotted as a red dashed line. At
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T1 = 0.3, ŵ6 has a sharp and narrow peak located close to the reference value, indicating

that a large percentage of particles have icosahedral local ordering. At T2 = 0.4, the peak of

the ŵ6 distribution remains close to the reference value, but the distribution becomes wider.

Increasing the temperature further to T3 = 0.5 and T4 = 0.6, the icosahedral symmetry is

mostly absent.

Figure 3.9: Four respresentative configurations at four temperatures T=0.3, 0.4,
0.5, 0.6, (a, b, c, d) respectively. The icosehedral clusters are marked in red and the
nonicosahedral particles are marked in gray. The cutoff distance for a bond is 1.5.
Note that the size of each plot does not represent the real volume at that temperature.

Insight into the structral transformation from solid to liquid is provided by direct in-

spection of the atomic configurations. Fig. 3.9 depicts four configurations at T1 = 0.3 to

T4 = 0.6. At T1 the connected icosahedral clusters occupy a large percentage of the vol-

ume. At T2 = 0.4, the number of icosahedral clusters is diminished and the icosahedra are

scattered and disjoint. When T3 = 0.5, the number of icosahedral clusters is further dimin-

ished. As temperature increases to T4 = 0.6, the icoshedral ordering is found to be absent
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in the high temperature liquid state. These results are consistent with earlier observations

regarding the evolution of icosahedral order in this system under cooling (see Fig. 3.7).

3.4 Conclusion

The applicability of the generalized Replica Exchange Method (gREM) has been demon-

strated in an adapted Dzugutov model system. By combining optimally parameterized gen-

eralized ensemble sampling with the replica exchange protocol, the gREM provides effective

sampling across the phase change region through succesive unimodal energy distributions.

The ergodic measure comparison between gREM and tREM reveals the advantage of gREM

in achieving effective conformational sampling across the phase change region. The diffu-

sion constant computed by the ergodic measure shows a three order of magnitude difference

between the highest and lowest temperature state, indicating that the system undergoes a

liquid to amorphous solid phase transition upon cooling. The temperature evolution of the

radial distribution function and structure factor demonstrates that the low temperature state

is not a crystalline solid, but rather an amorphous solid possessing short-range icosahedral

order. The phase change temperature was determined to be T = 0.47 through evaluation of

the temperature variation of the coordination number and specific heat through the solid-

liquid phase change. The growth of icosahedral clustering under cooling is observed and

quantified with the aid of bond order parameters.

Our results indicate that the solid states of lowest free energy for the range of pres-

sures studied have an amorphous character and lack long-range translational symmetry

characteristic of an ordered solid. The adapted Dzugatov potential imposes characteristic

length-scales that will be reflected in a structured liquid or solid, including the core particle

size (dictated by the repulsive potential), the position of the first minimum, and the distance

between the first and second potential minimum (or intervening maxima) resulting from the

potential oscillations. The solid state is characterized by the formation of iscoahedral clus-

ters, the size of which is largely determined by the core particle size and position of the first
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potential minima. These "super-particles" are then found to arrange themselves on a lattice

geometry, where the distance between lattice sites will be determined by the interactions

between superparticles. Depending on the relation between the positions of second and

third minima and maxima and the overall icosahedral superparticle size, the interactions

may be stabilized or result in frustration. With the parameterization of the adapted Dzu-

gatov model studied in this work, which was tailored to prevent crystallization [41], these

competing lengthscales lead to frustration that disrupts long-range order. Optimization of

these interactions and parameters could potentially lead to a thermodynamically stable solid

state exhibiting long-range translational order, as well as a stronger and more cooperative

transition between the liquid and solid states.

The absence of a substantial difference in the measured rate of conformational sampling

for gREM as opposed to tREM results from the modest nature of the solid-liquid phase

change in this system and the absence of a substantial energy gap. As a result, the distri-

bution of states in energy or enthalpy is relatively continuous for temperature replicas as

well as for the generalized energy distributions. The gradual nature of this phase change

is in part due to the amorphous nature of the observed solid state which lacks long range

translational order. More dramatic enhancements in sampling using the gREM protocol can

be expected for systems demonstrating stronger phase transitions with a more substantial

energy gap and a range of unstable states in the canonical ensemble.
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Chapter 4

Order parameter free enhanced sampling of the vapor-liquid

transition using the generalized Replica Exchange Method

4.1 Introduction

Application to the study of an adapted Dzutugov model explored the effectiveness of gREM

in sampling a solid-liquid phase transition [53]. In this work, gREM is used to study the

vapor-liquid phase transition in Lennard-Jones fluids, which has been the subject of extensive

studies [54, 55, 56, 57, 58, 59].

Originally, gREM was formulated at constant volume where the internal energy of the

system is a natural dynamical variable. However, in most vapor-liquid transition experiments

the pressure, or, equivalently, the chemical potential of the vapor, is held constant [60, 61, 62].

Approaches informed by classical nucleation theory (CNT) usually consider the formation

and growth of a liquid droplet at constant pressure [63, 64, 65]. In this work, gREM is

extended to the constant pressure constraint as an essential step for the effective simulation

of the vapor-liquid transition.

In a standard NPT ensemble the liquid cluster cannot coexist stably in the vapor phase.

The liquid cluster that is bigger than the critical size will grow in order to minimize the

excess free energy, while the cluster that is smaller than the critical size will shrink, in

order to lower the excess free energy. Ten Wolde and Frenkel [60, 66] used a biased Monte

Carlo (“umbrella sampling") approach to stabilize large droplets. Schrader, Virnau and

Binder [67] used the successive umbrella sampling to observe the liquid droplets coexisting

in stable thermal equilibrium with supersaturated vapor at a range of densities. While

these methods are successful in probing metastable states associated with the liquid-vapor

transition, they rely on the identification of a “good" order parameter for the transition,
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to exploit in the application of biased sampling, which can be difficult to identify in more

complex systems [68].

The gREM approach allows effective sampling of metastable and unstable states in the

vapor-liquid coexistence states, independent of knowledge of an effective order parameter for

the transition. In a gREM simulation, each stage of the phase transition can be stabilized,

including the formation of a liquid droplet, the growth of a liquid cluster, and vanishing of

the vapor phase. Recently, a crossover from a purely nucleation-controlled processes to a

spinodal decomposition was predicted for LJ fluids in a deeply supercooled regime [69, 70].

Since we are able to observe the whole transition process through gREM simulation, we can

effectively assess the mechanism of the vapor-liquid phase transition at various conditions1.

4.2 Lennard-Jones fluid

We study the vapor-liquid phase transition in a Lennard-Jones system [71] in which the

interaction potential was truncated and shifted at a cutoff radius rc = 2.5σ, where σ is the

particle diameter. The energy of interaction ϕ between any two particles separated by a

distance r is given by

ϕ(r) =











ϕLJ(r)− ϕLJ(rc) r < rc

0 r ≥ rc

where ϕLJ(r) = 4ǫ(σ12/r12 −σ6/r6) is the full LJ interaction, ǫ and σ are the LJ well depth

and diameter, and rc = 2.5σ is the interaction cutoff separation. We made no long-range

corrections and applied cubic periodic boundary conditions. The Lennard-Jones parameters

were used to reduce all the variables including the temperature, T ∗ = Tk/ǫ, enthalpy,

H∗ = H/ǫ and density, ρ∗ = ρσ3. The numerical values for argon are σ = 0.3405 nm,

ǫ = 119.8 K.
1Much of the material presented in this chapter appears in Q. Lu, J. Kim and J. E. Straub,

Journal of Chemical Physics, 1382, 104119 (2013)



32

gREM simulations were carried out for systems at seven pressures and with two different

sizes, 250 and 1000 particles. For the simulations of N = 1000 and N = 250 systems, 99

replicas are used, and the other parameters are in Table 4.1 and 4.2.

Table 4.1: Parameters in the gREM simulation for N=250 system

Pressure H0 λ1 λM γ0(×10−3)
0.0078 -1224.0 0.7 6.4 -3.8765
0.016 -1223.1 0.7 4.5 -2.5998
0.03 -1217.1 0.7 2.8 -1.3225
0.04 -1218.6 0.7 5.1 -2.9046
0.06 -1214.9 0.7 1.7 -3.6717
0.08 -1209.7 0.7 1.7 -3.8646
0.096 -1208.7 0.7 1.7 -4.0646

Table 4.2: Parameters in the gREM simulation for N=1000 system

Pressure H0 λ1 λM γ0(×10−4)
0.0078 -4891.0 0.7 6.4 -9.6976
0.016 -4884.9 0.7 2.9 -3.6221
0.03 -4877.2 0.7 2.8 -3.3001
0.04 -4874.3 0.7 1.9 -1.4536
0.06 -4853.6 0.7 1.7 -9.1983
0.08 -4842.5 0.7 1.7 -9.6842
0.096 -4829.7 0.7 1.7 -1.0187

4.3 Results and Discussion

4.3.1 Sampling effectiveness

A comparative study was performed between gREM and tREM simulations in order to ex-

plore the difference in sampling effectiveness. The simulations were performed at pressure

P = 0.04 for a system with 250 particles, and number of replicas M = 99 in both tREM

and gREM simulations. For tREM, the temperature of each replica was equally allocated
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between the lowest and highest temperature T1 = 0.7 and TM = 1.1. The effective tempera-

ture of gREM obeys Tα(H) = λα+γ(H−H0). The parameters in the effective temperature

are H0 = −1218.6, λ1 = 0.7, λM = 5.1 and γ0 = −0.0029046.

In the strong first order phase transition, the statistical temperature TS(H) exhibits a

negative slope, the so-called backbending or S-loop. Instead of using canonical tempera-

tures, gREM uses effective temperatures in order to form unique stable crossing points with

the statistical temperature, TS . The linear effective temperatures of different replicas, Tα,

are aligned in parallel with a constant slope γ, which is less than the slope of TS in the

backbending region. As a result, unique crossing points are formed between Tα and TS

throughout the enthalpy range of interest.
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Figure 4.1: (a) and (b) show the resulting generalized probablity distribution func-
tions (GPDF) of replica 1,11,· · ·91 and 99 sampled by tREM and gREM, respectively.
The enthalpy gap in tREM is marked in (a).

Since Tα(H;λα) was designed to form a unique, stable crossing point, H∗
α, with TS(H),

the resulting PDFs are sharply localized around H∗
α with a Gaussian shape in Fig. 4.1(b),

and naturally bridge the vapor and liquid phases with unimodal enthalpy distributions
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across the transition region. In contrast, the canonical enthalpy distributions of tREM are

effectively disjoint by an enthalpy gap corresponding to the latent heat between vapor and

liquid phases, which is displayed in PDFs in Fig. 4.1(a). As a side note, the actual overlaps

between enthalpy distributions of neighboring replicas are greater than what is observed in

Fig. 4.1, since only 10 out of 99 replicas are plotted in Fig. 4.1.

During the simulations, we kept track of the movement of replicas of both tREM and

gREM in the enthalpy space. Fig. 4.2 shows the trajectories of replica 61 and 14 of both

tREM and gREM. While the tREM trajectories sample two narrow ranges in enthalpy space,

the trajectories of gREM reach the lowest and highest boundaries and span the enthalpy

space. The tunneling transitions [72] in the two replicas and other replicas (not shown)

enable the mixing between the high and low enthalpy configurations. The gREM simulation

achieves comprehensive sampling in the phase transition region, while tREM fails because

of the intrinsic instability of canonical ensemble in the backbending region.

-5

-4

-3

-2

-1

 0

 1

E
nt

ha
lp

y/
N

(a)

-5

-4

-3

-2

-1

 0

 1

0 100 200 300 400 500 600 700

E
nt

ha
lp

y/
N

MC sweeps (103)

(b)

Figure 4.2: (a)The enthalpy trajectories of replica 14 in tREM (blue line) and gREM
(red line). (b) The enthalpy trajectories of replica 61 in tREM (blue line) and gREM
(red line).
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4.3.2 Vapor-liquid phase coexistence properties and phase diagram

gREM simulations were carried out for systems at seven pressures and with two different

sizes, 250 and 1000 particles, exploring temperatures as functions of enthalpy and density,

T (H) and T (ρ), and liquid-vapor coexistence points and spinodal points at each pressure.

The line of equilibrium coexistence of two phases in a one-component system corresponds

to equalities of the pressures, temperatures and the chemical potentials of the liquid and

vapor phases. At equilibrium, the Gibbs free energy difference, ∆G = (Hvap − Hliq) −

T
∫ vap

liq
dS = 0, Hvap and Hliq being the enthalpy of vapor and liquid phases at the coexistence

temperature. Given that the statistical temperature TS(H) = (∂H/∂S)N,P , integration

yields ∆S =
∫Hvap

Hliq
dH/TS(H). Therefore, the coexistence temperature must satisfy:

∆G

T
=

Hvap −Hliq

T
−

∫ Hvap

Hliq

dH

TS(H)
= 0. (4.1)

Eq.(4.1) is equivalent to the Maxwell equal area rule. The equilibrium temperatures on the

coexistence curve are determined through this method.

For the simulations of N = 1000 and N = 250 systems, 99 replicas are used, and the

other parameters are in Table 4.1 and 4.2. The critical temperature, Tc, and density, ρc, can

be obtained through fitting the coexistence points to Guggenheim-type equations [73, 1].

For N = 250 system, Tc = 1.0780 and ρc = 0.3198 and for N = 1000 system, Tc = 1.0730

and ρc = 0.3224. Vrabec et al. reported similar values as Tc = 1.0779 and ρc = 0.3190. The

coexistence and critical points of these three systems are shown in Fig. 4.4.

While crossing the phase coexistence of binodal curve, the system enters the metastable

phase, which retains its restorative reaction to small perturbations of density [55]. The

conditions of stability against this kind of perturbation is violated only when the system

reaches the spinodal, which is the locus of points surrounding the unstable region [74]. The

spinodal points can be simply identified by the maximum and minimum of the T (H) and

T (ρ) curves as shown in Fig. 4.3 (a) and (b). On T (ρ) curves, the regions enclosed by
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Figure 4.3: (a)Temperatures T (H) as functions of enthalpy at seven different pres-
sures for systems with 250 particles. The liquid-vapor coexistence temperature and
enthalpy points (TCE , HCE) are plotted as red filled circles. The black open squares
and triangles denote liquid and vapor spinodal points, respectively. (b) Temperatures
T (ρ) as functions of density at seven different pressures. Same colors and symbols
are used for the same simulations in both (a) and (b).

spinodal points have positive slopes which give the negative thermal expansion coefficients

as the characteristics of unstable phases.
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The degree of backbending in the T (H) curve gradually decreases as the pressure in-

creases. At some low pressures, like P1 = 0.0078, the transition region of T (H) displays

severe backbending. When the pressure reaches P7 = 0.096, which is close to the critical

pressure [75], the backbending is almost transformed into an inflection and the first order

phase transition becomes second-order, in agreement with the theoretical prediction for the

behavior at the critical point.
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Figure 4.4: The coexistence temperatures and densities of the N = 250 system
are plotted with red filled circles, and that of the N=1000 system is plotted as blue
squares. The critical temperature and density for N = 250 and N = 1000 system is
denoted by the red star and blue cross, respectively. The error bars for the present
simulations are smaller than the figure symbols. The critical and coexistence points
reported by Vrabec et al. [1] are in green filled triangles.

4.3.3 Thermodynamic properties calculated from ST-WHAM

We employed ST-WHAM to compute the entropy and subsequently the Gibbs free energy

for the system of 1000 particles. The temperature variation of Gibbs free energy per particle,

G(T )/N , at pressure P = 0.03 is shown in Fig. 4.5. The Gibbs function intersects itself at
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point D, which is the liquid-vapor coexisting point and the liquid and vapor phases are the

sections on the left and right side of point D, respectively. The liquid and vapor curves are

connected together through the intermediate states on the kink where the curvature changes

sign. Following Callen [76], we refer to the kink on the Gibbs function as the closed loop.

The discontinuity of the curvatures of liquid and vapor curves is the characteristic of a first

order phase transition.
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Figure 4.5: The temperature variation of Gibbs free energy per particle, G(T )/N ,
at pressure P = 0.03. The letters A−G denotes the states on the Gibbs function.

The closed loop results from the fact that enthalpy function, H(T ), is triple-valued in

T for the backbending regime. For a given temperature, three states are available to the

system, as, for example, the states designated by A, B and C. Among these three states,

state C is unstable to small fluctuations in density. A and B are stable, and the Gibbs

function is a local minimum. In generalized ensemble sampling, such as gREM simulation,

the metastable and unstable states like state B and C are transformed into stable states.

Similarly, the Gibbs function is tripled-valued at another temperature, where states E, F

and G, are stable, metastable and unstable states, respectively, in the canonical ensemble.

We have shown that backbending in T (H) curves decreases with the increasing pressure
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Figure 4.6: Behavior of the Gibbs free energy per particle, G(T )/N , as a function
of temperature at seven different pressures.

in Fig. 4.3. Because the closed loop in G(T )/N curves are the result of the backbending in

T (H), we expect the closed loop will shrink when the pressure increases. Fig. 4.6 presents

the evolution of the Gibbs function at seven different pressures. The closed loop is large at

the low pressures, becomes smaller with increasing pressure, and at P = 0.096 the closed

loop almost disappears. With the diminishment of the closed loop, the Gibbs functions of the

liquid and vapor phases are connected continuously, and the liquid-vapor phase transition

becomes a second order continuous phase transition.

4.3.4 Structural properties

It is known that nucleation and continuous phase transition are the two mechanisms that

control the first-order and second-order phase transitions, respectively. Direct inspection of

the atomic configurations will validate the statement. The configurations of the system at a

lower pressure, P3 = 0.03, and near the critical pressure, P7 = 0.096, are shown in Fig. 4.7

and Fig. 4.8, respectively. The vapor particles are marked in red and the liquid particles
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are in gray. Stillinger’s criterion [77] was used to determine whether a particle is liquid-like

or vapor-like, and the cutoff radius is rc = 1.5. The results presented in this section are for

systems with 1000 particles.

Figure 4.7: Configurations of 6 different states throughout the phase transition at
P3 = 0.03. The vapor particles are in red and the liquid particles are in gray. Note
that the size of each box is not proportional to the volume of the state.

Representative configurations spanning the vapor-liquid transition, including the pure

vapor state, “droplet” states, “bubble” states and the pure liquid state, are shown in Fig. 4.7

(a) to (e). As the enthalpy decreases from the vapor phase, a liquid droplet starts to

form, and continues to grow in equilibrium with the vapor environment. Those droplet

configurations connect to bubble configurations through a sharp transition before the liquid

phase. The occurence of these states agrees with observations in previous work [67, 78, 79].

The structural change of the states along the transition path demonstrates that nucleation

is the controlling mechanism of the vapor-liquid phase transition at P3.

The configurations of the system at P7 = 0.096 are shown in Fig. 4.8. From Fig. 4.8(a)

to (f), the system gradually transforms from vapor to liquid phase but stays homogenous

without the phase domain separation. At this pressure, the growth of liquid phase takes
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Figure 4.8: Configuration of 6 different states throughout the phase transition at
P7 = 0.096. The color scheme is the same as in Fig. 4.7. Note that the size of each
box is not proportional to the volume of the state.

place in a collective and diffusive manner.

4.4 Conclusion

In this work, we demonstrated the advantages of gREM in simulating the vapor-liquid

phase transition in the truncated and shifted Lennard-Jones fluid. The parameterized ef-

fective temperatures in gREM are tailored to avoid an intrinsic instability of the canonical

ensemble in the negative slope region of the statistical temperature TS(H) in a first order

phase transition. The optimal sampling weight is determined from the effective temperature

through the inverse mapping strategy. By combining generalized ensemble sampling with

replica exchange, our method enables a comprehensive sampling through phase transition

regions with a succession of unimodal enthalpy distributions.

Originally formulatd in the constant volume ensemble, gREM has been extended to the

isothermal-isobaric (NPT) ensemble to accomodate the volume change associated with a

vapor-liquid phase transition. The phase transition was studied at various pressures be-
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low and close to the critical point. The statistical temperature as a function of enthalpy

TS(H;P ) is computed at each pressure by ST-WHAM based on the data produced by gREM

simulations. The coexisting temperatures and densities are calculated through the Maxwell

equal area construction. The spinodal points are identified as the maximum and minimum

points of the TS(H) curves. The phase diagrams in the temperature-density plane and

temperature-pressure plane are presented. Our results are consistent with the literature [1]

results.

We studied the change in the nature of liquid-vapor phase transition with the change in

the pressure. At low pressures, strong first order phase transition features are observed as the

backbending in the statistical temperature as a function of enthalpy, Ts(H), and the closed

loop in Gibbs function, G(T ). However, as the pressure increases, the first-order feature

gradually diminishes, and the liquid and vapor phases are connected continuously in the

curvature of enthalpy and Gibbs function. The diminishment of the discontinuity indicates

that the liquid-vapor transition becomes a second-order continuous phase transition near

the critical pressure.

Direct inspection of the atomic configurations of the intermediate states has shown the

controlling mechanisms in the two scenarios. At low pressures, it is apparent that nucleation

controls the vapor-liquid phase transition as shown by the liquid droplet formation and

growth process. Near the critical pressure, a coalescence or collective growth of the new

phase displays the characterisic of a second order phase transition.

It is shown that gREM provides insightful observations with the effective sampling for

the intermediate states in the vapor-liquid phase transition of a Lennard-Jones fluid. With

the intrinsic advantage of sampling first-order phase transition region, gREM will serve as

a powerful tool for many systems including complex fluids, and biomolecules.
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Chapter 5

Investigating the Solid-Liquid Phase Transition of Water

Nanofilms Using the Generalized Replica Exchange Method

5.1 Introduction

Due to its fundamental importance, water has received a great deal of attention in both ex-

perimental and computational studies of its complex and often anomolous behavior. Many

atomistic models have been built to reproduce the properties of water in molecular sim-

ulations using long-ranged forces (electrostatics) which make simulations intrisically com-

putationally demanding. Recently, a coarse-grained monatomic model for water molecules

(mW) was developed [80] by Molinero and coworkers to represent water as a single site with

three-body potential terms that lead to a tetrahedrality intermediate between carbon and

silicon. The mW model captures essential features of the hydrogen-bonding in water using

a nonbonded angular dependent term that encourages tetrahedral structure. This potential

reproduces the structural, thermodynamic, and dynamic properties of liquid water with com-

parable or better accuracy to many popular atomistic water models at significantly reduced

computational cost. mW has been applied to the study of pure bulk water [81, 82, 83] and

nanoconfined water [84, 85, 86], as well as biological water [87] and clathrate hydrates [88].

Nanoscale confined water adds a new dimension of phase behavior and has generated

intense interest [89, 90, 84, 86, 91, 92] due to its relevance in biology and materials science.

It was reported that the freezing of water encapsulated in a quasi-1D carbon nanotube may

occur continuously as well as discontinuously through a first-order phase transition [93].

Recently, the simulation results for water in a quasi-2D hydrophobic nanopore slit also

supported the idea that water may freeze by means of both first-order and continuous phase

transitions [89]. This is an ideal target as the presence of backbending or a S-loop in the
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statistical temperature, determined from gREM, provides a clear indicator of first-order

phase transition. We will use gREM to simulate the freezing of bilayer water confined

within a slit nanopore and investigate the nature of the liquid-to-solid phase transition with

varying densities1.

5.2 Methods and materials

5.2.1 Monatomic water (mW) model

The monatomic water (mW) [80] potential energy consists of a sum of pairwise two-body

(Φ2) and three-body interactions (Φ3), parameterized as:

E =
∑

i

∑

j>i

Φ2(rij) +
∑

i

∑

j 6=i

∑

k>j

Φ3(rij, rik, θijk) (5.1)

Φ2(rij) = Aǫ

[

B
( σ

rij

)4
− 1

]

exp
( σ

rij − aσ

)

(5.2)

Φ3(rij , rjk, θijk) = λσ(cosθijk − cosθ0)2exp
( σ

rij − aσ

)

exp
( σ

rik − aσ

)

(5.3)

with A = 7.049556277, b = 0.6022245584, γ = 1.2, a = 1.8, θ0 = 109.47 ◦, and the

tetrahedrality λ = 23.15, the diameter σmW = 2.3925 Å, and energy scale ε = 6.189

kcal/mol. All intermolecular forces in the mW model vanish at a distance aσ = 4.2 Å,

making the mW model inherently short-ranged and computationally efficient.

In this chapter, the water-like molecules were confined between two parallel featureless

hydrophobic plates separated by a distance D. The water-wall interaction was modeled by

a Lennard-Jones 9-3 potential as

φLJ-93 = ǫ

[

2

15

(σp
δz

)9
−

(σp
δz

)3
]

(5.4)

where δz is the distance in z between the water molecule and the plate, σp = 3.56 , and

1Much of the material presented in this chapter appears in Q. Lu, J. Kim, J. Farrel, D. Wales
and J. E. Straub, Journal of Chemical Physics, 141, 18C525 (2014)
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ǫ = 0.569 kJmol−1 [84].

The separation between plates, D, was chosen to be 8.5Å because the previous study [84]

indicated that 8.5 Å is the optimal distance for which the melting temperature of bilayer

ice reaches a maximum in the mW model. Periodic boundary conditions were applied in

the parallel (x and y) directions to mimic infinite parallel plates. Ten simulations were

performed with varying N =256, 576 and 800 water molecules at six different densities

ranging from 1.08 g cm−3 to 1.23 g cm−3. We have chosen to consider the system at constant

volume, following the design of a previous study of phase transitions in nanoconfined water

films [89]. The simulation parameters including numbers of particles, lengths of plates,

effective densities, effective temperature parameters for gREM, and total simulation times

are summarized in Table 5.1, where Lx and Ly are the lengths of the plate in the parallel

directions, Ly is fixed to 8.5 Å for all systems, ρ is the effective density, E0, λ1, λ32 and γ0

are parameters in Tα. 32 replicas are used in gREM simulations for all systems, and the

simulation length is 106 MC sweeps. The effective densities are estimated using a method

previous described [94] as ρ = Nm/(LxLyL
′
z), where N is the number of water molecules, m

is the mass of a water molecule, and Lx and Ly are the lengths of the plates. Here L′
z is the

effective distance accessible to water molecules confined between two hydrophobic plates,

defined as L′
z = D − (σmW + σp)/2 = 5.5237 Å.

5.2.2 Water structure analysis

To characterize structural properties of water molecules the lateral radial distribution func-

tion (RDF) gxy(r) [94] is computed as a function of the lateral position rxy parallel to the

confining plates as

gxy(r) =
1

ρ2V

∑

i 6=j

δ(r − rij) [1− θ(|zi − zj | − δz/2)] , (5.5)

where V is the volume, rij is the lateral distance between coarse-grained molecules i and j,

z is the z coordinate, δz = 2 Å, and δ(x) is the Dirac δ function. Note that the Heaviside
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Table 5.1: Simulation parameters for 10 systems including number of molecules,
plate sizes, effective densities and parameters in gREM.

System N Lx Ly ρ E0 λ1 λ32 γ0
(Å) (Å) (g/cm3) (kJ/mol) (K) (K) (mol K/kJ)

1 256 36.0 31.2 1.2328 -40.95 220.00 420.00 -36.5679
2 256 34.5 34.5 1.1643 -41.61 200.13 380.25 -18.2764
3 256 34.8 34.8 1.1443 -42.18 200.13 380.25 -14.0019
4 256 35.0 35.0 1.1312 -41.91 200.13 380.25 -15.5259
5 256 35.5 35.5 1.0996 -42.76 200.13 440.29 -22.6551
6 256 35.8 35.8 1.0812 -42.23 200.13 440.29 -24.1468
7 576 56.1 48.6 1.1643 -42.01 220.00 340.00 -4.9615
8 576 57.7 50.0 1.0812 -42.69 240.00 440.00 -10.2134
9 800 61.5 61.5 1.1643 -42.07 220.00 37.000 -5.0381

10 800 63.3 63.3 1.0812 -42.68 220.00 280.00 -5.5218

function θ(x) restricts the sum to pairs within the same layer.

The lateral static structure factor S(q) is the Fourier transform of the lateral RDF [46, 47]

determined as

S(q) = 1 + 2πρ

∫ L

0
r

(

sin(qr)

qr

)

[gxy(r)− 1]dr (5.6)

where q = 2πk/L, k being an integer number from 1 to N , and L is the length of the

simulation box.

5.2.3 Basin-hopping global optimization

Basin-hopping (BH) global optimization [95, 96], as implemented in the GMIN package, was

employed to explore a simulated potential energy landscape. The BH scheme used in this

work is as follows:

1. Apply a random Cartesian displacement to the initial coordinates ri;

2. Find the local minimum rn from the perturbed coordinates r
′
i;

3. Accept a trial move to the new configuration rn with the probability of p(i → n) =

min
[

1, e−β(En−Ei)
]

where Ei and En are the energies at the initial and new local
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minima, and β = 1/kT .

6 × 103 BH steps were run for each starting structure. At each step, random Cartesian

displacements up to 0.8 Å, were applied to each particle. The temperature parameter T was

fixed at 8.0 kJmol−1. Local optimization was performed using a modified version of No-

cedal’s limited memory BFGS (L-BFGS) minimizer[97, 98]. The root-mean-square gradient

of the local minima was converged to 10−4kJ/mol/Å.

5.3 Results and Discussion

With an optimal choice of effective temperatures Tα(E;λα) unstable or metastable energy

states in the canonical ensemble corresponding to the S-loop region in TS(E) are transformed

into stable states in the generalized ensemble, resulting a unimodal probability distribution

function (PDF). The necessary and sufficient condition on Tα(E;λα) to achieve a unimodal

PDF is determined by examining the local stability of the generalized free energy density,

βFα(E) = wα(E)− S(E), at extrema E∗
α, determined as

Tα(E
∗
α;λα) = TS(E

∗
α) = T ∗

α, (5.7)

where E∗
α corresponds to the crossing point between Tα(E) and TS(E). The stability con-

dition

βF ′′
α (E

∗
α) = (γS − γα)/T

∗
α
2, (5.8)

where γS = T ′
S(E

∗
α) and γα = T ′

α(E
∗
α), the prime being a differentiation with respect to

E. Exploiting the linear effective temperatures in Eq. (2.5) a unimodal PDF is ensured by

γα(E
∗
α) = γ0 < γS(E

∗
α) around E∗

α. Expanding Pα(E) up to second order at E∗
α verifies

Pα(E; γ0) ≈ exp[−(E − E∗
α)

2/2σγ ], (5.9)

where σγ = T ∗
α
2/(γS − γ0), yielding a Gaussian PDF centered at E∗

α.
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Figure 5.1: (a) Effective temperatures Tα(E) (a set of parallel lines with negative
slope) form unique crossing points (black open squares) with the statistical temper-
ature TS(E) (black curve), (b) generalized probability distributions functions Pα(E)
of corresponding replicas α = 17, 18, 19, ..., 26 of system 6 in Table 5.1.

Fig. 5.1a demonstrates that the linear effective temperatures Tα(E) form unique crossing

points E∗
α with the statistical temperature TS(E) across the transition region, where TS(E)

displays the S-loop. Setting E0 = −42.23 kJmol−1 and γ0 = −24.15molKkJ−1 replica-

dependent effective temperatures, Tα(E;λα) = λα+ γ0(E−E0), were assigned using evenly

spaced λα between λ1 = 200.13K and λ32 = 440.29K. As illustrated in Fig. 5.1b the linear

effective temperatures with negative slope, γ0 < γS(E
∗
α), result in Pα(E) centered at E∗

α with

a Gaussian shape, naturally bridging between ordered and disordered phases with unimodal

energy distributions across the transition region. Figs. 5.1 through 5.3 show simulation
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results of System 6 in Table 5.1.
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Figure 5.2: (a) Lateral radial distribution function gxy(r) and (b) structure factor
transformed from gxy(r) of replica 18 (blue line) and replica 25 (red line) of the same
systems as in Fig.1. (c) The transverse density profile of water along confinement
direction (z direction) for replica 18 (blue) and replica 25 (red).

In order to characterize structural differences between liquid and solid phase near the

transition temperature, we compared the lateral radial distribution functions gxy(r) (RDF)
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and structure factors S(q) of two representative replicas corresponding to replica 18 and

25 (see Fig. 5.2). Note that the effective temperatures, T18(E) and T25(E), form crossing

points with TS(E) at E∗
18=-40.45 kJ/mol and E∗

25=-38.20 kJ/mol, respectively, at the same

T ∗
18 = T ∗

25 = 288.7 K. The RDFs of replica 18 and 25 in Fig. 5.2a show marked differences

in terms of the magnitude of the peaks, and the number of peaks. The RDF of replica 18

corresponding to the solid phase has several pronounced peaks up to 14 Å, while only three

peaks are visible in replica 25, indicating an absence of long-range orders characteristic to

the liquid phase. The structure factor of replica 18 displays a prepeak at q ≈ 2, a sharp first

peak, and a split second peak, while S(q) in replica 25 lacks the prepeak and and the split

in the second peak.

To examine the layering effects from confinement, we computed the transverse density

profile ρz (TDP) along the z direction in Fig. 5.2c. Both TDPs at replicas 18 and 25 have

two pronounced symmetric peaks with respect to the slit center (z = 0), confirming that two

layers of water molecules are confined in the nanoslit. However, the TDP in replica 25 has

a significant wider distribution with smaller peaks at each layer center and with non-zero

density values across the slit center, while the TDP of replica 18 shows a vanishing density

at the slit center. This implies that water molecules in replica 25 can easily move between

two layers across the slit center, while transverse movements of water molecules in replica 18

are highly restricted, resulting in a strong layering effect. The differences in RDFs, structure

factors, and transverse density profiles reveal the solid-like and liquid-like characteristics of

the configurations in replicas 18 and 25, respectively, manifesting the coexistence of two

structurally distinct states in the canonical ensemble.

After a sufficiently long simulation with gREM, multiple replica simulations are optimally

combined to produce the entropy estimate, S(E), via ST-WHAM. Once the entropy is

determined, canonical thermodynamic properties including internal energy E(T ) and heat

capacity Cv(T ), can be calculated as in Eq. (2.12) and (2.13). In contrast to the statistical

temperature TS(E) characteristic to microcanonical ensemble in Fig. 5.1a, the canonical
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Figure 5.3: (a) Energy temperature curve in the canonical ensemble (red line) and
molar heat capacity Cv(T ) (blue line) of system 6. (b) Probability distribution func-
tion PT (E) (blue) and free energy FT (E) (red) at the melting temperature Tm=288.7
K.

ensemble average, E(T ), monotonically decreases with T and shows a sharp drop across

the phase transition region in Fig. 5.3a, which is corresponding to the peak in the heat

capacity Cv around the transition temperature Tm ≈ 288.7K. The free energy density in

Fig. 5.3b at Tm, F (E,Tm) = E − TmS(E), exhibits two local minima at E1 = −38.1 and

E3 = −40.5 kJmol−1, and one local maximum at E2 = −39.5 kJmol−1, resulting in the

bimodal structure in PT (E) in contrast to the unimodal PDFs in gREM across the phase

transition region [30, 31, 32, 33].

We also performed several gREM simulations as a function of density, ρ, with varying

system size N = 256, 576, and 800 (see Table 5.1 for the detailed description of systems)

to explore the effect of density on the phase transition in nanoconfined mW water. The
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Figure 5.4: (a) Energy versus temperature curve, E(T), and (b) Molar heat capacity,
Cv(T ), of System 1 to System 6, the parameters of which are given in Table 5.1.

reweighted internal energies and heat capacities in the canonical ensemble for System 1

through System 6 were illustrated in Figs. 5.4 (a) and 5.4 (b), respectively. Interestingly,

the magnitude of the drop in the internal energy (latent heat) across the transition region

from liquid to solid is monotonically decreasing as ρ decreases, which is accompanied by

a sharp drop in the magnitude of the peak in the heat capacity. This demonstrates that

the first-order character of the phase transition between liquid and solid in nanoconfined

mW water becomes much weaker in the high density regime, in which freezing of water may

occur through a continuous transformation.
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Figure 5.5: Lateral radial distribution function gxy(r) of all replicas in system 2 (a)
and system 6 (b).

To investigate structural changes associated with the phase transition at various ρ, both

profiles of the RDF and TDP are examined across replicas near the transition region for

System 2 and 6 corresponding to ρ = 1.0812 g cm−3 and 1.1643 g cm−3, respectively. As

illustrated in Fig. 5.5a, the variation of gxy(r) at high density is almost continuous across

replicas, while at low density gxy(r) is well segregated as can be seen in the first and second

peaks in Fig. 5.5b. The continuous variation of gxy(r) at higher density is most apparent

in the long-range order. For the lower density system, there are clearly two sets of replicas

- those that show substantial long-range order and those that do not - with an abrupt

transition between the two. The substantial differences in the behavior of gxy(r) for the

high and low density systems are also apparent in the transverse density profiles in Figs. 5.6

(a) and (b). At higher density (System 2), the peaks for the center of each layer center are
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continuously rising across replicas from liquid to solid with a marginal density at the slit

center. This indicates that transverse movements of waters is highly restricted in both solid

and liquid phase. At lower density (System 6), the profiles show higher non-zero density

at the slit center in liquid phase replicas, implying that water molecules can freely move

between the two layers in the liquid phase.
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Figure 5.6: The transverse density profiles (TDP) of water along confinement di-
rection (z direction) of all replicas in system 2 (a) and system 6 (b).

These observations are consistent with the Stanley group’s conjecture regarding the

possibility of a “crossover” from first-order to continuous transition between the liquid and

solid states with increasing density [89]. We note that this crossover behavior was not

observed in previous work by Molinero and coworkers [86]. However, that work was based

on a NPxyT ensemble, while we have used an NVT ensemble, as was done in the study of

the Stanley group [89]. The Stanley group also did note crossover behavior in an NPxyT
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ensemble simulation as well [89].
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Figure 5.7: The energy temperature curves formed by most probable energy
sets [E∗

α, T
∗
α] determined by gREM simulations for systems with densities ρ1 =

1.1643gcm−3 (a) and ρ2 = 1.0812gcm−3 (b). The lines and symbols in red, green
and blue show the results for systems with 256, 576 and 800 molecules, respectively.

The crossover behavior from a first-order to continuous transition with increasing density

is also seen in the profile of the approximate statistical temperatures, TS(E), in Fig. 5.7,

in which the most probable energies E∗
α, corresponding to the crossing points between

Tα(E) and TS(E), were plotted with T ∗
α = Tα(E

∗
α;λα) across replicas for N = 256, 576

and 800, while maintaining the density of systems at ρ1 = 1.1643gcm−3 in Fig. 5.7a and
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ρ2 = 1.0812gcm−3 in Fig. 5.7b. We found that the statistical temperature estimates from

several independent gREM simulations at different N are in overall good agreement, im-

plying that finite size effects are marginal in our simulations. Interestingly, TS(E) for low

density systems shows a clear S-loop, characteristic to first-order phase transitions, while

it varies monotonically without noticeable structures across the transition region in high

density systems.

Figure 5.8: (a) to (f) show the minimized structures of systems 1 to 6, respectively.

To characterize the globall minima structures for System 1 through 10, basin-hopping

global optimization (BH) [99, 100, 101] was applied starting from equilibrium configurations

of the lowest replica in each gREM simulation using the GMIN package, yielding representa-

tive snap shots in Figs. 5.8 and 5.9. The putative global minimum of System 8 at ρ = 1.0812

g cm−3 for N = 576 corresponds to a regular hexagonal ice form, while in all other systems

the ground states were imperfect hexagonal ices with defects. While this leads to a less

regular global minimum structure, our results show that it does not impact the character of

the thermodynamics of the solid-to-liquid phase change. The minimized structures for these

systems have different composition of polygonal rings in each layer. We made use of graph
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representations of the structures, in which vertices represent particles, and an edge between

two vertices represents a nearest neighbor contact between two particles with a cut-off of

3.35 Å. A ring is a connected graph in which each vertex shares exactly two edges with

other vertices in the ring. For the bilayer structures in this work, we counted rings within

individual layers. We calculated a composition of n−membered rings on the basis of 100

minimized structures.

Figure 5.9: (a) to (d) show the minimized structures of systems 7 to 10, respectively.

Table 5.2 lists the percentage distributions of n-membered rings (n = 4, 5, 6, 7) for Sys-

tem 1 to 10, showing an overall trend that the composition of pentagonal rings drops with

decreasing density and the composition of hexagonal and heptagonal rings increases with

decreasing density.

5.4 Conclusion

In summary, the effectiveness of the generalized replica exchange method (gREM) for first-

order phase transitions was demonstrated using nanoconfined monatomic water (mW) sys-
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Table 5.2: Percentage distributions of the n−membered ring in system 1 to 10.

ring size n=4 (%) n=5 (%) n=6 (%) n=7 (%)
System 1 0.47 93.32 6.21 0
System 2 3.15 25.92 68.94 1.99
System 3 2.34 15.83 77.13 4.70
System 4 2.64 14.58 78.57 4.22
System 5 0.10 13.42 73.50 12.99
System 6 1.22 17.84 65.76 15.17
System 7 3.36 25.75 63.90 6.98
System 8 0.03 2.77 95.23 1.97
System 9 2.84 35.07 55.29 6.80
System 10 0.09 12.75 75.96 11.20

tems at diverse simulation conditions. Combined with efficient replica exchanges across uni-

modal energy distributions spanning phase transition regions, gREM attains a comprehen-

sive sampling for metastable and unstable configurations intrinsic to the phase transitions,

which are rarely accessed in canonical ensemble simulations due to the need to overcome a

substantial free energy barrier.

With an optimal integration of multiple replica simulations of gREM using the statisti-

cal temperature weighted histogram analysis method (ST-WHAM), we investigated detailed

thermodynamic and structural properties of solid-liquid phase transitions in nanoconfined

mW water at various densities. The first-order phase transitions between liquid and hexag-

onal ice in the low density regime was explicitly illustrated in terms of the existence of

S-loop or backbending in the statistical temperature TS(E), sharp drops in internal ener-

gies, pronounced peaks in heat capacities, and quantitative differences in profiles of lateral

radial distribution functions (RDF) and transverse density profiles (TDP) between solid

and liquid phases. Interestingly, it was found that the first-order transition character in

nanoconfined mW water is weaker at high density, accompanied by an absence of backbend-

ing character in TS(E), gradual changes of both internal energies and heat capacities, and

continuous variations of both RDFs and TDPs across replicas in phase transition regions.

These observations support the conjecture of a crossover from the first-order to continuous
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transition in quasi-two-dimensional confined water systems with increasing density, which

was recently hypothesized based on full atomistic simulations of a TIP5P water [89].

The graph representation analysis for low-lying solid-phase structures, determined by

basin-hopping global optimization using the GMIN package, shows heterogeneous crystalline

structures composed of different compositions of pentagonal, hexagonal, and heptagonal

rings depending on the simulation conditions. Interestingly, minimized structures of low

density systems exhibiting the first-order transition character contained dominant hexagonal

rings, while the composition of pentagonal rings gradually increases in high density systems

showing continuous transitions.
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Chapter 6

Phase Transitions of Coarse-Grained Water Confined between

Plates of Different Affinities and Separations

6.1 Introduction

Confined water is present in biological systems and nanoscale materials, and is known to

possess a variety of structural, dynamic and thermodynamic properties that differ from bulk

water [89, 90, 84, 85, 86, 91]. These are direct results of the interaction with surfaces and/or

a truncation of the bulk correlation length, and depend on the detailed interactions of water

with the interfacial particles, which may be hydrophilic or hydrophobic in nature [94]. More-

over, the geometry of the confinement is also an important factor. Cylindrical nanopores and

parallel slit nanopores are two types of confining geometries used in studies of nanoconfined

water [89, 90, 84, 85].

This chapter focuses on bilayer water confined to a slit nanopore made of two infinite

parallel plates separated by a fixed distance. Previously, we have simulated the solid-to-

liquid phase transition in bilayer water as a function of density, demonstrating a variation

in the order of the transition from first (at low densities) to second (at high densities). The

focus of this study is to probe the effect of varying hydrophilicity of the plates and the

plate-to-plate distance on the thermodynamic and structural properties of the nanoconfined

water film.

Due to the large latent heat associated with the solid-to-liquid phase transition in water

nanofilms, it is hard to precisely determine the phase transition temperature and other

thermodynamic properties using regular MD simulations in canonical ensembles. As such,

it is of interest to explore the phase behavior using a generalized ensemble approach.

In this chapter, we employed the gREM to simulate the solid-to-liquid phase transition
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of coarse grained mW water nanofilm. Our results suggest a remarkable sensitivity of the

transition to the nature of the water-wall interaction, with implications for understanding

interfacial and nano-confined water.

6.2 Methods and materials

6.2.1 Water-water and water-plate interactions

The interactions between water-water molecules are modeled by the mW potential [80], which

consists a sum of pairwise two-body and three-body interactions described by a functional

form of the Stillinger-Weber potential [102] as shown in Eq. (5.3). The Stillinger-Weber

potential was originally developed to model silicon. Only three parameters are changed

to adapt the silicon model to the mW model, which are the tetrahedrality λ = 23.15, the

diameter σmW = 2.3925 Å, and energy scale ǫ = 25.895 kJ/mol.

We investigate the state of water confined between both hydrophilic and hydrophobic

plates. The water-plate interaction was modeled following prior studies [84]. The simula-

tion results of water in cylindrical nanopore using this water-wall potential were comparable

with the experimental results of water in silica nanopore [84]. One plate consists of particles

arranged in a single-layer triangle lattice with interparticle spacing 3.2 Å. The interactions

between water molecules and particles on the plates were modeled with the two-body po-

tential in Eq. (5.3) with σwp set to 3.2 Å to prevent the diffusion of water molecules into the

plate, εwp modulating the hydrophilicity of the plate, and other constants for the water-plate

interactions chosen to be the same as those for water-water interactions in the mW model.

As the plate-water interaction does not have a three-body potential in this work, the plates

do not form directional hydrogen bonds with the water molecules. The hydrophilicity of the

plates was characterized by Molinero and coworkers [85] by the simulation of the contact

angle of droplets with a flat plate. On the basis of their results, we set the parameters of two

hydrophobic plates to be εwp=0.2 and 0.3 kcal/mol and the parameters of two hydrophilic

plates to be εwp=0.5 and 0.7 kcal/mol.
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6.2.2 Systems

The water nanofilm systems are composed of 256 water molecules confined between two

parallel plates separated by a distance D, varying between 8 and 10 Å, with 0.5 Å as the

interval. Distances in this study are measured from the centers of the plates. The plate-

water interactions are governed by Eq. (5.3.2), in which εwp modulates the hydrophilicity of

the plates. We simulated two hydrophobic plates with εwp=0.2 and 0.3 kcal/mol, and two

hydrophilic plates with εwp=0.5 and 0.7 kcal/mol. The system is periodically replicated in

the x and y directions to model confinement between infinite plates. The lateral pressures

of water nanofilms are maintained at 1 atm. The lateral dimensions of the water nanofilm

are allowed to fluctuate while the interplate distance is fixed at a certain distance.

6.3 Results and Discussion

6.3.1 Thermodynamic properties

We simulated 20 systems of 5 different interplate distances, D=8, 8.5, 9, 9.5, 10 Å, and

4 different water-plate interaction strengths, εwp=0.2, 0.3, 0.5 and 0.7 kcal/mol. The aim

is to carry out an extensive study of the effect of the hydrophilicity of the plates and the

plate-to-plate distance on the thermodynamic and structural properties of water nanofilms.

Simulations of the solid-to-liquid transition in water nanofilms were performed using gREM.

ST-WHAM was used to determine the entropy estimate, S(H), and the stastistical temper-

ature, TS(H), which is determined through TS(H) = (∂S(H)/∂H)−1. The canonical expec-

taction value for the enthalpy and the isobaric heat capacity are computed using Eq.(2.12)

and (2.13). The solid-to-liquid phase transition temperature was determined as the maxi-

mum of the heat capacity. Changes in enthalpy, entropy, and volume of the transition were

also computed.

Fig. 6.1 shows the statistical temperature and the canonical temperature of the system

with D=9 Å and εwp=0.2 kcal/mol. The statistical temperature shows backbending behav-
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Figure 6.1: The statistical temperature, TS(H), and the canonical temperature,
TC(H), of the system with D=9 Å and εwp = 0.2 kcal/mol, plotted as red and blue
lines, respectively.

ior as an indicator of the strong first order solid-to-liquid phase transition. In gREM, the

S-loop is removed when the temperature is reweighted into the canonical ensemble. The

canonical temperature is monotonically increasing as a function of enthalpy in the canonical

ensemble.

Fig. 6.2 shows the enthalpy-temperature curves, H(T), and the isobaric heat capacity,

Cp(T ), of the systems with interplate distance D=8 Å and 10 Å and four different water-

plate interaction strengths, εwp=0.2, 0.3, 0.5 and 0.7 kcal/mol. In all cases, a sharp peak

in Cp(T ) and discontinuous changes in H(T ) are observed, suggesting a first-order phase

transition. The enthalpy curve moves downwards as εwp increases, indicating the enthalpy

of both ice and liquid phases decreases as εwp increases. At the same time, the enthalpy

curve and the heat capacity curve shift to the right as εwp increases, indicating the transition

temperature increases as εwp increases. For systems with D=8 Å, the peaks in Cp(T ) are

approximately of the same heights for different values of εwp. For systems with D=10 Å, the

height of the peak in Cp(T ) increases as εwp increases, indicating that the phase transition
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Figure 6.2: (a) Enthalpy, H(T ) and (b) isobaric heat capacity, Cp(T ), in canonical
ensembles for systems with D=8 Å and εwp=0.2, 0.3, 0.5 and 0.7 kcal/mol. (c)
Enthalpy, H(T ) and (d) isobaric heat capacity, Cp(T ), in canonical ensembles for
systems with D=10 Å and εwp=0.2, 0.3, 0.5 and 0.7 kcal/mol.

becomes stronger as the water-plate interaction becomes more hydrophilic.

From the location of the peaks of the isobaric heat capacity curves, the solid-to-liquid

phase transition temperatures of all 20 systems were determined. The transition temper-

atures as a function of the interplate distance D are shown in Fig. 6.3 for systems with

εwp=0.2, 0.3, 0.5 and 0.7 kcal/mol. The transition temperature reaches a maximum at

D=8.5 Å at all values of εwp, and is observed to decrease as the interplate distance increases

from 8.5 Å to 10 Å. The parabolic behavior of the transition temperatures near D=8.5

Å agrees with previous observations [84]. At a given value D, the transition temperature is

higher when εwp of the system is larger. Varying both parameters for interplate distance and
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Figure 6.3: The phase transition temperature of water nanofilms at interplate dis-
tance D=8, 8.5, 9, 9.5 and 10 Å for systems with four different plate-water interation
parameters, εwp=0.2, 0.3, 0.5 and 0.7 kcal/mol.

the water-plate interaction, D and εwp, the transition temperature of the water nanofilm is

observed to span over a wide range from 240 K to 340 K.

Fig. 6.4 shows the change in enthalpy, ∆H, and entropy, ∆S, for the solid-to-liquid tran-

sition for different interplate distances D, for both a hydrophobic plate (εwp=0.2 kcal/mol)

and a hydrophilic plate (εwp=0.7 kcal/mol). At all distances, within the statistical error, the

change in enthalpy for systems with hydrophilic plates are higher than for the correspond-

ing systems with hydrophobic plates. This results from the fact that water-plate interaction

is more favorable than the water-water interaction, leading to an expansion in the liquid

state. For systems with hydrophobic and hydrophilic plates, as D increases from 8 to 9.5 Å,

∆H, and ∆S are observed to decrease monotonically. This results from the fact that as D

increases, the solid state becomes less structured with higher potential energy and entropy,

while the liquid state is relatively more condensed and ordered. For systems with strong

hydrophilic plates, the results at D=10 Å do not follow that same trend as ∆S increase,

and ∆H maintains a constant value. This is the apparent result of a substantial structural

change in the water nanofilm as D increases to 10 Å (discussed below).
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Figure 6.4: (a) - (c) Change in enthalpy ∆H, and entropy ∆S, for the solid-to-liquid
transition in water nanofilms with varying interplate distances, D, for a hydrophobic
plate (εwp=0.2 kcal/mol) and a hydrophilic plate (εwp=0.7 kcal/mol).

6.3.2 Structural properties of nanonconfined waterfilm

Structural layering effects induced in the water nanofilm by confinement are examined

through the transverse density profile, ρz, (TDP) along the direction z, for ice structures

of all 20 systems at T=220 K (see Fig. 6.5). The zero point of the z-axis is defined as

the midpoint between the two plates. The profiles of ρz show two peaks symmetric with

respect to the midpoint between the plates with interplate distance D=8, 8.5, 9 and 9.5 Å,

indicating two layers of water molecules confined between plates. When D=8, 8.5, 9 and

9.5 Å, the peaks in ρz assume a gaussian-like shape centered around z=±1.4 Å, indicating

both layers are flat (consistent with the 2B structure in Ref. [84]). Meanwhile, the height
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of the peaks diminishes as D increases from 8 to 9.5 Å, reflecting weaker confinement of the

bilayer. Correspondingly, for the same interplate distance, the height of the peaks increases

with increasing εwp.
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Figure 6.5: (a)-(d) The transverse density profiles, ρz, of systems with four different
water-plate interaction parameters, εwp=0.2, 0.3, 0.5 and 0.7 kcal. Each subfigure
compares ρz of systems with varying interplate distances D=8, 8.5, 9, 9.5, 10 Å, but
the same water-plate interaction parameter, εwp.

The profiles of ρz become different as D increases to 10 Å. When D=10 Å and εwp=0.2

kcal/mol, each of the main peaks in ρz shows a shoulder around z=±2.3 Å. The shoulder

grows into a subpeak when εwp=0.3 kcal/mol and D=10 Å. The height of the subpeak

continues to grow as εwp increases to 0.5 and 0.7 kcal/mol, while the location of the subpeak

remains the same. When D=10 Å and εwp=0.7 kcal/mol, the heights of the subpeaks are

equivalent to the heights of the main peaks, which are located at z=±1.4 Å. The split of each
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Figure 6.6: (a) and (b) The transverse density profiles, ρz, of systems with D=8
Å and εwp=0.2 and 0.7 kcal, respectively. (c) and (d) ρz of systems with D=10 Å and
εwp=0.2 and 0.7 kcal, respectively.

single peak into two subpeaks indicates that at D=10 Å, the ice state becomes a puckered

bilayer ice (referred to as the 2U structure [84]).

The profile of ρz of liquid states of systems with εwp=0.2 kcal/mol and 0.7 kcal/mol,

with interplate distances D=8 and 10 Å, are shown in Fig. 6.6, along with the profiles of the

correpsonding ice states. ρz of the liquid states have much wider distributions with smaller

peaks at each layer center and with non-zero density across the slit center, indicating that

water molecules in liquid states can move between two layers across the slit center, while

the transverse movements of water molecules in the solid states are highly restricted.

Direct comparison of the ice configuration of the systems with D=8 and 10 Å and

εwp=0.7 kcal/mol is shown in Fig. 6.7. The top views of ices at both D=8 and 10 Å exhibit

similar hexagonal ice structure, with two layers in register. However, the side views clearly
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Figure 6.7: (a) Top view of a bilayer ice structure of a system with D=8 Å and
εwp =0.7 kcal/mol at 220 K. (b) Side view of the same structure. The water molecules
are colored in cyan. (c) and (d) The top and side view of bilayer ice structure of a
system with D=10 Å and εwp =0.7 kcal/mol at 220 K. The water molecules on the
outer sublayers are colored in dark blue and those on the inner sublayers are colored
in red, and the rest are colored in cyan.

show the bilayer structure of the ice at D=8 Å is flat whereas the bilayer at D=10 Å exhibits

a puckered structure. This explains why ρz displays two subpeaks within one main peak.

The flat bilayer ice at D=8 Å allows each molecule to have four hydrogen-bonded neighbors.

The top and side views of the bilayer ice structure at D= 8 Å demonstrate that the angle

of neighbors within one layer is roughly 120 ◦ and the angle assumed by neighbors not all

in one layer is roughly 90 ◦. The puckered bilayer structure at D=10 Å results in external

sublayers with three hydrogen-bonded neighbors, while the molecules on the inner sublayers

have four hydrogen-bonded neighbors. The angles formed by the neighboring molecules are

roughly 109 ◦ for the ice structure at D=10 Å (something that is difficult to discern in the

top and side views but apparent in the 3-dimensional ice structure).
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Figure 6.8: Distributions of angles formed by hydrogen-bonded neighbors in ice
structures at D=8 Å (red) and 10 (black) with εwp=0.7 kcal/mol and T=220 K.
Fragments of ice structure for D=8 and 10 Å are inserted, showing three adjacent
rings in both layers.

Distributions of angles between hydrogen-bonded neighbors of ice structures at D=8

and 10 Å are shown in Fig. 6.8. Consistent with the impression made by inspection of

the structures, the angle distribution of the ice structure at D=8 Å has two peaks located

near 120 ◦ and 90 ◦, corresponding to the angles formed within one layer and between two

layers. These results agree with previous simulations [84] of ice structures at D=8 Å as

well as experimental determination [103]. The angle distribution of the ice structure at

D=10 Å, formed by angles for molecules with four or three hydrogen-bonded neighbors, has

a single peak located near 109 ◦, which is the signature value of tetrahedral geometry. As

bulk ice Ih is characterized by hexagonal symmetry and near tetrehedral bonding angles,

we recognize that the ice structure at D=10 Å is equivalent to a slice of ice Ih. Fig. 6.8

also displays fragments of the ice structures at D=8 and 10 Å, composed by three adject

rings in both layers, which accentuate the flat hexagonal ring structure at D=8 Å and the



71

puckered hexagonal ring structure at D=10 Å.

6.4 Conclusion

Water nanofilms confined between plates, with the water-plate interaction parameter, εwp=0.2,

0.3, 0.5, 0.7 kcal/mol, ranging from strongly hydrophobic to strongly hydrophilic, and five

different interplate distances D=8, 8.5, 9, 9.5 and 10 Å, were simulated at lateral pressure

equals to 1 atm, using a coarse-grained monatomic water model (mW). The solid-to-liquid

phase transitions of the 20 systems were simulated with gREM to achieve enhanced sam-

pling in the vicinity of the first-order phase transition through generalized ensemble sampling

combined with the replica exchange paradigm.

The transition temperatures were derived for all 20 systems from the peaks in the iso-

baric heat capacity. For all values, εwp, of the water-plate interaction strength, the transition

temperature reaches a maximum at D=8.5 Å, and behaves parabolically around that inter-

plate distance, in agreement with previous results [84]. At a given interplate distance D,

the transition temperature is higher when εwp of the plate is higher, showing that for the

water nanofilms confined between parallel plates, the transition temperature depends upon

the affinity for the wall. Varying parameters for the interplate distance and water-plate

interaction, D and εwp, the transition temperature of the water nanofilm was observed to

span a wide range of values from 240 K to 340 K.

The results of enthalpy-temperature curves show that both ice and liquid phases reach

lower enthalpy states as the water-plate interaction strength, εwp, increases from 0.2 to 0.7

kcal/mol. The phase change enthalpy, ∆H, volume, ∆V, and entropy, ∆S, of the water

nanofilm with strong hydrophilic plate was observed to be higher than that of systems with

strong hydrophobic plates, at all interplate distances from 8 to 10 Å. For both systems

with hydrophobic and hydrophilic plates, as D increases from 8 to 9.5 Å, ∆H, ∆V, and ∆S

decrease monotonically. However ∆S and ∆V show an increase again when D=10 Å for

strong hydrophilic plates, indicating certain structural changes within the water nanofilm
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as D increases to 10 Å.

We computed the transverse density profile, ρz, of the ice states of the 20 systems

and observed two symmetric peaks in ρz for all systems. For D=8, 8.5, 9, 9.5 Å, each of

the two peaks have Gaussian-like shapes, indicating the ice structures are flat bilayer ice.

Furthermore, at a given D within this range, density peaks become higher and narrower as

εwp increases from 0.2 to 0.7 kcal/mol, leading to more ordered ice structures. For D=10

Å, each of the main peaks of ρz split into two subpeaks, indicating the ice structure is

a puckered bilayer ice. The heights of the external subpeaks grows as εwp increases, and

become equivalent to the heights of the internal subpeaks when εwp=0.7 kcal/mol.

We further characterized the ice structures of systems with D=8 and 10 Å and strong

hydrophilic plates. The ice structure at D=8 Å is composed of flat hexagonal rings with

nontetrahedral angles, the distribution of which has two peaks around 120 ◦ and 90 ◦. The

bilayer ice structure at D=10 Å is composed of hexagonal rings with near tetrahedral an-

gles, the distribution of which has a single peak around 109 ◦. This indicates that the ice

structure at D=10 Å is a slab of bulk ice Ih, characterized by hexagonal symmetry and near

tetrahedral bonding angles. The puckered bilayer ice, at D = 10.5 Å, was unstable with

low melting temperature (210 K) at 1 atm lateral pressure, with the instability induced by

the hydrophobic plate [84]. The solid-to-liquid transition temperature is as high as 275 K

for the puckered bilayer ice at D=10 Å when εwp=0.7 kcal/mol, showing that the puckered

structure is stablized in a hydrophilic environment.
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Chapter 7

Conclusion

7.1 Summary

We have extended gREM from the constant volume ensemble to the constant pressure en-

semble to include volume fluctuation in molecular systems such as complex fluids and water.

We applied gREM to simulations of phase transitions in a variety of systems undergoing

strong phase transitions for which standard sampling techniques in the canonical ensemble

are known to provide inadequate sampling. The detailed thermodynamic properties of di-

verse phase transitions were studied, including amorphous solid to liquid phase transition

in the adapted Dzugutov system, liquid to vapor phase transition in Lennard fluids, and

the solid to liquid phase transition in a water nanofilm. The thermodynamics of the phase

transitions and structural properties of states in different phases, including the transition

states, are investigated based on results from gREM simulations.

In the simulation of the phase transition from liquid to amorphous solid state in the

adapted Dzugutov model systems, the measured rate of conformational sampling for gREM

is similar to tREM. This results from the modest nature of the liquid to amorphous solid

phase transition and the absence of a substantial enthalpy gap. The gradual nature of

this phase change is in part due to fact that the amorphous solid state, lacks long-range

translational order. As a result, the distribution of states in enthalpy is relatively continuous

for temperature replicas as well as for the generalized enthalpy distributions.

The advantages of gREM are demonstrated in simulations of vapor-liquid phase transi-

tion in Lennard-Jones systems at low pressures, as the phase transition is associated with

substantial changes in volume, enthalpy, and entropy. The canonical enthalpy distributions

of tREM are disjoint, displaying an enthalpy gap corresponding to the large latent heat as-

sociated with the transition from vapor to liquid phase, and consequently the samplings of
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the phase transition states are strongly impaired in tREM simulations. In contrast, gREM

achieves comprehensive sampling in the phase transition region using generalized ensemble

weights with a succession of unimodal enthalpy distributions, smoothly joining the vapor and

liquid states. The unstable and metastable states in the canonical ensemble are transformed

to stable states in gREM simulations, allowing direct inspection of states along the path

of the phase transition, which provides additional insight into the underlying mechanism of

the vapor-liquid phase transition.

The profile of the statistical temperature provided by gREM allows us for a clear dis-

tinction between first order and second order phase transitions, as the first order phase

transition displays a signature S-loop in the statistical temperature. In the simulation of

the liquid-solid phase transition in a bilayer water of varying density, a crossover from first-

order (at low densities) to a continuous phase transition (at high densities) was observed

in terms of a diminishing S-loop in the statistical temperature, consistent with other ther-

modynamic and structural indicators. The dependence of the thermodynamic properties

related to phase transitions on the confinement environment of water nanofilms is investi-

gated with gREM simulations. Remarkable sensitivity of the transition to the nature of the

water-wall interaction is demonstrated, with implications for the understanding of interfacial

and nano-confined water.

Extensive gREM simulations combined with ST-WHAM provide detailed thermody-

namic properties intrinsic to phase transitions, including the transition temperature, heat

capacity profile, phase change enthalpy, entropy, and volume. These thermodynamic prop-

erties can be accurately determined as enhanced sampling of the strong first-order phase

transition region is achieved in gREM simulations.

7.2 Future Work

The power of gREM implemented with Monte Carlo (MC) simulations has been demon-

strated through the applications to monatomic systems including the adapted Dzugutov
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model, Lennard-Jones fluids, and coarsed-grained water. However, in condensed phase sim-

ulations of complex fluids and bimolecules, molecular dynamics (MD) is a more natural

choice than Monte Carlo due to the difficulty in designing an effective algorithm for gener-

ating collective MC trial moves.

One future direction is to implement gREM in GROMACS, which is an open source MD

simulation package widely used to simulate biomolecules. A major challenge to implement

gREM into a MD simulation package is to have a correct scheme of temperature control of

each replica and to handle the acceptence rules for replica exchanges and the force scaling

depending on the scheme of temperature control. The thermostats should also be carefully

chosen by investigating different combinations of temperature control and thermostats on

the quality of enhanced sampling for strong phase transition.

The proper implementation of gREM in GROMACS can achieve enhanced sampling

of the conformational space and thermodynamic properties of lipid bilayer, which would a

significant contribution to the field. Lipid bilayers are known to assume multiple phases.

As such, the simulation of phase change is essential to the complete characterization of the

structural and thermodynamic properties of lipid bilayers as a function of thermodynamic

parameters such as lipid composition and temperature. It will be fruitful to explore phases of

lipid bilayers at physilogical temperature, and to study the phase transitions, those between

solid (gel) and liquid phase, demonstrated by even single component lipid bilayers, as well as

between liquid-ordered and liquid-disordered phases, associated with "lipid raft" formation

on more complex lipid mixtures including cholesterol and sphingolipids.

Such studies will yield a detailed statistical model of the thermodynamics and kinetics

of lipid bilayer phases, which has been a goal of many computational and experimental

studies. The simulation of a pure lipid bilayer, for example, DPPC bilayers, will provide

a benchmark of the performance of gREM implemented in GROMACS [22]. Following

this, it will be meaningful to apply gREM to study the mixtures of lipids and cholesterol

characteristic of most eukaryotic cell membranes. It will also be promising to employ gREM
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in the simulation of self-assembly of aqueous Poly-Amido-Saccharide (PAS) amphiphiles,

a novel polymer with the potential to serve as an effective biomaterials in applications

including drug delivery.
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