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ABSTRACT 

A neural model is described of how the brain may autorrornously learn a body-centered 

representation of 3-D target position by cornbining information about retinal target position, 

eye position, and head position in real tirnc. Such a bocly-c:cntc:rc:d spatial representation 

enables a.ccurate movement commands to the limbs to be generated despite changes in the 

spatial relationships between the eyes, head, body, and limbs \!Hough time. The rnoclcllcrll'ns 

a vector reprcscntation·--··otherwise known as a parccllatcd distributed representation---of 

target vergence with re;;pect to the two eyes, and of the horizontal and vertical spherical 

angles of the target with respect to a cyclopean cgocenter. Such a vergence-spherical rep­

resentation has been reported in the caudal midbrain and medulla of the frog, as well as 

in psychophysical movement studies in humans. II lrcac\ .. ccntered verp;encc-splrcrical repre­

sentation of foveated target position can be generated by t.wo stages of opponcrrl. processing 

that cornbinc corollary discharges of outflow rnovcment signals to the two eyes. Sums rrnd 

differences of opponent. signals define angular and vergence coordinates, respectively. The 

hcad-ccntcrcd rcprescntrtlion interacts with a binocular visulll representation of non-[o,·cated 

target position to learn a visuomol.or representation of both fo\'l;atcd and non-fcm'atcd target 

position that is capable of commanding yoked eye mo,·cmcnl.s. This heacl-ccnterc:d vector 

representation also interacts with representations of neck mo,·cmcnl. commands to !cam a· 

body-centered estimate of target position that is capable of commanding coorclinal.ecl arm 

n1oven1cnts. Learning occurs during head rnovcrncnls n1ade while ga.ze rcrnains f1xcd on a 

fovcalecl target. An initia.l e:;timatc is stored <lrH.l a VO!l-mediatcd gating signal prevents 

the stored estimate from being reset during a gaze-maintaining head rno\'emcnt. ,\s the head 

moves, new estimates arc compared with the stored estimate to compute difference vectors 

which act as error signals that drive the learning process, as well as control the on-line 

merging of rnullirnoclal information. 



1. Spatial Representations for the Neural Control of Flexible Movements 

This article describes neural network models of how the brain learns spatial represen­

tations with which to control sensory-guided and rncmory-guidcd eye and limb movements. 

These spatial representations arc expressed in both !read-centered coordinates and body­

centered coordinates because the eyes move within the head, wherca.s the head, arms, and 

legs move with respect to the body. A model for learning an invariant body-centered repre­

sentation of 3-D target position is developed. Models for learning an invariant head-centered 

representation of 3-D target position are described elsewhere (Grossberg, Guenther, Bullock, 

and Greve, 1993). 

One general design theme that underlies many of our results explores the need for spatial 

rcprescnt<ttions·--as distinct from perceptual, cognitive, or motor reprcscntations-·-in the 

control of goal-oriented behaviors. In this regard, it is well-known that visual inputs activate 

a "what" processing stream as well as a "where" processing stream within the brain (Goodale 

and 1\lilner, 1992; Mishkin, Ungcrlcider, and1vlacko, 198:3; Ungcrleidcr and rvlishkin, 1982). 

The "what" processing stream leads to visual recognition of external objects. It includes 

brain regions such as visual cortex and inferotemporal cortex. The "where" processing 

stream leads to spatial localization of objects, spcttial attention shifts, and action. It includes 

brain regions such as visual cortex, superior colliculus, parietal cortex, and premolor cortex. 

"Where" processing is illustrated by the following competence. 

Imagine that your right hand is mo,·ed by an external force to a new position in the dark, 

so that neither visual cues nor self-controlled outflow mo,·cmcnt commands are available to 

encode the right hand's new position. Despite the absence of ,·ision and self-controlled 

volition, it is easy to move your left hand to touch your right hand in its new location. 

The motor coordinates th;tt represent the position of your right hand are different from 

the motor coordinates that your left arm realizes in order lo touch it. Some representation 

needs lo exist that mediates between the different motor coordinates of the two arms. This 

mediating scheme is the spatial representation. This example illustrates that different motor 

plans, whether for the control of one arm or two, are often used to reach a prescribed posit. ion 

in space. The problem of how animals can reach a fixed target in multiple ways is often called 

the "problem of motor equivalence" (e.g., Bernstein, 1967; Hcbb, 19•19). A properly defined 

spatial representation is a prerequisite to discovering a biologically relevctnt solution of the 

motor equivalence problem. The model introduced herein forms part of a proposed solution 

to the motor equivalence problem (Bullock, Grossberg, and Guenther, 1993). 

The spatial representations described below have been led are built up from the same 

types of computations that are used to control motor commands. This obst'rv·at.ion leads 



to a second genera.! design theme of our work: we inquire into the natural form ol' neural 

computations that arc appropriate for representation and control of a bilaterally symmet­

ric body. These include opponent intcractiono bet.wccn pairs of antagonistic neurons that 

measure one or another type of spatial or motor offset with respect Loan axis of symmetry. 

An opponent model wa.s developed in Greve, Gros:;berg, Guenther, and Bullock ( 1!193) that 

computes a head-centered spatial representation of 3-D targets that are foveated by both 

eyes. This representation arises naturally from the geometry of the oculomotor system and 

relates closely to the geometry of the vestibular system (e.g., Blanks, Curthoys, Bennett 

and Markham, 198.5; Ezure and Graf, 1984; Graf, 1988). Grossberg, Guenther, Bullock, and 

Greve (1993) further showed how to combine binocular visu<cl inforrnaJ,ion with the fove<ttcd 

target representation to generate an invariant he<tcl-centerccl spatial representation for both 

foveated and non-foveated 3-D target positions. A hcacl-ccnterccl spatial represcnt<ttion ol' 

non-foveated targets is needed to look at new targets with the eyes and lo reach towards 

these targets with the limbs. 

The current article describes how this head-centered spatial representation can be com­

bined with motor information concerning neck muscle lengths to form a body-centered spatial 

representation thott is invotriant under head or eye movements. A bocly-ccntcrecl representa­

tion of space is useful for performing goal-oriented rc<tchcs with the arms, since the controlled 

variables for reaches (e.g., muscle lengths or joint angles) determine the position or the hanct' 

wilh respect to the body. Learning of this body-centered representation lakes advantage 

of the geometry of head movements, which are limited by the biomechanics of the neck to 

preferred axes that are closely related lo the head-centered representation clcscribccl above 

(Vidal, de Waele, GraL and Berthoz, 1988; Vidal, GraL and Berthoz, 19SG). The m~ural 

organization of head movement control along such preferred axes has been described by 

Masino and Knudsen (1990). 

Learning of both the head-centered and body-centered representations takes place in 

variants of a Vector Associative i'vlap, or VA?vl, circuit (Gaucliano and Grossberg, 1991). 

Learning in a VA!V[ occurs via the use of difference vectors, ll'hich compute the error signals 

that drive the learning process. The same differcrice vectors also control the on-line merging 

of multimodal information into the fmal map reprcsent<ttion. These dual roles of difference 

vectors ch<tracterize VArv[ dynamics. VAi\[ properties ha,·e elsewhere proven useful for learn­

ing spatial-to-motor mappings ( Gaudiano and Grossberg, 1991; Grossberg and Kuperslein, 

1989, Chapter 11) and for explaining data about human trajectory formation (Bullock and 

Grossberg, 1988; Bullock, Grossberg, and Guenther, 1993; Gaucliano a.nd Grossberg, 19!ll). 

The representation of differences or directions by sensory-motor areas of the nen·ous system 



is well documented (e.g., Alexander and Crutcher, l990a, l9'J0b; Caminiti, .Johnson, and 

Urbano, 1990; Crutcher and Alcnndcr, 19'l0; C.:corgopoulos ct a/., J<JS2; 198·1; !<alaska and 

Cramrnond, 1992; lvlays and Sparks, J 'JSO). 

Th(~ next section surveys key geometrical and psychophysical considerations pertinent 

to the model. Section 3 summarizes how two successive stages of opponent interactions 

can generate the type of head-centered reprcscnt<ltion that is suggested by psychophysical 

and neurobiological data. Sections 4-8 describe neural networks for transforrning this head­

centered representation into an irmuiant body-centered representation of target position. 

These networks rely only on information arising within the action-perception cycle to resolve 

ambiguibes--caused by mobile eyes and head- ·regarding the locations of objects relative to 

the body. 

2. Geometry of Object Localization 

During eye-hand coordination, both eyes typically fixate o\ target. before or while ol hancl 

reaches towards it;. Vision, in particular the binocular disparity of an object's image on 

\he retinas of both eyes, provides irnportant cues to the relative :J-D position of an object 

with respect to the head. Such visual information is, however, often insufficient for accurate 

reaching towards a binocularly fixecl target. Binocular disparity, by itself, docs not. provide 

unambiguous information about target direction or absolute distance. For example, if each 

eye fixates a different location in the interior of a homogeneous object. then the two monoc­

ular images of the object's interior e<\n be binocularly fused, but. the binocular disparities of 

the object's boundaries will change with C\-cry change in the fixation poinh of the two eyes. 

These binocular disparity changes occur without a change in the object's distance from the 

observer. Thus binocular disparity is not a rcli;rble cue to absolute distance in any situation 

of this type. 

Another lirnitation of binocular disparity cues can arise even if both eyes fixate the same 

location in space. Then the binoculM disparity of this location on the retinas equals zero, 

no matter how ncar or far the object may be from the observer. Thus, small fixated objects 

cannot accurately be reached using only information about binocular clispa.rily. Since our 

primary goal in the present article is to analyse how reaching towards fixated objects is con­

trolled, we need to consider other sources of information than retinaL or visuaL information. 

The bilaterally symmetric organization of the body provides another, non-visual source 

of information for computing absolute distance of a fixated target from an observer's head 

and body. \Vhen the eyes binocularly fixate a target., the angle bet m:cn the lim's of gaze 

at the point of intersection can be used to compute the absolute distance and direction 



of the fixation point with respect to the head. Such extraretina.l inforrnation may also be 

used to complement visual processing to derive bcLter estimates of the <tbsolute distance and 

direction of visually dctccLcd but non-fixated objects. 

Figure 1 

Figure 1 shows how the intersection point of the lines of sight of the two eyes converges 

toward the nose as the two eyes rotate to foveate increasingly close objects that are straight 

ahead. The rotation centers of the two eyes together with the fixated point on the object 

form a triangle. The angles of the two eyes in their orbits thus jointly specify the angle 

'I between the lines of sight that intersect at the fixation point.. This angle is called the 

binocvlar parallax (Foley, 1980). The triangular structure also allows an internal measure of 

net ocular vergence-·~thc extent to which the eyes arc rotated towards the nose·--to serve as 

one basis for estimating the distance from cgocenler to a binocularly foveated object. The 

angle 'I will henceforth be used as a measure of vergence. The hcacl-cent.ercd representation of 

space derived here approximates vergence as a distance measure, with coordinates specifying 

horizontal and vertical target direction completing the 3-D representation. 

Figure 2 

Figure 2a shows the reliltionship between vergence and the radial distance of a tmgct. 

from the head. This figure illustrates that the dynamic range of a represent<elion based on 

vergence is heavily weighted towards targets near the observer. Targets within reach of the 

observer can be represented with the high accuracy necessary for succesful reaching, but. the 

accmacy of representation for targets further out of reach decreases clue to smaller changes 

in \·ergence per unit change of distance. This property allows <l physical system with limited 

dynamic rctnge to efficiently represent space, since positions of important targets (i.e., those 

near the observer) are represented with high accuracy, and positions of targets that. arc far 

away can still be roughly approxintccled. Figure 2b reprints data from Sakata. Shibutani. 

and Eawano (1980) on a dass of \·isual fixcttion neurons that they discoH'red in area 7a 

of posterior parietal cortex. These neurons were described as depth-selective and this plot 

shows that their discharge rate fell off with target distance in a manner strikingly similar to 

the vergence-distance function of Figure 2a. 

A similar property can be seen in the rctinotopic coding of visual sp<tce by visual cortex 

(e.g., Rojer and Schwartz, 1990). Figure 2c (ctdapted from KandeL 19:3:3) shows the function 

relating visual acuity to distance from the fovea. This curve shows a usc of dynamic range 

\·cry similar to that of Figure 2ct, suggesling Lhctt the nervous system may usc different 

neural circuitry to achieve similar eflicicncy or coding for bodl·-ccntcrcd and rctinotopic 

I 



representations of visual space. 

'file two other coordinates rn the head-centered representation of :J.]) space arc also 

derived from estimates of the position of both eyes in their orbits. Figure :3 describes the 

geometry of 3-D target localization in terms of a spherical coordinate frame. The origin 

o[ this coordinate system, called the cranial egocentcr, lies at the rnidpoint between the 

two eyes. Thus the representation is "cyclopean". The head-centered horizontal angle or 

azimuth, Ou, and the vertical angle or elevation, ¢IJ, measure deviations from straight-ahead 

gaze. The radial distance RII in the spherica.l coordinate frame of Figure 3 is replaced by 

vergence "I in the representation of 3-D space described below. Figure 4 relates the geometry 

of the cyclopean horizontal angle 0 II to the angles 0 r and 0 R sub tended by the left eye and 

right eye, respecti vcly. 

Figure :3 

Fiourc 1[ 
0 

Experimental support for such a :3-D coordinate system can be found in data on t.bc role 

of cxtraretinal information in visual object localization (e.g., Blank, 19/S: Foley, 1980: Sakata 

ct a!., 1980) and on parcellated population codes of 3-D target location (Grobst.ein, 1991; 

llollcrbacb, '-foore, and Atkeson, 1986: Soecbt.ing and Flanders, 1989). These and related 

data will be discussed below. First, a head-centered 3-D coordinate system consistent with" 

the evidence is described in the next section, in order to suggest how such a representation 

can naturally arise from simple neural computations. 

3, Opponent Sums and Differences Represent Foveated 3-D Target Positions 

A head-centered representation o[ a fO\·eatcd target can be formed by binocularly com­

bining outflow movement signals from the tonically active cells that control the position of 

each eye. This can be done in two stages of opponent processing, as shown in Figure 5. 

First, opponent interactions combine the outputs of the cells that control the agonist. and 

antagonist muscles of each eye. These opponent interactions gi\·e rise to opponent pilirs of 

cells the sum of whose activity is approximately constant, or normalized. Next, the normal­

ized outputs from both eyes are combined in two different ways to generate a head-centered 

spatial representation of the binocular fixation point. In particular, opponent cells from 

each eye generate inputs of opposite sign (excitatory and inhibitory) to their target cells at 

the next processing stage. As illustrated in Figure 5, one combination gives rise to a cell 

population whose activity h2 approximates the angular spherical coordinate 011 . The other 

combination gives rise to a cell population whose activity h5 approximates the binocular 

vergence "1, which in turn is a measure of the radia.l distance 11 11 . The two combinations 



generate head-centered coordinates by conrruting a surn and a difference of the norm;rli,cd 

opponent inputs from both eyes. Such a general stmtcgy for combining signals is well-known 

in other neural systems, such as color vision. For example, a sum L -1-M of signal;; fronr 

two color vision channels estimates lurninancc:, whereas a difference I~- J'vf esLirnatcs color 

(De Valois and De Valois, 197.5; Mollon and Sharpe, 198:3). Thus the comput;rtions thai. may 

be used to control reaching in 3-D space seem to derive from a broadly used principle of 

neural computation. 

Figure 5 

The neural mechanism for rwrmali,ing the total activity of opponent cells uses a shunting 

on-center off-surround network (Grossberg, 1982); that is, an opponent interaction wherein 

the target cells obey a membrane equation (Hodgkin, 196•1; Katz, 1966). In particular, 

suppose that the agonist and antagonist cells that control the horizontal position of the left 

eye have activities L1 and L2 , respectively. Let the normalized opponent cells in the shunting 

network have activities 11 and 12. Suppose that 

and 
d 
-/., = -•\/., -1- (1- L)L-, -/.,L 1. dt - - - - -

( l ) 

( '). -) 

By equation (1), activity L1 excites 11 whereas acti,·ity D2 inhibits /1. The opposite is true 

in equation (2). Par;mreter A is the decay rate. At equilibrium, #111 = fh/.2 = 0, so (1) and 

(2) imply that 

( 3) 

and 

( 1) 

Adding (:3) and (tl) shows that 

(5) 

Thus if A« L1 -1- L2, 

(G) 

Since I 1 and L2 are opponent signals, one goes up when the other goes down, so their 

sum I 1 -1- L2 can easily be kept larger than parameter ;L Small deviations from complete 

normalization do not affect the results. 

I) 



The approximation (G) will be used below for all norn1alizcd pairs of opponent cells. In 

particular, we assume thai. the activities of opponent cell populations th;tt control agonist.­

anl.agonist muscle pairs a.re norrnalized so tha.t the total acLivity of each cellular p;tir is fixed 

at unity. This ensures that increasing the activity of the agonist control cell results in a 

corresponding decrease in the activity of its antagonist control cell. Figure .s shows the two 

cellular pairs needed to control 0 L and 0 R· These pairs are labeled by the variables 11, 12 and 

r 1,r2, which measure corresponding cellular activities. Thus, the following equations define 

the internal representations of the horizontal angle of each eye: 

(7) 

(S) 

where I; indicates the activity of left eye cell population i and r; inclica\.cs lhc activity of 

right eye cell population i. 

Internal representations for the vertical angles of lcfc and right eyes nr<ly be defined 

similarly. Thus 

(9) 

( l 0) 

To provide a head-centered representation of foveated:].]) target posiLions, the outflmv 

signals 11, 12 , 1:3, and 1,1 arc binocularly combined. Let the cell populations h;, i = 1, 2 ..... 6, 

form the basis for this head--centered spatial representation. These populations arc also 

arranged in antagonistic pairs. First we define cell activities h1, h2. h:1• and h 1 that linearly 

approximate the following estimates of On and r/Jn: 

h 1 + h2 = 1 and h:l + h.r = l, ( ll) 

OII = -90° + 180° x h2 and ¢n = -~90° + 180° x h.1. ( 12) 

These hCl\(1-centered binocular representations of 0 II and ¢II emerge if a shunting on-center 

off-surround network simply averages the corresponding monocular components derived from 

corollary discharges of left and right eye muscle commands. Figure 5 shows the conrrcct.i1·ity 

of this network for the cell activity h2 which represents On. In particular, 

d 
-~h.,= -Bh-, + (1- ho)(/., + 7'·,) -l~<>(lr + I'J). dt - - - - - - . 

where B is the decay rate. Solving this equation at equilibrium (dh 2 jdt = 0) yields 

L+r> h·) = - ~ ·, 
~ 1J + I 1 + ,.1 + l2 + rz 

(13) 

( ll) 



Since 11 + 12 = 1 and r 1 + r2 = 1, choosing a small dcca.y p<lramcLcr JJ lc;ub Lo the approxi­

mations: 

and ( 1 ')) 

so that ( 11) holds. 

To evaluate the adequacy of this internal representation of 011 , a distortion measure 

was calculated in Greve et al. (1993) by dividing the change in the internally represented 

angle of two successively foveated points by the actua.l change in angle of the successively 

foveated points for small changes throughout the workspace. The distortion rncasurc was 

calculated for a workspace defined by -4.5° < 0 If < 4.5°, -4.) 0 < 1' II < 15°, and 3 inches < 

II. if< 30 inches (7.6 em< Rn < 76 em). This workspace was chosc~n to approximate the cone 

within which both binocular foveation and reaching to a target arc possible in humans. The 

distortion in this range is less than 15%, with essentially 0% distortion for R 11 > .S inches. 

Thus, the opponent network defined above provides an accurate rnechanism for computing 

an internal representation of Ou. Likewise, the distortion measure for ¢11 sholl'cd that the 

normalized binocular opponent network provides an accumtc internal rcprcscntal.ion of 6 11 

in all but the most extreme portions of the workspace. 

To see how opponent computation le<lds to a representation of distance from the head, 

note that vergence, which is systematically reLttecl to distance from the head. is proportional· 

to the difFerence between r 1 (the outflow command to the medial rectus of the right eye) 

and 11 (the outflow command to the lateral rectus of the left eye). As in Figure .S, define 

antagonistic cell populations ll'it.h activ·ities h5 and 11 6 for internal representation of vergence. 

The cell population with activity h.s receives excitatory inputs 12 and r 1 from cells controlling 

the medial recti of both eyes and inhibitory inputs 11 and r2 from cells controlling the liller;tl 

recti of both eyes. Then activity h5 obeys t.he equ<Ltion 

(16) 

At equilibrium, 
_ r1 + l2 ···· Dl1 - Dr2 

h5 - C' I I·. . + I'J + 1'2 + 1 + 'J 
( 11 ) 

Because r1 + r2 = 1 ancll1 + l2 = 1, equation (17) can be rell'rittcn as 

(lS) 

If D = 1 and C = 0, then 

( !9) 

8 



Jn this case, subjective vergence equaled physical vergence. lf, ho\\'cvcr, C > 0 and JJ < L 

corresponding to the biologically realistic aswmpl.ions of non-zero decay and a hyperpolar­

ization magnil.uclc less than the depolarization magnitude, then the slope (1 + D)(C + 2)- 1 

of h.s versus r 1 -11 is less than one, and t.he intercept. (1- D)(C +· 2)- 1 of the function is 

positive. Such values match the Foley (1980) estimate from psychophysical data of the in­

ternal representation of binocular parallax. Greve ct al. (l99~l) discuss psychophysical data 

that arc consistent with this representation. 

4. Vector Representations of 3-D Target Position: Distributed Parcellated Rep­

resentations in the Frog 

Given the simplicity of this solution l.o the problem of using binocular signals to construct 

a 3-D vector representation of target. locations, it might be supposed that such a solution 

would be discovered at. an early point in evolution. In fact, such a 3-D vector representation or 

target location seems to exist in frogs. Grobstein (1991) reported data indicating egocentric 

coding of distance, horizontal angle, and vertical angle in distinct cell populations, each of 

whose activation levels codes the target's coordinate value on one of these three dimensions. 

Crobstein (1991) surnrnarized a number of relevant. experiments, particularly those of 

Grobstein and Staradub (1989) and of i\Iasino and Grobstcin (1989), that reported data 

concerning a head-centered or body-centered coordinate representation in the frog's caudal' 

midbrain and medulla. This representation differs from more pcriphcr;tl retinal and tcctal 

representations. The cell properties of the representation are strikingly similar to those or 

the spherical vergence representation that \\'as described abo,·c. In particular, Grobstcin 

(1991, p. 130) noted that the angular head-centered variables are radial, not Cartesian, as is 

also true of the angular variables On and 6n. Moreover, "increasing levels of activity in the 

distance pathw<tys code for stimulus locations nearer to the frog" (p. 132), as is also true of a 

vergence-like measure of distance. Grobstein (1991) also asserted thal this representation is 

a parcellated, clisl.ributed representation. By this he means a r·cctor representation, such as 

(Ou,¢JI,of), whose incliviclmtl components code a v;niable by its activity le,·eL as opposed to 

a map representation that codes each variable by a distinct position in a spatially organized 

array. Thus Grobstein (1991, p. 1:32) noted tha.t "the value of components of the parcellatecl 

representation arc coded in terms of the level of activity across a population of neurons. 

rather than in terms of which particular elements of a population of neurons are active". 

After reviewing a number of other organisms where this type of representation seems to exist. 

he concluded that "in general terms, it m<ty make sense to think of sensorimotor transforms 

in terms of a transformation from place coding to population acti,·ity codin~, rather t.han as 

a transformation from place coding to frequency coding" (p. l:l;i). 



Such a parccllate<l, or vector, reprc:scntaLion should occur at processing stages subsequent 

to spatial mapping stages at which visual, motor, and visuomotor information arc first 

repniscntcd and combim:d. For example, in Grossberg ct a/. (1.9'):3), it was shown how visual 

and motor information could be combined to autonomously learn a head-centered vector 

representation of both foveated and nonfovcated targcL position. Such a representation can 

be used to command yoked eye movements to foveate the target. This article shows how a 

body-centered vector representation can be learned, again based upon information that is 

organized in spatial maps. 

5. Learning a Body-Centered Representation of 3-D Space 

The remainder of this article addresses the formation of a body-centered representation 

of :3-D target positions using the head-centered representation dco;cribcd in the previous 

'ections coupled with information concerning the position of the head with respect l.o the 

torso. The network uses signals generated automaticillly during ch<mgos of visual fixation. 

In a typical episode: 

l. The representation of a novel, initially non-foveal visual target wins an internal com­

petition that determines the next target to be foveated, and a saccade is made to this 

target. 

2. Information about position computed in head coordinates is combined with information 

about neck muscle states to yield an estimate of target location relative to the body that 

is stored during a subsequent. head movement. 

:3. :\ext, neck rnuscles rotate the head (either randomly or to point the nose towards the 

target) while the eyes make a counter rotation, mediated by the vcstihulo-ocular rellcx 

(VOR), to ensure continued foveation during the head mo,·ernent. 

·1. During the head movement and ocular counter--rotation, both internal representations 

of the target's location in head coordinates and internal representations of neck muscle 

lengths change while l.he stored reprc~sentation of target position in body coordinates 

remains constant. 

If head-centered and neck muscle length information interact correctly to estimate target 

location in body coordinates, then this estimate will remain invariant during head rotation 

and ocular counter-rotation. If the mapping is not well-tuned, then a mismatch will develop 

during the head rotation between the network's current estimate and the estimate stored 

prior to the head rotation. This mismatch serves as an error signal to a learning process that 

improves the network's mapping of neck muscle length and head coordinate signab into target 

position relative to the body. The stage that registers the mismatch is called a dij)iTencc 
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veclor (DV) stage, because errors arc registered on a component-by-cornponcnt basis. This 

DV error detection and learning proces;; forms part of the direct flow of information that 

combines retinal, eye position, and neck position signals into a body-centered representation. 

DV-based learning is a variant of the Vector Associative i'vlap (YAM) of Gandiano and 

Grossberg (1991). VAi'vllcarning is capable of operating in real time, requires no external 

teacher, and combines mechanisms known to be separately available in vivo. 

A mechanism is needed to prevent the target. estimate that is stored before the head 

movement from being corrupted by the changing estimates that arc caused by the head 

movement. In the model, a gate is open between head movements and allows an estimate of 

target position to be stored. A head movement that maintains gaze on the foveated target 

closes the gate to prevent the stored estimate frorn changing while the head moves. 'vVe 

assume that VOR-related circuitry opens and closes this g;ate as it causes counterrotation 

by the eyes to maintain gaze on the target (Bizzi, Kalil, and 'fagliasco, 1971; Dichgans, 

Bizzi, i'vlorasso, and Tagliasco, 197:3; i\Iorasso, Bizzi, and Dichgc1ns, 19t:l; Tomlinson and 

Bahra, 1986). The gate allows a DV to estimate the error caused by the head movement, 

and to use this error, in the VA\! learning circuit described below, to autonomously learn a 

body-centered vector representation of target. posi lion. 

The body-centered representation that is learned approximates a spherical coordinate. 

frame th<tt is similar to the spherical coordinate frame approximated by the head centered 

representation. The relationship between the head-centered and body-centered spherical co­

ordinate frames is shown in Figure 6. The origin of the body-centered system is the same as 

the origin of the head-centered system when the head is pointed straight ahead. The body­

centered frame also uses the same three spherical coordinates as t.he head--centered system. 

denoted by (0 3 , ¢13, RB ). vVhen the head is pointed straight ahead, the head-centered repre­

sentation ( 0 H, ¢ JJ, Ru) is identical to the body-centered representation (0 13 . o 13 ,JiB). \\'hen 

the head is moved from stnright ahead, however. the head-centered frame mo,·es with the 

head while the body-centered frame remains stationary. Denote by O,v ( :\ for neck angle) 

the horizontal angle and by ¢N the vertical angle of the he;rd with respect to the torso (sec 

Figure 6). 

Figure 6 

The following simplifying approximations are made in the simul<ttions: 

1. The radius RJJ of the body-centered frame is assumed to be approximately equal to the 

radius Ru of the head-centered frame; 

2. The horizontal and vertical angles ( 0/3, 6 13 ) of the body-centered frame are ilpproximilted 
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by the equations On= Ou +ON and 'PJJ = ¢u + ¢N· 

Due to the relatively small displacement of the hea.d·ccnt.crcd origin wil.h respect l.o i.hc 

bocly·centcred origin when the head is displaced from straight ahead, these a.pproxima.tions 

result in small error for all points except those very close to the eyes. Section 7 describes a 

neural network that learns corrections to the head·centcred representation of distance from 

the head to allow veridical representation of this distance in a body·centcred frarne. This 

network uses a slower nonlinear learning process that supplements the fast linear learning 

process described in this section to correct for residual error resulting from any nonlinearities 

in the functions On= f(O!f,ON) and if;JJ = f(¢n,4'N)· 

These coordinate frames are consistent with the organization of hcad·ncck systems in 

humans and other vertebrates. Neck vertebrae biomechanics favor rotations of the head 

around preferred axes (Vidal, de Waele, Graf, and Berthoz, 1988). Movements along one 

axis corresponds to changes in ON (side·to·side or horizontal movements), whereas rnovcrncnt.s 

along the other axis corresponds to changes in ¢N (vertical movements). Further evidence 

for preferred axes comes from Masino and Enudsen (1990), who showed that separate ncmal 

circuits are used to control horizontal and v·crtical head movements in the barn owl. 

The body·centered representation is invariant in the sense thai. it compensates for mov·c· 

ments of the eyes in the head and of the head in the body rclativ·e l:o a target whose lo·· 

cation is fixed with respect to the body. Learning to discount head mov·enwnls in the 

body·centerecl representation compensates for changes in head position by negating the rc·· 

suiting changes in the heacl·centerccl representation of a fixed target position. In other 

words~ ( 0 n: ¢B) = ( 0 H: ¢H) + ( Dcorrcct.ion: ¢correction): where ( Ocorrcction: ~\orrcction) is a learned 

correction based on neck muscle information. After the transformation network is adap· 

lively calibrated, this correction is nearly linearly related, in fael nearly equaL to the head 

movement (ON, ¢N) clefmcd according to the preferred axes. This linear relation bet\\'l:en 

head movements and the required correction lo the head·ccntered representation allows v·ery 

fast and accurate learning of lhe correction. The relationship between head mm·ement:; a.nd 

other possible head· and body·centerecl coordinate frames, :such as Cartesian, is much more 

complex, making the transformation from a head·centercd representation to a body·ccnl.ered 

representation more diflkult to learn. 

Although head position (ON, ¢,v) can be derived from neck muscle length information, an 

animal cannot without learning use this neck muscle information to accurately compensate 

for head movements when forming a bocly·centered representation. This is because the 

relationship between any one neck muscle length and head position is clepenclcnlupon details 

of the neck anatomy which vary from incli,·idualt.o individual and can chan!!:c with t.imc (e.g .. 
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due to growth). Therefore, the org;.tnism rnust adapl.ivcly find panurwtcrs t.lrat c.tllow neck 

rnuscle length information to compensate for changes in head position. The network rapidly 

learns these pa.rarneters without the aid of an external teacher by capitalizing on the fact 

that the positions of fixed objects with respect to the body do not change while the head 

moves and target foveation is maintained. This allows the network to autonornously generate 

internal teaching signals that are derived from the flow of sensory and motor signals. The 

details of this process arc described in the following paragraphs. 

Figure 7 

6. Network Description 

Figure 7 illustrates the model network that was simulated. Populations corresponding t.o 

representations of Rn and Rn arc omitted in this section clue l.o the rcl;tl.ivc non-clcpcndcncc 

upon neck movements of these variables. In t.he remaining network, there are five main neural 

population types: 

L neck muscle length populations with activities nj; ( 1 <; j <; 9, 1 <; i. <; 2). 

2. head-coordinate populations with activities h; (1 <; i <; 1). 

:l. head-neck Difference Vector (DV) populations with act.i\'itics :r; (1 <; i <; '1), 

4. unnormalizcd body-coordinate populations with activities Wl (1 <; i <; 4), and 

5. normalized body-coordinate populations with activities b)2l (1 <; i <; 4). 

Each head-coordinate population projects with a fixed m~ight connection t.o the corre­

sponding DV population. Each neck muscle length population projects to e\-ery DV popu­

lation through an adaptive weight connection. As noted abo\·c, the mode;! assumes that a 

VOR-mecliated gate modulates the interactions between the DV populations and the unnor­

malizecl body-centered representation populations. lL is assurnccllhat fo\·calion is maintained 

during head movements by the VO R system. Breaking of gaze from one t argct to another 

is thus referred to as breaking of VOR. fixation, and gating that occurs clue to these breaks 

of gaze is referred to as VOR-mediatecl gating. However, the only functional requirement 

for the current network is that it can detect whc:n a new target has been foveated, without 

regard to the system or type of eye movements used to maintain (or recover) foveation of 

the target during (or after) head movements. 

The first population type represents the lengths of the neck muscles. These can mise 

from corollary discharge copies of outflow commands to the neck muscles and/or from pm­

prioceptive signals originating al the muscle spindles. These populations code neck muscle 

lengths in agonist-antagonist coordin;cles. The gain of e<tch agonist-ant agonist pair 11·as 



varied from pair to pair in order to demonstrate that such varia.biliLy docs nol irnpair Lire 

learning process. The simulations used nine agonist-antagonist rnuscle pairs. Each neck 

muscle was assumed to produce rotation around both of the preferred axes discussed above. 

That is, the lengths of the jlh neck muscle antagonistic pair (nj 1 ,T~'j2) are related to the 

angles 0 Nand ¢N according to the following ecprations: 

(20) 

n o = Jl · + \f. - n ·1 J. J J J (21) 

where H1 and F1 are gain factors that code the relative influence of the .ith muscle pair on 

the horizontal and vertical head angles, respectively. For cxarnple, a large value of JJ j and a 

small value of v1 means that the j 1" pair of muscles has a strong influence on horizontal angle 

of the head but a. small influence on vertical angle of the head. The value for each gain in the 

simulations was chosen randomly between 0.2.5 and 1.0. All neck muscle length populations 

project to all head-neck DV populations. For example, a neck muscle length population 

that primarily codes horizontal angle (i.e., one wit.h very srnall V1) initially projects l.o all 

head-neck DV populations, including those that code \"CrLic;ll angle. For proper operation, 

learning within the network must. ensure a small innuencc on the head-neck DV \"Crtical 

angle populations and a. larger influence on the head-neck DV horizontal angle populations .. 

This result is confmm:d by the simulations. 

The second population type constitutes the head-centered representation of target. posi­

tion. as described in Section :3. Specifically, 

- goo ... 0 If 
hr - tsoo and I - goo+ 0 II 

1.2- lSOo ) (22) 

_ 90° ··· 6 11 and h 1 = 90"_±_ ¢11 (2:3) h:l - tsoo · tsoo · 

The activities of the third population type, t.lre head-neck DV popul<t.t.ions, represent the 

difierence between the stored target position at the unnormalizecl body coordinate activities 

and the current body-centered position defined by the combination of head··centered and 

neck muscle information. Pathways from the neck muscle activities to t.he D\. activities 

can be chosen either excitatory or inhibitory. As clcscribecl below, different learning laws 

are used for the neck-to-DV weights in the two cases. An excitatory tonic inpnt T to the 

DV populations is also used in the circuit with inhibitory ncck-t.o-DV pat.lmays lo keep the 

b\ 1
) and b)2l signals nonnegative throughont the learning process. The input T is a mildly 

constrained parameter; simulation results cliscnsscd below verify proper opera! ion for it wide 

range ofT \·alues. 
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·As with all popnlation activities in tile model, tile DV activities :r; equilibrate rapidly 

\yitil rc:opect to input changes, and thus can be described using the following equilibrium 

equations: 

DV Activity (Excitatory Pathways) 

:r - h -1 ,~ n · , - b( 1) 
"t- ·~ ~ L ·Jh'"Jh- i (24) 

all j,k 

DV Activity (Inhibitory Pathways) 

--1 ,,, ,~ ' 1(1) 
xi- li + 1 -- L.t njh/.-Jki- Ji (25) 

all j,k 

Variables zjki in (2-i) and (25) represent the adaptive weights, or long term memory (LTill) 

traces, that arc changed throngh learning. Variables b\ 1
) rcpre:oent the stored body-centered 

target position. When a new estimate of body-ccnterecl target, position is instated at the 

head-neck system, the head-centered signab a.nclncck muscle signals arc combined at the DV 

and integrated at the body-centered target posi Lion populations for storage dtning the sub­

sequent head movement. Because the body-centered target populations project inhibitory 

pathways back to the DV populations, the W1 populiltions reach equilibrium when the 

body-centered target representation equals the target representation formed from the head--

centered signals added to the neck muscle signals. Integration occurs quickly, so that equi-· 

librium is rapidly reached while the excitatory pathways from the DV are gated open. When 

the VOR is active during a head movement. these pathways arc gated shu\ (Figure 7). 

Thus \he body-centered estimate that is stored before the movement is not disrupted by the 

movement. Stomge of new body-centered estimates occurs whene1·cr VOR-mcclialecl target 

tracking is broken and a new target i;; instated. 

The b\ 1
) populations need to track all possible displacements of a target within the 

body-centered frame. Since the input signals to this stage arc rectiflCcl, and thus of fixed 

sign, the network includes inhibitory projections from each DV population to the antagonist 

b\ 1
) population. For example, in addition to the excitatory links :~: 1 - b\1) and x2 -- b~l), 

the network includes inhibitory links x 1 - b.\11 and x2 - b\1
) This push-pull arrangement 

enables both decrements and increments to be integrated. These opponent inhibitory links 

arc omitted from Figure 7 for simplicity. Such a gated opponent integrator also appears in 

the VITE and VAM arm movement tmjeclory generator models (Bullock and Grossberg. 

1988; Gaudiano and Grossberg, 1991). The folloll'ing equation describes b)ll stage updating: 

Gated Updating of Body-Centered Activity 

dlt1l_c··. d/ I; - .d,. (:2G) 



where gate C: is open (G = l) except when the von. is active, during which times the giitc is. 

closed (G = 0). 'I'hc cells controlling the gating signal arc thus pa.user cells \,hat ar.c inadivc 

during a head movement. Both excitatory and inhibitory .r, values arc intcgi·ittcd. Civcn 

that output signals from DV cells Lo body-ccntcrccl cells are rectified, (26) can be realized by 

inLegra.ting signals direcLly from ON cells when Lhcir activiLics x, me nonncgaLive, and frorn 

OFF cells whose activiLi,~s -x; generate nonnegative signals when the ON cell activities 1>; 

are nonposiLivc. 

'fhc equilibrium activities approached by the b~ 1 ) while C: is posiLivc arc computed dif­

ferently if excitatory or inhibitory neck signals arc used: 

Body-Centered Activity (Excitatory Neck-to-DV Pathways) 

b(l) = lr· -1· '\~ 
t ' D n.jJ.Zjki 

all j,k 

Body-Centered Activity (Inhibitory Neck-to-DV Pathways) 

b(1) --lr · -"- '1'- '\."" 12 · ~- · 
l - '1 I - 0 ")l.:'•)/._'1' 

all j,k 

(27) 

(2S) 

Equation (26) implies that after G goes off, these values arc stored throughout the subsequent 

bead movemenL, during which the VOR a:ssures foveal fixation of Lhe stationary target whose 

coordinates the b)!l specify. 

The fifth set of populations normalize the unnormalized ,-;lri<tble u; 1
) ,-ia shuming agonist­

antagonist inLcracLions: 

Normalized Body-Centered Activity 

(2) - b(
1
l b ----- and 

l - b(1) _, b(l) 
1 I 2 

,_( 1 I 
(2) - u., b., - --·----' 
- U(l) -L ~,(1). 

1 1 u2 

( 2')) 

(1) 
(2)- bl b -- ---· 
1 /;(1) ·' 1.(1)' 

:l r u,l 

( 30) 

These populations compute an agonist-antagonisL body-centered target posiLion with fixed 

gain. If the network is properly tuned, a linei\l' relaLionship holds between activities b)21 and 

actual target angles measured in the body-centered frame. To assess neLwork representations 

of On and ¢B, we used a linear regression analysis Lo find the slopes (A, C) and inlcrcepls 

(B, D) of the best fitting lines relating b~2 ) Lo 013 ;\llcl b~2 1 to ¢B· This yielded equaLions 
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( :3:2) 

The <tdaptive weights zi~c; between the neck muscle activities njk and the DV activities 

x;, when excitatory p<tthways are used, obeys the following learning law: 

Learning Law (Excitatory Pathways) 

where c is a small learning rate parameter and E is a decay rate parameter. Weight values 

were updated after each tria.!. Learning ;cdjusts weights in (24) so th;ct the tota.l excitatory 

input just babnces the inhibitory input from the b\ 1
) stage. When the sum of these inputs 

is zero, x; = 0, so learning soH-terminates, by (:3:3). 

If inhibitory neck to DV pathw;cys arc usee!, the learning law is: 

Learning Law (Inhibitory Pathways) 

(:31) 

Lea.rning laws of this general form have been obsen·cd in. vivo by many neurophysiologists 

(e.g., Levy and Desmond, 1985: Rauscheckcr and Singer, 191.9; Singer, 198:3). This learning_ 

l<11v is often called the instar learning la.w, or the gated steepest clcsccnt learning la1Y. It. was 

introduced into the neural network literature in Grossberg (1969) and is the learning law 

used in the self-organizing feature map model (Grossberg, l9/6a, 1982: I~ohoncn, 198-1) and 

adaptive resonance theory (Carpenter and Grossberg. 1981, 1991: Grossberg, 191Gb, 1982). 

7. Model Simulations of Body-Centered Learning 

The following steps were used to train the nctmnk: 

1) Initialize all weights to 0 0. 

2) Choose a random initial head position (ON,r/!s)-

3) Choose a random target position (!Jr,<PT)-

4) Foveate new target by adjusting h; so that Ou = OT- ON and ¢JJ = ¢-r- 6s. Store 

this target in the body coordinate populations b) 1l and b)2
) Storage of the target rs 

controlled by opening the gate Gin (26). The gale closes when the VOH is actin'. 

5) Choose a new head position while remaining foveated on current target. Change n;1 and 

adjust h; accordingly to keep OJJ+ON = OT and ¢u+rh· = ¢T· 'fhis step corresponds to 

moving the head while using the YOR to keep the target fm·catccl. In the first fin' sets 

of simulations that were carried out., the new head position was chosen from a random 
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distribution (either triangula.r or uniform) cc:ntered at ON= 0. In the sixth and seventh 

sets of simulations, the new position wa;; chosen such that 0 II = 0, corresponding to 

moving the head to center the target in head coordinates. All these variations led to 

correct learning of the body-centered spatial representation. 

6) Adjust the adaptive weights from the neck rnusclc length populations to the head-neck 

DV populations according to the instar learning equation (:J:l) or (31). In the first 

six simulations, it was assumed that all learning occurs during periods when the head 

position remains fixed at the end of the movement. This approximation may be justified 

by the assumption that learning is slow enough that significant learning docs not occur 

during head movements, but instead requires the longer periods of target foveation that 

occur with the head still. In the seventh simulation, it was assumed that all learning 

occurs during the head movement .. 'fhe point of this simulation was to show thai. the 

self-organization process is robust in that it does not require learning to occur only with 

the head in a fixed position. 

7) Repeat steps (3)-(7) until the learning process converges. 

for all seven sets of simulations, a fourth order H.unge-Kutla method with 61 = 0.01 was 

used with total time of integration per trial of 1.0. 'J.'he learning rate parameter c was 1.0. 

and the LTi\I decay parameter E in (:3:3) or (:H) was 0.1. Error was measured by averaging· 

the absolute values of the difference between estimated body-centered target angles and the 

actual target angles throughout the workspace (i.e., -4.5° < 0 < .j.5o, -4.5° < 6 < ,1,) 0 for 

target angles 1 neck angles, and head-centered rcprescnlation angles). 

The fll'St two simulations used exci tcttory pathways from the neck muscle populations 

to the head-neck DV populations and corresponding LTi\I learning law (:3:3). In the first 

simulation, a uniforrn distribution between -'15° and +1.5° was used for choosing head po­

sitions during training. The results of this simulation are shown in Figures 8, 9, and 10. 

Figure 8 shows average error plotted as a function of trial number. This figure indicates 

rapid convergence, with less than 0.1° average error after 200 targets were attempted. Fig­

ure 9 shows the internal representation (left side) and actual target position (right side) 

during a head movement after 20 learning trials (i.e., after fO\·eating :20 targets). As the 

head moves, the internal representation of the target position also moves, even though the 

actual target position with respect to the body remains fixed. After 200 trials, howeHoL the 

network has learned to invariantly represent the body-centered target position despite large 

head movements, as shown in Figure 10. 

Figure 8 

Figure 9 
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Figure 10 

In the second simulation, a triangula.r distribution centered at 0° was used for choosing 

th8 head position during tmining. Again, convergence to less than 0.1° avcrag;c error was 

rapid, with less than 400 targets required. The rewlts for this simulation and the remainder 

of the simulations w8re very similar to Figures S, 9, and 10, <\lld are thus not included here. 

These simulations indicate that random neck movement after target foveation is sufficient to 

mpidly build a body-centered invariant representation of external space. 

The third, fourth, and fifth sets of simulations replicate these findings using inhibitory 

pathways from the neck muscle populations to the head-neck DV populations and the LTM 

learning law (34). The third and fourth sets of simulations used a tonic input parameter T = 

G .. s with uniform and triangular head poc;ition distributious, respectively. Again, convergence 

was rapid, requiring less than 200 targets in the uniform case and 400 l.argel.s in the triangular 

case. With this tonic input value, the dynamic range (i.e., the change in activ·ity level of 

the internal representation corresponding to a given change in the external angle) of the b\2
) 

populations was approximately the same as in simulations 1 and 2. To illustrate robustness 

with respect to T, simulation 5 was run using T = 10. Convergence occurred in fewer 

than 200 trials for this simulation also. However, the dynamic range of the b\ 2
) populations 

dropped, indicating that an ideal level of tonic input exists. Levels increasingly different. 

from this ideal level do not strongly affect t.he convergence of the network but do increase 

susceptibility to noise and inaccuracies of the processing units. 

In the sixth simulation, the probabilistic choice for head position in the first two simu­

lations was replaced with neck mcn·ements that centered the new targets with respect to the 

head. This corresponds to t.hc natural tendency to turn the head toward a newly attended 

target. Training in this manner conv·ergcs in less than 2.50 trials. 

The seventh simulation set was clesignecllo show that it is not necessary to have learning 

occurring only at the end of a head movement. The network m\s modified to allow learning 

only during head movements, with no learning occurring after movements have slopped. The 

gate G must still be used in this case to insure that the stored body-centered representation 

b) 1l does not change during movement. The learning process can then be visualized as 

allowing each neck position encountered during the movement to learn a small amount about 

the body-centered position stored prior to movement onset. Convergence occurred in less 

than 500 trials for this simulation. This result, coupled with the previous simulations with 

learning at the end of movements, indicates that convergence will occur without the need 

to shut off learning at any time, prO\·idccl that learning is slow rclativ·e to the process of w) 
stage upda.t.ing. 
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8. Learning an Invariant Body-Centered Distance 

Though head movements can create litrge discrepancies between the hc;td-ccntcred and 

body-centered angles of a target, head movements do not cause discrepancico of more than a 

few inches between head-centered and body-centered distances of it target. Thus in the prior 

section we did not propose a direct role for corollary discharges of neck motor commands in 

body-centered distance computations. Nevertheless head movements are pertinent to target 

distance estimates because, as shown in Figure 11, egocentric distance estimates based on 

vergence arc not invariant under changes of 0 II. Thus an object moving on an arc at a 

fixed distance relative to a fixed head during binocular tracking would appear to have a 

variable distance if vergence were the sole basis of distance estimation. Although this in itself 

might be problematic, at least with the head fixed, the mapping between points in space 

and egocentric representations is one-to-one. However, a stationary object fixated during a 

head movement would be represented as having changed its egocentric distance during the 

movcrncnt. In this case, the mapping from points in space to egocentric representations is 

one-to-many. This would create a difficulty for any animal that attempts to learn a mapping 

between egocentric representations of points in sp<lCC ancl arm configurations adequate to 

reach to ~uch points. Because the latter learned mapping would be many-to-one, it 1\0tild 

at the least take longer to learn. This extra learning time would be doubled, for example, if 

points needed to be reached by two different forelimbs. 

Fioure 11 b 

Psychophysical data reviewed by Blank ( 1978, p. 89) indicate that whereas points on 

an isovergcncc curve (Figure ll) appear to be equidistant from the observer for sufficiently 

distant objects, there is a departure from this tendency for nearer objects, such that perceived 

distance becomes more accurate than if vergence remained the sole determinant of egocentric 

distance estirnates. ?vloreovcr, Blank reported that the obsen·cd correction factor applied for 

near· space objects could be computed from knowledge of 0 II. In addition to such information 

about apparent distance, which indicates partial compensation, it would be useful to hal"l: 

behavioral information. In principle, 1·erbal reports of apparent distance may underestimate 

actual compensation for variations in 0 l1. These might be re1·ealed in nort-~·erbal tasks such 

as blind reaching to targets seen eccentrically before closing the eyes. In fact, blind reaching 

studies have documented relatively accurate reaches, though accuracy for the radial distance 

component of blind reaches has been reported to be poorer than horizontal and vertical 

angles (Soechting and Flanders, 1989). 

Though Blank (19/S) reported that compensation of the vergence signal can be com­

puted from knowledge of 011 , this fact docs not inclicaLl' !row tire biological system actually 
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compensates. In vi1;o, there may be many sources of com1;ensaLipr;;: c.g.,;irccornodation .cues.' 

However, in this section we restrict our treatment to cornpcrisatioirth~t us~~s\he'.cyclopcan 
rctinotopic angular variable Ou and the extrarctinal eye positiim:vc;gch;;;,; signid "1- 'Jhc 

. . . ·~ . 
observation that compensation is poorer at greater distances suggests that' the compensa­

tion could depend on both On and"/, because the sensitivity of the latt.l;r' viuiable beci;mcs 

lower at larger distances (Figure 2a). Thus we propose that an egocentric distani;c estimate 

invariant under changes of the retinotopic angle 011 is computed by combining extrarctinal 

information about vergence with inforrnat.ion about 011 . Moreover, head movements made 

during VOR fixation arc used to generate the many combinations of 0 II and "I associated 

with a target of fixed distance from the body. In short., we show that. a network structurally 

analogous to the Figure 7 network, and similarly coordinated with the VOR fixation syst.crn, 

can readily learn to transform a. Owdependent estimal.e of target distance (namely vergc~nce) 

into an invariant body-centered estimate of true target distance R.n. Because the~ network 

learns a nonlinear mapping, it also illustrates how nature may use supplementary networks 

to correct. residual errors, resulting from nonlinea.ritics, in the representations of horizontal 

and vertical angles learned by the faster linear mapping net.works of the previous section. 

Unlike Figure 7 where agonist-antagonist representations of neck muscle commands sam­

ple errors at the DV stage, in Figure 12 a topographic map representing 0 li and "I samples 

errors at the DV stage. The following paragraphs describe model components mathemati­

cally. 

Figme 12 

The antagonistic pair of activities h0 and h6 form <l head-centered representation of 

target distance from the head. These activities an: defined according lo the equations: 

( 19) 

(35) 

where "/max is the largest value of h5 encountered in the workspace, and r 1 and /1 are tile 

normalized eye muscle length actidties described in Section 3. Acti,·ity h5 is thus directly 

related to vergence. 

In the ( 0 H, "l) topographic map, each cell codes a small ntnge of ( 0 II, "l) values, as rep· 

resented by the antagonistic pairs (h 1, h2 ) and (h 5 , h6 ). That is, a cell in the map fires with 

activity t; at its maximal level (i.e., t; = 1) if the ,·alues of both Ou and 1 are within small 

ranges specific to that cell. The cell f1res with less activity for nearby ,·a lues of 011 and 

"1• and the cell docs not fire at all if 0 If and "i are well outside this small range. L:am­

plcs of networks Ci\pablc of forming topographic maps from agonist-antagonist. pairs such as 
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(h 1,h2 ) and (h5 ,h6 ) arc described in 1\ohonen (1')~)<1, Chapter 5) and Grossberg and 1\upcr­

stein (1986, 1989, Chapter 6). 'I'he (Ou,'r) map used in the sirnulations contained 7.50 cells, 

corresponding to 50 regions of 011 and 1.5 regions of '1- Five map cells were active for each 

input (one rnaximally and the others to lesser degrees), and the l.ol.itl activity of the active 

map cells was 2.0. 

The remainder of the activity equations were essentially the s<\mc as in Section 5. For 

completeness, these equations are included below, with index i = .5 or 6. 

DV Activity 
N 

X · - lr · + '\" t '-- /,( 1) 
• l -- 'l '---' ') "-' J l - i l 

j=l 

where N is the number of cells in the h, 0 u) map. 

Body-Centered Activity 

N 

b( 1) - lr · 1 '\" t ·, -­i - ! -- L F'")l" 

j=l 

Gated Updating of Body-Centered Activity 

d 1(1)- G'([ -]+ [. -]+) dt !, - -' J., - X J . 

Normalized Body-Centered Activity 

') b( l) 
ti-l = --·'------ and 

" b(l) ·-tPI .s I G 

The simulations used the 

Learning Law 
d [ ]'' l dtzi, = -c,tj- · z1i + l'i, 

where it{5,6} and j = 1,2, .. . ,N. 

(%) 

(:37) 

(38) 

( 3']) 

(40) 

The training procedure used in this section is essentially as described in Section -L Specif-

ically, 

1) Initialize all weights to 0.0. 

2) Choose a random initial head position (ON, ¢N ). 

3) Choose a random target position Wr, ¢T, RT ). 

'i) Foveate new target by adjusting hi so that 011 =Or- ON and ¢JJ = 6r- ¢s- Upon 

fixation of the new target, transiently acti\·atc signal G and upcliltc the body coordinate 

populations b\ 1
) and b\''1, i = 1, :2, ... , G. 

2:2 



5) Choose a new head position while remaining foveated on current target by changing 

n;; and adjust h; accordingly to keep 011 +ON = OT and ¢u + 1/JN = ¢T· 'l"his step 

corresponds to moving the head while using the VOl\. to keep the target foveated. The 

new head position is chosen from a uniform random distribution centered at ON = 0. 

6) Adjust weights from the (Ou,ol) map popula.tions to the head-neck DV populations ac­

cording to equation (42). Learning occurs when the head position remains fixed at the 

end of the movement. (Learning could also occur during the movement, as in Section 7.) 

7) Repeat steps (3)-(7) until the learning process converges. 

Again, a fourth-order Rungc-I<utta method of integration was used, with 61 o~ 0.01 and 

a total integration time of 0.1 per trial. Learning par<unctcrs F = 0.01 and c2 = 2.0 were 

chosen. 

Fioure 13 0 . 

Figure 13 shows the average error in inches of the internal representation of Rn through­

out the workspace (-'10° < OJJ < 40°, 10 in. < R <:lOin.). Error was found by sweeping 

over a range of 0 fl values for a fixed b)2l value, searching for the distance RJJ which corre­

sponded to this b) 2l value at each 011 value, computing the difference between this distance 

and the dist<wce found for 0 II = 0, and averaging the absolute values of such differences. 

over m;wy values of b)2l and Ou. The average error for the body-centered representation 

of R falls below 0.2 inches after 10,000 trials. Figure ll shows the egocentric distances Rn 

that result in constant b~2 ) and bi/) v·alucs for targets at head-centered horizontal angle 0 JJ 

between -'\0° and +40° after 20,000 learning trials. Values arc plotted for b\ 2
) corresponding 

to R13 = 10, 15, 20, 2.), and 30 inches. Unlike Figure 11, which shows different values of 

R 13 corresponding to the same vergence and therefore to the same head-centered represen­

tation of distance, Figure 11 shows that the S<1lllC target distance corresponds to a fiv;d 

body-centered representation of distance independent of head angle. By simply lookinfs at 

many fixed targets while moving the head, the network has learned to invariantly represent 

distance from the body despite changes in head position. 

Figure 14 

9. Concluding Remarks 

An invariant body-centered representation of target positions in :l-D space can be used 

to plan limb and coordinated eye-head movements to a spatial target without regard for the 

position of the eyes in the bead or t.hc; head on the torso while visually percciv·ing t.hc tar­

get.. i\ head-centered cyclopean representation of fm·cat.cd target posit ion that incorporates 



vergence and spherical coordinate angles arises naturally !'rom sums and differences of ocu­

lomotor signals and also correlates well with the gcornctry of the vestibular system. Greve, 

Grossberg, Guenther, and Bullock (199:3) discussed psychophysical data supporting the ex­

istence of such a vergence-spherical coordinate frame, [Jarticularly data concerning the role 

of an extraretinal vergence signal (Blank, 1978; Foley, 1980). Consistent neurophysiological 

data include the hectd-centered vector representation in the caudal midbrain and medulla of 

the frog (Grobstein, 1991). By using a distance signal based on vergence, the representation 

devotes the majority of its dynamic range to nearby targets. This efficiently uses limited 

neural circuitry by accurately representing target positions within an observer's reach while 

more roughly approximating positions th<tt are further <tway. Grossberg, Guenther, Bul­

lock, and Greve (1992) showed how this spatial representation could include non-foveated 

targets by learning to combine retinal and cxtrarctinal motor information invari<tnlly un­

der movements of the eyes. The present article has addressed the problem of lmnsforrning 

this head-centered representation into a body-centered representation that is invariant under 

movements of the head. 

The anatomy of the spinaJ colurnn, which favors hc<tcl mov·emenb around preferred axes, 

also suggests the usefulness of Mr egocentric coordinate frame based on cyclopean spherical 

coordinate angles. Head movements along these preferred axes ;ne almost linearly related. 

to the internal cornpensations needed to transform head-centered representations into in­

variant body-centered representations. Fast learning of such a transformation 11·as demon­

strated herein using a self-organizing neural netmlrk. By simply foveating and changing 

head position for approximately 200 targets, the network learns an invariant representation 

of horizontal and vertical angles of the target ll'ith respect to a body-centered spherical 

coordinate frame. Although target distance from the head is approximately equal in the 

heacl-ccntcrecl and body-centered spherical coordinate frames, a residual nonlinear error ex­

ists in this transformation for a representation of target distance based on wrgence. An 

augmented netll'ork was described, operating according lo the same principles, that is ca­

pable of autonomously learning a nonlinear correction for this error. 'Ihis nctll'ork operates 

on a slower time frame, requiring approximately 10,000 targets to build the im·ariant rep­

resentation. A similar nonlinear learning mechanism could be used to compensate for any 

residual errors clue to nonlinearities not handled by the faster linear mapping netmJrk 111 

transforming from head-centered to body-centered horizontal and vertical angles. 

Because the spherical coordinate frames described here correspond closely to spatial rep­

resentation by the vestibular system, they should be well suited to relating head-centered or 

body-centered coordinates to a world-based coordinate frame. Heccnt models of lrippocam-



pal function for navigation (McN;wghton, Chen, and l'vlarcus, J!J!JI; 0'1\ecfe, 19DO) ntilize a 

polar egocentric reference frame whose coordinates correspond to the coordinates 011 and R11 

in the representation described herein. Furthermore, d<lta from Tanbe, Muller, ;md Ranck 

( l990a, l990b) identify head-direction cells in rat postsubiculum that code world-centered 

head direction, which provides the type of information needed to transform egocentric angle 

0 I! into a world-based framework. 
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FIGURE CAPTIONS 

Figure 1. The geometry of ~l-D target of loutlizaLion by the two eyes: Symbols Land Rare 

the centers of the left and right eyes. Left side shows how a closer target generates a larger 

vergence angle. Right side shows how the vergence a.ngle is calculated from the angles of the 

eyes in their orbits. 

Figure 2. (a) Vergence as a function of target radius for a target on t.hc line passing through 

the midpoint between the eyes (the cnwial egocentcr) and projecting straight ahead. (b) 

Distance-response curves for a class of visual fixation neurons in posterior parietal cortex 

(area 7 a, posterior part). Reprinted with permission from Sakata d rd. ( 1980). (c) Visual 

acuity as a function of angular distance from the fovea (adapted from 1\andcl, 1985). The 

similar shapes of the curves in (a) and (c) suggest that the nervous system may usc a similar 

strategy to efficiently represent retinotopic and body·centered space with limited neural 

circuitry. 

Figure 3. Spherical coordinate frame for specifying a target position with respect. t.o the 

head. This coordinate frame is related to the head-centerecl rcprcscntaJion of space clesc:ribccl 

in Section :3. 

Figure 4. Geometry of cyclopean position: The angles 0 rand OR that the left. eye and right 

eye assume to fO\·calc a target correspond to a cyclopean, hcacl-ccntcred angle 011 . 

Figure 5. Opponent processing architcclllrc for the calculation of the internal rcprescnt.al.ion 

of gaze angle (h,) and vergence (h5). Signals L1, L2, Rr, and H.2 arc corollary discharges from 

the outflow movement cells that control eye position. The muscles arc arranged in agonist­

antagonist pairs. Stimulation by neuron L2 causes a contraction of the left medial muscle, 

which rotates the left eyeball to the right. The activity of each pair of cells is normalized at 

cells l1,/2,r1, and r,. 

Figure 6. Top view (a, b, c) and side view ( d, e, f) showing relationships between the 

head-centered coordinates (subscript H), body-centered coordinates (subscript. B), and head 

angles with respect to the body (subscript N). 

Figure 7. i'\etwork for learning transformation from a hcad-centc'red spherical coordinate 

rcprescnta Lion to a body-centered spherical coord ina\ c rcprc'scn tat ion of target. posi 1 ion. 



Figure 8. J\ verage error !"or (a) 0 and (b) rp using cxcitatot·y pathways from the neck tnttsclc·s 

and a uniform distribution for choosing new head position. 

Figure 9. Resnlls after 20 learning trials. The left side shows the internally represented 

bocly-ccnlerecl target position a.s the head is moved through over :30° of both horizontal and 

vertical angle. The right side shows the actual target position. The change in represented 

target position <LS the head is moved indicates that the network has not ycl. learned l.o 

inv<triantly represent bocly-ccntcrecl ta.rgcl position. 

Figure 10. Results after 200 learning trials. The left side shows the interm1lly representee! 

body-centered target position as the head is moved through over :30° of both horizontal and 

vertical angle. The right side shows the actual target position. The internal representation 

is now invariant under heacl movements. 

Figure 11. Actual positions of foveated objects which give rise to constant values of vergence 

(curved lines) for different head angles. Without the networks clescribccl in this section, an 

internal estimate of distance from the head for a frxed l.iugct based solely on vergence \WJulcl 

sufFer from the variability clue to he<tcl position seen here. Human perception of distance 

is better than these isow:rgencc-basecl estimates, particularly for nearer distances (Blank. 

1978). 

Figure 12. i'iet1vork for learning to usc spali<el tni\Jl of Ou itnd ~1 v·altrcs to rmprov·e a 

body-centered estimate of a fov·catccl target's radi<el distance lin. 

Figure 13. Aventgc error of internal estimate of F!IJ during learning by the network of 

Figure 12. 

Figure 14. Actual positions of fov·cated objects giving rise to internal Rn estimates of 10, 

15, 25, and 30 inches after learning by the network of Figure 12. The nct11"0rk has learned 

to represent distance from the head invariantly across horizontal changes in head angle. 
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