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ABSTRACT 

Cluster analysis is widely used in many disciplines including biology, 

psychology, archaeology, geography, and marketing. Methods have been developed to 

extend cluster analysis to longitudinal data, clustering subject trajectories rather than 

single time points. Here, I examine 2 methods oflongitudinal cluster analysis: k-means 

and model-based (implemented using FlexMix in R) cluster analysis. I compare these two 

methods based on the Correct Classification Rate, the ability of the method to correctly 

classify subject trajectories into groups, using a simulation study. Both methods are found 

to perform well under most circumstances, but in 64% of the scenarios examined, the 

model-based method out-performs the k-means approach. Next, I examine three criteria 

that have been used to determine how many groups exist in the data: the Akaike's 

Information Criteria (AIC), the Davies-Bouldin Index (DB), and the Calinski-Harabasz 

pseudo F-statistic (CH). The latter two were developed specifically for choosing the 

number of groups in a cluster analysis with a single observation per person, while the 

AIC was developed as a general model fit statistic. Few studies have used these criteria in 
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the context oflongitudinal data and no study has compared their efficacy. We found that 

the DB and CH fail to correctly identify the number of groups in the majority cases, 

while the AIC was better able to determine the correct number. Finally, as no study has 

examined the addition of a covariate to cluster analysis, we compare results of a cluster 

analysis when a covariate was taken into account to when it is ignored. When a covariate 

is both time-dependent and associated with the outcome, regardless of the magnitude of 

the association, it is important to take this variable into account in the analysis. If the 

covariate is associated only with the outcome and not time-dependent, depending on the 

magnitude of the association, it may be necessary to account for the covariate. In 

summary, we present methods for clustering trajectories, evaluate methods for 

determining the number of groups and determine the importance of adjusting for 

co variates in the cluster analysis of longitudinal data. 
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CHAPTER 1: Introduction 

Motivation 

The ability to summarize, combine and utilize data from multiple time points has 

become increasingly important as more research focuses on longitudinal studies. We are 

interested in using information from longitudinally observed data as independent 

variables in analysis. As a motivating example, we consider data :from the Framingham 

Heart Study. This longitudinal study has collected more than 50 years of data over 

approximately 28 time points. Using data from the Framingham Study, we would like to 

be able to find patterns of risk factors, determine the "correct" number of groups of 

patterns and classify subjects into groups based on the trajectory of some variable. Given 

that we can correctly classify individual trajectories into groups, these groups could then 

be used as independent variables in regression models to predict outcomes. This 

approach could better account for prior history than using time-dependent covariates or 

summary measures, which may only account for current values of the risk factor and not 

prior history. This cluster analysis approach could also be used as an exploratory tool to 

identify groups based on trajectories of some characteristic, and analyses could then work 

backwards to identify predictors of group status. 

Many statistical techniques have been developed to combine or summarize these 

multitudes of data, including principal component analysis, smoothing approaches and 

latent class regression; Cox proportional hazards regression with time dependent 

covariates allows independent variables to be updated over time during the analysis 
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period. However, each of these approaches has drawbacks, including the fact that Cox 

proportional hazards regression ignores the historical values of the predictor. Cluster 

analysis, which categorizes subjects into groups with similar patterns on a set of 

variables, has been extended and applied to cluster longitudinal data as trajectories, but 

the performance of these methods with longitudinal data have not been fully evaluated. 

Cluster analysis 

Cluster analysis, or clustering, is the process of classifying observations (people) 

into groups, or clusters, such that each group contains similar observations based on a 

given set of variables. Cluster analysis was originally developed by Eshref Shevky and 

Wendell Bell1 for the purpose of analyzing census data2
-
3

. It was applied to census small-

area statistics and social indicators in social area analysis to create area typologies, either 

focusing on particular urban or metropolitan areas, or covering the country as a whole. 

Since its development, cluster analysis has been used in a wide variety of disciplines, 

including biology, psychiatry, psychology, archaeology, geology, geography, and 

k . 4-6 mar etmg. 

Two major approaches to cluster analysis are hierarchical cluster analysis and k-

means cluster analysis. In hierarchical clustering, a hierarchy of clusters is created, 

which can be represented by a tree structure, called a dendrogram. One can either start 

with the leaves of the tree (individual observations in their own cluster) and merge the 

clusters together to the root, or alternatively start at the root of the tree and split the 

clusters into leaves. A function that measures the similarity or distances between 
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observations is used to decide when to split or combine groups. Ink-means clustering, 

the observations are assigned to a pre-specified number of groups, which can be done 

randomly or using methods developed to improve initial group assignments . 

Observations are then moved between clusters, based on a distance measure from the 

"center" of the cluster- the distance measure and cluster "center" can be defmed by 

various techniques for different approaches. Once all observations stop moving, then the 

algorithm has converged. Although a decision needs to be made as to how many clusters 

there are at the end of the procedure in a hierarchical clustering algorithm, the number of 

groups does not need to be specified initially by the user, whereas ink-means, the 

number of groups must be specified a priori. There are many variations on these two 

approaches, primarily based on how distances are calculated. 

For longitudinal data, the purpose of cluster analysis becomes the task of finding 

groups of subjects with similar trajectories or patterns in a variable measured repeatedly 

over time. Once similar patterns have been found, these groups could be used as a 

covariate in a regression model to predict outcomes. In the case of foot pain and body 

mass index, it can be expected that the long-term presence of excess weight may be more 

useful in predicting foot pain than the current body mass index, as the derangement of 

foot structure and the accumulation of damage to the foot may be a function of excess 

weight, the duration of excess weight and the time periods of life over which this excess 

weight is carried. 

There are two main types of cluster analysis for longitudinal data: model-based 

cluster analysis and algorithmic approaches (k-means cluster analysis7
-
8
). Numerous 
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studies have been designed with longitudinal measurements of risk factors and much 

effort has gone into the development of methods for the use of this rich information in the 

investigation of the association between risk factors and disease. Methods such as Cox' s 

proportional-hazards regression with time-dependent covariates9
-
10 have concentrated on 

the effects of changing risk factor profiles on survival, but these efforts usually focus on 

the immediate, short-term effects of risk factors on survival. While these methods provide 

a different perspective compared to the standard approach of assessing risk factors at 

baseline and observing their effects on long-term survival, there has been a lack of 

attention to the overall pattern ofthese risk factors over the course of follow-up. 

Several approaches to summarizing and using longitudinal information have been 

developed. One approach is the use of principal component analysis 11
, where these 

repeated measures over time may be reduced to more manageable summary variables. 

Modem approaches to smoothing, including splines, local regression (LOESS), and 

generalized additive models 12 have also provided us with the ability to better describe 

these risk factor trajectories over time. The use of principal component analysis or the 

smoothed representation of these trajectories may provide insight into the effect of time 

on risk factors, but their use is limited by the assumption that one is observing a uniform 

population of subjects sharing this observed trajectory. These non-linear patterns over 

time, however, may simply reflect an underlying heterogeneity of the population and the 

application of a smoother to these data, while presenting an interesting picture, may mask 

a collection of widely divergent trajectories that may place individuals at varying risk of 

disease outcomes. 
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Several approaches have been taken to identify underlying heterogeneous groups 

that are responsible for the observed trajectories over time. Structural equation modeling, 

in the form of latent class growth curve mixture models, as exemplified by the work of 

Muthen 13
, has been used to uncover groups of subjects with similar longitudinal 

trajectories. The nature of this approach assumes that longitudinal measures are at fixed 

time points. Another approach to this heterogeneity has been to use random coefficient 

mixture modeling14 to view individual variations in growth curves as a means of grouping 

subjects with similar trajectories so that these underlying patterns may be identified. 

Jones, Nagin and Roeder 15 created a SAS procedure, PROC TRAJ, which fits cubic 

polynomial models with censored normal, Poisson, zero-inflated Poisson and Bernoulli 

distributions and clusters subjects with similar trajectories. A limitation of this approach 

is that it assumes a simple cubic polynomial fit, which limits the nature of the association 

to a cubic polynomial. The statistical theory behind PROC TRAJ has been described 

previously16
-
20

. This model allows for data grouping using different parameter values for 

each group distribution. The approach is intended to complement two well-established 

methods for analyzing developmental trajectories, hierarchical modeling21
-
23 and latent 

growth curve modeling24
-
26

, which model variation in the parameters of trajectories using 

continuous multivariate density functions. 

As little data exist to show which method is preferable in which situation, this 

thesis will examine a model-based approach and a k-means/smoothing approach to 

cluster analysis oflongitudinal data. We chose these two methods because they fit the 

constraints of the data that we are interested in: specifically, these methods, compared to 
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the other methods mentioned above, do not require data points at fixed time intervals and 

can easily handle irregular intervals between data points. The two methods we will focus 

on are described below. 

K-means procedure 

K-means clustering7
-
8 is a method of cluster analysis which aims to partition n 

observations into K clusters in which each observation belongs to the cluster with the 

nearest mean. The number of groups (K) is determined a priori. To determine initial 

group assignments, two commonly used methods are Forgy and Random Partition27
. The 

Forgy method randomly chooses K observations from the data set and uses these as the 

initial group means. The random partition method first randomly assigns a cluster to each 

observation and then computes the initial mean of each cluster. Other methods have been 

developed for improving the choice ofk-means starting values. For example, k

means++28 determines initial cluster centers by first randomly choosing one cluster center 

from the data points. Then, each remaining cluster center is chosen from the remaining 

data points with probability proportional to its distance squared to the point's closest 

cluster center. In the implementation ofk-means in this thesis, the random partition 

method is used to determine initial group assignments. 

The distance from each subject to each group is calculated and the subject is 

moved to the nearest group. The distance can be defined in different ways, including the 

squared difference between the data point and the cluster mean. When all subjects stop 

moving, the algorithm converges. When applied to longitudinal data, it becomes an 
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exercise of clustering curves or trajectories for each subject rather than a single data point 

While others29
-
37 have applied this approach, we developed an implementation of this 

approach in R38 that uses generalized additive models to allow for a spline fit over time 

and future incorporation of covariates and confounders in the model. 

Model-based procedure 

A model-based approach to longitudinal cluster analysis, called FlexMix, has 

been implemented in R by Friedrich Leisch and Bettina Gruen39
-
41

. FlexMix implements 

a general framework for finite mixtures of regression models using the EM algorithm and 

allows for modeling oflongitudinal trajectories. We use a smoother in the FlexMix 

algorithm that allows the procedure to fit a spline regression to each cluster. This 

approach allows for direct comparison with results from the k-means/smoothing method. 

In FlexMix, at each iteration of the algorithm subjects are put into clusters based on the 

group with the maximum posterior probability. FlexMix uses the EM algorithm42 to 

calculated the posterior class probabilities for each observation and maximize the log

likelihood for each cluster separately, using the posterior probabilities as weights. 

Iterations with the EM algorithm are repeated until the likelihood stops improving. 

Chapter 2: A Simulation study 

Using a simulation study, we compare the performance of the k-means/smoothing 

approach and the FlexMix algorithm in identifying three latent groups with different 

trajectory patterns. We generate datasets with varying underlying trajectory patterns over 
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time and varying degrees of within and between group variability and apply each 

algorithm to the simulated datasets. Three hundred replicates were used in this data 

simulation. With these results, we compare the ability of each method to identify the 

underlying latent groups using the ability of each method to correctly classify subjects' 

trajectories. 

Chapter 3: Choosing the correct number of clusters 

Various methods have been developed to choose the correct number of clusters in 

a cluster analysis. One approach is to perform a series of cluster analyses, allowing a 

different number of clusters in each analysis, and then using a goodness of fit measure to 

determine the number of clusters that maximize the fit. In this paper we examine three 

goodness of fit statistics. 

Akaike' s information criteria43 (AIC), developed as a measure of the goodness of 

fit of a statistical model in the context of maximum likelihood estimation, has been 

applied to the problem of choosing the correct number of clusters. It is defined as: 

AIC = -2logL+2p 

where L is the likelihood and p is the number of parameters in the model. 

The Davies-Bouldin index44 (DB) is a function of the ratio ofthe sum of within-

cluster scatter to between-cluster separation, and uses both the clusters and their 

estimated sample means. 

1 f {Su +Sv} 
DB= K b_ max Su,v 
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where K is equal to the number of clusters, S k is equal to the average distance of all 

objects from the cluster to their cluster center, and Su,v is equal to the distance between 

cluster centers. The Davies-Bouldin index is small if clusters are compact and far from 

each other, indicating a good clustering of subjects' trajectories. 

A variance ratio criterion is the Calinski-Harabasz pseudo F-statistic45 (CH). 

CH = BGSS/WGSS 
K-1 n-K 

where BGSS is equal to the between groups sum of squares, WGSS is equal to the within 

groups sum of squares, K is equal to the number of clusters and n is the sample size. The 

Calinski-Harabasz pseudo F-statistic is equivalent to an F-statistic in datasets with one 

observation per subject. A larger value indicates a better clustering. 

Other measures to choose the correct number of clusters have been developed, 

including Hubert's statistic46
, which measures the goodness of fit of a model applied to 

the data, including clusters; Dunn' s index, which is similar to the Davies-Bouldin index, 

as they both intend to identify clusters that are compact and well separated47
; and 

"jump", which is based on a method of within cluster dispersion48
. Further methods have 

been described by Schwarz49
. 

These criteria have been compared using multiple variables in cross-sectional data 

and found to fail on a significant portion of data 5°-
53

. Maulik et al50 evaluated the 

performance of three clustering algorithms (hard K-Means, single linkage, and a 

simulated annealing based technique) in conjunction with four cluster validity indices, 

namely Davies-Bouldin index, Dunn' s index, Calinski-Harabasz index, and a recently 
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developed index I50
. The index I performed well in their simulations. Kosmelj et al53 used 

artificial data to test various measures and found that all of them fail on a large portion of 

data. To our knowledge, only one study has used any of these criteria specifically on 

longitudinal data30 and no study has compared them. 

Chapter 4: Covariate adjustment 

Longitudinal cluster analysis is most commonly conducted with one variable 

measured across time and does not include covariates in the trajectory model fitting step. 

Studies in which cluster analysis of longitudinal trajectories has been used have first 

determined the clusters to which each subject belongs and then examined a prediction 

model that includes important covariates or looked at differences in prevalence or 

distribution of covariates between the clusters54
-
57

. To our knowledge, no study has 

examined the importance or utility of adding a covariate to the trajectory fit during the 

cluster analysis. 

Significance 

This thesis adds three contributions to statistical methods for handling 

longitudinal data. First, we provide insight into the choice of method for clustering 

observations on longitudinal trajectories. Second, by using the AIC statistic in a new way 

to choose the correct number of clusters in a longitudinal application of cluster analysis, 

we present a new method for determining the correct number of clusters in longitudinal 

data. Currently, other statistics for determining the number of groups in a cluster analysis 
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do not take into account the trajectory nature oflongitudinal data. Finally, we believe 

that no prior study has examined the effect of confounders and covariates on a cluster 

analysis. Being able to improve the performance of a cluster analysis by incorporating 

covariates in the clustering model provides a valuable tool. 

Organization 

This thesis is structured as follows. In Chapter 2, we compare the performance of 

a k-means/smoothing clustering procedure to a model-based clustering procedure 

(Fle:xMix package) using a simulation study of artificial longitudinal data. In Chapter 3, 

we examine existing methods of choosing the correct number of clusters specifically in 

the longitudinal data setting using the k-means/smoothing and model-based methods. We 

evaluate the performance of these criteria using simulations. In Chapter 4, we examine 

the effect of confounding and covariate adjustment on the detection of clusters. Chapter 5 

summarizes the thesis, draws conclusions, discusses limitations of this work and outlines 

future directions. 
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CHAPTER 2: A comparison of a k-means approach and a model-based approach 

for clustering longitudinal risk factor trajectories 

Introduction 

Longitudinal studies, such as the Framingham Heart Study58
-
59

, where participants 

are observed or measured repeatedly over time are becoming increasingly more common 

and essential to researchers. These repeated measurements over time can be described as 

subject specific trajectories instead of single observations. Identifying the trajectories 

over time provide the opportunity to identify groups of subjects at risk for a particular 

disease given their patterns and to intervene before disease onset. 

Numerous studies have presented researchers with longitudinal measurements of 

risk factors and much effort has gone into the development of methods for the use of this 

rich information in the investigation of the association between risk factors and disease. 

Methods such as Cox' s proportional-hazards regression with time-dependent covariates9
-

10 have concentrated on the effects of changing risk factor profiles on survival, but these 

efforts have usually resulted in a focus on the immediate, short-term effects of risk 

factors on survival. While this strategy provides a different perspective from the standard 

approach of assessing risk factors at baseline and observing their effects on long-term 

survival, there has been a lack of attention to the overall pattern of these risk factors over 

the course of follow-up. 

Methods for using cluster analysis to summarize and model longitudinal patterns 

overtime have been developed and are being used with increasing frequency. Many of 



13 

these approaches have their own limitations and little work has been done to determine 

situations in which one procedure would be preferred over another. Approaches, 

including the use of principal component analysis 11
, where the repeated measures over 

time may be reduced to more manageable summary variables, have been used. Modem 

approaches to smoothing, including splines, LOESS, and generalized additive models12
, 

have also provided us with the ability to better describe and visualize these risk factor 

trajectories over time. The use of principal component analysis or the smoothed 

representation of these trajectories may provide insight into the effect oftime on risk 

factors , but their use is limited by the assumption that one is observing a uniform 

population of subjects sharing this observed trajectory. These non-linear patterns over 

time, however, may reflect underlying heterogeneity in the population and the application 

of a smoother to the data of the entire population, while presenting an interesting picture, 

may mask a collection of widely divergent trajectories that may place individuals at 

varying risk for disease outcomes. 

These methods for clustering longitudinal trajectories over time can be classified 

into two groups: model-based methods and k-means/smoothing approaches. Several 

model-based clustering approaches have been applied to identify the underlying 

heterogeneous groups that are responsible for the observed trajectory over time. 

Structural equation modeling, in the form of latent class. growth curve mixture models, as 

exemplified by the work of Muthen 13
, has been used to uncover groups of subjects with 

similar longitudinal trajectories. The nature ofthis approach assumes that longitudinal 

measures are at fixed time points. In administrative or clinical datasets, as in those 
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maintained by the Department of Veterans Affairs and other computerized health care 

systems, data are not typically collected at fixed time points and frequently are 

unpredictable in timing as patients come in to appointments at irregular intervals. 

Another approach to analyzing this heterogeneity has been to use random 

coefficient mixture modeling14 to view individual variations in growth curves as a means 

of grouping subjects with similar trajectories so that these underlying patterns may be 

identified. Jones, Nagin and Roeder15 created a SAS procedure, PROC TRAJ, which fits 

cubic polynomial models with censored normal, Poisson, zero-inflated Poisson or 

Bernoulli distributions to cluster subjects with similar trajectories. A limitation of this 

approach is that it assumes a cubic polynomial fit, which limits the nature of the 

association to cubic patterns. Additionally, a package in R called FlexMix39
-
41

, has been 

written to perform longitudinal model-based mixture modeling using the EM algorithm. 

K-means/smoothing approaches to longitudinal cluster analysis7
-
8 aim to partition 

n observations into K clusters based on a distance metric between the observation and the 

cluster-specific center. Many options exist within a k-means/smoothing approach, 

including the choice of distance metric to calculate the distances between the subject 

trajectory and the cluster center, the definition of the cluster-specific center, and the 

method used to model the subject trajectories. This approach has been applied before29
-
37 

and each implementation includes their owrt limitations, including inability to address 

missing data and determination of the correct number of clusters. 

To our knowledge, only one prior study has compared the performance of a k

means/smoothing approach of longitudinal trajectories to a model-based algorithm30 
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(namely, PROC TRAJ). Here, we examine the model-based approach implemented in 

FlexMix and our own implementation of a k-means/smoothing approach to cluster 

analysis of longitudinal data and compare their performance in a simulation study. The 

two methods we focus on are described below. 

Methods 

A general k-means approach 

K-means clustering is a method of cluster analysis that aims to partition n 

observations into K clusters in which each observation belongs to the cluster with the 

nearest mean. As in any k-means approach, the number of groups is specified a priori 

and group memberships are initially assigned randomly. The distance from each subject 

to each group mean is calculated and the subject is moved to the nearest group, where the 

distance to the mean is minimized. The algorithm repeats the distance calculation of 

group means and continues moving subjects until everyone is in the nearest group- that 

is, until everyone stops moving. When all subjects stop moving, the algorithm has 

converged. When applied to longitudinal data, it becomes an exercise of clustering 

curves or trajectories for each subject. 

Longitudinal k-means approach 

Similar to the general k-means approach, the longitudinal k-means approach aims 

to partition n trajectories into K clusters. Unlike other approaches (e.g. hierarchical 

clustering) the k-means approach can easily account for irregular data points over time. 



16 

While others have applied this29
-
37

, we have developed an implementation of this 

approach in R38 which implements a spline fit using generalized additive models. This 

approach allows for flexibility in how curves are evaluated. As in most k-means 

implementations, the number of groups, K, must be specified a priori. Although the 

number of groups must be specified, it is possible for the algorithm to conclude with 

fewer groups than originally specified: if during an iteration, there are zero subjects in a 

group, that group will be dropped. The algorithm requires a dataset containing the 

clustering variable, which is assumed to be a continuous variable for the purposes of this 

analysis, and a variable representing time. For example, if it was of interest to examine 

the association between patterns of body mass index and foot pain over a life time, the 

clustering variable would be body mass index and time would be represented by the 

points at which body mass index was recorded. In our implementation, initial group 

assignments are generated randomly with equal probability, using a random seed set from 

the system clock. For each group (1 through k), a spline regression is fit for the subject 

trajectories in that group using a generalized additive model 12 (GAM), with a smoothing 

spline fit for time. We use a GAM model in order to have more flexibility in future 

models, allowing for additional covariates to be added. 

An additive model60 is a nonparametric regression method that estimates an 

additive approximation to a multivariate regression function. The additive model 

generalizes the standard linear regression model by modeling the relation between the 

outcome and set ofp predictors, where X1 ... XP are the set ofpredictors, as: 

Y = s0 +s1X1 + ... +svXP + E 
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where si(X) are smooth functions, E(E) = 0 and Var(E) = a 2
. As the additive model 

assumes a normal distribution, the generalized additive model was developed to extend 

the additive model to a wide range of distribution families. The GAM assumes that the 

mean of the dependent variable, here the clustering variable, depends on an additive 

predictor through a nonlinear link function. Generalized additive models consist of a 

random component, an additive component, and a link function relating these two 

components. The clustering variable (y), the random component, is assumed to have a 

density in the exponential family, defined as: 

{
y()- b(8) } 

fy(yj8,cp) = exp a(cp) + c(y,cp) 

where 8 is called the natural parameter and cfJ is the scale parameter. 

The quantity: 

p 

1] =So+ L sicxa 
i=l 

where Xi are the predictor variables and si (X) are smoothing splines, which are 

nonparametric in nature, and define the additive component. The smoothing spline finds a 

function ry(x) that minimizes the penalized least square. 

where A is a fixed constant and a :5 x1 :5 · · · :5 Xn :5 b. The unique minimizer to this 

function is a natural spline with knots at the unique values of xi. The value A./(1 +A.) is 

the smoothing parameter. 
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Finally, the relationship between the mean, 11 , of the clustering variable, y, and rJ is 

defined by a link function such that g(/1) = rJ. The link function used here is the identity 

link function, where g(/1) =e. The final estimated GAM model is defined by: 

p 

fj(X)=so+ LAi(y,A.)Y 
i=l 

where Ai (y, A.) is a matrix that depends on y and A. In the fitting of the GAM model, the 

user has the ability to constrain the number of degrees of freedom that the model is 

allowed to use when fitting a smoothed line to the data. In our implementation, we have 

constrained the number of degrees of freedom at 3, but this could be increased with more 

complex data patterns. In this chapter, we have a single predictor in the GAM model 

(X1), which corresponds to time. 

From the results of the group-specific fitted model, predicted values for each time 

point are calculated for that group. We then have predicted values, at each time point, for 

each group, translating to group specific predicted curves. If there are 8 time points and 

three groups, we would calculate a total of 24 predicted values. If the time points are 

irregular across subjects, it is important to note that predicted values for each time point 

are generated. Distances from each subject's trajectory to each group's predicted curve 

are then calculated. Figure 1 below shows an example of how the distance for a given 

subject would be calculated, where the black line represents the subject's data points and 

the blue line is the group-specific predicted smooth curve. 
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4 5 6 7 8 

Time 

Figure 1: Distance calculation fork-means/smoothing approach to cluster analysis 

of longitudinal data 

The predicted values for each group and the distance of each subject from each 

group are calculated at each iteration. In this implementation ofk-means, we calculated 

the distances using a traditional distance norm, as the squared difference between the 

actual subject value and the predicted value of the trajectory variable at each time point 

and averaged these values over all time points. The group with the minimum value of the 

sum of squared differences over the K groups is considered to be the closest group. 

where k represents the cluster and t represents the time points. 

Then subjects are moved to the closest group. Once all subjects have been moved 

to the closest group, the number of subjects who have not moved since the last iteration is 

calculated by comparing the current group assignments to the previous iteration's group 

assignments. When all subjects stop moving, or when the algorithm reaches a maximum 

number of iterations the algorithm has converged. The maximum number of iterations 

was set to be 50 based on preliminary results indicating model convergence prior to 50 
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At each iteration, subjects are put into clusters based on the group with the maximum 

posterior probability, P(jjt, y, l/J). The log-likelihood (logL) of a sample ofN 

As the likelihood can usually not be maximized directly, FlexMix uses the EM 

algorithm 42 to estimate the vector of parameters, l/J, by first, calculating the posterior 

class probabilities for each observation and cluster, and second, maximizing the log-

likelihood for each cluster separately, using the posterior probabilities as weights. The 

posterior class probabilities are defined by: 

The prior class probabilities are calculated as the average of the posterior class 

probabilities for each cluster as: 

Then, for each cluster, the maximization of the log-likelihood is calculated as: 

Iterations with the EM algorithm are repeated until the likelihood stops 

improving. The maximum number of iterations in FlexMix is undocumented. As with 
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100, corresponding to medium difficulty scenario to cluster; and 625 , corresponding to 

the most difficult scenario to cluster. 

In each scenario of simulated data described above and shown in detail in 

Appendix Table 8, both the FlexMix algorithm and the k-means algorithm were run on 

the same dataset. Three hundred replicates of each scenario were generated and then 

each replicate dataset was analyzed using both methods. Figure 3 displays an example of 

the individual trajectories of the simulated data for the fixed effects model, with colors 

representing the different clusters, for the scenario using 5 data points, a variance of 25 

and a sample size of 900. 

Cron lngUnes Dln rging Unu OuadrtfltJCro11inglin.s 

Figure 3: Spaghetti plots for simulated data with 5 data points, variance equal to 25, 

for each of the 3 trajectory scenarios 

To extend this simulation study, a secondary analysis was performed with a 

random effects model, using a small selection of the scenarios outlined above, to 

determine if random effects data affected the clustering algorithms. Since the random 

effects models have random error terms, plus random slope and intercept terms, we used 
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(
#correctly classified subjects) 

CCR = . xlOO 
total# sub;ects 

Given that group assignments across replicates are arbitrary, care must be taken 

when calculating the CCR. If j is the number of clusters found by the algorithm and k is 

the number of clusters in the original simulated dataset, a table of size j by k is created. 

As group numbers from the analysis are arbitrary, we assume the maximum value across 

each row of the table to be the most correct group. The CCR is then calculated as the 

number of correctly classified subjects divided by the total number of subjects. To 

calculate the CCR, a table of the true group assignment by the clustered group 

assignment is created (Table 2) and the maximum value for each row is taken to be the 

group containing the most correctly classified subjects. This value is recorded and 

summed across rows to determine the number of correctly classified subjects. For 

example, letj=3 , k=3 and 30 subjects be in each group in the simulated dataset. Table 2 

displays an example classification table. If the clustering algorithm determined that there 

should be 22 subjects in group 1, 54 subjects in group 2 and 14 subjects in group 3, the 

CCR would be 57.78%, determined as shown below: 

(
20 + 26 + 6) 

CCR = 
90 

xlOO = 57.78% 

Table 2: Example classification table 

Truth (k) 
Clustered G) Group 1 Group 2 Group 3 Totals 
Group 1 0 20 2 22 
Group 2 26 6 22 54 
Group 3 4 4 6 14 
Totals 30 30 30 90 



27 

From the results of the simulation study, the mean CCR and the five-number 

summary62
, including the minimum, the 1st quartile, the median, the 3rd quartile and the 

maximum, were calculated for each clustering method overall and separately by line 

scenario. To further evaluate the results of the simulation, we performed logistic 

regression analyses to evaluate the odds of a correct classification given by the FlexMix 

method versus the k-means method, using a fully saturated model, which contained all 

possible interactions between all parameters used to generate the data (see Data 

Simulations). As this comparison using logistic regression has not previously been done 

before, our reasoning behind this idea was to demonstrate how the scenarios operate and 

which variations in data simulation were important. The logistic regression was modeled 

using events/trials notation where the number of events was equal to the number of 

correctly classified subjects in a scenario and the number of trials was equal to the total 

number of subjects in a particular scenario. Therefore, we had 300 observations per 

scenario (since we performed 300 replicates in the simulation study) in the logistic 

regression model. The parameters included were method (k-means, FlexMix), lines 

(diverging, crossing, crossing/quadratic), sample size (90, 900), data points (5, 20), and 

variance (25,100, 625). All two-way, three-way, four-way, and five-way interactions 

were included in the regression model. From this regression model, we were interested in 

the odds that FlexMix will correctly classify a subject trajectory compared to k-means, 

given the other parameters in the model. 
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Results 

Fixed Effects Models 

Table 3 shows the mean CCR and the five-number summary for each method of 

clustering longitudinal data, overall and stratified by the 3 line scenarios. Looking at the 

raw means in Table 3, overall, it appears that k-means performs slightly better than 

FlexMix, with a mean correct classification rate of 91% versus 90% for FlexMix. 

Although k-means is performing better, both methods perform very well with an overall 

CCR higher than 90%, and both methods have overall median values of 1 00%. The CCR 

was 100% in 58% of all scenarios examined for FlexMix and in 56% of all scenarios for 

k-means. Figure 4 shows boxplots of the overall correct classification rate fork-means 

versus FlexMix over all scenarios, and Figure 5 shows the same results stratified by the 3 

individual line scenarios. In Figure 4, you can see that there is more variation with the k

means approach. Looking at the separate line scenarios, diverging lines has the lowest 

correct classification rate using the FlexMix approach (mean CCR=86.63%) and the 

lowest median value (96.67%), whereas k-means is able to classify equally well in all 

three line scenarios when looking at the mean values. The median value for the diverging 

lines with k-means is also slightly lower, at 97.89%, but is higher than the value for 

FlexMix. 100% correct classification was reached in only 38% of diverging lines 

scenarios using FlexMix and 47% of diverging lines scenarios using k-means. Compared 

to k-means, FlexMix is able to better classify the crossing lines scenarios, whereas it 

performs worse than k-means in the diverging and quadratic scenarios, when looking at 

the mean values. Both methods have a median value of 100% for both crossing lines and 







31 

Table 3: Five number summary and mean for the distribution of the correction 

classification rate for each cluster method 

.. 1st 

median 
3rd 

rrummum 
quartile 

mean 
quartile 

max1mum 

k-means 
All (n=10800) 53.00 90.00 91.21 100.00 100.00 100.00 
Crossing Lines 

66.67 66.67 91.04 100.00 100.00 100.00 (n=3600) 
Diverging Lines 

53.00 90.94 91.12 97.89 100.00 100.00 (n=3600) 
Quadratic Lines 

65.56 95 .56 91.48 100.00 100.00 100.00 (n=3600) 
FlexMix 

All (n= 1 0800) 34.00 93.5 90.24 100.00 100.00 100.00 
Crossing Lines 

53.33 99.11 96.54 100.00 100.00 100.00 (n=3600) 
Diverging Lines 

36.67 71.11 86.63 96.67 100.00 100.00 
(n=3600) 
Quadratic Lines 

34.00 97.67 87.56 100.00 100.00 100.00 (n=3600) 

In order to display scenarios in which FlexMix outperforms k-means and those in 

which k-means outperforms FlexMix, a bar chart of the log ofthe odds ratios from the 

logistic regression model with all possible interactions among the parameters used to 

simulate the data included in the model is displayed in Figure 6. The odds ratios were log 

transformed since there were some odds ratios that approached zero and some that 

approached infinity. The log ofthe odds ratios are arranged in order of magnitude on the 

x-axis. If the log of the odds ratio is larger than 0, this indicates that FlexMix had an 

increased odds of correctly classifying subjects in that scenario compared to k-means. If 

the log of the odds ratio is less than 0, this indicates that k-means has a higher odds of a 

correct classification compared to FlexMix. Even though the raw mean value of the CCR 






































































































































































































































