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ABSTRACT

A neural model is deseribed of how the brain may autonomously Jearn a body-centered
representation of 3-1 target position by combining information about retinal target position,
eye position, and head position in real time. Such a body-centered spatial representation
enables accurate movement commands to the imbs to be generated despite changes in the
spatial relationships belween the eyes, head, body, and limbs through time. The model learns
a vector representation—otherwise known as a parcellated distributed representation-—ol
target vergence with respect to the two eyes, and of the horizontal and vertical spherical
angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical rep-
resentation has been reported in the caudal midbrain and medulia of the frog, as well as
in psychophysical movement studies in humans. A head-centered vergence-spherical repre-
sentation of foveated target position can be generated by two stages of opponeut processing
that combine corollary discharges of outflow movement signals to the two eyes. Sums and
differences of opponent signals define angular and vergence coordinates, respectively, The
head-centered representation interacts with a binocular visual represenfation of non-foveated
target position to learn a visuomotor representation of both foveated and non-foveated target
position that is capable of commanding yoked eye movements. This head-centered vector
representation also interacts with representations of neck movement commands to learn a’
body-centered estimate of target position that is capable of commanding coordinated arm
movements. Learning occurs during head movements made while gaze remains fixed on a
foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents
the stored estimate from being reset during a gaze-maintaining head movement. As the head
moves, new estimates are compared with the stored estimate to compute difference vectors
which act as error signals that drive the learning process, as well as control the on-line
merging of multimodal information.



1. Spatial Representations for the Neural Control of Flexible Movements

This article describes neural network models of how the brain learns spatial represen-
tations with which to control sensory-guided and memory-guided eye and limb movements.
These spaiial representations are expressed in both head-centered coordinates and hody-
centered coordinates because the eyes move within the head, whereas the head, arms, and
legs move with respect to the body. A model for learning an invariant body-centered repre-
sentation of 3-D target position is developed. Models [or learning an invariant head-centered
representation of 3-D target position are described elsewhere (Grossberg, Guenther, Bullock,
and Greve, 1993).

One general design theme that underlies many of our results explores the need for spatial
representations——as distinct from perceptual, cognitive, or motor representaiions—in the
control of goal-oriented behaviors. In this regard, 1t is well-known that visual inputs activate
a “what” processing stream as well as a “where” processing stream within the brain {Goodale
and Milner, 1992; Mishkin, Ungerleider, and Macko, 1983; Ungerleider and Mishlkin, 1982).
The “what” processing stream leads to visual recognition of external objects. It includes
brain regions such as visual cortex and inferotemporal cortex. The “where” processing
stream leads to spatial localization of objects, spatial atiention shifts, and action. It includes
brain regions such as visual cortex, superior colliculus, parietal cortex, and premotor cortex.
“Where” processing is illustrated by the following competence.

Imagine that your right hand is moved by an external force to a new position in the dark.,
so that neither visual cues nor self-controlled outflow movement commands are available to
encode the right hand’s new poesition. Despite the absence of vision and sell-controlled
volition, it is easy to move your left hand to touch your right hand in its new location.
The motor coordinates that represent the position of your right hand are different from
the motor coordinates that your ieft arm realizes in order to touch it. Some representation
needs to exist that mediates between the different motor coordinates of the two arms. This
mediating scheme is the spatial representation. This example Hustrates that different motor
plans, whether for the control of one arm or fwo, are often used to reach a prescribed position
in space. The problem of how animals can reach a fixed target in multiple ways is often called
the “problem of motor equivalence” (e.g., Bernstein, 1967; Hebb, 1949). A properly defined
spatial representation is a prerequisite to discovering a biologically relevant solution of the
motor equivalence problem. The model introduced herein forms part of a proposed solution
to the motor equivalence problem (Bullock, Grossberg, and Guenther, 1993).

The spatial representations described below have been led are built up from the same

types of computations that are used to confrol moetor commands. This observation leads
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to a second general design theme of our work: we inquire into the natural form of neural
computations thai are appropriate for representation and control of a bilaterally symmet-
ric body. These include opponent interactions between pairs of antagonistic neurons that
measure one or another type of spatial or motor offset, with respect to an axis of symmetry,
An opponent model was developed in Greve, Grossberg, Guenther, and Bullock (1993} that
computes a head-centered spatial representation of 3-D targets that are foveated by both
eyes. This representation arises naturally {from the geometry of the cculomotor system and
relates closely to the geometry of the vestibular system (e.g., Blanks, Curthoys, Bennett
and Markham, 1985; Ezure and Graf, 1984; Graf, 1988). Grossberg, Guenther, Bullock, and
Greve (1993) further showed how to combine binocular visual information with the foveated
target representation to generate an invariant head-centered spatial representation for botlh
foveated and non-foveated 3-D target positions. A head-centered spatial representation of
non-foveated targets is needed to look ai new targets with the eyes and to reach towards
these targets with the limbs.

The current article describes how this head-centered spatial representation can be com-
bined with motor information concerning neck muscle lengths to form a body-centered spatial
representation that is invariant under head or eye movements. A body-centered representa-
tion of space is useful for performing goal-oriented reaches with the arms, since the controlled
variables for reaches (e.g., muscle lengths ov joint angles) determine the position of the hand
with respect to the body. Learning of this body-centered representation takes advantage
of the geometry of head movements, which are limited by the biomechanics of the neck to
preferred axes that are closely related to the head-centered representation described above
(Vidal, de Waele, Gral, and Berthoz, 1988; Vidal, Graf, and Berthoz, 1936). The necural
organization of head movement control along such preferred axes has been described by
Masino and Knudsen {1990).

Learning of both the head-centered and body-centered representations takes place in
variants of a Veclor Associative Map, or VAM, circuit (Gaudiano and Grossberg, 1991).
Learning in a VAM occurs via the use of difference vectors, which compute the error signals
that drive the learning process. The same difference vectors also control the on-line merging
of multimodal information into the final map representation. These dual roles of difference
vectors characterize VAM dynamics. VAM properties have elsewhere proven useful for learn-
ing spatial-to-motor mappings (Gaudiano and Grossberg, 1991; Grossberg and Nuperstein,
1989, Chapter 4) and for explaining data about human trajectory formation (Bullock and
Grossberg, 1938; Bullock, Grossberg, and Guenther, 1993; Gaudiano and Grossberg, 1991).

The representation of differences or directions by sensoryv-motor areas of the nervous system
3 3
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is well documented (e.g., Alexander and Crutcher, 1990a, 1990b; Caminiti, Johnson, and
Urbano, 1990; Crutcher and Alexander, 1990; Georgopouios ¢l al., 1982; 1884; Kalaska and
Crammond, 1992, Mays and Sparks, 1980).

The next scction surveys key geometrical and psychophysical considerations pertinent
to the model. Section 3 summarizes how Lwo successive stages ol opponent interactions
can generate the type of head-centered representation that is suggested by psychophysical
and neurobiological data. Sections 4-8 describe neural networks for transforming this head-
centered representation into an invariant hody-centered representation of targel position.
These networks rely only on information arising within the action-perceptlion cycle to resolve
ambiguities—caused by mobile eyes and head——regarding the locations of objects relative 1o
the body.

2. Geometry of Object Localization

During eye-hand coordination, both eyes typically fixate a target before or while a hand
reaches towards it. Vision, in particular the binocular disparity of an object’s image on
the retinas of hoth eyes, provides important cues to the relative 3-ID position ol an chject
with respect to the head. Such visual information is, however, often insufficient for accurate
reaching towards a binocularly fixed target. Binocular disparity, by itsell, does not provide
unambiguous information about target direction or absclute distance. Tor exampie, if each
eye fixates a different locasion in the interior of a homogeneous object, then the two monoc-
ular images of the object’s interior can be binocularly fused, but the binocular disparities of
the object’s boundaries will change with every change in the fixation points of the two eyes.
These binocular disparity changes occur without a change in the object’s distance from the
observer. Thus binocular disparity is not a reliable cue to absolute distance in any situation
of this type.

Another imitation of binocular disparity cues can arise even if hoth eyes fixate the same
location in space. Then the binocular disparity of this location on the retinas equals zero.
ne matter how near or far the object may be from the observer. Thus, small ixated objects
cannot accurately be reached using only information about binocular disparity. Since our
primary goal in the present article is to analyse how reaching towards fixated objects is con-
trolled, we need to consider other sources of information than retinal, or visual, information.

The bilaterally symmeiric organization of the body provides another, non-visual source
of information for computing absolute distance of a fixated target from an observer’s head
and body. When the eyes binocularly fixate a target, the angle between the lines ol gaze

at the point of intersection can be used to compute the absolute distance and direction
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of the fixation point with respect Lo the head. Such extraretinal information may also be
used to complement visual processing Lo derive better estimates of the absolute distance and
direction of visually delected hut non-fixaied objects.

Figure 1

[igure 1 shows how the intersection point of the lines of sight of the two eyes converges
toward the nose as the two eyes rotate to foveate increasingly close objects that arve straight
ahead. The rotation centers of the two eyes together with the fixated point on the object
form a triangle. The angles of the two eyes in their orbits thus jointly specily the angle
v between the lines of sight that intersect al the fixation point. This angle is called the
binocular parallaz {Foley, 1980). The triangular structure also allows an internal measure of
net ocular vergence—-the extent o which the eyes are rotated towards the nose—t{o serve as
one hasis for estimating the distance from cgocenter to a binocularly foveated object. The
angle v will henceforth be used as a measure of vergence. The head-centered representation of
space derived here approximates vergence as a distance measure, with coordinates specifying
horizontal and vertical target direction completing the 3-D representation.

Figure 2

Figure 2a shows the relationship between vergence and the radial distance of a target.
from the head. This figure illustrates that the dynamic range of a representation based on
vergence 1s heavily weighted towards targets near the observer. Targets within reach of the
observer can be represented with the high accuracy necessary for succesful reaching, but the
accuracy of representation for targets further out ol reach decreases due to smaller changes
in vergence per unit change of distance. This property allows a physical system with limited
dynamic range to efficiently represent space, since positions of important targets (i.e., those
near the observer) are represenied with high accuracy, and positions of targets that ave far
away can still be roughly approximated. Figure 2b reprints data from Sakata. Shibutani.
and Kawano (1980) on a class of visual fixation neurons that they discovered in area Ta
of posterior parietal cortex. These neurons were described as depth-selective and this plot
shows that their discharge rate fell off with target distance in a manner strikingly similar to
the vergence-distance function of Figure 2a.

A similar property can be seen in the retinotopic coding of visual space by visual cortex
(e.g., Rojer and Schwartz, 1990). Tigure 2¢ {adapted from Kandel, 1933) shows the function
relating visual acuity to distance from the fovea. This curve shows a use of dynamic range
very similar to that of Figure 2a, suggesting thai the nervous system may wuse different

neural circuitry to achieve similar efficiency ol coding for body-centered and retinotopic
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representations ol visual space.

The two other coordinates in the head-centered representation of 3-13 space are also
derived from estimales of the position of both eyes in thelr orbits. Iligure 3 describes the
geometry of 3-D target localization in terms of a spherical coordinate frame. The origin
of this coordinate system, called the cranial egocenter, les at the midpoint between the
two eyes. Thus the representation is “cyclopean™. The head-centered horizontal angle or
azimuth, 0 7, and the vertical angle or elevation, ¢ i, measure deviations from straight-ahead
gaze. The radial distance Ry in the spherical coordinate frame of Figure 3 is replaced by
vergence 7y in the representation of 3-D space described below. Iigure 4 relates the geometry
of the cyclopean horizontal angle 0y to the angles 0, and 05 subtended by the left eye and
right eye, respectively.

Figure 3

Figure 4

Experimental support for such a 3-I) coordinate system can be found in data on the role
of extraretinal information in visual object localization (e.g., Blank, 1978; T'oley, 1980; Sakata
¢t al., 1980) and on parcellated population codes of 3-D target location (Grobstein, 1991,
Hollerbach, Moore, and Atkeson, 1986; Scechting and Flanders, 1389). These and related
data will be discussed below. First, a head-centered 3-D coordinate system consistent with’
the evidence is described in the next section, in order to suggest how such a representation

can naturally arise from simple neural computations.

3. Opponent Sums and Differences Represent Foveated 3-D Target Positions

A head-centered representation of a foveated target can be formed by hinocularly com-
bining outflow movement signals from the tonically active celis that control the position of
each eye. This can be done in two stages of opponent processing, as shown in Figure 5.
Iirst, opponent interactions combine the outputs of the cells that control the agonist and
antagonist muscles of each eye. These opponent inferactions give rise 1o opponent pairs of
cells the sum of whose activity is approximately constant, or normalized. Next, the normal-
ized outputs from both eyes are combined in two different ways to generate a head-centered
spatial representation of the binocular fixation point. In particular, opponent cells from
each eye generate inputs of opposite sign (excitatory and inhibitory) to their target cells at
the next processing stage. As illustrated in Figure 5. one combination gives rise to a cell
popuiation whose activily Ao approximates the angular spherical coordinate 8. The other
combination gives rise to a cell population whose activity hs approximates the binocular

vergence y, which in turn is a measure of the radial distance Ry The two combinations
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generate head-centered coordinates by computing a sum and a difference of the normalized
opponent inputs {rom both eyes. Such a general strategy for combining signals is well-known
in other neural systems, such as colov vision. TFor example, a sum L+ M ol signals from
two color vision channels estimates luminance, whercas a difference L - M eslimates color
(DeValois and DeValois, 1975; Mollon and Sharpe, 1983). Thus the computations that may
be used to contro! reaching in 3-D space seem Lo derive from a broadly used principle of
neural computation.

Iigure 5

The neural mechanism {or normalizing the total activity of opponent cells uses a shunting
or-center off-surround network (Grossherg, 1982); that is, an opponent interaction wherein
the target cells ohey a membrane equation (Hodgkin, 1964; Katz, 1966). In particular,
suppose that the agonist and antagonist cells that control the horizontal position of the left
eye have activities Ly and Ly, respectively. Let the normalized opponent cells in the shunting
network have activities /) and l. Suppose that

!
;j;h = Al 4+ (L= 1)Ly -1 Lo (1)
and
Ay Al (1 W)y~ LT, (2)
dt_ Sey Tl 2 )L LRSS <

By equation {1). activity L) excites [} whereas activity Ly inhibits [;. The opposite is true
in equation (2). Parameter A is the decay rate. At equilibrium, &1, = &1, = 0. 50 (1) and
(2} imply that

I .
LR )
and
Ly
b g Ly + 14 s
Adding (3) and (4) shows that
L+l ..
L+l = AT+ (5)
Thus if A< Ly + Lo,
N NER (6)

Since L; and L, are opponent signals, one goes up when the other goes down, so their
sum Ly + La can easily be kept larger than parameter A. Small deviations [rom complete
normalization do not aflect the results.



The approximation (6) will be used below for all normalized pairs of opponent cells. In
particular, we assume that the activitics of opponeni cell populations that control agonist-
antagonist muscle pairs are normalized so that the total activity of each cellular pair is fixed
ab unity. This ensures that increasing the activity ol the agonist control cell results in a
corresponding decrease in the activity of its antagonist control cell. Figure 5 shows the two
cellular pairs needed to control 0 and 0. These pairs are labeled by the variables [}, [ and
r1,79, which measure corresponding cellular activities. Thus, the following equations define
the internal representations of the horizontal angle of each eye:

Lh+lh=1 and ry-+re=1, (

-1

0, = -90°+180° x &y and Oy = —90° + 180° x ry (s)

where {; indicates the activity of lelt eye cell population ¢ and r; indicales the activity of

right eye cell population 2.
Internal representations for the vertical angles of left and right eyes may be defined
similarly. Thus
Iy4+l=1 and ry+ry=1, (9)
d; = -90° -+ 180° x I, and &p = -90° 4 180° x ry. (10}

To provide a head-centered representation of foveated 3-1 target positions, the outflow
signals [y, Iy, {3, and Iy are binocularly combined. Let the cell populations fiy, i = 1,2.....6,
form the basis for this head-centered spatial representation. These populaiions are also
arranged in antagonistic pairs. First we define cell activities iy, oy and Ay that linearly
approximate the following estimates of 0 and ¢y

hy+hy=1 and hy+hy=1, (11)

Oy = —90°+180° x hy and ¢y = ~90° + 180° x hy. {12
These head-centered binocular representations ol 0y and ¢, emerge if a shunting on-center
off-surround network simply averages the corresponding monocular components derived {rom
corollary discharges of left and right eye muscle commands. Figure 5 shows the connectivity
of this network for the cell activity ko which represents 0. In particular,

"gfh.g s mBhg + (1 - flg)(lg -+ 7'-3) - h‘l(h - 7'1): (13)

where 53 is the decay rate. Solving this equation at equilibrium (dh,/df = 0) yields

Iy 1

h?: 15) "%“!1'{" I'1+l-_g 'f-I'-gl Ul)
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Since ) ++ly = 1 and vy + 7y 2 1, choosing a small decay parameter 3 leads to the approxi-
mations:

hy = l—l-jZ“—U— and g = {‘é_‘g_fﬁ’ (13)

so that {11} holds.

To evaluate the adequacy of this internal representation of 0y, a distortion measure
was calculated in Greve et al. (1983) by dividing the change in the infernally represented
angle of two successively foveated points by the actual change in angle of the successively
foveated points for small changes throughout the workspace. The distortion measure was
calculated for a workspace defined by —45° <y < 45°, —43° < ¢y < 45°, and 3 inches <
Ry < 30 inches (7.6 cm < Ry < 76 cm). This workspace was chosen to approximate the cone
within which both binocular foveation and reaching to a target are possible in humans. The
distortion in this range is less than 15%, with essentially 0% distortion for iy > 5 inches.
Thus, the opponent network defined above provides an accurate mechanism for computing
an internal representation of fy. Likewise, the distortion measure for ¢y showed that the
normalized binocular opponent network provides an accurate internal representation of ¢y
in all but the most extreme portions of the workspace.

To see how opponent computation leads 10 a representation of distance from the head,
note that vergence, which is systematically related to distance from the head. is proportional-
to the difference between ry (the outflow command to the medial rectus of the right eve)
and {; (the outfiow command to the lateral rectus of the left eye). As in Figure 5, deline
antagonistic cell populations with activities h5 and hy for internal representation of vergence.
The cell population with activity by receives excitatory inputs [y and ry {from cells controlling
the medial recti of both eyes and inhibitory inputs {; and r» from cells controliing the lateral
recti of both eyes. Then activity h; obeys the equation

d , :

mh;} m - Chy 4 (1= h)ry 4 L) = (hg + DY+ ). (16)
At equilibriun,
] + [3 ])Lll - Dl‘g . {17)
Caritro+l -+

Because ry 4+ a2 =1 and {; + {3 = 1, equation {17) can be rewritten as

f15 =

1-D 14D .
h-:') = o) + & -I—?,(I.l ""'Zl)- (lb)

If D=1and C =0, then
Iy =1~ 1. (19}
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In this case, subjective vergence equaled physical vergence. H, however, ¢ > 0 and D < 1,
corresponding to the biologically realistic assumptions of nen-zero decay and a hyperpolar-
ization magnitude less than the depolarization magnitude, then the slope (1 + D)(C + 2)~!
of hs versus r - [; is less than one, and the intercept {1 - D)(C 4 2)77 of the funclion is
positive. Such values match the Foley (1980) cstimate from psychophysical data of the in-
ternal representation of binocular parallax. Greve et al. (1993) discuss psychophysical data
that are consistent with this representation.

4. Vector Representations of 3-D Target Position: Distributed Parcellated Rep-
resentations in the Frog

Given the simplicity of this solution to the problem of using binocular signals to construct
a 3-D vector representation of target locations, it might be supposed that such a solution
would be discovered at, an early point in evolution. In fact, such a 3-D vector representation of
target location seems to exist in frogs. Grobstein {1991) reported data indicating egocentric
coding of distance, horizontal angle, and vertical angle in distinct cell populations, each of
whose activation levels codes the target’s coordinate value on one of these three dimensions.

Grobstein (1991) summarized a number of relevant experiments, particularly those of
Grobstein and Staradub {1989) and of Masino and Grobstein (1989), that reported data
concerning a head-centered or body-centered coordinate representation in the frog’s caudal
midbrain and medulla. This representation differs from more peripheral retinal and tectal
representations. The cell properties of the representation are strikingly similar to those of
the spherical vergence representation that was described above. In particular, Grobstein
(1991, p. 130) noted that the angular head-centered variables are radial, not Cartesian, as is
also true of the angular variables 0y and ¢ . Moreover, “increasing levels of activity in the
distance pathways code for stimulus locations nearer to the {rog” {p. 132), as is also true of a
vergence-like measure of distance. Grobstein (1991) also asserted that this representation is
a parcellated, distributed representation. By this he means a veclor representation, such as
(0y,d,7), whose individual components code a variable by its aclivily level. as opposed to
a map representation that codes each variable by a distinct position in a spatially organized
array. Thus Grobstein (1991, p. 132) noted that “the value of components of the parcellated
representation are coded in terms of the level of activity across a population of neurons,
rather than in terms of which particular elements of a population of neurons are active”.
After reviewing a number of other organisms where this type of representation seems to exist.
he concluded that “in general termis, it may make sense to think of sensorimotor transforms
in terms of a transformation from place coding to population activity coding, rather than as
a transformation from place coding to [requency coding™ (p. 133).
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Such a parcellated, or vector, representation should oceur al processing stages subsequent,
to spatial mapping stages ai which visual, motor, and visuomotor inlormation are first
represented and combined. For example, in Grossberg el al. (1993}, it was shown how visual
and motor information could be combined to autonomously learn a head-centered vector
representation of both foveated and nonfoveated target position. Such a representation can
be used to command yoked eye movements to foveate the target. This article shows how a
body-centered vector representation can be learned, again based upon information that is
organized in spatial maps.

5. Learning a Body-Centered Representation of 3-D Space
The remainder of this article addresses the formation of a body-centered representation

of 3-D target positions using the head-ceniered representation described in the previous

sections coupled with information concerning the position. of the head with respect to the
torso. The network uses signals generaled automatically during changes of visual fixation.

In a typical episode:

1. The representation of a novel, initially non-foveal visual target wins an internal com-
petition that determines the next target to be loveated, and a saccade is made to this
target.

2. Information about position computed in head coordinates is combined with information
about neck muscle states to yield an estimate of target location relative to the body that
is stored during a subsequent head movement.

3. Next, neck muscles rotate the head (either randomiy or Lo point the nose towards the
target) while the eyes make a counter rotation, mediated by the vestibulo-ocular reflex
(VOR), to ensure continued foveation during the head movement.

4. During the head movement and ccular counter-rotation, both internal representations
of the target’s location in head coordinates and internal representations of neck muscle
lengths change while the stored representation of target position in body coordinates
remains coastant. -'

If head-centered and neck muscle length information interact correctly to estimate target
location in body coordinates, then this estimate will remain invariant during head rotation
and ocular counter-rotation. If the mapping is not well-tuned, then a mismatch will develop
during the head rotation between the network’s current estimate and the estimate stored
prior to the head rotation. This mismatch serves as an error signal to a learning process that
improves the network’s mapping of neck muscle length and head coordinate signals into target

position relative to the body. The stage that registers the mismatch is called a difference
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veclor (DV) stage, because errors are registered on a componenti-by-component basis. This
DV error detection and learning process forms part ol the direct flow of information that
combines retinal, eye position, and neck position signals into a body-centered representation.
DV-based learning is a variant of the Vector Associative Map (VAM) of Gaudiano and
Grossherg (1991). VAM learning is capable of operating in real time, requires no external
teacher, and combines mechanisms known to be separately available in vivo.

A mechanism is needed {0 prevent the target estimate that is stored belore the head
movement from being corrupted by the changing estimates that are caused by the head
movement. In the model, a gate is open beiween head movements and allows an estimate of
farget position to be stored. A head movement thal maintains gaze on the foveated target
closes the gate to prevent the stored estimate {rom changing while the head moves. We
assurne that VOR-related circuitry opens and closes this gate as it causes counterrotation
by the eyes to maintain gaze on the target (Bizzi, Kalil, and Tagliasco, 1971; Dichgans,
Bizzi, Morasse, and Tagliasco, 1973; Morasso, Bizzi, and Dichgans, 1973; Tomlinson and
Bahra, 1986). The gate aliows a DV to estimate the error caused by the head movement,
and to use this error, in the VAN learning circuit described below, to autonomousiy learn a
hody-centered vector representation of targel position.

The body-centered representation that is learned approximates a spherical coordinate,
frame that is similar to the spherical coordinate frame approximated by the head-centered
representation. The relationship between the head-centered and hody-centered spherical co-
ordinate frames is shown in Figure 6. The origin of the body-centered system is the same as
the origin of the head-centered system when the head is pointed straight ahead. The body-
centered frame also uses the same three spherical coordinates as the head-centered system.
denoted by (0p, ¢ 5, Rg). When the head is pointed straight ahead, the head-centered repre-
sentation {0y, dy, Ky) is identical to the body-centered representation (fp,¢ 5, fig). When
the head is moved [rom straight ahead, however, the head-centered {frame moves with the
head while the body-centered frame remains stationary. Denote by fy (N for neck angle)
the horizontal angle and by ¢y the vertical angle of the head with respect to the torso (see
Figure 6}.

[Figure 6

The {ollowing simplifying approximations are made in the simulations:

1. The radius By of the body-centered frame is assumed to be approximately equal io the
radius Ry of the head-centered frame;

2. The horizontal and vertical angles (05, ¢ 5) of the body-centered frame are approximated

i1



hy the equations 0y =0y + 0y and ¢p =y +dy.

Due to the relatively small displacement of the head-centered origin with respect o the
hody-centered origin when the head is displaced from straight ahead, these approximations
result in small error for all points except those very close to the eyes. Section 7 describes a
neural network that learns corrections to the head-ceniered representation of distance from
the head to allow veridical representation of this distance in a body-centered frame. This
network uses a slower nonlinear learning process that supplements the fast linear learning
process described in this section to correct for residual ervor resulting from any nonlinearities
in the functions QB = f(gﬁ,(}l\r) and (,"JB = f(qﬁﬂ,q}N).

These coordinate frames are consistent with the organization ol head-neck systems in
humans and other vertebrates. Neck vertebrae biomechanics favor rolations of the head
around preferred axes (Vidal, de Waele, Gral, and Berthoz, 1988). Movements along one
axis corresponds to changes 1n 0y (side-lo-side or horizontal movements), whereas movements
along the other axis corresponds to changes in ¢, (vertical movements). Further evidence
for preferred axes comes from Masino and Knudsen (1990), who showed that separate neural

circuits are used to control horizontal and vertical head movements in the harn owl.

The body-centered representation is invariant in the sense that it compensates for move-
ments of the eyes in the head and of the head in the body relative to a target whose lo-
cation is fixed with respect to the body. Learning to discount head movements in the
body-centered representation compensates for changes in head position by negating the ve-
sulting changes in the head-centered representation of a fixed target position. In other
words, (0]3: qéB) - (OH: éﬁ) + {Ocorrect‘ion : é(zorrection): where (Ocorrection ; C.bcorrcction) is a learned
correction based on neck muscle information. After the transformation network is adap-
tively calibrated, this correction is nearly lineariy related, in fact nearly equal, to the lead
movement {#y,dy) defined according to the preferred axes. This linear relation between
head movemenis and the required correction to the head-centered representation allows very
fast and accurate iearning of the correction. The relationship between head movements and
other possible head- and body-centered coordinate frames, such as Cartesian, is much more
complex, making the transformation from a head-centered representation to a body-centered
representation more difficult to learn,

Although head position (#y,9n) can be derived from neck muscle length information, an
animal cannot without learning use this neck muscle information to accurately compensate
for head movements when forming a body-centered representation. This is because the
relationship between any one neck muscle length and head position is dependent upon details

of the neck anatomy which vary from individual to individual and can chaunge with time (e.g..
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due to growth). Therefore, the organisi must adaptively find parameters that allow neck
muscle length information to compensaic for changes in head position. The network rapidly
learns these parameters without the aid of an external teacher by capitalizing on ihe fact
that the positions of fixed cbjects with respect to the body do not change while the head
moves and target foveation is maintained. This allows the network to autonomously generate
internal teaching signals that are derived from the flow of sensory and motor signals. The
details of this process are described in the following paragraphs.

Figure 7

6. Network Description

Iigure 7 illustrates the model network that was simulated. Populaiions cormresponding to
representations of Ry and Rp arc omitted in this section due to the relative non-dependence
upon neck movements of these variables. In the remaining nefwork, there are five main neurai
population types:

Q)

).

1. neck muscle length populations with activities ny; (1 <7 <9, 1 <1<

o)

head-coordinate populations with activities h; (1 <1 <4},

3. head-neck Difference Vector (DV) populations with activities z; {1 <t <4},
4, unneormalized body-coordinate populations with activities bi-l) (1 <i<d), and
5. normalized body-coordinate populations with activities I)Eg) (1 <i<d).

Each head-coordinate population projects with a fixed weight connection to the corre-
sponding DV population. Iiach neck muscle length population projects to every DV popu-
lation through an adaptive weight connection. As noted above, the mode! assumes that a
VOR-mediated gate modulates the interactions between the DV populations and the unnor-
malized body-centered representation populations. 1t is assumed that foveation is maintained
during head movements by the VOR system. Breaking of gaze from one target to another
is thus referred to as breaking of VOR fixation, and gating that occurs due to these breaks
of gaze is referred to as VOR-mediated galing. However, the only functional requirement
for the current network is that it can detect when a new target has been foveated, without
regard o the system or type of eye movements used to maintain (or recover) foveation of
the target during (or after) head movements.

The first population type represents the lengths of the neck muscles. These can arise
from corollary discharge copies of outflow commands to the neck muscles and/or from pro-
prioceptive signals originating al the muscle spindles. These populations code neck muscle

lengths in agonist-antagonist coordinates. The gain of each agonist-antagonist pair was
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varied from pair to pair in order to demonstrate thai such variability does not impair the
learning process. The simulations used nine agonist-antagonist muscle pairs. Llach neck
muscle was assumed to produce rotation around both of the preferred axes discussed above.
That is, the lengths of the j% neck muscle antagonistic paiv (n;),nj0) are relaied lo the
angles 0 and ¢y according to the following equations:

0y +90°, by +90° .
1= ng{)o Hj'{'(leg{}o Vi {20)

njo = M+ Vi—ng (21)

where I and Vj are gain factors that code the relative infivence of the j,, muscle pair on
the horizontal and vertical head angles, respectively. Tor example, & large value of /1 and a
small value of V; means that the 4 pair of muscles has a strong influence on horizontal angle
of the head but a small influence on vertical angle of the head. The value for each gain in the
simulations was chosen randomly between 0.25 and 1.0. All neck muscle length populations
project to all head-neck DV populations. Tor example, a neck muscle length population
that primarily codes herizontal angle (i.c., one with very small V) initially projects to all
head-neck DV populations, including those that code vertical angle. For proper operation,
learning within the network must ensure a small influence on the head-neck DV vertical
angle populations and a larger influence on the head-neck DV horizontal angle populations..
This result is confirmed by the simulations.

The second population type constitutes the head-centered representation of target posi-
tion. as described in Section 3. Specifically,

000 -0y

900+ 0
M= e = IS

and h , 22
and Dy 355 (22)

The activities of the third population type, the head-neck DV populations, represent the
difference hetween the stored target position at the unnormalized body coordinate activities
and the current body-centered position defined by the combination of head-centered and
neck muscle informagion. Pathways from the neck muscle activities to the D\ activities
can be chosen either excitatory or inhibitory. As described below, different learning laws
are used for the neck-to-DV weights in the two cases. An excitatory tonic input 7' to the
DV populations is also used in the circuit with inhibitory neck-to-DV pathways to keep the
bEl) and bgg) signals nonnegative throughout the learning process. The inpul T is a mildly
constrained parameter; simulation results discussed below verily proper operation for a wide
range of T values.



‘As with all population activities in the model, the DV activities z; cquilibrate rapidly
with respect to input changes, and thus can be described using the following equilibrium
equalions:

DV Activity (Excitatory Pathways)

N | 3
r; ih-i + L 77”-;;‘;3;‘;';{””1)5 ) (2[1)
all jk

DV Activity (Inhibitory Pathways)

=t + T = Y ngpaje - bgl) (23)
all ).k

Variables z;p; in (24) and (25) represent the adaptive weights, or long term memory (1TM)
traces, that are changed through learning. Variables bg“ represent the stored body-centered
target position. When a new estimate of body-centered target position is instated at the
head-neck system, the head-centered signals and neck muscle signals are combined at the DV
and integrated at the body-centered targei position populations for storage during the sub-
sequent head movement. Because the body-centered target populations project inhibitory
pathways back to the DV populations, the bg” popuiations reach equilibrium when the
body-centered target representation equals the target representation formed [rom the head-
centered signals added to the neck muscle signals. Integration occurs quickly, so that equi-
librium is rapidly reached while the excitatory pathways from the DV are gated open. When
the VOR 1s active during a head movement. these pathways are gated shut (Iigure 7).
Thus the body-centered estimate that is stored hefore the movement is not disrupted by the
movement. Storage of new body-centered estimates occurs whenever VOR-medialed target
tracking is broken and a new target is instaled.

The bEl) populations need to track all possible displacements of a target within the
body-centered frame. Since the input signals to this stage are rectified, and thus of fixed
sign, the network includes inhibitory projections from each DV population to the antagonist
bgl) population. for example, in addition to the excitatory links o, — b(ll} and 2y — bg”,
the network includes inhibitory links z; — bgn and xzy - b(ll). This push-pull arrangement
enables both decrements and increments to be integrated. These opponent inhibitory links
are omitied from Tigure 7 for simplicity. Such a gated opponent integrator also appears in
the VITE and VAM arm movement trajectory generator models (Bullock and Grossberg.
1988; Gaudiano and Grossberg, 1991). The following equation describes bg” stage updating:

Gated Updating of Body-Centered Activity

d

(}) froed : . 24
T b; G, (26)
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where gate G is open (G = 1) excepl when the VOR is active, during which Limcs.th(_z gaLe s
closed (G =0). The cells controiling the galing signal are thus pauser cells that, are inactive
during a head movement. Both excitatory and inhibitory z; values arce integiﬁted. Giiven
that output signals from DV celis to body-centered cells are rectified, (26) can be realized by
integrating signals directly from ON cells when their activities z; are nonnegalive, and from
OFT cells whose activities —z; generate nonnegative signals when the ON cell activities z;
are nonpositive.

The equilibrium activities approached by the bgl) while (7 is positive are computed dif-
ferently if excitatory or inhibitory neck signals are used:

Body-Centered Activity (Excitatory Neck-to-DV Pathways)

=hi+ > ng (27)
all 3.k
Body-Centered Activity {(Inhibitory Neck-to-DV Pathways)
l‘)El) = h,:' -+ = Z njk‘?jki' (Zt\)

all 3,k

Equation (26) implies that after G goes off. these values are stored throughout the subsequent
head movement, during which the VOR assures foveal fixation of the stationary target whose
coordinates the bgl) specily.

The (ith set of populations normalize the unnormalized variable bgi) via shunting agonist-
antagonist interactions:

Normalized Body-Centered Activity

b(l) 9 l).(l)
ORI SO () iy 29
b(ll)-% b.{;} e by b(ll) i bgl)' (29)
(1) (1)
() _ by aned B2 ,,L ...... '
s e and b} bgf) b b(ll) . (30)

These populations compute an agonist-antagonist body-centered target position with fixed
gain. If the network is properly tuned, a linear relationship holds between activities bgg) and
actual target angles measured in the hody-centered frame. To assess network representations
of iy and ¢, we used a linear regression analysis to find the slopes (A, C) and intercepts
(B, D) of the best fitting lines relating b.g ) to-0p and b_(i )10 ¢ 5. This yielded equations

Dy = A 4B, (31)
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dp=CoY 4D (32)

The adaptive weights z;;; between the neck muscle activities nj and the DV activities
z;, when excitatory pathways are used, obeys the following learning law:
Learning Law (Excitatory Pathways)
d 5 , o
Ezzjki = —c::;i(-].:zjk,; -+ “jk)a (33)
where ¢ is a small learning rate parameier and [ is a decay rate parameter. Weight values
were updated after each trial. Learning adjusts weights in (24) so that the total excitatory
input just balances the inhibitory input from the bgl) stage. When the sum of these inputs
is zero, 2; = 0, s0 learning self-terminates, by (33).
If inhibitory neck to DV pathways are used, the fearning law is:

Learning Law (Inhibitory Pathways)

d :
TPk ORCYORHEE S U {34)

Learning laws of this general form have been observed in vive by many neurophysiologists
{e.g., Levy and Desmond, 1985; Rauschecker and Singer, 1979; Singer, 1983). This learning
law 1s often called the instar learning law, or the gated steepest descent learning law. 1t was
introduced into the neural network literature in Grossherg (1969) and is the learning law
used in the self-organizing feature map model {Grossberg, 1976a, 1982: Kohounen, 1984) and

adaptive resonance theory (Carpenter and Grosshere, 1937, 1991 Grossherg, 1976h, 1932).
1 y p o3 7 O H

7. Model Simulations of Body-Centered Learning
The following steps were used to train the network:
) Initialize all weights to 0.0.
} Choose a random initial head position (05,0 v).
3} Choose a random target position (04,¢é7).
)

Foveate new target by adjusting f; so that Oy = 0p ~ 0y and ¢y = ¢y~ dy. Store
this target in the body coordinate populations bgl) and bgg}. Storage of the target is
controlled by opening the gate G in (26). The gate closes when the VOR is active.

5) Choose a new head position while remaining foveated on current target. Change ny; and
adjust h; accordingly to keep Oy + 0y = 07 and o5+ ¢, = op. This step corresponds to
moving the head while using the VOR to keep the target foveated. In the fivst five sets

of simulations that were carried out, the new head position was chosen from a random
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distribution {either triangular or uniform) centered al 0y = 0. In the gixth and sevenih
sets of simulations, the new position was chosen such that 0y = 0, corresponding to
moving the head to center the target in head coordinates. All these varialions led to
correct learning ol the body-centered spatial representation.

6) Adjust the adaptive weights from the neck muscle length populations to the head-neck
DV populations according to the instar learning eguation (33) or (34). In the frst
six simulations, it was assumed that all learning occurs during periods when the head
position remains fixed at the end of the movement. This approximation may be justified
by the assumption that learning is slow enough that significant learning does not occur
during head movements, but instead requires the longer periods of target foveation that
occur with the head still. In the seventh simulation, it was assumed that ali learning
occurs during the head movement. The point of this simulation was to show that the
self-organization process is robust in that it does not require learning to occur only with
the head in a fixed position.

~1

Repeas steps (3)-(7) until the learning process converges.

For all seven sets of simulations, a fourth order Runge-INutta method with Al = 0.01 was
used with total time of integration per irial of 1.0, The learning rate parameter ¢ was 1.0,
and the LTM decay parameter I3 in {33) or (34) was 0.1, Lrror was measured by averaging
the absolute values of the difference between estimated body-centered targel angles and the
actual target angles throughout the workspace (l.e., —=43° < 0 < 453°,-45° < ¢ < 45° for
target angles, neck angles, and head-centered representation angles).

The first two simulations used excitatory pathways from the neck muscle populations
to the head-neck DV populations and corresponding LTM learning law (33). In the first
simulation, a uniform distribution between -45° and +43° was used for choosing head po-
sitions during training. The results of this simulation are shown in Figures 8, 9, and 10,
Figure § shows average error plotied as a function of trial number. This figure indicates
rapid convergence, with less than 0.1° average ervor after 200 targets were attempted. Lig-
ure 9 shows the internal representation {left side) and actual target position {right side)
during a head movement after 20 learning trials (i.e., after foveating 20 targets). As the
head moves, the internal representation of the target position also moves, even though the
actual target position with respect to the body remains fixed. After 200 trials, however, the
network has learned to invariantly represent the body-centered target position despite large
head movements, as shown in I'igure 10.

Figure 8

Figure 9
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IMigure 10

In the second simulation, a triangular distribution centered at 0° was used for choosing
the head position during training. Again, convergence to less than 0.1° average error was
rapid, with less than 400 targets required. The resulis for this simulation and the remainder
of the simulations were very similar to Tigures 8, 9, and 10, and are thus not included here.
These simulations indicate that random neck movement alter target foveation is sufficient to
rapidly build a body-centered invariant representation of external space.

The third, fourth, and fifth sets of simulations replicate these findings using inhibitory
pathways from the neck muscle populations to the head-neck DV populations and the LTM
learning law (34}, The third and fourth sets of simulations used a tonic input parameter 7" =
6.5 with uniform and triangular head position distributions, respectively. Again, convergence
was rapid, requiring less than 200 targets in the uniform case and 400 targets in the triangular
case. With this tonic input value, the dynamic range (i.e., the change in activity level of
the internal representation corresponding Lo a given change in the external angle) of the bg'z)
popuiations was approximately the same as in simulations 1 and 2. To illustrate robustness
with respect to T, simulation 5 was run using T = 10. Convergence occurred in {ewer
than 200 trials for this simulation also. However, the dynamic range of the bgg) populations
dropped, indicating that an ideal level of tonic input exists. Levels increasingly different.
from this ideal level do not strongly affect the convergence of the network but do increase
susceptibility to noise and inaccuracies of the processing units.

In the sixth simulation, the probabilistic choice for head position in the first two simu-
fations was replaced with neck movemenis that centered the new targets with respect to the
head. This corresponds to the natural tendency to turn the head toward a newly attended
target. Training in this manner converges in less than 230 trials.

The seventh simulation set was designed to show that it is not necessary to have learning
occurring only at the end of a head movement. The network was modified 1o allow learning
only during head movements, with no learning decurring alter movements have stopped. The
gate ¢ must still be used in this case to insure that the stored body-centered representation
bgl) does not change during movement. The learning process can then be visualized as
allowing each neck position encountered during the movement to learn a small amount about
the body-centered position stoved prior to movement onset. Convergence occurred in less
than 500 trials for this simulation. This result, coupled with the previous simulations with
learning at the end of movements, indicates that convergence will oceur without the need
to shut off learning at any time, provided that learning is slow relative to the process of ptt

:
stage updating.
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8. Learning an Invariant Body-Centered Distance

Though head movements can create large discrepancies belween the head-centered and
body-centered angles of a target, head movements do not cause discrepancies of more than a
few inches between head-centered and body-centered distances of a target. Thus in the prior
section we did not propose a direct role for corollary discharges of neck motor commands in
body-centered distance computations. Nevertheless head movements are pertinent to target
distance estimates because, as shown in Figure 11, egocentric distance estimates based on
vergence are not invariant under changes of #;. Thus an object moving on an arc at a
fixed distance relative to a fixed head during binocular tracking would appear to have a
variable distance if vergence were the sole hasis of distance estimation. Although this in itsell
might be problematic, at least with the head fixed, the mapping between points in space
and egocentric representations is one-to-one. However, a stationary object fixated during a
head movement would be represented as having changed its egocentric distance during the
movement. In this case, the mapping from points in space to egocentric representations is
one-to-many. This weuld create a difficulty for any animal that attempts to learn a mapping
between egocentric representations ol points in space and arm configurations adequate to
reach to such points. Because the latter learned mapping would be many-to-one, it would
at the least take longer to learn. This extra learning time would be doubled, for example, if
points needed to be reached by two different {orelimbs.

Figure 11

Psychophysical data reviewed by Blank {1978, p. 89) indicate that whereas points on
an isovergence curve (Figure 11) appear to be equidistant from the observer {or sufficiently
distant objects, thereis a departure from this tendency for nearer objects, such that perceived
distance becomes more accurate than if vergence remained the sole deferminant of egocentric
distance estimates. Moreover, Blank reported that the observed correction factor applied for
near-space obiects could be computed from knowledge of #5;. In addition to such information
about apparent distance, which indicates partial compensation, it would be uselul to have
behavioral information. In principle, verbal reports of apparent distance may underestimate
actual compensation for variations in 0 5. These might be revealed in non-verbal tasks such
as blind reaching to targets seen eccentrically before closing the eyes. In fact, blind reaching
studies have documented relatively accurate reaches, though accuracy for the radial distance
component of blind reaches has been reported to be poorer than horizontal and vertical
angles (Soechting and Flanders, 1989),

Though Blank (1978} reported that compensation of the vergence signal can be com-

puted from knowledge of 0, this {act does not indicate how the biological system actually
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compensates. In vivo, there may he many sources of com 15(1115&!;?91@'_;’_.@. g.,;}té(ﬁgg}@()(l ation cues,
However, in $his section we restrict our treatment to (:ompen’sal;idi_fi_,}')’a,t _'1;1;"(-55‘{'{,I;:e'.cy(:lopea.n_
retinotopic angular variable 5 and the extraretinal eye posii,i()fif.,\'}_lerg'('}hc_é '{signil.i 5. The
observation that compensalion is poorer al greater dist,zmces'suggésts t_l'mt"t‘he' compensas’
tion could depend on both 04 and «, because the sensitivity of the latter variable becomes
lower at larger distances (Figure 2a). Thus we propose that an egocentric clisf,az.'lfzé estimalte
invariant under changes of the retinotopic angle 0y is computed by combﬁﬂng extrarchinal
information about vergence with information about 0. Moreover, head movements made
during VOR fixation are used to generate the many combinations of 04 and v associated
with a target of fixed distance from the body. In short, we show that a network structurally
analogous to the Figure 7 network, and similarly coordinated with the VOR fixation sysiem,
can readily learn to transform a 05-dependent estimate of target distance {namely vergence)
into an invariant hody-centered estimate of true target distance Rpy. Because the network
learns a nonlinear mapping, it also illustrates how nature may use supplementary networks
to correct residual errors, resulting {rom nonlinearities, in the representations of horizontal
and vertical angles learned by the faster linear mapping networks of the previous section.

Unlike IMigure 7 where agonist-antagonist representations of neck muscle commands sam-
pie errors at the DV stage, in Figure 12 a topographic map representing # and ~ samples
errors at the DV stage. The {oliowing paragraphs describe model components mathemati-
cally.

Figure 12

‘The antagonistic pair of activities hy and hy form a head-cenfered representation of

target distance from the head. These activities are delined according to the equations:
hs =1 =1 (19)

hG == /:r'{n;],x — /?3 (33)
where ymax i3 the largest value of L3 encountered in the workspace, and ry and {y ave the
normalized eye muscle length activities described in Section 3. Activity hs is thus divectly
related to vergence.

In the (0y,~) topographic map, each cell codes a small range of (05,7) values, as rep-
resented by the antagonistic pairs (%, ha) and (5, hg). That is, a cell in the map fives with
activity ¢; at its maximal level (i. e., t; = 1) if the values of both #; and « are within small
ranges specific to that cell. The cell fires with less activity for nearby values of #;; and
7. and the cell does not five at all if 05 and v are well outside this small range. Exam-

ples of networks capable of forming topographic maps from agonist-antagonist pairs such as
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(hy, ho) and (hs, he) are described in Kohonen (1934, Chapter 5) and Grossherg and Kuper-
stein (1986, 1989, Chapter 6). The {0y,v) map used in the simulations contained 750 cells,
corresponding to 50 regions of 0y and 15 regions of . Iive map cells were active for cach
input {one maximally and the others Lo lesser degrees), and the total activity of the active
map cells was 2.0.
The remainder of the activity equations were essentially the same as in Section 5. For
completeness, these equations are included below, with index ¢ =5 or 6.
DV Activity "
N
zi= b4 S 4z 0 (36)
j=1
where N 1 the number of cells in the (v, ;) map.

Body-Centered Activity

N
[)Ei):hiu%ztjzjg. {37)
=1
(Gated Updating of Body-Centered Activity
EH0 = Gl - [, (35)

Normalized Body-Centered Activity

(1) (1)
)gl) - Bgf)j)im[;gﬁ and f)((jl) — 5 (:f;)"iwzgﬁ (39}
The simulations used the
Learning Law
m(%:-:j: == —Cgij[—f:‘zji + I:’]: (’10)

where 1¢{5,6} and j = 1,2,..., V.

The training procedure used in this section is essentially as described in Section 4. Specif-
ically,

1} Initialize all weights to 0.0.

2) Choose a random initial head position {0y, 0x).

3) Choose a random target position (0r, ér, Br).

4} Foveate new target by adjusting h; so that 0y = 0p -0y and ¢y = &y~ oy, Upon
fixation of the new targel, transiently activate signal & and update the body coordinate

popuiations bg” and bgg), 1= 1,2, 6

[y
)



5) Choose a new head position while remaining foveated on cwrrent target by changing
1;; and adjust by accordingly to keep 0y + Oy = 0y and ¢y + ¢y = ¢p. This step
corresponds to moving the head while using the VOR to keep the targel foveated. The

new head position is chosen from a uniform random distribution centered at 0y = 0.

i

6) Adjust weights from the (6y,~) map populations to the head-neck DV populations ac-
cording to equation (42). Learning occurs when the head position remains fixed at the
end of the movement. (Learning could also occur during the movement, as in Section 7.)

7) Repeat steps {3)-(7) until the learning process converges.

Again, a fourth-order Runge-Kutta method of integrafion was used, with Al = 0.01 and
a total integration time of 0.1 per trial. Learning parameters I = 0.01 and ¢ = 2.0 were
chosen.

gure 13

Figure 13 shows the average error in inches of the internal representation of [ through-
out the workspace (=40° < 0y < 40°, 10 in. < 12 < 30 in.). Error was found by sweeping
over a range of 0 values for a fixed bgg) value, searching for the distance Rp which corre-
sponded to this bgg) vatue at each 0y value, computing the difference between this distance
and the distance found for 0y = 0, and averaging the absolute values of such differences.
over many values of bf-i) and Oy, The average ervor for the body-centered representation
of B falls below 0.2 inches after 10,000 trials. Figure 14 shows the egocentric distances 12y
that resulit in constant bgz) and bg")) values for targets at head-centered horizontal angle Uy
between —40° and +40° after 20,000 learning trials. Values are plotted for 1)52) corresponding
to Rp = 10, 15, 20, 25, and 30 inches. Unlike Figure 11, which shows different values of
Rp corresponding to the same vergence and therefore to the same head-centered represen-
tation of distance, I'igure 14 shows that the same target distance corresponds to a fixed
body-centered representation of distance independent of head angle. By simiply looking at
many fixed targets while moving the head, the network has learned to invariantly represent

distance from the body despite changes in head position.

Figure 14

9. Concluding Remarks

An Invariant body-centered representation of target positions in 3-I) space can be used
3 I A I
to plan limb and coordinated eye-head movements Lo a spatial tarzet without regard for the
]. I o &
position of the eyes in the head or the head on the torso while visually perceiving the tar-

get. A head-centered cyclopean representation of foveated target position that incorporates
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vergence and spherical coordinaie angles arises naturally [rom sums and differences of ocu-
lomotor signals and also correlates well with the geometry of the vestibular system. Greve,
Grossberg, Guenther, and Bullock (1993) discussed psychophysical data supporting the ex-
istence of such a vergence-spherical coordinate {rame, particularly data concerning the role
of an extraretinal vergence signal (Blank, 1978; Ioley, 1980}, Consistent neurophysiological
data include the head-centered vector representatbion in the caudal midbrain and medulla of
the frog (Grobstein, 1991). By using a distance signal based on vergence, the representation
devotes the majority of its dynamic range to nearby targets. This efliciently uses limited
neural circuitry by accurately representing target positions within an observer's reach while
more roughly approximating positions that are further away. Grossberg, Guenther, Bul-
lock, and Greve (1992) showed how this spatial representation could include non-foveated
targets by learning to combine retinal and extraretinal motor information invariantly un-
der movements of the eyes. The present article has addressed the problem of transforming
this head-centered representation into a body-centered representation that is invariant under
movements of the head.

The anatomy of the spinal column, which favors head movements around preferred axes,
also suggests the uselulness of an egocentric coordinate frame based on cyclopean spherical
coordinate angles. Head movements along these preferred axes are almost linearly related,
to the internal compensations needed o transform head-centered representations into in-
variant body-centered representations. Fast learning of such a transformation was demon-
strated herein using a self-organizing neural network. By simply foveating and changing
head position for approximately 200 targets, the nevwork learns an invariant representation
of horizontal and vertical angles of the target with respect to a body-centered spherical
coordinate frame. Although target distance from the head is approximately equal in the
head-centered and body-centered spherical coordinate frames, a residual nonlinear error ex-
ists in this transformation for a represeniation of target distance based on vergence. An
augmented network was described, operating according to the same principles. that is ca-
pable of autonomously learning a nonlinear correction for this error. This network operates
on a slower time frame, requiring approximately 10,000 targets to build the invariant rep-
resentation. A similar nonlinear learning mechanism could be used to compensate for any
residual ervors due to nonlinearities not handled by the faster linear mapping network in

transforming from head-centered to body-centered horizontal and vertical angles,

Because the spherical coordinate frames described here correspond closely to spatial rep-
resentation by the vestibular system, they should be well snited to relating head-centered or

body-centered coordinates to a world-based coordinate [rame. Recent models of hippocams-
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pal funciion for navigation (McNaughton, Clien, and Marcus, 1991; G'Kecfe, 1890) utilize a
polar egocenlric reference frame whose coordinates correspond to the coordinates 0 and Ry
in Lhe representation described herein. PFurthermore, data from Taube, Muller, and Ranck
(1990a, 1990Dh) identily head-direction cells in rat postsubiculum that code world-centered
head direction, which provides the type of information needed to transform egocentric angle
05 into a world-based {framework.
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FIGURE CAPTIONS

Figure 1. The geometry of 3-1) target of localization by the two eyes: Symbols L and 12 are
the centers of the left and right eyes. Leflt side shows how a closer targel generales a larger
vergence angle. Right side shows how the vergence angle is calculated [rom the angles of the
eyes in their orbits.

Figure 2. (a) Vergence as a function of targef radius for a target on the line passing through
the midpoint between the eyes (the cranial egocenter) and projecting siraight ahead. (b)
Distance-response curves for a class of visual fixation neurons in posterior patietal cortex
(area Ta, posterior parl). Reprinted with permission from Sakata el al. (1980). (¢) Visual
acuity as a function of angular distance from the fovea {adapted from Kandel, 1985). The
similar shapes of the curves in {a) and (¢) suggest that the nervous system may use a similar
strategy to efficiently represent refinotopic and body-centered space with limited ncural
circuitry.

Figure 8. Spherical coordinate frame for specifying a target position with respect to the
head. This coordinate frame is related to the head-centered representation of space described
in Section 3.

Figure 4. Geometry of cyclopean position: The angles §; and 0 that the leflt eve and right

eye assume to {oveate a target correspond to a cyclopean, head-centered angle .

Figure 5. Opponent processing architecture for the calculation of the internal representation
of gaze angle {hy) and vergence (hs). Signals Ly, La, 2y, and Ra are corollary discharges from
the outflow movement cells that control eye position. The muscles are arranged in agonist-
antagonist pairs. Stimulation by neuron [, causes a contraction of the left medial muscle,
which rotates the left eyeball to the righi. The activity of cach pair of cells is normalized at
cells Iy, 1y, 7y, and ra.

Figure 6. Top view (a, b, ¢) and side view {d, e, {} showing relationships between the
head-centered coordinates {subscript ), body-centered coordinates {subscript 133, and head
angles with respect to the body (subscript N).

Figure 7. Network for learning transformation from a head-centered spherical coordinate

representation to a body-centered spherical coordinate vepresentation of targel position.
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I

Figure 8. Average error [or {a) § and (h) ¢ using excitalory pathways from the neck muscles
and a uniform distribution for choosing new head posiiion.

Figure 9. Resulls alter 20 learning trials. The jeft side shows the internally represented
body-centered target position as the head is moved through over 30° of both horizontal and
vertical angle. The right side shows the actual target position. The change in represented
target position as the head is moved indicates that the network has nol yet learned to
invariantly represent body-centered targel position.

Figure 10. Results after 200 learning trials. The lelt side shows the internally represented
body-centered target position as the head is moved through over 30° of both horizontal and
vertical angle. The right side shows the actual target position. The internal representation
13 now invariant under head movements.

Figure 11. Actual positions of foveated ohjects which give rise to constant values of vergence
(curved lines) for different head angles. Without the networks described in this section, an
infernal estimate of distance from the head for a fixed target based solely on vergence would
suffer from the variability due to head position seen here. Human perception of distance
is better than these isovergence-based estimates, particularly for nearer distances (Blank.
1978).

Figure 12. Network for learning to use spatial map of fy and v values to improve a

body-centered estimate of a loveated target’s radial distance Ry,

Figure 13. Average error ol internal estimate of Ry during learning by the network of
Figure 12.

Figure 14. Actual positions of foveated objects giving rise to internal Ry estimates of 10,
15, 25, and 30 inches alter learning by the network of Figure 12, The network has learned

to represent distance from the head invariantly across horizontal changes in head angle.
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