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Abstract

This paper introduces an algorithm that uses
boosting to learn a distance measure for
multiclass k-nearest neighbor classi�cation.
Given a family of distance measures as in-
put, AdaBoost is used to learn a weighted
distance measure, that is a linear combina-
tion of the input measures. The proposed
method can be seen both as a novel way to
learn a distance measure from data, and as
a novel way to apply boosting to multiclass
recognition problems, that does not require
output codes. In our approach, multiclass
recognition of objects is reduced into a single
binary recognition task, de�ned on triples of
objects. Preliminary experiments with eight
UCI datasets yield no clear winner among our
method, boosting using output codes, and k-
nn classi�cation using an unoptimized dis-
tance measure. Our algorithm did achieve
lower error rates in some of the datasets,
which indicates that, in some domains, it may
lead to better results than existing methods.

1. Introduction

K-nearest neighbor classi�cation and boosting are two
popular methods for multiclass recognition. K-nearest
neighbor (k-nn) classi�ers are appealing because of
their simplicity, ability to model a wide range of para-
metric and non-parametric distributions, and theoret-
ical optimality as the training size goes to in�nity. At
the same time, k-nn recognition rates in real data sets
are sensitive to the choice of distance measure. Choos-
ing a good distance measure is particularly challenging
when the dimensionality of the data is large. Boosting
can be very e�ective with high-dimensional data, by
combining many weak classi�ers in a way that they
complement each other. On the other hand, the nat-
ural setting for boosting is binary classi�cation, and
applying boosting methods to a multiclass recogni-
tion task typically requires partitioning the multiclass

problem into multiple binary problems using output
codes (Allwein et al., 2000). Recognition rates are
sensitive to the choice of output code, and choosing
the right code can be a challenging task.

This paper introduces a new method for combining
boosting with k-nn classi�cation. From a k-nn per-
spective, the main contribution is a method for us-
ing boosting to learn, from training data, a distance
measure for k-nn classi�cation. Compared to other
methods for optimizing a distance measure, boosting
o�ers the capability of feature selection, and also has
very well understood theoretical properties, including
resistance to over�tting the training data (Schapire &
Singer, 1999).

From a boosting perspective, the key contribution is a
strategy for associating a multiclass recognition prob-
lem with a single binary recognition problem, which
is de�ned on triples of objects. We believe that this
idea can facilitate applying boosting to problems with
a very large number of classes. We also contribute a
�rst application of this idea: learning a distance mea-
sure for k-nn classi�cation using boosting.

2. Related Work

The basic AdaBoost algorithms (Freund & Schapire,
1996; Schapire & Singer, 1999) construct a classi�er
as a linear combination of weak classi�ers. Each weak
classi�er is assumed to achieve an error rate lower
than 0.5, as measured on a training set that has been
weighted based on the results of previously chosen clas-
si�ers. An error rate lower than 0.5 is easy to achieve
for binary classi�ers, but becomes increasingly harder
as the number of classes increases. As a consequence,
the standard AdaBoost algorithms are not easily ap-
plied to multiclass problems.

Schapire and Singer (1999) propose an algorithm,
called AdaBoost.MO, in which the multiclass prob-
lem is partitioned into a set of binary problems, using
the idea of error correcting output codes (ECOC) pro-
posed in Dietterich and Bakiri (1995). Allwein et al.
(2000) provide an extensive experimental evaluation of



AdaBoost.MO using di�erent output codes, and con-
clude that no output code is clearly better, and the
choice of the best code depends on the domain.

A poor choice of output code can lead to unnatural bi-
nary problems that are hard to learn. A possible rem-
edy is to include the selection of the output code in the
learning process, so that the code is learned from the
data (Crammer & Singer, 2002; R�atsch et al., 2003).
Dekel and Singer (2002) replace binary output codes
with continuous codes, which are optimized using an
iterative method.

In the �eld of k-nn classi�cation, di�erent approaches
have been proposed for constructing a good dis-
tance measure. Short and Fukunaga (1981) and
Blanzieri and Ricci (1999) propose distance metrics
that are based on estimates of class probability densi-
ties around objects. However, such estimates can be
hard to obtain, especially in high dimensions.

In Lowe (1995), a variable interpolation kernel is used
for classi�cation. The kernel size and the similarity
metric are optimized using training data. Paredes and
Vidal (2000) use Fractional Programming to optimize
an asymmetric distance measure between test objects
and training objects, which depends on the class label
of the training object.

In Hastie and Tibshirani (1996) and Domeniconi et al.
(2002), a local measure is learned for the area around
a given test point. These methods are iterative and
require choosing an initial distance measure.

3. Problem De�nition and Overview

Let X be a space of objects, Y be a �nite set of
classes, and D be a set of distance measures de-
�ned on X . Each object x 2 X belongs to a class
y(x) 2 Y . We are given a training set S of m ob-
jects from X and their associated class labels: S =
f(x1; y(x1)); : : : ; (xm; y(xm))g. We want to combine
the distance measures in D into a single weighted dis-
tance measure that leads to higher k-nn classi�cation
accuracy than the individual distance measures in D .
We also want to estimate a good value for the number
k of neighbors used by the k-nn classi�er.

3.1. Overview of the Algorithm

AdaBoost is good at combining binary weak classi-
�ers, but is hard to apply directly to multiclass prob-
lems. In order to use AdaBoost to combine di�erent
distance measures, we will establish a one-to-one cor-
respondence between distance measures and a family
of binary classi�ers that classify triples of objects. In

particular, suppose we have a triple (q; a; b), where
q; a; b 2 X , y(a) 6= y(b), and y(q) 2 fy(a); y(b)g.
The binary classi�cation task is to decide whether
y(q) = y(a) or y(q) = y(b).

A distance measureD de�nes a binary classi�er, which
compares the distancesD(q; a) and D(q; b) and assigns
to q the label of its nearest neighbor in the set fa; bg.
The one-to-one correspondence that we establish be-
tween distance measures and binary classi�ers allows
us to convert the distance measures in D to weak classi-
�ers, apply AdaBoost to combine those weak classi�ers
into a strong classi�er, and then convert the strong
classi�er into a distance measure. At �rst, the train-
ing set used by AdaBoost is a random set of triples
(q; a; b) of training objects, with the only constraint
that y(q) = y(a); y(q) 6= y(b). Intuitively, if the out-
put of AdaBoost is a good classi�er of triples, the cor-
responding distance measure should be good for k-nn
classi�cation.

Given the distance measure that was constructed us-
ing AdaBoost, we de�ne a new training set of triples,
by imposing the additional constraint that a and b
should be among the nearest neighbors of q in their
respective classes. The error of a binary classi�er on
these triples is more closely related to the k-nn error of
the distance measure that corresponds to that binary
classi�er. Then, we iterate between learning a new
distance measure, by applying AdaBoost on the cur-
rent training triples, and choosing new training triples
using the current distance measure. In practice, this
iterative re�nement improves k-nn classi�cation accu-
racy over the initial distance measure returned by the
�rst application of AdaBoost.

Obtaining a family of distance measures D , to use as
input to our algorithm, can be achieved in various ways
in practice. If the objects in X are represented as vec-
tors of attributes, each attribute can be used to de�ne
a distance measure. We can also de�ne distance mea-
sures based on non-linear combinations of attributes.

4. De�ning Binary Classi�ers from

Distances

In this section we formally de�ne how to associate dis-
tances with binary classi�ers. We use notation from
the problem de�nition. First, we assign to each triple
(q; a; b) 2 X3 a class label p(q; a; b) 2 f�1; 0; 1g:

p(q; a; b) =

8>><
>>:

1 if (y(q) = y(a)) ^ (y(q) 6= y(b)) :
0 if (y(q) = y(a)) ^ (y(q) = y(b)) :
0 if (y(q) 6= y(a)) ^ (y(q) 6= y(b)) :

�1 if (y(q) 6= y(a)) ^ (y(q) = y(b)) :
(1)



We will limit our attention to classifying triples (q; a; b)
for which p(q; a; b) = 1, i.e. where y(q) = y(a) and
y(q) 6= y(b). Every distance measure D on X de�nes a
discrete-output classi�er �D(q; a; b) and a continuous-
output classi�er ~D(q; a; b), as follows:

~D(q; a; b) = D(q; b)�D(q; a) : (2)

�D(q; a; b) =

8<
:

1 if D(q; a) < D(q; b) :
0 if D(q; a) = D(q; b) :

�1 if D(q; a) > D(q; b) :
(3)

�D is essentially a discretization of ~D, and ~D can
be considered to give a con�dence-rated prediction
(Schapire & Singer, 1999). The error rate of ~D is de-
�ned to be the error rate of the corresponding �D.

5. Learning a Weighted Distance

Measure with AdaBoost

The inputs to our algorithm are the following:

� A training set S = f(x1; y(x1)); : : : ; (xm; y(xm))g
of m objects of X , and their class labels y(xi).
Given S we also de�ne the set So of training ob-
jects to be So = fx1; :::; xmg, i.e. the set of all
objects appearing in S.

� A set D of distance measures de�ned on X .

Since we want AdaBoost to combine classi�ers of
triples of objects, we construct a training set S0 of
m0 triples of objects, where m0 is a manually set pa-
rameter. The i-th triple (qi; ai; bi) is chosen as follows:

� Pick an object qi 2 So at random.

� Pick an object ai 2 So such that that y(qi) =
y(ai) and qi 6= ai.

� Pick an object bi 2 So such that y(qi) 6= y(bi).

We run the generalized AdaBoost algorithm (Schapire
& Singer, 1999) on the training set S0 of triples. Ad-
aBoost evaluates all weak classi�ers ~D that correspond
to distances D 2 D , and outputs a linear combination
H1 of some of those weak classi�ers: H1 =

Pd

j=1 �j
~Dj .

Using H1 we de�ne a distance D
1
out as follows:

D1
out(x1; x2) =

dX
j=1

�jDj(x1; x2) ; (4)

where x1; x2 are objects of X .

We want to claim that AdaBoost essentially con-
structed D1

out by learning the corresponding binary
classi�er ~D1

out. To make that claim, we should show
that ~D1

out = H1. This is straightforward to show, but
not a trivial thing to check: if H1 were a linear combi-
nation of discrete-output classi�ers �Dj , as opposed to

continuous-output classi�ers ~Dj , then we would not
be able to de�ne a distance measure D1

out such that
H1 = ~D1

out or H1 = �D1
out.

Proposition 1 ~D1
out = H1.

Proof:

~D1
out(q; a; b) = D1

out(q; b)�D1
out(q; a)

=

dX
j=1

�jDj(q; b)�

dX
j=1

�jDj(q; a)

=
dX

j=1

�j(Dj(q; b)�Dj(q; a))

=

dX
j=1

�j ~Dj(q; a; b) = H1(q; a; b) :
�

Given D1
out, we could use it directly for k-nn classi�-

cation. However, we can improve accuracy by re�ning
this measure in an iterative way, and this is what we
discuss next.

5.1. Iterative Re�nement

~D1
out, has been optimized by AdaBoost with respect

to binary classi�cation of a random training set of
triples. However, for accurate k-nn classi�cation of
object q 2 X using some distance measure D, it does
not have to hold that all training objects of the same
class as q are closer to q than all training objects of
other classes (which would correspond to ~D perfectly
classifying all triples (q; a; b) with a; b 2 So; y(a) =
y(q); y(b) 6= y(q)). It suÆces that, among the k near-
est neighbors of q in So, objects of class y(q) achieve
a simple majority. Therefore, it is suÆcient (and not
even necessary) that ~D classi�es correctly all triples
(q; a; b) such that a and b are among the (bk=2c + 1)
nearest neighbors of q among training objects of their
respective classes y(a) (which equals y(q)) and y(b).

Based on these considerations, given distance measure
D1
out, we want to de�ne a new set of training triples,

which is more related to k-nn classi�cation error, and
use that new training set to learn a new distance mea-
sure D2

out. To de�ne the new training set of triples,
�rst we de�ne Nw(q; r;D), the w-class r-th nearest
neighbor of an object q 2 X as follows: Nw(q; r;D) is
the r-th nearest neighbor of q based on distance mea-
sure D, among all objects x 2 So that belong to class



w. If q itself is a training object with class label w, it
is not considered to be a w-class r-th nearest neighbor
of itself for any r.

Also, given a distanceD, the set Y of all classes, and an
integer r, we de�ne sets of triples T (D; r) and T 0(D; r),
as follows:

T (D; r) = f(q;Ny(q)(q; r;D); Nw(q; r;D)) :

q 2 So; w 2 (Y � fy(q)g)g : (5)

T 0(D; r) =

r[
i=1

T (D; i) : (6)

T (D) is the set of all triples (q; a; b) we can de�ne by
choosing a training object q, its same-class r-th nearest
neighbor a, and its w-class r-th nearest neighbor b for
all classes w 6= y(q).

If we knew the right value of k for k-nn classi�cation,
we could set rmax = bk=2c+ 1, and build a new set of
training triples by randomly sampling m0 triples from
T 0(D1

out; rmax), since classifying such triples correctly
is related to k-nn classi�cation error. We can actually
estimate a value for k by trying di�erent values of k
and evaluating the k-nn error on the set So of training
objects, or on a validation set, based on distance mea-
sure D1

out. In the experimental results, we use an ini-
tial implementation where we manually set rmax = 2,
regardless of the value we found for k. In the short
term we plan to get results using an implementation
where rmax is set automatically to bk=2c+ 1.

We construct the new training set of m0 triples by
sampling from T 0(D1

out; rmax). Now, we can start the
iterative re�nement process. In general, for n > 1,
the n-th iteration consists of choosing a set of training
triples by sampling m0 triples from T 0(Dn�1

out ; rmax),
and then learning a new distance measure Dn

out from
those triples using AdaBoost.

At the end of the n-th iteration, based on Dn
out, for

all possible values of k, we measure the error of k-nn
classi�ers on the set So of training objects. We set kn
to be the k that leads to the smallest training error,
and we de�ne en to be that error. When, for some n,
we get en � en�1, then we stop the learning algorithm
altogether, and we give the �nal output: Dout = Dn�1

out ,
and kout = kn�1. The number kout is the k we will use
for k-nn classi�cation.

6. Theoretical Considerations

6.1. Connecting Error on Triples to Nearest

Neighbor Classi�cation Error

In the previous section we established that if, given a
distance measure D and an integer k, the classi�er ~D

perfectly classi�es triples on the set T 0(D; bk=2c+ 1),
then D and k de�ne a perfect k-nn classi�er on the
training set So. Here we establish a tighter connection
between the error on set T (D; 1) and 1-nn classi�cation
error on training objects:

Proposition 2 Given a distance measure D, if the

corresponding classi�er ~D has error rate e0( ~D) on the

set T (D; 1), and the 1-nn classi�er de�ned using D
has error e(D) on the training set So, then e0( ~D) �
e(D) � (jY j � 1)e0( ~D).

Proof: For each q 2 So, T (D; 1) has a
subset Tq(D; 1) of jY j � 1 triples of the form
(q;Ny(q)(q; 1; D); Nw(q; 1; D)). Tq(D; r) contains one
triple for each class w 6= y(q). Object q is classi�ed
incorrectly by the 1-nn classi�er if and only if some
number of triples (between one and jY j�1) in Tq(D; 1)

are classi�ed incorrectly by ~D. Therefore, if f is the
number of misclassi�ed training objects, and f 0 is the
number of misclassi�ed triples in T (D; 1), f � f 0 �
(jY j�1)f . Dividing f 0 by jT (D; 1)j and f by jSoj, and
taking into account that jT (D; 1)j = (jY j � 1)jSoj, we
get e0( ~D) � e(D) � (jY j � 1)e0( ~D). �

6.2. What Is Missing

Proposition 2 establishes a connection between the er-
ror of a classi�er ~D on a special set of triples T (D; 1)
and the corresponding 1-nn error of the distance mea-
sure D on training objects. However, at this point,
we do not have an equally compact formula that asso-
ciates the error on some set of triples with k-nn error
when k > 1.

Even in analyzing 1-nn error, an important issue is
that AdaBoost, at the n-th iteration, constructs a dis-
tance measure Dn

out by minimizing an upper bound on
the error on the current training set of triples (Schapire
& Singer, 1999). That training set is not related to
the set T (Dn

out; 1), which is the set linked to the 1-nn
classi�cation error by Proposition 2. Therefore, from
a theoretical standpoint, we cannot claim that Ad-
aBoost optimizes a quantity directly related to 1-nn
or k-nn classi�cation error.

A potential path towards establishing a connection be-
tween AdaBoost optimization and 1-nn error is as fol-
lows: we could use, after the n-th iteration of our algo-
rithm, T (Dn

out; 1) (or a random subset of it) as the new
training set of triples. If, at the end of the next itera-
tion, we get that T (Dn+1

out ; 1) = T (Dn
out; 1), then we get

that T (Dn+1
out ; 1) is actually the training set that Ad-

aBoost used to construct ~Dn+1
out . Therefore, the error

rate of ~Dn+1
out on T (Dn+1

out ; 1) would be the AdaBoost
training error. Since Proposition 2 connects that er-



ror to the 1-nn error on actual objects, we could claim
that the (n+1) application of AdaBoost minimized an
upper bound on the 1-nn error on training objects.

Such a proof can be completed if we show convergence
of the sequence of distance measures produced during
the iterative re�nement process. However, we have no
theoretical or experimental evidence of such conver-
gence. This means that the optimization of the dis-
tance measure, with our current formulation, is heuris-
tic. However, we should stress that, in practice, the
�rst iterations do reduce training and test error, and
afterwards those errors 
uctuate in a small range, so
the iterative re�nement does improve accuracy over
the initial distance measure D1

out.

7. Complexity

The storage requirements of our method for training
and testing are dominated by the need to store all
training objects, as is typical in k-nn classi�ers. For
high-dimensional data, our algorithm sometimes e�ec-
tively performs feature selection, by outputting a dis-
tance measure that only depends on some of the fea-
tures. That allows for a more compact representation
of the training objects in the actual k-nn classi�er.

The training time depends on the number jD j of dis-
tance measures in D , the total number of iterations n,
the average number of steps d it takes each invocation
of AdaBoost to complete its training, the number of
training triples m0 used at each iteration, and a num-
ber g, which we de�ne to be the maximum number of
objects that belong to a single class in the training set
So. If m is the number of training objects in So and
t is the number of classes, if there is an equal number
of objects for each class, then g = m=t.

At each iteration, we need to choose m0 training
triples. Choosing each triple involves �nding two w-
class r-th nearest neighbors of q, for two classes w 2 Y ,
some integer r, and some training object q. This takes
time O(g) per triple. Then we need to invoke Ad-
aBoost, whose training takes time O(m0djD j). So, the
overall training time of the algorithm is O(nm0(g +
djD j)).

In our current implementation, we use k-nn training
error as a stopping criterion. To compute that at each
iteration, we need to compare each training object to
all other training objects, which takes time O(m2). For
large training sets, we can estimate the k-nn training
error statistically using sampling, or we can measure
error on a smaller validation set, so that we can elim-
inate this quadratic dependency on m.

The recognition time, in the worst, case, involves com-
puting distances from the test object to all training
objects. However, several eÆcient methods proposed
for �nding nearest neighbors or approximate nearest
neighbors may be applicable in some domains (Indyk,
2000; Yianilos, 1993).

8. Relation to Output Codes

Our algorithm uses training triples (q; a; b) such that
q and a belong to the same class and b belongs to a
di�erent class. Each such triple is an instance of one
of the each-versus-each binary problems, which are de-
�ned by choosing any pair of classes. This establishes
a conceptual connection between our approach and the
each-versus-each output code. However, our method is
not equivalent to AdaBoost.MO with the each-versus-
each output code, because in our case the output is
a single distance measure and a value for the k to be
used in k-nn classi�cation. With the each-versus-each
output code, the output is a set of binary classi�ers,
and the size of that set is quadratic to the number of
classes.

A key feature of our algorithm is that we can control
time complexity by using sampling to create the train-
ing set of triples, i.e. by setting parameter m0. Of
course, sampling of the training set can also be ap-
plied in AdaBoost.MO. However, our method learns
far fewer parameters than AdaBoost.MO: we just learn
a weight for each distance measure, and a value of
k for k-nn classi�cation. In AdaBoost.MO the num-
ber of parameters, and training time, are proportional
to the number of binary classi�ers, which is O(t2) for
the each-versus-each code, where t is the number of
classes. It will be interesting to evaluate experimen-
tally whether the small number of learned parameters
can make our algorithm more amenable to sampling,
and therefore more applicable to problems with a large
number of classes.

Another feature of our method is that, while learn-
ing relatively few parameters, we still obtain a classi-
�er that inherits the ability of nearest neighbor clas-
si�ers to model complex, non-parametric distributions
using a set of training objects. In AdaBoost.MO, the
capability to model complex distributions is obtained
by learning a large number of parameters, which are
needed to specify all the binary classi�ers.

K-nn classi�ers are often considered ineÆcient in terms
of storage and time requirements. However, classi�ers
obtained with AdaBoost.MO can be, in some cases,
comparably or more ineÆcient at classi�cation time,
because they require storage and application to the



Table 1. Information about the UCI datasets used in the
experiments, largely copied from (Allwein et al., 2000).

Dataset Train Test Attributes Classes

glass 214 - 9 6
isolet 6238 1559 617 26
letter 16000 4000 16 26
pendigits 7494 3498 16 10
satimage 4435 2000 36 6
segmentation 2310 - 19 7
vowel 528 462 10 11
yeast 1484 - 8 10

Table 2. The error rate achieved by our method (denoted
as Boost-NN) in each dataset, compared to the best re-
sult attained among the 15 AdaBoost.MO variations eval-
uated in Allwein et al. (2000) and the best result attained
among the 6 variations of \naive" k-nn classi�cation. For
our method we also provide the standard deviation across
multiple trials, except for the isolet dataset where we only
ran one trial of our algorithm.

Dataset Boost-NN Allwein Naive k-nn

glass 24.4 � 1.7 25.2 26.8
isolet 6.5 5.3 7.6
letter 3.5 � 0.2 7.1 4.5
pendigits 3.9 � 0.6 2.9 2.2
satimage 9.6 � 0.3 11.2 9.1
segmentation 1.8 � 0.2 0.0 2.6
vowel 41.9 � 1.6 49.8 44.3
yeast 41.7 � 0.6 41.6 40.9

test object of a number of binary classi�ers. For some
output codes, the number of binary classi�ers can be
linear or quadratic to the number of classes.

9. Experiments

We applied our algorithm to eight datasets from the
UCI repository (Blake & Merz, 1998). Some informa-
tion about these datasets is given in Table 1. Allwein
et al. (2000) evaluate 15 di�erent variations of Ad-
aBoost.MO on 13 UCI datasets. The �fteen variations
were obtained by trying �ve di�erent output codes,
and three di�erent ways to assign a class to a test
object based on the outputs of the binary classi�ers.
Our goal was to compare our algorithm to the results
given by Allwein et al. (2000) on the same datasets.
We ended up using only eight of those datasets. We
did not use four datasets (dermatology, soybean, thy-
roid, audiology) because they have missing attributes,
which our current formulation cannot handle. One
dataset (ecoli) contains a nominal attribute, which our
current implementation cannot handle in practice; this

Table 3. For each dataset, we count how many variations
of AdaBoost.MO gave lower (<), equal (=), and higher
(>) error rates than our algorithm, based on the results in
Allwein et al. (2000). For example, in the segmentation
dataset, all 15 variations of AdaBoost.MO did better than
our algorithm. We also give the same information for the
six variations of the naive k-nn algorithm. We consider
an error rate equal to the error rate of our algorithm if it
is within one standard deviation of the error rate of our
algorithm. Note that in Allwein et al. (2000) some of the
15 variations were not tried on all datasets, because of their
complexity.

Dataset Allwein Naive k-nn

< = > < = >

glass 0 1 14 0 0 6
isolet 2 0 7 0 0 6
letter 0 0 12 0 0 6
pendigits 3 0 12 3 3 0
satimage 0 0 15 2 2 2
segmentation 15 0 0 0 0 6
vowel 0 0 15 0 0 6
yeast 0 6 9 1 5 0

is a shortcoming we plan to address soon. For the
remaining datasets, we compare our results to those
cited by Allwein et al. (2000), using in each dataset the
same training and test set that were used in that pub-
lication. For datasets where no independent test set
was available, we used 10-fold cross-validation, again
as in Allwein et al. (2000).

We also compared our algorithm to a \naive" k-nn al-
gorithm, that does not learn a distance measure, but
instead computes a standard L1 or Euclidean (L2) dis-
tance. We applied both those distances to data that
was normalized using three normalization schemes:
the null scheme (no normalization at all), normalizing
the range of each attribute to be between 0 and 1, and
normalizing the standard deviation of each attribute
to be equal to 0.5. This gives us a total of 6 variations.
For each variation, the best k was chosen to be the one
that minimized the classi�cation error on the training
set. In datasets where cross-validation was needed, we
ran three full cross-validation trials and averaged the
results. It is interesting that, in some datasets, the
\naive" k-nn algorithm had actually lower error rates
compared both to our method and the methods eval-
uated in Allwein et al. (2000). This is not entirely
unexpected, since neither AdaBoost nor our formula-
tion guarantee learning globally optimal values for the
classi�er parameters.

The family D of distance measures used as input to
our algorithm was constructed by using each attribute



to de�ne a distance measure based only on that at-
tribute. In all experiments, m0 = 10; 000, except for
isolet where m0 = 100; 000. We noticed that larger
values of m0 did not make much di�erence on the re-
sulting error rate.

In some UCI datasets, multiple training data were col-
lected by each of a set of human subjects. In forming
training triples, given a training object q, we exclude
objects a and b coming from the same subject. For the
UCI pendigits dataset, we could not �nd any subject
ID information, so we could not apply this criterion.

Since our algorithm relies on random sampling in con-
structing training triples, we ran at least 22 trials on
each dataset, in order to estimate the standard devi-
ation of the error rate. The only exception was the
isolet dataset, where we ran a single trial. In datasets
where cross-validation was used, each trial consisted
of a full cross-validation, where the dataset was split
into 10 subsets and each subset was used once as a
test set. The running time for each trial ranged from
about 30 seconds for the vowel dataset, to about one
hour for the letter dataset and two days for the iso-
let dataset (the only dataset where we used 100,000
training triples). The remaining datasets took a few
minutes per trial. The running time was measured on
an Athlon 1.2GHz PC with 2GB of memory. In gen-
eral, the number of iterations per trial (each iteration
consisting of forming training triples followed by an
application of AdaBoost) was between three and eight
for all datasets.

Tables 2 and 3 compare the results of our method to
the results of the variations of AdaBoost.MO cited in
Allwein et al. (2000) and those of \naive" k-nn. In
those tables we refer to our method as Boost-NN (for
Boosted Nearest Neighbors). Overall, the results show
that for each method there are two datasets where that
method does better than the other methods. There are
also two datasets (glass and yeast) where the results of
our algorithm and the best results from ECOC-based
boosting and naive k-nn classi�cation are quite similar.

We should mention that, in the Allwein et al. (2000)
implementation of AdaBoost.MO, the weak classi�ers
were decision stumps. For a more appropriate com-
parison of our method to AdaBoost.MO we need an
implementation of AdaBoost.MO in which the weak
classi�ers are nearest neighbor classi�ers based on sin-
gle attributes, so that they resemble as much as pos-
sible the weak classi�ers we use in our algorithm.

Overall, the results yield no clear winner among our
method, AdaBoost.MO, and naive k-nn classi�ers. At
the same time, we believe that the results o�er evi-

dence that, at least in some domains, our method may
provide better classi�ers than other standard methods.
Clearly, more results are needed in order to evaluate
the strengths and weaknesses of our method versus Ad-
aBoost.MO and existing methods for learning distance
measures for k-nn classi�cation.

10. Discussion and Future Work

Our algorithm combines the ability of AdaBoost to se-
lect and combine di�erent weak classi�ers in a way that
they complement each other with the ability of k-nn
classi�ers to model complex, non-parametric distribu-
tions. The experiments show that, in some domains,
our method can lead to lower error rates than some
standard k-nn classi�cation methods, and some imple-
mentations of boosting based on output codes. At the
same time, we believe that the following experiments
are needed to better evaluate our method:

� Analyze dependence of error rate on the number
m0 of training triples.

� Analyze whether the sequence of distance mea-
sures produced in the iterative re�nement stage
exhibits some kind of convergence.

� Compare our method to existing methods for
learning distance measures from data (Lowe,
1995; Paredes & Vidal, 2000).

� Evaluate di�erent variations of AdaBoost.MO, us-
ing k-nearest neighbors as weak binary classi�ers.
That would provide a more appropriate compari-
son between AdaBoost.MO and our method.

� Experiment with datasets with large numbers of
classes, in the hundreds or thousands. Domains
where datasets with a very large number of classes
can exist include recognition of faces, �ngerprints,
articulated body pose, and speech. We should test
the conjecture that, in such datasets, our method
may be more tolerant to sampling and therefore
more eÆcient than methods using output codes.

Also, there are several directions that we are inter-
ested in exploring, that may lead to better classi�ca-
tion rates:

� Training an ensemble of k-nn classi�ers, and com-
bining them using majority voting.

� Extending our formulation so as to learn class-
speci�c asymmetric distance measures, as pro-
posed in Paredes and Vidal (2000).



� Constructing a hierarchy of k-nn classi�ers. For
example, based on the confusion matrix of the
classi�er learned by our current algorithm, we can
train specialized k-nn classi�ers that focus on spe-
ci�c sets of classes that the top-level k-nn classi�er
tends to confuse with each other.

Also, in terms of the theoretical foundation of our
method, it is an open question whether we can provide
a connection between the training error on triples and
the training and generalization error on actual objects.
Such a connection would allow us to extend known the-
oretical properties of AdaBoost to the resulting k-nn
classi�er, and it would provide a theoretical validation
for the claim that our algorithm constructs a distance
measure optimized for k-nn classi�cation.

11. Conclusions

We have proposed a novel algorithm that uses boosting
to learn a weighted distance measure for k-nn classi�-
cation. Our algorithm is also a new method for apply-
ing boosting to multiclass recognition problems, that
does not use output codes, and that may be a more
eÆcient alternative in problems with very large num-
bers of classes. Preliminary experiments show that, in
some domains, our algorithm provides better results
than some related approaches. More experiments are
needed to better understand our approach and com-
pare it to existing approaches.

At the core of our formulation lies the reduction of
multiclass recognition of objects to binary classi�ca-
tion of triples of objects. In a sense, the algorithm
we propose in this paper is a �rst attempt to apply
this idea to boosting multiclass recognition. In the fu-
ture work section we propose to use this idea to train
classi�ers of a more sophisticated structure, that will
hopefully be more powerful and lead to better recog-
nition rates.
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