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TETRAMETHYLDIHYDROXANTHENE NATURAL PRODUCTS 

 

ANAIS GERVAIS 
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Major Professor: John, A, Porco, Jr., Professor of Chemistry 

 

ABSTRACT 

Tetramethyldihydroxanthenes constitute a large class of natural products wherein a 6-

member ring triketone moiety is linked to an aromatic moiety. Progress toward the syntheses of 

six biologically active natural products isolated from these genus species; rhodomyrtone A, 

rhodomyrtosones A and B, tomentosones A and B, and bullataketals A and B, are described. 

These compounds possess challenging structures and interesting bioactivities making them 

attractive targets. Isolation, structure elucidation and biosyntheses of rhodomyrtone A, 

rhodomyrtosone A and B, tomentosones A and B, and bullataketals A and B are discussed. To 

accomplish their total syntheses, several new methodologies have been developed. A nickel-

mediated catalytic 1,4-conjugate addition was developed. Literature precedents showcasing the 

use of nickel-mediated 1,4-conjugate addition and previously reported nickel-mediated 

enantioselective catalytic systems are presented herein along with our work. The challenges met 

during the development of a regioselective dehydrative cyclization for the syntheses of 

rhodomyrtone A and rhodomyrtosone B are discussed and strategies designed to overcome this 

synthetic challenge are presented in detail. Our studies to develop a flow photochemistry-
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mediated process to access endoperoxides, as well as generation and trapping of active 

vinyloxocarbenium intermediates are presented along with relevant literature precedents.  
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<=)$($3 :"3 :"3 N'&B.D'a13 G'%'+*%-=3 <*1%$(3 5.&3 !6FMG.0OB8'%$3 J,,-%-.03 .53 N'+.0'%$13 R-%)3

G)'+=.0$1"3 ?U!
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<=)$($3 :"3 ?"3 G.&$*a13 G'%'+*%-=3 <*1%$(3 5.&3 %)$3 N-=)'$+3 J,,-%-.03 .53 J&.('%-=3 _$%.0$3 R-%)3

G)'+=.0$1"3 ?U!

<=)$($3:"3F"3@.&=.a13@)'1$3#&'015$&3N$,-'%$,34$'&.('%-A$3J+D*+'%-.0"3 FV!

<=)$($3:"3K"3@)'1$3#&'015$&MN$,-'%$,3!6FMG.0OB8'%$3J,,-%-.03'0,3G*=+-P'%-.03<$]B$0=$"3 F!!

<=)$($3:"3E"3J++*+'%-.03.53N$+,&B(3J=-,34$&-A$,3J+D*+-,$0$1"3 F:!

<=)$($3:"3>"3Q-++-.0a13G.B('&-03<*0%)$1-1"3 F?!

<=)$($3:"3T"3_'0$('1'a13<*0%)$1-13.53S0.+3X'=%.0$1"3 F?!

<=)$($3:"3U"3N.&$0.MN'h'1a13G.HH$&MN$,-'%$,3J+D*+'%-.01"3 FF!

<=)$($3:"3!V"3G)&-1%.55$&1a13<%B,-$1"3 FK!

<=)$($3:"3!!"3I$'=%-.03<=.H$"3 KV!

<=)$($3:"3!:"33@&.H.1$,3N$=)'0-1(35.&3%)$30-=D$+M($,-'%$,3!6FM=.0OB8'%$3',,-%-.0"3 KK!

<=)$($3:"3!?"3<*0%)$1-13.53I).,.(*&%.1.0$3;3:":"3 KE!

<=)$($3:"3!F"3@&.H.1$,3N$=)'0-1(35.&3%)$3Q.&('%-.03.53:":"3 EV!

<=)$($3:"3!K"3_.P+.R1D-a131%B,-$13%.R'&,3[*\M0-8$&.0$"3 E!!

<=)$($3:"3!E"3<%B,-$13%.R'&,3%)$3G.0A$&1-.03.53I).,.(*&%.1.0$3;3%.3I).,.(*&%.0$3J"3 E:!

<=)$($3:"3!>"34$)*,&'%-A$3G*=+-P'%-.03.53:"F!"3 E?!

<=)$($3:"3!T"34$)*,&'%-A$3G*=+-P'%-.03.53Q.&(*+34$&-A'%-A$3:"K>"3 EK!

<=)$($3:"3!U"3N'-%-a13<%B,-$135.&3J&.('%-=3J+,$)*,$134$='&Y.0*+'%-.0"3 EE!

<=)$($3:"3:V"3#1BO-a13N$%).,.+.8*35.&34$='&Y.0*+'%-.03.53J&.('%-=3J+,$)*,$1"3 EE!

<=)$($3:"3:!"3_.P+.R1D-3<*0%)$1-13.53[+\M;-1.&'0O-,-.+"3 E>!

<=)$($3:"3::"3L'*'Da13G'%'+*%-=3<*1%$("3 EU!

<=)$($3:"3:?"3SA'01a3G'%'+*%-=3<*1%$("3 >V!

<=)$($3:"3:F"3G.&$*a13G'%'+*%-=3<*1%$("3 >!!

<=)$($3:"3:K"3SA'01a3G'%'+*%-=3<*1%$(M;-H).1H)-0$3X-8'0,"3 >!!

<=)$($3:"3:E"3_'0$('1'a13G'%'+*%-=3<*1%$(1"3 >?!

<=)$($3:"3:>"3<)-Y'1'D-3'0,3N'%1$0B8'3G'%'+*%-=3<*1%$(23;B%*&.+'=%'(13S/'(H+$"3 >F!



 xx 

Chapter 3: Synthesis of Rhodomyrtosone A and Studies toward the Tomentosones A, B and 

Bullataketals A, B Syntheses. 

<=)$($3?"3!"3I$%&.1*0%)$%-=3J0'+*1-135.&3I).,.(*&%.0$3J3F"!3'0,3#.($0%.1.0$13J3F":3'0,3;3

F"?"3 !??!

<=)$($3?"3:"3X-(-%-083N$=)'0-1(135.&3%)$3Q.&('%-.03.53I).,.(*&%.1.0$3J"3 !?K!

<=)$($3?"3?"3<0-,$&a13N$=)'0-1%-=37Y1$&A'%-.0"3 !?E!

<=)$($3?"3F"3N$=)'0-1%-=3G.01-,$&'%-.0135.&3%)$3Q.&('%-.03.53N.0.'+D*+-,$0$13?"T"3 !?>!

<=)$($3?"3K"3J,'(a13@-.0$$&-083C.&D"3 !?T!

<=)$($3?"3E"3Z.5)$-0P3<*0%)$1-13.53J&%$(-1-0-0"3 !?U!

<=)$($3?"3>"3c.1)-,'a13<*0%)$1-13.53S0,.H$&./-,$1"3 !?U!

<=)$($3?"3T"3c.1)-,'a13N$=)'0-1%-=3@&.H.1'+35.&3%)$35.&('%-.03.53?"?KM?"?T"3 !FV!

<=)$($3?"3U"3c.1)-,'a13I$'=%-A-%*3<%B,-$1"3 !F!!

<=)$($3?"3!V"3J1')-a13<*0%)$1-13.53S0,.H$&./*H&.H$++'0$1"3 !F:!

<=)$($3?"3!!"3@&.H.1$,3N$=)'0-1(35.&3%)$3Q.&('%-.03.53S0,./*H&.H$++'0$3?"KK"3 !F:!

<=)$($3?"3!:"3J0,&$M;'&&$1a3N$=)'0-1%-=3C.&D"3 !F?!

<=)$($3?"3!?"3J0,&$M;'&&$1a3I$,B=%-.03<%B,-$1"3 !FK!

<=)$($3?"3!F"3e.)01.0a13Z*,&.H$&./-,'%-.03.53N$+,&B(3J=-,34$&-A'%-A$1"3 !FE!

<=)$($3?"3!K"3C'%'0'Y$a131*0%)$1-13.53&'=$(-=3+*1-,-=-03J"3 !FT!

<=)$($3?"3!E"3c-0a134-)*,&.M5B&.M5B&'013'0,3@.+*1BY1%-%B%$,3QB&'013<*0%)$1-1"3 !FT!

<=)$($3?"3!>"3<'(('D-'a13X$R-13J=-,3N$,-'%$,3i-0*+./.='&Y$0-B(3<*0%)$1-1"3 !KV!

<=)$($3?"3!T"3<'(('D-'a13;&j01%$,3J=-,3N$,-'%$,3i-0*+37/.='&Y$0-B(13@&$H'&'%-.0"3 !KV!

<=)$($3?"3!U"3L'8.&0*a13S0'0%-.=.0%&.++$,3;&.01%$,3J=-,MN$,-'%$,3i-0*+./.='&Y$0-B(3

@&$H'&'%-.0"3 !K!!

<=)$($3?"3:V"3<*0%)$1-13.53W*+.D$%'+3J3'0,3;3'0,3G3J0'+.8B$1"3 !K:!

<=)$($3?"3:!"3<$$Y$&8$&a13Q+.RMN$,-'%$,3<*0%)$1-13.53J&%$(-1-03F"E"3 !KK!

<=)$($3?"3::"390-%-'+3S/H$&-($0%3R-%)3%)$37/*8$03@&$11B&$,3Q+.R3<$%M`H"3 !E:!



 xxi 

<=)$($3?"3:?"3C$$,.0a134-$0.+3X-5$%-($3<%B,-$1"3 !E:!

<=)$($3?"3:F"3<*0%)$1-13.53I).,.(*&%.1.0$3J3?"!"3 !E?!

<=)$($3?"3:K"390,$H$0,$0%3<*0%)$%-=3C.&D3%.R'&,3#$%&'D$%.0$3?"!F"3 !EE!

<=)$($3?"3:E"3<*0%)$1-13.53#.($0%.1.0$13J3'0,3;35&.(3I).,.(*&%.0$3J"3 !E>!

<=)$($3?"3:>"3<*0%)$1-13.53#.($0%.1.0$13J3'0,3;35&.(3I).,.(*&%.1.0$3J"3 !ET!

<=)$($3?"3:T"3@$&&*a13;B++'%'D$%'+13J3'0,3;3@&.H.1$,3;-.1*0%)$1-1"3 !>!!

<=)$($3?"3:U"3i$&='B%$&$0a13@&.H.1$,3G'1%'A-0.+13;-.1*0%)$1-1"3 !>:!

<=)$($3?"3?V"3I$%&.1*0%)$%-=3J0'+*1-135.&3;B++'%'D$%'+13J3K"!3'0,3;3K":"3 !>?!

<=)$($3?"3?!"3Q-&1%3<*0%)$1-13.53;B++'%$0.0$3K"!U"3 !>F!

<=)$($3?"3?:"3N'+$=PD'a13c0.0$3<*0%)$1-1"3 !>F!

<=)$($3?"3??"3Nk++$&39.,.H*&&.+$13<*0%)$1-1"3 !>K!

<=)$($3?"3?F"3<*0%)$1-13.53'3A-0*+./.='&Y$0-B(3H&$=B&1.&3?"!>U"3 !>E!

<=)$($3?"3?K"3Q.&('%-.03.53%)$3;B++'%'D$%'+13G.&$"3 !>>!

<=)$($3?"3?E"3L-=D$+MN$,-'%$,3!6F3G.0OB8'%$3J,,-%-.035.&3%)$3;B++'%'D$%'+13S0,3d'($"3 !>T!

<=)$($3?"3?>"3@&.H.1$,3S0'0%-.1$+$=%-A$3<*0%)$1-13.53;B++'%'D$%'+1"3 !>U!
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4Å MS  4Å molecular sieves 

[!]  specific rotation 

"M  micromolar 

Ac  acetyl 

AcOH  acetic acid 

aq.   aqueous 

ACT                   artemisinin combined therapy 

BINAP              2,2'-bis(diphenylphosphino)-1,1'-binaphthyl 

BINOL              1,1’-bi-2-naphtol 

Bn   benzyl 

Bu   butyl 

cat.   catalytic 
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Chapter 1 
 

Introduction to the Tetramethyldihydroxanthene Natural Products. 
 
1.1   Tetramethyldihydroxanthenes: Definition, Origin, and Isolation 

Tetramethyldihydroxanthenes constitute a diverse family of natural products.  Although their 

core structures contain a triketone moiety attached to an acylated phloroglucinol by an alkyl 

bridge, numerous variations can be found around this core. This structural diversity leads to a rich 

set of biological activities for these compounds. Thus we became interested in gathering and 

understanding data and information regarding this family of natural products structural diversity, 

isolation, and biosynthesis reported by the several research groups. These data are presented 

herein and provided us with insights to design efficient biomimetic syntheses for this class of 

natural products. 

1.1.1 Definition, Origin, and Isolation 
 

As previously mentioned, tetramethyldihydroxanthenes contain a triketone moiety attached to 

an acylated phloroglucinol by an alkyl linkage. This linkage varies in length: an isopropyl group 

for 1.8-1.14, an isobutyl group for 1.1-1.4, 1.16, 1.18-1.20, and an ethyl benzyl group for 1.17 

(Figure 1.1-1.7). The acylated phoroglucinol moiety is also diverse with either isovaleryl, 

isobutyryl, and hexanoyl substituents. The alkyl bridge and acyl substituents usually bear the 

same chain except for 1.14-1.16. Tetramethyldihydroxanthenes can be either fully cyclized (e.g 

1.1, 1.2, 1.9, 1.12, 1.19, 1.20) or hydrated (e.g. 1.3, 1.8, 1.11, 1.13-1.18). Additionally, some 

members of the family are trimeric compounds containing one aromatic moiety and two triketone 

moieties. Trimers can be fully cyclized (e.g. 1.4, 1.12), fully hydrated (e.g. 1.10, 1.14, 1.15), or 

partially cyclized (e.g. 1.11, 1.13). They usually bear the same acyl and alkyl chains except for 

compounds 1.14 and 1.15. Some members of the family possess more complex aromatic moieties 
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bearing, both acyl and methyl groups such as 1.16-1.17, substituted flavones such as compound 

1.18, or dihydrochalcone moieties such as 1.19 and 1.20 (Figure 1.1-1.7).  

Rhodomyrtosone A 1.5 and tomentosones A 1.6 and B 1.7 do not possess an alkyl linkage. In 

these family members, the aromatic moiety is linked to the triketone moiety by a bicyclic ketal 

where the proton and isopropyl group at the ring junctures are cis to each other. This structurally 

diverse family possesses equally diverse origins and bioactivities. Rhodomyrtone A 1.1 was 

isolated in 2002 by Sargent and coworkers from the leaves of the Rhodomyrtus tomentosa plant 

as a racemic mixture (Figure 1.1). 1  Rhodomyrtosone B 1.2, 1.3, rhodomyrtosone A 1.5, 

rhodomyrtosone C 1.4 were isolated in 2008 by Mahabusarakam and coworkers also from the 

leaves of the plant Rhodomyrtus tomentosa.2 This plant grows in Indonesia and Thailand and has 

been extensively used in folk medicine. Extraction of the leaves with hexanes and ethyl acetate 

led to the identification and isolation of these five tetramethydihydroxanthenes along with other 

compounds. Plant extracts have shown anti-hepatitis properties, blood platelet aggregation 

inhibition properties, and calcium antagonist activities. Rhodomyrtone A 1.1 has shown some 

potent antibiotics activities against several strains of Staphylococcus and Streptococcus.   

Figure 1. 1. Rhodomyrtone A and Rhodomyrtosones A, B, C. 
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Dichloromethane extracts of the leaves provided tomentosones A 1.6 and B 1.7 which were 

identified in 2012 by Mahabusarakam and coworkers (Figure 1.2).3 These compounds exhibited 

the ability to inhibit the growth of chloroquinine-resistant and chloroquinine-sensitive strains of 

the malaria parasite Plasmodium falciparum in the micromolar range.  

Figure 1. 2. Tomentosones A and B. 

 

Myrtucommulones B 1.9 and A 1.10 were first isolated in 1971 by Kashman and coworkers 

(Figure 1.3).4 They were isolated from the methanolic extracts of the plant Myrtus communis, 

which grows in the Mediterranean area and has been used in folk medicine to treat several 

ailments. Several studies have later found antibacterial, anti-inflammatory, anti-hyperglycemic, 

and antioxidant activities in various extracts of this plant.5  

Figure 1. 3. Myrtucommulones A and B, and Semi-myrtucommulone. 
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Semi-myrtucommulone 1.8 was isolated in 2002 by Appendino and coworkers from an acetone 

extract of the plant leaves.6 During their studies, Appendino and coworkers proposed that semi-

myrtucommulone 1.8 may exist as two atropisomers. They were able to measure a coalescence 

temperature for 1.8 and upon cyclization under acidic conditions, 1.8 yielded two regioisomers 

1.8A and 1.8B in 30 % yield and a 1:1 ratio (Figure 1.3, Inset).  

Myrtucommulone D 1.11, myrtucummulone E 1.12, and myrtucommulone C 1.13 were 

isolated in 2006 by Shaheen and cowokers also from the methanolic extract of the plant.7 In their 

studies, Shaheen and coworkers were able to show that both myrtucommulones D 1.11 and E 

1.12 possessed antibiotics activities against Staphylococcus aureus strains (Figure 1.4).   

Figure 1. 4. Myrtucommulones C, D, and E. 
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Myrtucommulones F 1.14 and H 1.15 were isolated in 2008 by Quinn and coworkers from 

the ground seeds of the tree Corymbia scabrida growing in Australia (Figure 1.5). In their studies, 

Quinn and coworkers demonstrated that myrtucommulone A 1.10, D 1.11, F 1.14 and H 1.15 

exhibited substantial binding affinity for the thyrotropin-releasing hormone (TRH) receptor-2 in 

rats.8 THR is found in the central and peripheral nervous system and may be involved in pain 

control. They also revised the structure for myrtucommulone D 1.11 that had been mistakenly 

assigned as its epimer at the hemiketal carbon by Shaheen and coworkers.  

Figure 1. 5. Myrtucommulones F and H. 

 

Quinn and coworkers also isolated corymbone A 1.16 and B 1.17, and 1.18 in 2008 from the 

flowers of the australian tree Corymbia peltata (Figure 1.6).9  

Figure 1. 6. Corymbones A and B and Related Compounds. 

 
 

Both corymbones A 1.16 and B 1.17 also showed binding affinity for the TRH receptor in rats 

(IC50 23 "M and 19 "M respectively). In their work, Quinn and coworkers found that the strong 

hydrogen-bond network existing within the compounds structure was affecting their behavior on 

O

O

OH

OH

O (CH2)4CH3

OH HO

O

OHO

1.14 myrtucommulone F

O

O

OH

OH

O (CH2)4CH3

OH HO

O

OHO

1.15 myrtucommulone H

O

O

OH

OH

(CH2)2Ph

O

OH HO
O

O

OH

OH

(CH2)2Ph

O

OH HO

Ph
O

O

OH

O

O

OH HO Ph

1.16 corymbone B

1.17 corymbone A

1.18



 
 
 

6 

 

TLC plate by rendering them less polar than expected. They also proposed that due to this strong 

hydrogen-bond network, the compounds may exist in several stable or semi-stable conformations. 

They also ventured that in nature different conformational compositions may exist for the same 

compounds which may explain why the optical activities recorded by Shaheen and coworkers for 

myrtcucommulone A 1.10 greatly differ from their measurement. These observations 

corroborated Appendino observations about semi-myrtucommulone 1.8 which was proposed to 

exist as an atropisomeric mixture.  

Finally, kunzeanones A 1.19 and B 1.20 were isolated from the acetone extract of the plant 

Kunzea ambigua which grows in New Zealand, and has been used in folk medicine for the 

treatment of diarrhea, cold, and inflammation (Figure 1.7).10 Kunzeanones A 1.19 and B 1.20 

have also been reported to possess a strong hydrogen bond network within their structures. They 

have been reported to co-crystallize by forming a single unit cell due to a very strong 

intermolecular hydrogen-bond network existing between the two isomers. This case of co-

crystallization is particularly interesting as it is the first case of such behavior observed to date 

(Figure 1.7, Xray). 

Figure 1. 7. Kunzeanones A and B. 
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Isolation studies were insightful as they provided us with some information about the possible 

atropisomeric character of non-cyclized, tetramethyldihydroxanthene family members. The 

structural diversity around the aromatic core also provided a better understanding of the 

challenges that may arise during our synthetic studies of rhodomyrtone A 1.1 and related natural 

products. 

 

1.1.2 Structure Elucidation 
 

The strong biological activity of the rhodomyrtones, rhodomyrtosones, and tomentosones as 

well as their challenging structural features led us to focus our studies on this set of compounds.  

1.1.2.a Rhodomyrtone A 1.1, Rhodomyrtosone B 1.2, and Rhodomyrtosone C 1.4 
 

We turned our attention to rhodomyrtone A 1.1 and rhodomyrtosone B 1.2, which are isomers. 

The structure determination of rhodomyrtone A 1.1 was conducted by Sargent and coworkers by 

analyzing mass spectrometry data.1 High-resolution mass spectrometry data for 1.1 displayed a 

peak  (m/z 443.2434), which is consistent with the molecular formula C26H34O6. 13C NMR data 

(Table 1.1) supported the molecular formula and DEPT NMR spectroscopy indicated the 

presence of eight methyl, two methylene, four methane, and 12 fully-substituted carbons.   

Table 1. 1. 1H NMR and 13C NMR Data for 1.1. 

 
 

C# 13C NMR (ppm) 1H NMR (ppm, mult, J Hz) 
1 198.56  
2 56.05  
3 212.16  
4 47.23  
4a 167.65  
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4b 155.63  
5 94.74 6.19 (s) 
6 158.70  
7 107.63  
8 162.84  
8a 106.30  
9 25.19 4.3 (t, 5.5, 5.5) 
9a 114.26  
10 24.21 1.39 (s) 
11 24.58 1.42 (s) 
12 24.72 1.44 (s) 
13 24.72 1.56 (s) 
1' 206.75  
2' 53.18 2.97 (dd, 6.8, 15.5); 

3.03(dd, 6.8, 15.5) 
3' 25.15 2.28 (m) 
4' 22.74 0.98 (d, 6.3) 
5' 22.81 0.98 (d, 6.3) 
1'' 45.82 1.48 (m) 
2" 25.10  
3" 22.53 0.84 (d, 5.9) 
4" 23.16 0.87 (d, 5.9) 

6-OH  8.08 (s) 
8-OH  13.39 (s) 

 
IR data allowed three of the quaternary carbons to be assigned as keto-groups. D2O exchange 

experiments identified two hydroxyl groups. The remaining oxygen was therefore attributed to an 

ether linkage.  DQF-COSY, HMQC, and HMBC data revealed the presence of an aromatic ring 

and the presence of an attached isovaleryl group. An additional isobutyl was identified to be 

consistent with the base peak of the mass-spectroscopy data. Two structures were initially 

proposed for rhodomyrtone A 1.1 which only differed in the position of the isovaleryl substituent. 

HMBC data distinguished between the two regioisomeric structures. A three–bond coupling with 

H-9 allowed the assignment of carbon C-10a, which showed a two-bond coupling with H-5, 

subsequently allowing the correct position of the isovaleryl substituent to be assigned to C-7.  

This assignment was confirmed by single crystal X-ray data (Figure 1.8). 
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Figure 1. 8. Xray of Rhodomyrtone A. 

 
The structure determination of rhodomyrtosone B 1.2, which is the regioisomer of 

rhodomyrtone A 1.1 and only differs by the position of the isovaleryl group, started with the 

analysis of the mass spectrometry data.2 High-resolution mass spectrometry data displayed a peak 

(m/z 442.2352) consistent with a molecular formula of C26H34O6 with ten degrees of unsaturation. 

The 1H NMR data (Table 1.2) supported the presence of a chelated hydroxyl group, a free 

hydroxyl group, an aromatic proton an isopentyl group, an isovaleryl group, and four singlet 

methyl groups corresponding to a $-triketone moiety.  These data supported the hypothesis that 

1.2 was a structural isomer of rhodomyrtone A 1.1. Slight differences in chemical shifts were 

observed for the chelated hydroxyl group at C-6 and for the non-equivalent methylene protons at 

C-2’ of the isovaleryl group substituent, consequently the isovaleryl group was placed at C-5 

rather than at C-7.  HMBC data confirmed this initial assignment with H-7 having a two bond 

coupling with C-6 and C-8 and three-bond coupling with C-8a (Table 1.2). 

Table 1. 2. 1H NMR, 13C NMR Data for 1.2. 

 

C# 13C NMR (ppm, mult) 1H NMR (ppm, mult, J Hz) 
1 197.6 s  
2 56.1 s  

O

OHO

O OH

O

12
3 4 4a 4b

9
9a

10

11

1312

3"

2"
1"

4"

1'
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4'
3'

5'

8a 8

6
5

7

1.2



 
 
 

10 

 

3 211.7 s  
4 47.2 s  
4a 166.9 s  
4b 153.3 s  
5 105.9 s  
6 159.0 s  
7 100.3 d 6.23 (s) 
8 159.0 s  
8a 105.9 s  
9 25.1 d 4.25 (t, 6.0, 6.0) 
9a 114.5 s  
10 24.3 q 1.39 (s) 
11 24.4 q 1.42 (s) 
12 24.8 q 1.63 (s) 
13 25.4 q 1.47 (s) 
1' 204.0 s  

2' 53.6 t 3.18 (dd, 17.0, 6.5);2.96 (dd, 
17.0, 6.5) 

3' 24.5 d 2.37 (m, 6.5) 
4' 22.9 q 1.04 (d, 6.5) 
5' 22.6 q 1.01 (d, 6.5) 
1'' 46.9 t 1.38  
2" 24.9 d 1.38  
3" 23.4 q 0.89 (d, 6.5) 
4" 23.1 q 0.87 (d, 6.5) 
6-

OH  13.43 (s) 

8-
OH  6.40 (br s) 

 
1.1.2.b Rhodomyrtosone A 1.5, Tomentosone A 1.6, and Tomentosone B 1.7 

The structure elucidation for rhodomyrtosone A 1.5 was based on initial analysis of mass 

spectrometry data.2 High-resolution mass spectrometry data displayed a molecular ion peak at 

m/z 456.2133, consistent with a molecular formula of C26H32O7 with 11 degrees of unsaturation. 

IR spectrometry data indicated the presence of a hydroxyl group, a non-conjugated carbonyl and 

a conjugated carbonyl groups. 13C NMR and DEPT spectroscopy data (Table 1.3) suggested the 

presence of three carbonyls, ten fully substituted, four methine, one methylene, and eight methyl 
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carbons. HMBC data showed correlations for both H-12 and H-13 with carbonyl carbon C-3 

vinylic carbon C-4a, whereas both H-10 and H-11 showed correlations to carbonyl carbons C-1 

and C-3. This suggested the presence of a $ -triketone moiety. The 13C NMR data displayed a low 

field chemical shift of C-4a suggesting that the $ triketone moiety was connected to the oxygen of 

a furan ring. The 1H NMR signals of the two hydroxyl groups, one aromatic proton, and an 

isovaleryl group were proposed to be derived from a di-C-substituted phloroglucinol moiety. The 

1H NMR data also display a methine proton and an isopropyl group. HMBC data indicated a 

fused-ring bearing the isopropyl group. Protons at 6-OH and 8-OH displayed three-bond coupling 

to the aromatic methine carbon C-7 and from 6-OH to C-5 indicating that the aromatic proton was 

located in between two hydroxyl groups (C-7). Consequently the isovaleryl group was then 

placed at C-5. NOESY data indicated correlations of methine proton H-9 to the isopropyl, which 

allowed the assignment of a cis relative stereochemistry for the bis-furan fused ring system. 

Table 1. 3. 1H NMR, 13C NMR and HMBC NMR Data for 1.5. 
 

 

C# 13C NMR (mult, ppm) 1H NMR (mult, ppm, J Hz) HMBC (H!C) 
1 198.3 s   
2 55.1 s   
3 211.1 s   
4 45.6 s   
4a 179.7 s   
4b 159.8 s   
5 101.7 s   
6 166.7 s   
7 99.6 d 6.11 (s) C-5, C-6, C-8, 

C-8a 
8 159.6 s   
8a 104.2 s   

O
O

O

O

H

OH

O12
3

4
4a

4b
9

9a

10 11

13

12

3"
2"

1"

4"

1'
2' 4'

3'

5'

8a

6

5

7

1.5

8HO
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9 45.0 d 4.50 (s) 
C-4a, C-4b, C-
8, C-8a, C-9a, 

C-2" 
9a 113.2 s   
10 24.4 q 1.52 (s) C-1, C-2, C-3, 

C-11 

11 24.1 q 1.42 (s) C-1, C-2, C-3, 
C-10 

12 23.1 q 1.34 (s) C-3, C-4, C-4a, 
C-13 

13 25.9 q 1.41 (s) C-3, C-4, C-4a, 
C-12 

1# 203.7 s   
2# 51.5 t 2.96 (dd, 14.7, 6.6), 2.76 

(dd, 14.7, 6.6) 
C-1#, C-3#, C-4#, 

C-5# 
3# 25.8 d 2.17 (m, 6.6) C-2#, C-4#, C-5# 
4# 22.8 q 1.01 (d, 6.6) C-2#, C-3#, C-5# 
5# 22.7 q 0.99 (d, 6.6) C-2#, C-3#, C-4# 
1" 129.4 s   

2" 35.4 d 2.40 (hept, 6.9) C-1", C-3", C-
4" 

3" 15.7 q 1.11 (d, 6.9) C-1", C-2", C-
4" 

4" 15.6 q 1.09 (d, 6.9) C-1", C-2", C-
3" 

6-OH  13.27 (s) C-5, C-6, C-7 
8-OH  9.78 (s) C-7, C-8 

 
The structure elucidation for tomentosone A 1.6 began with an analysis of the mass 

spectrometry data.3 High-resolution mass spectrometry data displayed a molecular ion peak at 

m/z 688.3610 corresponding to the molecular formula of C41H52O9. UV spectroscopy data were 

consistent with the IR spectrometry data indicating the presence of a hydroxyl, conjugated 

carbonyl and non-conjugated carbonyl groups. 1H NMR data suggested the presence of eight 

tertiary methyl groups, six secondary methyl groups, two methylene groups, five methine protons 

and one hydrogen-bonded hydroxyl proton (Table 1.4). COSY data showed correlations that 

helped to assign the isopropyl, isobutyl, and isopentyl moieties. 13C NMR and DEPT data 

indicated the presence of five carbonyl carbons, ten sp2 hybridized fully substituted carbons, four 
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sp-3 hybridized quaternary carbons, five methine carbons, two methylene carbons, and 14 methyl 

carbons. HMBC data displayed correlations for the eight methyl singlets, which corresponded to 

the presence of two 1,1,3,3-tetramethyl $-triketone moieties. Additional HMBC data showed 

correlations from H-7! to C-6, C-8, C-1!, and C-5! indicating that the isopentyl group was 

attached to one of these $-triketones. The presence of a phloroglucinol moiety was deduced from 

correlations between H-7! and C-6, C-8, from H-9 to C-4a, C-8 and C-8a# and from 6-OH to C-5, 

C-6 and C-7. HMBC correlations from the methine proton H-9 to C-4a, C-9a and C-2" as well as 

that of the methyl protons of the isopropyl group to C-1" (%C 128.8) indicated that the second $-

triketone was attached to the phloroglucinol moiety via a bis-furan fused-ring bearing the 

isopropyl group as for rhodomyrtosone A 1.5.  An isovaleryl group was indicated to be present in 

the molecule due HMBC correlations from the isobutyl protons H-2# and H-3# to the only 

remaining unassigned carbonyl carbon C-1#.   

Table 1. 4. 1H NMR, 13C NMR Data for 1.6. 

 

C # 13C NMR (mult, ppm) 1H NMR (mult, ppm, J Hz) 
1 192.0 s  
2 56.1 s  
3 212.1 s  
4 45.5 s  
4a 176.0 s  
4b 158.4 s  
5 104.0 s  
6 162.5 s  
7 108.7 s  

O
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8 152.2 s  
8a 104.9 s  
9 45.9"d 4.74"(s) 
9a 113.0 s  
10 23.8"q 1.43"(s) 
11 25.8"q 1.24"(s) 
12 24.5"q 1.47"(s) 
13 23.8"q 1.36"(s) 
1# 204.6 s  
2# 51.9"t 2.99"(dd, 15.0,"6.9) 

  2.89"(d, 15.0,"6.9) 
3# 25.6"d 2.23"(m,"6.9) 
4# 22.8 q 1.03"(d,"6.9) 
5# 22.7"q 1.01"(d,"6.9) 
1" 128.8 s  
2" 34.9"d 2.37"(hept,"6.9) 
3" 15.8"q 1.11"(d,"6.9) 
4" 15.8"q 1.09"(d,"6.9) 
1! 197.5 s  
2! 56.3 s  
3! 212.5 s  
4! 47.6 s  
5! 167.7 s  
6! 113.9 s  
7! 25.3"d 4.28"(t, 5.4, 5.4) 
8! 45.4"t 1.40  
9! 25.1"d 1.40" 

10! 23.2"q 0.83"(d,"6.6) 
11! 23.6"q 0.75"(d,"6.6) 
12! 22.0"q 1.36"(s) 
13! 24.7"q 1.42"(s) 
14! 25.3"q 1.67"(s) 
15! 23.2"q 1.74  (s) 

6-OH  13.62"(s) 
 

1H NMR resonance were further analyzed and showed a downfield phenolic proton 6-OH, 

which was suggested to be due to a strong intramolecular hydrogen bond, consequently the 

isovaleryl group was assigned to the carbon ortho to it at C-5. An additional ring between C-8 
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and C-5! via an oxygen bridge was assigned to fulfill the double bond equivalence defined by the 

molecular formula assigned to 1.6 (Table 1.4). 

The structure elucidation for tomentosone B 1.7 started by analyzing the mass spectrometry 

data.3 High-resolution mass spectrometry data displayed a molecular ion peak at m/z 688.3610 

corresponding to the molecular formula of C41H52O9. Other spectroscopic data (UV, IR, MS, 1H 

NMR and 13C NMR) were very similar to those of 1.6. The methyl proton signals H-3-14!/H-3-

15!and nonequivalent methylene protons H-2-2#, in the 1H NMR spectrum were the only 

differences observed. HMBC data were also similar for 1.6 and 1.7 suggesting that 1.7 was a 

diastereomer of 1.6 (Table 1.5).  

Table 1. 5. 1H NMR, 13C NMR for 1.7. 

 

C # 13C NMR (mult, ppm) 1H NMR (mult, ppm, J Hz) 
1 192.1 s  
2 55.7 s  
3 212.0 s  
4 45.4 s  
4a 176.9 s  
4b 158.7 s  
5 103.9 s  
6 162.8 s  
7 107.9 s  
8 152.1 s  
8a 103.8 s  
9 46.3 d 4.81 (s) 
9a 113.2 s  
10 24.8 q 1.36 (s) 

O
O

O

O
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OH

O

O

O
O
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10 11
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11 24.1 q 1.24 (s) 
12 24.2 q 1.49 (s) 
13 24.0 q 1.41 (s) 
1# 204.7 s  
2# 52.0 t 3.12 (dd, 14.7, 6.6) 
  2.73 (dd, 14.7, 6.6) 

3# 26.0 d 2.18 (m, 6.6) 
4# 22.5 q 0.99 (d, 6.6) 
5# 22.9 q 1.03 (d, 6.6) 
1" 128.9 s  
2" 34.9 d 2.35 (hept, 6.9) 
3" 15.7 q 1.11 (d, 6.9) 
4" 15.8 q 1.08 (d, 6.9) 
   

1! 198.3 s  
2! 198.3 s  
3! 55.3 s  
4! 212.6 s  
5! 47.9 s  
6! 165.9 s  
7! 113.6 s  
8! 25.4 d 4.32 (dd, 5.7, 4.2) 
9! 45.3 t 1.51(m) 

10! 25.1 d 1.40 
11! 23.3 q 0.85 (d, 6.3) 
12! 23.4 q 0.69 (d, 6.3) 
13! 24.3 q 1.37 (s) 
14! 198.3 s  
15! 55.3 s  

6-OH 212.6 s  
 

To identify the relative stereochemistry at the three stereogenic centers present in 1.6 and 1.7, 

ROESY experiments were performed. Correlations between H-9 and H-2” were observed for 

both 1.6 and 1.7 suggesting that the bis-furan junction was of cis configuration which was similar 

to what had previously been observed for rhodomyrtosone A 1.5. Consequently, 1.6 and 1.7 were 

assigned to be epimeric at C-7’”.  ROESY data showed a correlation from H-9 to methyl proton 
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in C-15’” and C-13” indicating that both methyl groups were located on the top face of the $-

triketone. The proton of C-13’” showed a correlation with H-7’” indicating that the the isopropyl       

group was located on the opposite face of H-9 or the $-face of the molecule in 1.6. This 

assignment was confirmed by additional ROESY correlations. Therefore tomentosone A 1.6 

relative stereochemistry was assigned as 1” S*, 9R*, 7”’S* and tomentosone B 1.7 was assigned 

as 1” S*, 9R*, 7”’R*. 

 

1.2 Biosynthesis of Select Tetramethyldihydroxanthenes 

We were interested in developing a biomimetic synthesis for this class of natural products, so 

we turned our attention to the two proposed biosynthetic pathways discussed in the literature. 

 

1.2.1 1,4 Conjugate Addition 
 
Scheme 1. 1. Bloor’s Isolation Studies and Biosynthetic Proposal. 

 

In 1992, Bloor isolated phloroglucinol-derived natural products from the Kunzea ericoides 

plant.11 Leptospermone 1.21, robustaol 1.22, 1.23 and two adducts 1.3 and 1.24 were co-isolated. 

Bloor proposed that both adducts 1.3 and 1.23 may result from an enzymatic condensation of 

robustaol and leptospermone (Scheme 1.1). In their work during the isolation of the bullataketals, 

Perry and coworkers also proposed an aldol reaction/reduction sequence between acylated 
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phloroglucinol 1.25 and compound 1.26 parent to leptospermone 1.21 to account for this 

condensation.12  Perry and coworkers proposed that acyl phloroglucinol 1.28 may be derived from 

isobutyryl-CoA 1.26 by a polyketide synthase (PKS) leading to 1.27 followed by addition of 

three malonyl-CoA units 1.27 similarly to the biosynthesis proposed by Eisenreich and coworkers 

for hyperforin. Then methylation of 1.28 with S-adenosyl methionine (SAM) may lead to the 

formation of 1.29. They proposed an aldol reaction/reduction sequence to explain the formation 

of 1.30, a parent compound of 1.3 and 1.24, which upon cyclization and dehydration may lead to 

myrtucommulone B 1.9 and other tetramethyldihydroxanthenes (Scheme 1.2).  

Scheme 1. 2. Perry’s Proposed Biosynthesis of the Tetramethyldihydroxanthenes. 

 
Bloor has shown that the cyclization, dehydration sequence was prompted to occur under acidic 

conditions. This biosynthetic pathway is relevant for rhodomyrtone A 1.1 and rhodomyrtosone B 

1.2 as they have been co-isolated with lepstopermone 1.21 and intermediate 1.3. 

Crow and coworkers proposed a different pathway for the biosynthesis of this class of natural 

products, which did not involve condensation with lepstospermone 1.21. During their synthetic 

studies toward the G inhibitors 1.34-36, they found that the G inhibitors could stem from a 
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monoalkylidene derivative 1.33, which could result from the Knoevenagel condensation of  

syncarpic acid 1.31 and isobutyraldehyde 1.32.13 

Scheme 1. 3. Crow’s G Inhibitors Proposed Biosynthesis and Synthesis. 

 

In their work, they showed that the monalkylidene 1.31 was prompt to react with dioxygen 

without any enzymatic catalysis to form the G inhibitors endoperoxides 1.34-36 (Scheme 1.3).  

Scheme 1. 4. Crow’s Studies of Monoalkylidene 1.33. 
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They were also able to show that the monoalkylidene 1.33 can readily undergo, 1,4 conjugate 

addition with another unit of syncarpic acid 1.31 or a pyrrolidine 1.40 to form dimer 1.39 

(Scheme 1.3) or adduct 1.41 (Scheme 1.4).   

In his review about the bioactive phloroglucinols derived from the eucalyptus genus, 

Ghisalberti proposed the same reaction sequence for the biosynthesis of the G inhibitors.14 

Interestingly rhodomyrtone A and rhodomyrtosone were co-isolated with both dimer 1.39 and 

syncarpic acid 1.31. One could argue that instead of being produced by an aldol 

reaction/reduction sequence, 1.3 may actually result from a three step sequence which first 

involves the reduction and dehydration of lepstospermone 1.21 to form a monoalkylidene 1.42 

followed by a 1,4 conjugate addition with 1.43 to from 1.3. Following this 1,4 conjugate addition, 

1.3 may undergo a cyclization/dehydration sequence to form 1.1 or 1.2 (Scheme 1.5). 

Scheme 1. 5. Proposed Biosynthesis for Rhodomrytone A 1.1 and Rhodomyrtosone B 1.2. 

 

The biosynthesis of the rhodomyrtosone A 1.5, which has also been co-isolated with 1.39, 
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that the ketal core of rhodomyrtosone A 1.5 may be derived from an oxidation of the isobutyl 

chain of intermediate 1.3 to form 1.44, followed by ketal formation.2  

It is interesting to note that the condensation of leptsospermone 1.21 with acylphloroglucinol 

1.43 and then oxidation and ketal formation was proposed in this order. Again according to the 

work of Ghisalberti, Crow, and coworkers, as for the biosynthesis of 1.1 and 1.2 we can question 

this sequential order. Another possible order for reactions may involve the formation of 

monalkylidene 1.42 followed by a rapid oxidation to form endoperoxide 1.45.  This endoperoxide 

intermediate may undergo a dehydration and 1,4 addition with acyl-phloroglucinol 1.43 to form 

intermediate 1.46 which upon ketal formation may lead to 1.5 (Scheme 1.6). 

Scheme 1. 6. Proposed Biosyntheses for Rhodomyrtosone A 1.5. 

 
Biosyntheses of tomentosones 1.6 and 1.7 may follow a similar pathway. After formation of 

1.1, a second condensation with leptospermone 1.21 may occur to form 1.47. Next,cyclization 

and dehydration could occur leading to dimer 1.4 which was co-isolated with 1.1 and 1.5 or upon 

oxidation, 1.48 may form allowing for ketal formation to occur to yield tomentosones A 1.6 and 

B 1.7.   
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Scheme 1. 7. Proposed Biosyntheses for Tomentosones A 1.6 and B 1.7. 
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As mentioned previously, the oxidation occurred before the condensation event and that the 

tomentosones A 1.6 and B 1.7 may be the results of the 1,4 addition of 1.1 with the endoperoxide 

1.45 followed by ketal formation (Scheme 1.7). Both the aldol condensation followed by a 

reduction and 1,4-conjugate addition biosynthetic pathways were supported by the studies and 

observations of co-isolated compounds as well as the studies reported by of Crow, Bloor, Perry, 

and Ghisalberti. The 1,4-conjugate addition pathway constituted an appealing biomimetic 

synthetic strategy as it involved known reaction processes and a limited number of easily 

accessible intermediates. 

 

1.2.1 Quinone Methide Pathways 
 
 

Another biosynthetic pathway invoking [4+2] cycloaddition has also been proposed for 

compounds related to the fully cyclized tetramethyldihydroxanthene family members including 

rhodomyrtone A 1.1 and rhodomyrtosone B 1.2. In his review, Ghisalberti studied the biogenetic 

origins of several polyhydroxylated xanthenes derived from monoterpenes or formylated, and 

acylated phloroglucinols. In these studies, it was proposed that euglobals 1.54 and 1.55 could 

stem from the reaction of phloroglucinol derivative 1.50 and the monoterpene !-phellandrene 

1.53.14 Phloroglucinol derivative 1.50 may undergo a reduction to 1.51 followed by elimination of 

the hydroxyl group to form ortho-quinone methide 1.52. Next, [4+2] cycloaddition may occur 

between 1.52 and the more substituted alkene functionality of !-phellandrene 1.53 to yield 

euglobals 1.54 and 1.55. The two diastereomers resulted from the cis or trans conformation of the 

ortho-quinone methide 1.52 alkene chain (Scheme 1.8).  

This biosynthetic proposal was supported by Singh and coworkers in their synthetic work to 

access S-euglobals15 and robustadials.16 
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Scheme 1. 8. Ghisalberti Biosynthesis Proposal for Euglobals 1.54 and 1.55. 

 
In their studies, they accessed robustadials and S-euglobals using a three component reaction 

involving phloroglucinol derivatives 1.56-58, aldehydes 1.59-60, 2-carene 1.61, myrtenol 1.62, 

and $-pinene 1.63. They proposed a mechanism involved a Knoevenagel-like condensation of 

phloroglucinols 1.56-58 with aldehydes 1.59-60 to form ortho-quinone methide intermediates 

(non-isolated) followed by a [4+2] cycloaddition to obtain S-euglobals 1.64-71, and robustadials 

A 1.72 and B 1.73 all in 65-70 % (Scheme 1.9).  

This proposal for the formation of this ring structure seemed relevant for rhodomyrtone A 1.1 

and rhodomyrtosone B 1.2 which may be derived from the [4+2] cycloaddition of the syncarpic 

acid 1.31 enol functionality with an isovaleryl-phloroglucinol 1.43 and isovaleraldehyde 1.60-

derived ortho-quinone methide 1.74 or 1.76 to form intermediate 1.75 and 1.77. Upon 

dehydration, these may form 1.1 and 1.2 (Scheme 1.10). 
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Scheme 1. 9. Singh Biomimetic Synthesis of Robustadials and S-Euglobals.  
 

 
Scheme 1. 10. Proposed Biosyntheses for 1.1 and 1.2 Involving an ortho-Quinone Methide 
Intermediate. 
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1.3 Previous Synthetic Work 

Several groups have contributed to the advancement of the tetramethyldihydroxanthene 

synthesis field. The syntheses of myrtucommulones A, C, F and analogues, rhodomyrtone A and 

several endoperoxide- containing compounds are described in the section below. 

 

1.3.2 Myrtucommulones 
 

Jauch and coworkers published their syntheses of myrtucummulones A, C, F and analogues 

in 2010.17 Their synthetic strategy was biomimetic and involved two successive 1,4-addition 

conjugate additions with acylphloroglucinol 1.28 and monoalkylidene 1.36. This process was 

enabled by addition of two equivalents of sodium hydride. The transformation provided 

compound 1.10 in quantitative yield (Scheme 1.11).  

Scheme 1. 11. Jauch’s Synthesis of Myrtucommulones A 1.10 and F 1.14. 
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The characterization of 1.10 proved to be difficult and therefore an acid-mediated cyclization was 

undertaken which provided a mixture of racemic 1.78 and meso 1.78. The cyclization of the para-

phenol of 1.10 was never observed under these conditions. The double 1,4-conjugate addition of 

acylated phloroglucinol 1.79 with two units of 1.36 provided myrtucommulone F 1.14 in 

quantitative yield (Scheme 1.11). The methodology was also applied to the synthesis of 

myrtucommulone C 1.13.  Base-mediated 1,4 conjugate addition was conducted with 1.28 and 

1.36 which was followed by an acid-mediated ortho-cyclization to provide 1.9, which was 

resubmitted to base-mediated 1,4-conjugate addition conditions to provide compound 1.13 in 

quantitative yield (Scheme 1.12). Analogues 1.80, 1.81 and 1.82 were also obtained using the 

same base-mediated 1,4-conjugate addition although with lower yields observed for 1.82 

(Scheme 1.12). 

Scheme 1. 12. Jauch’s Synthesis of Myrtucommulone C 1.13 and Analogues. 

 

O

O O

O

OH

OH

HO O

O

1.13

O

O O

OH

OH

O1.9

O

O O HO

OH O

OH

1) NaH (2 equiv)
    THF, rt, quant.

2)p-TsOH
PhH, reflux 95%

1.36
NaH (2 equiv)

THF, rt, quant.

1.36 1.28

O OH

OH

O R

OH HO

OHO
O

O

OH

OH

O

OH HO

1.80 R=CH(Me)2
1.81 R= Me

1.82

Analogues



 
 
 

28 

 

Although this synthetic methodology offered access to several analogues of myrtucommulone 

A, it remains limited and may be difficult to apply to acyl phloroglucinols bearing enolizable 

ketones. 

Shortly after, the Jauch group proposed an enantioselective synthesis of myrtucommulone A 

1.10. Using a stoichiometric amount of the base (S,S)-1.84, they performed an enantioselective 

1,4 addition of 1.36 with 1.28, this first addition was followed by a second 1,4 conjugate of 

intermediate 1.83 with a second unit of 1.36 using the chiral base (R,R)-1.84 to obtain (+)-

myrtucommulone A 1.10 in 70 % ee (Scheme 1.13).18  

Scheme 1. 13. Enantioselective Synthesis of Myrtucommulone A. 
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chain on the aromatic ring as it may generate two competing nucleophiles in the system. 

Therefore, the study of an alternative catalytic system, allowing for sub-stoichiometric loading 

and tolerating a broad range of acyl groups, remained of interest. 

1.3.3 Rhodomyrtone A 

 

The exact same strategy was used in 2013 by Maier and coworkers during their studies 

toward the synthesis of rhodomyrtone A 1.1 and rhodomyrtosone B 1.2. 19 Using monoalkylidene 

1.42 and isovaleryl-phloroglucinol 1.43 in the presence of sodium hydride they were able to 

obtain compound 1.3 in 43 % yield.  

Scheme 1. 14. Maier’s Synthesis of Rhodomyrtone A 1.1. 
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The enolizable nature of the isovaleryl carbonyl group may contribute to the low yield 

obtained.  With 1.3 in hand they undertook a p-TsOH catalyzed cyclization that only yielded the 

ortho-cyclization thus, providing rhodomyrtosone B 1.2 in 69 % yield. By using an excess of p-

TsOH they enabled a deacylation process to occur providing 1.85 in 60 % yield. Their attempt to 

perform an acylation of the rhodomyrtone core 1.85 was met with limited success and provided 

rhodomyrtone A 1.1 in a 6:1 ratio with rhodomyrtosone B 1.2 and 40 % isolated yield. Traces of 

diacylated compound 1.86 were also observed in this process.  Rhodomyrtone A 1.1 was obtained 

in a three-step sequence and 10 % overall yield from 1.42 and 1.43 (Scheme 1.14). 

Although this work showcases a biomimetic synthesis of rhodomyrtone A 1.1, the non-

catalytic and low yielding processes used are non-desirable for large scale processes. Later in 

thesis we will describe our efforts towards the development of catalytic processes and initial 

studies towards enantioselective reaction development. 

 

1.3.4 Endoperoxide-Containing Compounds 
 

Crow and coworkers are responsible for the early work in the synthesis of G-inhibitors. They 

were able to synthesize three G inhibitors using a biomimetic sequence (see 1.2.1). Andre-Barres 

and coworkers developed their methodology based on Crow’s early discoveries in order to 

investigate G-inhibitors and analogues with anti-malarial activity. Using syncarpic acid 1.31 and 

aldehydes 1.87 in the presence of piperidine 1.88, they obtained Mannich bases 1.89 in 

quantitative yield. Elimination of the piperidine 1.88 in the presence of hydrochloric acid induced 

the formation of monoalkylidenes 1.90. Monoalkylidenes 1.90 are believed to equilibrate with 

dienol intermediates 1.90a allowing for oxygen uptake during a [4+2] cycloaddition event in 

benzene at room temperature. Endoperoxides 1.36 and 1.91a,b and 1.92a,b were formed in 60-

80 % yield.  
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Scheme 1. 15. Andre-Barres’Synthesis of G-inhibitors and Analogues. 
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Interestingly, when monoalkylidene 1.90 was exposed to irradiation at 300 nm, the rate of 

formation for endoperoxides 1.92a and 1.92b was doubled. Photo-excitation may be increasing 

the rate of formation of dienol intermediate formation (Scheme 1.15).20 G-inhibitor G3 1.36 was 

found to be one of the more promising compounds for anti-malarial properties. Alkylated 

analogues 1.93-1.94 were prepared using methyl iodide, ethyl iodide, and propyl iodide in the 

presence of potassium carbonate in dimethylformamide with good to moderate yields. Benzylated 

analogue 1.95 was obtained in 33 % yield by using benzyl bromide. In the case of endoperoxides 

1.92a and b, harsher conditions were required for the methylation. Analogue 1.96 was obtained in 

72 % yield using butyl-lithium and methyl triflate in THF. Only the major trans diastereomer of 

analogue 1.96 was readily deprotected to the corresponding alcohol, which was activated using 

lutidine and chloromethylsulfonyl chloride. This activated alcohol was then substituted with 

several secondary amines to form analogues 1.97-1.100 in moderate to good yields (Scheme 

1.15). Unfortunately, methylated inhibitor G3 1.36 remained the best lead compound for anti-

malarial activities. 

In an effort to find other potentially anti-malarial ananlogues, Andre-Barres and coworkers 

synthesized !-spiro endoperoxides.21 Using syncarpic acid 1.31, piperidine 1.88 and diverse $-di-

substituted aldehydes 1.101-1.104 in ethanol, they were able to obtain Mannich bases 1.105-1.108, 

which were reacted with oxygen to produce endoperoxides (not shown) in 13 %, 85 %, 87 % and 

21 % respectively. Methylation of these endoperoxide intermediates provided methylated !-spiro 

endoperoxides 1.109-1.112 in 47 %, 79 %, 59 % and 73 % respectively (Scheme 1.16).  
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Scheme 1. 16. Synthesis of !-spiro Endoperoxide Analogues. 
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overview of endoperoxides chemistry and describe our synthetic work toward rhodomyrtosone A 

1.5 and tomentosones A 1.6 and B 1.7. Finally, in Chapter 3 we described our work toward the 

bullataketals A and B and previous related literature examples. 
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Chapter 2 
 

Syntheses of Rhodomyrtone A, Rhodomyrtosone B, and Analogues 
 
 
2.1 Rhodomyrtone A: Introduction 

Rhodomyrtone A 2.1 and its isomer rhodomyrtosone B 2.2 are derived from the plant 

Rhodomyrtus Tomentosa found in Thailand (Figure 2.1).1,2 Rhodomyrtone A 2.1 and 

rhodomyrtosone B 2.2 present an interesting synthetic challenge due to the highly oxygenated 

triketone moiety and the ether linkage to an acylated phloroglucinol, which is present in both 

isomers. In rhodomyrtone A 2.1 this linkage is para to the acyl group, while in rhodomyrtosone B 

2.2 it is ortho to the acyl group. Designing a process leading to the selective formation of either 

2.1 or 2.2 is of high interest and has not been previously achieved. Additionaly, rhodomyrtone A 

2.1 posesses excellent biological activities which are making it a very relevant synthetic target. 

The synthesis of 2.1 and 2.2 and related studies are described in this chapter.  

Figure 2. 1. Rhodomyrtone A 2.1 and Rhodomyrtosone B 2.2. 
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antibiotic classes rendering their treatments more and more challenging.  Even more alarmingly, 

resistance is emerging for novel antibiotics such as linezolid, quinupristindalfopristin, daptomycin, 

telavancin, and ceftobiprole, compounds currently used or still under studies in advanced clinical 

trials.22 Therefore, the need for identifying and synthesizing new antibacterial agents is growing. 

Meeting this need will allow us to enrich the dangerously dwindling antibiotic inventory.  In 

addition to possessing a synthetically challenging structure, rhodomyrtone A 2.1 was found to be 

a very potent antibiotic against gram positive bacteria including Staphylococcus Aureus, 

methicillin-resistant Staphylococcus Aureus (MRSA), and several Streptococcus strains (MIC = 

0.39-0.78 µg/mL).23 Moreover, it was shown that treating bacterial cell lines with rhodomyrtone 

A 2.1 limited the emergence of resistance. Treatment of Staphylococcus Aureus and methicillin-

resistant Staphylococcus Aureus strains with incremental concentrations of rhodomyrtone 

followed by growth on rhodomyrtone-free medium led the MIC and MBC values of the 

compound to revert to the initial MIC and MBC values, which were observed during the first 

exposure to the compound.  This result is very promising, as many other agents have shown to 

develop resistance in similar studies. 24  Upon exposure to rhodomyrtone A 2.1, both the 

replication rate and membrane biosynthesis could be inhibited eventually leading to cell death. 

Initial biological studies have thus far implicated that rhodomyrtone A 2.1 may interfere with the 

WalK/WalR (YycG/YycF) two-component system, which is involved in membrane 

biosynthesis.25   Although the development of resistance in vivo remains unpredictable and can 

only be determined after clinical studies, rhodomytone A 2.1 seems to be a very strong candidate 

for development as an antibiotic agent. 
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2.1.2 Proposed Retrosynthesic Analysis 

In our retrosynthetic analysis, we envisioned that 2.1 and 2.2  could be generated from 

acyclic precursor 2.3 using selective dehydrative cyclizations (Figure 2. 2).  Intermediate 2.3  may 

arise from conjugate addition of acyl phloroglucinol 2.4 26 to monoalkylidene 2.5.  

Figure 2. 2. Retrosynthetic Analysis. 
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introduced the term.27 This term was meant to describe the role played by tetra-alkylammonium 

or phosphonium salts in reactions involving two substances located in two immiscible phases. 

The rates of such reactions in the presence of phase-transfer catalyst were shown to be 

tremendously increased, likely due to an increased solubility of the two reaction partners that can 

then react at the interface of the two immiscible solvents. Along with Starks, Makosza and 

Brändström contributed to the advancement of the field in the mid to late 1960s.28 Since its early 

development, the field has seen tremendous progresses leading to the development of new 

catalysts, an increasing scope of substrates, as well the development of asymmetric variants for 

many reaction classes. 29 In particular, phase–transfer catalysis has been employed with a wide 

array of substrates undergoing 1,4 conjugate addition. Initial studies from the Tocke group30 and 

Shishido group 31  focused on using methyl vinyl ketone and methyl acrylate as simple 

electrophiles. A particularly interesting example from the Shishido group was featured in the 

synthesis of (+)-triptoquinone A where methyl vinyl ketone 2.6 was reacted with intermediate 2.7 

in the presence of catalyst 2.8 and [18]-crown-6 to provide the fully cyclized compound 2.9, 

which eventually led to (+)-triptoquinone 2.11 (Scheme 2. 1). 

Scheme 2. 1. Shishido’s Synthesis of (+)-Triptoquinone A. 
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Other electrophiles, such as chalcones, were also studied extensively by Loupa,32 Maruoka 

(complex tetra-substituted phase transfer catalyst, Scheme 2. 2),33 and Corey (cinchona-alkaloid 

derived phase transfer catalyst, (Scheme 2. 3).34  

 

Scheme 2. 2. Maruoka’s Catalytic System for 1,4-Conjugate Addition of Malonates with 
Chalcones. 

 
 

Scheme 2. 3. Corey’s Catalytic System for the Michael Addition of Aromatic Ketone with 
Chalcones. 

 

More interestingly, our lab developed a very efficient dearomatization alkylation sequence 

mediated by a dimeric phase transfer catalyst to access hyperibone-K. This work is particularly 

relevant for our proposed synthesis because it also involves a phloroglucinol derived nucleohile. I 

Ph

O

Ph

CO2Et

CO2Et

2.14 3 mol %
K2CO3 10 mol %

toluene, -20 °C
99 %, 90 % ee (R)

Ph

O Ph
CO2Et

CO2Et

*

Ph

O

Ph

CN

CN

2.14 3 mol %
K2CO3 10 mol %

toluene, -50 °C
98 %, 81 % ee (R)

Ph

O Ph
CN

CN

*

N+

Ar Ar

OH

Ar Ar

OH

R

R

Br-

2.14 Ar = R = 3,5-Ph2C6H3

2.12 2.13 2.15

2.12 2.16 2.17

O

Ph

MeO Ph

O
2.20 10 mol%

toluene/50% aq. KOH

-10 °C, 36h
72%, 80% ee

O

MeO

2.18 2.19 2.21

H

Ph

OPh

N

N+

OH

H

Br-

2.20



 
 
 

40 

 

In her work Dr. Qi subjected the diprenylated acylphloroglucinol 2.22 and 2.23 to basic 

conditions in the presence of cinchonidine derived dimeric catalyst 2.24. She was able to obtain 

compound 2.25 in a 70 % yield and 90 % ee. Intermediate 2.25 was further reacted to afford 

hyperibone K (Scheme 2. 4).35  

Mechanistic studies have been shone some light on the operative mechanism in this process 

that likely involved successive dearomatizations of diprenylated acyl phloroglucinol 2.22, which 

reacted as an enolate equivalent during the alkylation event (Scheme 2. 4). 

 
Scheme 2. 4. Porco’s Phase Transfer Mediated Dearomative Alkylation. 

 
 

Encouraged by these results obtained in our lab, we decided to initiate preliminary studies 

involving the use of phase transfer catalyst for the 1,4 conjugate addition we envisioned in our 

retrosynthetic analysis. 
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2.2.2 Phase Transfer Catalysis: Initial Studies 

 
Our studies began by evaluating achiral phase transfer catalysts for 1,4 conjugate addition of 

2.5 with 2.4 (Scheme 2. 5). Phloroglucinols have shown the propensity to readily dearomatize 

under basic conditions thus becoming more nucleophilic and able to facilitate C-C bond 

formation.35, 36 The phase-transfer catalyst benzyl tri-methyl ammonium bromide was used in the 

presence of potassium hydroxide in toluene at low temperature.  

Scheme 2. 5. Phase Transfer-Mediated 1,4-Conjugate Addition and Cyclization Sequence. 

 
Due the to extreme complexity of the reaction mixture resulting from the conjugate addition 

reaction, we conducted the subsequent cyclization reaction on the crude mixture. Submitting the 

crude mixture to acidic conditions involving excess trifluoroacetic acid in dichloromethane at 

room temperature provided 34 % of rhodomyrtosone B 2.2 over two steps (Scheme 2. 5). Using 

basic conditions with sodium hydroxide in methanol, less than 20 % of rhodomyrtone A 2.1 was 

obtained, but this reaction was not easily reproduced. The conjugate addition catalyzed under 

basic conditions may be low yielding due to the presence of an enolizable ketone in the substrate, 

which may compete with the deprotonation of the phenol leading to undesired byproducts and 
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decomposition. This reaction sequence was very difficult to reproduce and low yielding. To 

overcome this issue, we turned our attention to Lewis-acid catalyzed 1,4 conjugate addition 

involving related substrates.  

2.3 Development of a Nickel-Mediated 1,4 Conjugate Addition 
 

2.3.1 Literature precedent 

Lewis-acids catalysis of 1,4 conjugate and Michael additions is well described in the 

literature. Specifically, rare-earth triflates have been extensively studied as reported in an 

excellent review by the Kobayashi group.37 Additionally, transition metal and lanthanides have 

also been used.38  

2.3.1.a Electrophile Activation 

       The Fillion group investigated 1,4 conjugate addition of allyl metal 2.29 with Meldrum’s acid 

derived monoalkylidene 2.28 using scandium triflate as the catalyst to obtain 2.30 in good yield 

(Scheme 2. 6).39 In related studies, the investigators were able to utilize a phenol derived 

nucleophiles 2.31, which underwent 1,4 conjugate addition followed by cyclization to efficiently 

access coumarin derivatives 2.33-2.36 (Scheme 2.7).40   

 

Scheme 2. 6. Allylation of Meldrum Acid Derived Alkylidenes. 
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Scheme 2. 7. Fillion’s Coumarin Synthesis. 

 

 

Perchlorate salts have also been used to mediate related 1,4 conjugate additions. For example, 

magnesium (II) perchlorate and nickel perchlorate Lewis-acid have been described and employed 

to develop an enantioselective conjugate addition as reported in the excellent mini-review by 

Melchiore and coworkers.41 

Kanemasa and coworkers developed a nickel(II) perchlorate salt catalyst in the development 

of the addition of dimedone 2.37 with a crotonyl oxazolidinone 2.38 to obtain enol lactone 2.39 

(Scheme 2. 8).42 Optimal yields were obtained by using the nickel perchlorate hexahydrate 

complex in the presence of catalytic TMP to enable the formation of the reactive enolate species. 

Scheme 2. 8. Kanemasa’s Synthesis of Enol Lactones. 
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Both Kanemasa and Melchiore reported that the perchlorate metal salts had a very strong 

chelating power allowing for efficient activation of both the electrophile and nucleophile in the 

reaction (eg. 2.40 see Scheme 2. 8).   

2.3.1.a Nucleophile Activation 

In their work Moreno-Mañas and coworkers were able to efficiently alkylate cyclic $-keto 

ester 2.41 by using salicylaldehyde copper complex 2.43 as a catalyst. Several electrophiles 2.42 

were tolerated in this reaction and 2.44-2.47 were obtained in excellent to moderate yields 

(Scheme 2. 9). Extensive mechanistic were undertaken by the investigators who proposed that the 

copper complex may activate the nucleophile by generating the reactive complex enolate 2.48, 

which then promptly underwent reaction with the electrophile (Scheme 2. 9).43 

Scheme 2. 9. Moreno-Mañas’s Copper-Mediated Alkylations. 

 
 

In their studies, Christoffers and coworkers were able to react several cyclic $-keto esters 

2.49 with methyl vinyl ketone 2.50 to obtain alkylated products 2.52-2.54 in moderate yields and 

moderate ee’s (Scheme 2. 10).44 They used chiral Nickel diamine complex 2.51 to mediate this 

reaction. They proposed that the nucleophile may be activate and may form the nickel enolate 
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complex 2.55, which after coordinating to the methyl vinyl ketone 2.50 may undergo alkylation 

(Scheme 2. 10). 

Inspired by these interesting studies, we selected a diverse range of Lewis-acids including 

rare earth-triflates, transition metals, and perchlorate salts in order to evaluate their reactivity in 

the conjugate addition of acylated phloroglucinol 2.5 with monoalkylidene 2.4. 

Scheme 2. 10. Christoffers’s Studies. 

 

 
2.3.2 Initial Catalyst Screen 

A screen was conducted using stoichiometric amounts of Lewis-acids. Both polar aprotic 

solvents such as dichloromethane and carbocation stabilizing, polar protic solvent like hexa-fluoro-

isopropanol (HFIP) were investigated. 

Control experiments without catalyst gave 2.3 in 18 % in dichloromethane and 2.3 in 14 % 

yield in HFIP (Table 2.1, entry1). Several Lewis-acids with chloride as the counterion were also 

investigated (Table 2.1, entries 2-6). These Lewis acids yielded complex mixtures of products 

and very low yields of 2.3.  Bivalent Lewis-acids with triflate as the counter-ion provided limited 
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earth triflates were screened (Table 2.1, entries 9-12). Among these rare-earth triflates, ytterbium 

triflate afforded 2.3 in the highest yield of 45 %. Using dichloromethane provided less complex 

reaction mixtures and was selected for further reaction screening under sub-stoichiometric 

conditions. 

Table 2. 1. Stoichiometric Screen of Lewis-acids. 

 
 

Entry Lewis-acid CH2Cl2 (Yield %a) HFIP (Yield %a) 

1 _ 18  14  

2 FeCl3 10  11  

3 InCl3 10  10  

4 PtCl4 10  9  

5 FeCl3-6H2O 9  5  

6 AuCl3 28 Decomp. 

7 Mg(OTf)2 12 8  

8 Zn(OTf)2 15  25  

9 Sc(OTf)3 10  15  

10 Yb(OTf)3 45  10  

11 Gd(OTf)3 10  10  

12 Er(OTf)3 18  15  
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2.3.3 Sub-Stoichiometric Catalyst Screen 

Dichloromethane was subsequently selected as the solvent for a sub-stoichiometric 

catalyst screen of select Lewis-acids. Some Lewis-acids were not successful in the stoichiometric 

screen, which may have been due to chelation of the final product with the Lewis-acid and 

subsequent low recovery of the desired product. Therefore, the low yielding Lewis-acids that 

provided cleaner reactions were screened again under sub-stoichiometric conditions with the 

intent to minimize chelation. A control experiment without catalyst provided a 9 % of adduct 2.3 

and a significant amount of endoperoxide byproduct 2.36 (Table 2.2 entry 1). This byproduct 

may be derived from [4+2] cycloaddition between the dienol tautomer of 2.4 and triplet oxygen 

(Table 2.2, entry 1). 13b, 20, 45 This reaction process will be discussed in detail in Chapter 4. 

Table 2. 2. Evaluation of Lewis-Acids under Sub-Stoichiometric Conditions. 

 
 

Entry Lewis-acid 2.3:2.56c 2.3b(%) 

1 No Catalyst 1 : 2.7 9 

2 YbCl
3
 1.15 : 1 38 

3 FeCl
3
 1.3 : 1 36 

4 Yb(OTf)
3
 1 : 3.3 16 

5 Gd(OTf)
3
 1 : 2.4 29 

6 Lu(OTf)
3
 1 : 1.7 17 
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7 Cu(ClO
4
)

2
 1 : 4.3 6 

8 Mg(ClO4)2 N/A 0 

9 Zn(ClO4)2 N/A 0 

10 Ni(ClO
4
)

2!6H
2
O 4.6:1 74 

11 Ni(ClO4)2!6H2O (7 mol%) 
CH2Cl2:AcOH (5:1) 

2.8:1 80 

12d Ni(ClO4)2!6H2O (7 mol%) 
CH2Cl2:AcOH (5:1) 

1:0 90 

 
a Reactions conducted with monoalkylidene 2.4 (10 mg, 0.04 mmol, 1 equiv) and acylphloroglucinol 2.5 (5 

mg, 0.04mmol, 1 equiv) in 1 mL of CH2Cl2 with Lewis acid catalyst (0.004 mmol, 0.1 equiv). bYields 

reported after isolation by silica gel column chromatography. c Compound 2.56 is the only byproduct 

observed after complete consumption of starting materials.d Solvents thoroughly degassed using the freeze-

pump-thaw method. 

 
In the presence of YbCl3 or FeCl3, a moderate amount of 2.3 was isolated albeit in low 

selectivity (Table 2.2, entries 2 and 3). Rare-earth triflates were also investigated; however, these 

reactions resulted in low yields and low selectivity (Table 2.2, entries 4-6). 46  We also 

investigated metal perchlorate catalysts, which had previously been used for 1,4 conjugate 

addition.47 Cu(ClO4)2, Mg(ClO4)2, and Zn(ClO4)2 did not result in significant amounts of adduct 

2.3 (Table 2.2, entries 7-9). Ni(ClO4)2  proved to be a more effective catalyst,  affording  a 2.8:1 

ratio of 2.3:2.56 in 74 % isolated yield (Table 2.2, entry 10). Using a solvent mixture of CH2Cl2 

and acetic acid48 in a 5:1 ratio led to an increase yield and selectivity (Table 2.2, entry 11). 

Likewise, thorough degassing of solvent eliminated endoperoxide byproduct formation (Table 

2.2, entry 12) and provided 2.3 in 90 % yield. A control screen using the same catalysts with 
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degassed dichloromethane was conducted and the results are shown in Table 2.3. Although, using 

degassed dichloromethane alleviated the formation of byproduct 2.56, yields remained low 

(Table 2.3, entries 2, 6-8) except when nickel perchlorate hexahydrate was used for this 

transformation.  

Additionally, it was found that Pd(II) catalyst was not efficient for this reaction (Table 2.3, 

entry 10) and that the reaction solvent alone was enabling the reaction to occur in 30 % yield 

(Table 2.3, entry 11). Based on these results, nickel perchlorate hexahydrate was identified as the 

best catalyst for this reaction. 

Table 2. 3. Control Screen. 

 
 

Entry Lewis-acid 2.3b(%) 

1 CH2Cl2:AcOH (10:1) 30 

2 YbCl
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3 FeCl
3
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8 Mg(ClO4)2 16 

9 Zn(ClO4)2 30 

10 PdCl2(PhCN)2 19 

11 Ni(ClO
4
)

2!6H
2
O 74 

 
Reactions conducted with monoalkylidene 2.4 (10 mg, 0.04 mmol, 1 equiv) and acylphloroglucinol 2.5 (5 

mg, 0.04mmol, 1 equiv) in 1 mL of CH2Cl2 with Lewis acid catalyst (0.004 mmol, 0.1 equiv). bYields 

reported after isolation by silica gel column chromatography.  

 
 

2.3.4 Reaction Scope 

 The scope of the conjugate addition using alternative acyl-phloroglucinol substrates was 

investigated (Scheme 2. 11).   

Scheme 2. 11. Reaction Scope. 

 
 

Compounds 2.5749 and 2.5827 were prepared and submitted to the conjugate addition reaction 

conditions. We found that addition of acetic acid in the conjugate additions with substrates 2.57, 

and 2.58 was detrimental. Using dichloromethane as solvent, we found that a formyl group 2.57 
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or a second acyl group 2.58 was well tolerated and provided the 1,4 adduct 2.59 and 2.60 in 70 % 

and 84 % yield respectively.  

 

2.3.5 Further Analysis of 1,4 Adduct 2.3 and Preliminary Mechanistic Studies 

2.3.5. a  NMR studies 
 

The structure of adduct 2.3 was determined unambiguously by X-ray crystallography 

(Figure 2. 3). The X-ray structure shows hydrogen bonds between the enol/phenols and carbonyl 

moieties.  

Figure 2. 3. X-ray Crystal Structure of 2.3. 

 
 

In solution, 2.3 was found to exist as a mixture of two atropisomers in a 2.4:1 ratio at room 

temperature by 1H NMR in CDCl3. The tight hydrogen bond network existing within the structure 

may hinder free rotation along the C9-C8a axis generating two rotational conformers in 

equilibrium at room temperature. Variable temperature NMR studies were performed to 

determine the coalescence temperature.  

Variable temperature NMR studies were performed with the same sample of 2.3 in CDCl3 

and the temperature was varied from 10 oC to 60 oC. The coalescence temperature was found to 

be 60 °C. The initial &' was determined to be 142.58 Hz at 10 oC. With &'= 142.58 Hz and T oC 
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= 60 oC using the Rich Shoemaker method50 (Figure 2. 4), the rotational energy was determined 

to be 15 kcal/mol.  

Figure 2. 4. Equation Used for Rotational Energy Calculation. 

!! !! !" !!!"# ! !"# !"
!!

   
where a = 4.575 x 10-3 kcal/mol 
where a = 1.914 x 10-3 kJ/mol 
at coalescence temperature !" ! !!! ! 

The ratio observed at room temperature corresponds to a difference of 0.6 kcal.mol-1 in 

energy for the two atropisomers. Spectra showing coalescence can be found in Chapter 2, 

Section 2.8. Unfortunately, NMR studies did not allow us to assign which isomer was the major 

one. 

2.3.5. b Computational Studies 
 

Computational studies34 were performed in order to determine which one of the 2.3 rotamers 

was energetically favored at room temperature. Using a conformer search using Spartan 2012 

MMFF, the two ground state conformers were identified for both rotamers. DFT minimization 

using B3LYP/3G* were perfomerd on each of the rotamers. 2.3 B was found to be favored by 

2.89 kcal.mol-1 suggesting that it may be the major rotamer at room temperature.  

However, it should be noted that the computational studies were undertaken in vacuum and this 

hypothesis may not be accurate in solvents (Figure 2. 5).  
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Figure 2. 5. Computational Studies for 2.3 Rotamers. 

 

 

2.3.5.c Mechanistic Studies 

We undertook mechanistic studies by studying the 1,4 conjugate addition of 2.4 with 2.5 

catalyzed by nickel perchlorate in a dichloromethane and acetic acid mixture (Scheme 2. 12). Two 

sets of experiements were conducted.  

First,  two equivalents of isovaleryl phloroglucinol 2.5 were mixed in dichloromethane with 

nickel perchlorate hexahydrate.  The reaction was followed by direct mass injection. Samples 

were obtained every hours for three hours and studied by direct mass injection. After one hour, 

three main peaks appeared in the  mass spectrum accounting for [2.5+H], [Ni(ClO4)2+3H20+H] 

and [Ni+2(2.5)+H]. Additionally, a final sample was submitted for more detailed analysis by 

direct injection and a peak accounting for [Ni+ 2ClO4+ 2(2.5)] was observed. Similar masses 

were observed after two and three hours. These results suggested that a complex of nickel 2.61 

(see Scheme 2.12) and two equivalents of 2.5 may initially formed in the reaction and may be a 
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reactive intermediate in the catalytic process. This observation is in agreement with the 

observation made by Moreno-Mañas and Christoffers with salicylaldehyde Ni(II) catalysts.43, 44  

To verify this hypothesis, one equivalent of monoalkylidene 2.4 was then added to the 

reaction. After three hours, a sample was taken and direct mass injection data were obtained. The 

mass accounting for [Ni+ ClO4+2.4+2.5+5H2O] was observed suggesting that a ligand exchange 

may occur during the course of the reaction and may allow 2.4 and 2.5 to come in close proximity 

around the nickel center which possesses six coordination sites. The reaction mixture was then 

heated and stirred at 40 °C overnight and provided 37 % of the expected product 2.3 providing 

further evidence that both complexes may be involved in catalytic process. 

In order to understand this process better another experiment was performed. A reaction was 

run using the optimized reaction conditions and was followed by direct mass injection every hour 

for six hours.  The main peaks observed during this process accounted for [Ni+2(2.5)+H] and 

[Ni+2ClO4+2(2.5)+2H2O]. Then the formation of peaks accounting for [Ni+2.4+2.5] and [Ni+ 

2.4+2.5+2AcOH+2H2O+Na+] and a peak accounting for the product [2.3+H] were observed.  

These results supported our initial hypothesis and led us to propose a mechanism where 

initially, two equivalents of 2.5 may coordinate to the nickel center to form active complex 2.61. 

A ligand exchange may follow and two perchlorate counter ions may be released in the reaction 

mixture. Both  [Ni+2(2.5)+H] and [Ni+2ClO4+2(2.5)+2H2O] were observed and it was unclear if 

the lower mass [Ni + 2(2.5)+H] observed was due to ionization during the direct mass injection or 

if it was due to lignad exchange. Despite analyzing the reaction at different time points, evidence 

supporting a ligand exchange were not convincing enough to rule out the ionization hypothesis. 

After formation of 2.61, we proposed that 2.4 may come in close proximity to the nickel center 

and take advantage of empty coordination sites to coordinate to the nickel center and form 2.63 

and eventually bind to nickel by displacing a unit of 2.5 and form 2.64. With 2.4 and 2.5 in close 
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proximity, 1,4-conjugate may occur to provide product 2.3. After release of 2.3 in the reaction 

medium, the nickel( II) catalyst may re-enter the catalytic cycle.  

Scheme 2. 12.  Proposed Mechanism for the nickel-mediated 1,4-conjugate addition. 
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2.4.1  Acid-mediated Dehydrative Cyclization 

 Under acidic conditions, we observed formation of rhodomyrtosone B 2.2 exclusively via 

dehydrative cyclization (Table 2. 4).  

Table 2. 4. Cyclization of Adduct 2.3 under Acidic Conditions. 

Entry Solvent Reagent Yield (%) Temperature (°C) 

1 Benzene p-TsOH Decomposition 80 

2 CH2Cl2 TFA excess 30 80 

3 MeOH TFA (1 equiv) 20 80 

4 HFIP TFA (1 equiv) 60 80 

5 HFIP TFA (3 equiv) 60 80 

 

After optimization, it was found that using the carbocation-stabilizing protic solvent 

hexafluoroisopropanol (HFIP)51  with one equivalent of trifluoroacetic acid (80 oC, 6 h) afforded 

rhodomyrtosone B 2.2 in 60 % yield (Scheme 2. 13).  

Scheme 2. 13. Synthesis of Rhodomyrtosone B 2.2. 

 
Despite our best efforts, we were unable to develop conditions leading to selective 

dehydrative cyclization providing rhodomyrtone A 2.1 in a high yielding and reproducible 

fashion from 2.3 using either basic or acidic conditions (Table 2.5).  
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Table 2. 5. Attempted Reactions for the Synthesis of Rhodomyrtone A 2.1. 

 
Entry 

 

Solvent 

 

Reagent 

 

Results 

 

1 MeOH NaOH (1 equiv) No Conversion 

2 _ NaOH (3 equiv) Decomposition 

3 _ ZnCl2 (1 equiv), "w 20 % 

4 HFIP DIEA Decomposition 

5 _ NaOH (0.5 equiv) No Conversion 

6 _ NaOH (1 equiv) 30 % 

7 _ NaOH (2 equiv) Decomposition 

8 _ LiOH (1 equiv) No Conversion 

9 _ LiOH (1 equiv) No Conversion 

10 _ ZnCl2 (1 equiv) Decomposition 

11 _ La(O-iPr)3 (0.3 equiv) No Conversion 

12 _ Li(HFIP) (1 equiv) No Conversion 

13 _ Zn(HFIP)2 (1 equiv) No Conversion 

14 _ Ba(HFIP)2 (1 equiv) No Conversion 

15 _ Ca(HFIP)2 (1 equiv) No Conversion 

16 _ Na(HFIP) (1 equiv) No Conversion 

17 MeCN NaH (1 equiv) Decomposition 
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HO OH
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18 _ Li(HFIP) (1 equiv) No Conversion 

19 _ Zn(HFIP)2 (1 equiv) 10 % 

20 _ Ba(HFIP)2 (1 equiv) 10 % 

21 _ Ca(HFIP)2 (1 equiv) No Conversion 

22 _ Na(HFIP) (1 equiv) No Conversion 

23 THF NaH (1 equiv) Decomposition 

24 _ NaH (3 equiv) Decomposition 

25 

 

_ 

 

La(O-iPr)3 (0.3 equiv) 

 

No Conversion 

 

 

Basic conditions in polar protic or polar non-protic solvents (Table 2.5 entries 1, 2, 4-9, 17, 23-

24) provided decomposition or no conversion except when using sodium hydroxide in 

hexafluoroisoporpanol, leading to a 30 % yield of rhodomyrtone A 2.1 (Table 2.5 entry 6). 

However this result was not reproducible. Similarly, using zinc chloride as a Lewis-acid in the 

microwave provided 20 % of rhodomyrtone A 2.1. Unfortunately, these results could not be 

reproduced after numerous attempts. Lewis-acids with basic counter-ions were also screened 

(Table 2.5 entries 11 and 25) without success. HFIP salts (e.g. Li(HFIP), Na(HFIP), Ba(HFIP)2, 

Ca(HFIP)2, Zn(HFIP)2) were also studied, which were prepared using reported procedures.52 

The use of fluorinated alkoxides as mild base has been previously reported.53 HFIP has a pKa of 

9. The pKa of para-phenols with regards to the acyl substituent in acylated phloroglucinol 

compounds such as 2.65 and 2.66 are of 8. For ortho-phenols with regards to the acyl substituent 

in acylated phloroglucinol compounds such as 2.65 and 2.66 the pKa are of 10-11 (Figure 2.6)35  
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Figure 2. 6. pKa’s of Acylated Phloroglucinols. 

 
 

We envisioned that the HFIP salts may enable a selective deprotonation of the para-phenol as 

their pKa’s are likely situated between the para and ortho phenols pKa values. Thus, it may lead 

to the selective cyclization of the para-phenol. Additionally, the metal counter-ion may offer 

another regioselectivity handle as it may chelate to the acyl ketone and the ortho-phenol 

preventing the cyclization of the ortho-phenol. Using HFIP salts may therefore produce 

rhodomyrtone A 2.1 selectively.  

We tested our hypothesis by using one equivalent of HFIP salts in HFIP or acetonitrile for the 

dehydrative cyclization (Table 2.5. entries 12-16 and 18-22). Unfortunately, our efforts were met 

with limited success. The competitive deprotonation between the para-phenol and the enol 

hydroxide on the triketone moiety may explain the very low yields observed in this process. 

In order to understand the absence of selectivity for the cyclization process, additional 

computational studies and a mechanistic proposal were investigated. 

 
2.4.2 Proposed Mechanism and Selectivity Rationale 

 Our proposed mechanism for the selective dehydrative cyclization leading to 

rhodomyrtosone B 2.2 is shown in Scheme 2.14. Protonation of vinylogous acid 2.3 leads to 

oxonium intermediate 2.67 which may exist in equilibrium with its atropisomer 2.68. Cyclization 

of 2.68 to hemiacetal 2.69 followed by dehydration affords rhodomyrtosone B 2.2. Hemiacetal 

2.69 is likely a relevant intermediate in the proposed mechanism as this structural motif exists in 

closely related structures including myrtucommulone D 2.70 (Scheme 2.14).3, 8, 54  

 

OH

HO

OpKa=10.3

pKa=8.09

OH
HO

HO

O
pKa=11

pKa=9.4

pKa=7.2

2.65 2.66



 
 
 

60 

 

Scheme 2. 14. Proposed Mechanism for the Formation of 2.2. 

 
We believe that the hydrogen bond formed between the ortho-phenol (C8) and the C1’ ketone 

contributes to render the ortho-phenol more nucleophilic by increasing the electron density of the 

phenolic oxygen.55 

Additionally, computational studies involving a conformational search and energy 

minimization of intermediates 2.67/2.68 showed that 2.68 was the ground state protonated 

atropisomer, which should favor 1,2 addition/cyclization to afford 2.69 producing 

rhodomyrtosone B 2.2.33 Intermediate 2.67 leading to 2.1 was found to be less stable by 5.8 

kcal.mol-1, rendering this corresponding 1,2 addition less likely to occur (Figure 2. 7). 

Figure 2. 7. Computational Studies of Protonated Compounds 2.67 and 2.68. 
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2.5 Synthesis of Rhodomyrtone A  

In order to overcome the regioselectivity problem, several strategies were envisioned: the 

conversion of rhodomyrtosone B 2.2 to rhodomyrtone A 2.1 using a base-mediated retro-1,4 

conjugate addition; the selective deacylation of a diacylated cyclized intermediate; and the use of 

a formyl derivative to fine tune the regioselectivity in the dehydrative cyclization. 

 
2.5.1 Conversion of Rhodomyrtosone B to Rhodomyrtone A 

In Kozlowski and coworkers’ synthetic work toward (R)-nigerone 2.72, intermediate 2.71 

was subjected to a catalytic amount of sodium hydroxide in order to promote a retro-conjugate 

addition affording (R)-nigerone 2.72 in good yields (Scheme 2.15). 56   This process was 

successfully achieved because the final product was more thermodynamically stable by 1.2 

kcal.mol-1. Thiophenol has also been used previously to trigger retro-addition/addition 

processes.57 

Scheme 2. 15. Kozlowski’s studies toward (R)-nigerone. 

 
 

Computational studies were performed to determine if such a process would be  

thermodynamically favored in the case of rhodomyrtone A 2.1 and rhodomyrtosone B 2.2. A 

conformer search followed by a DFT minimization for each natural product was conducted. It 

O

O

O

O

OH
OH

OMe

MeO
MeO

OMe

NaOH 1 mol %
MeOH

70 °C, 16h
50 %

Me

Me

OH

O
O

OMe

MeO
MeO

OMe

O

O

Me
Me

2.71
rel. energy = +1.23 kcal.mol-1

2.72
rel. energy = 0 kcal.mol-1



 
 
 

62 

 

showed that rhodomyrtone A 2.1 was found to be more stable than rhodomyrtosone B 2.2 by 14 

kcal.mol-1 which encouraged us to pursue our hypothesis (Figure 2. 8).  

Figure 2. 8. Minimized Structure for Rhodomyrtone A 2.1 and Rhodomyrtosone B 2.2. 

 
 

Compound 2.1 rel. energy:  0 kcal/mol-1           Compound 2.2 rel.energy= +14 kcal.mol-1 

 

Our studies began with using stoichiometric amount of sodium hydroxide and thiophenol 

in MeOH in order to trigger a retro-1,4 conjugate addition. Unfortunately, these processes did not 

yield rhodomyrtone A 2.1 and raising the reaction temperature decomposed the starting material. 

Using catalytic amount of sodium hydroxide was also unsuccessful, leading to no conversion and 

recovery of the starting material rhodomytosone B 2.2 (Scheme 2.16). We elected to pursue an 

alternative strategy. 

Scheme 2. 16. Studies toward the Conversion of Rhodomyrtosone B to Rhodomyrtone A. 
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2.5.2 Dehydrative Cyclization and Deacylation 

 
 During the previously described 1,4 conjugate studies and scope development we were 

able to obtain compounds 2.58 (see 2.3.4) in 84 % yield.  Dehydrative cyclization for compound 

2.58 was achieved using para-toluene sulfonic acid in benzene in the presence of a Dean-Stark 

apparatus and yielded 70 % of fully dehydrated compound 2.73 (Scheme 2.17).  

Scheme 2. 17. Dehydrative Cyclization of 2.41. 

 
 

Table 2. 6. Deacylation Studies. 

 
 

Entry Acid or Lewis Acid  Yield of 2.74 Yield of 2.1  

1 CF3SO2H/H2O (3 equiv) 80 % _ 

2 CF3SO2H/H2O (1 equiv) 80 % _ 

3 CF3SO2H 20mol% N.R. _ 

4 NHTf2 (1 equiv) 60 % _ 

5 NHTf2 20 mol% N.R. _ 

 
Deacylation studies were undertaken using strong acids to generate rhodomyrtone A 2.1. 

Surprisingly, in all cases double deacylation was observed, and the core 2.74 was obtained (Table 
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2.6). Attempts to lower the reaction temperature led to no reactions. Due to no observed selective 

deacylation, an alternative strategy involving electronic modifications of compound 2.3 was next 

explored.  

 
 
2.5.3 Studies of Formyl derivative 2.57 

The formyl derivative 2.57 was obtained in 74 % yield during studies of the scope for the 1,4 

conjugate addition (see section 2.3.4).  

2.5.3.a Selectivity Rationale 
 

With intermediate 2.57 in hand, we investigated the development of a regioselective 

dehydrative cyclization. Introducing a formyl group was intended to modify both the hydrogen 

bond network within the structure and change the electronics of the aromatic moiety thus 

potentially allowing the desired para selective dehydrative cyclization to occur. An X-ray of 2.57 

was obtained  and also showed showcase tight hydrogen bond network within the structure 

(Scheme 2.18). We screened acidic conditions and found that treatment of 2.40 with excess 

trifluoroacetic acid provided a 1:1 mixture of the two regioisomers 2.75 and 2.76 in 75 % yield 

(Scheme 2.18).  

The hydrogen bond formed between the para phenol and the formyl group may shift the 

electron density to the oxygen non bonding orbital and thus render the para phenol more 

nucleophilic.36 This may explain the formation of both dehydrative cyclization products 2.75 and 

2.76 in this process.  
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Scheme 2. 18. Dehydrative Cyclization of Formyl Derivative 2.57. 

 

2.5.3.b Decarbonylation 
 

Decarbonylation of aromatic compounds have been previously studied and in some example 

phenols and other functional groups are tolerated. In their studies Maiti and coworkers were able 

to develop and efficient methodology using palladium diacetate as the catalyst. Their initial 

conditions required high temperature, and they later came up with a methodology using the same 

catalyst and microwaves to shorten the reaction time. Rapid access to substrates 2.77-2.81 was 

obtained by using this methodology (Scheme 2.19).58 

Tsuji and coworkers focused on developing a methodology using [Ir(cod)Cl]2 as a catalyst, 

which allowed access to substrates 2.83-2.84. These conditions also required vigorous heating in 

dioxane (Scheme 2.20). Additionally, Wilkinson’s catalyst has been successfully used for 

aromatic decarbonylation in the Kozlowski group’s synthesis of (S)-bisoranjidiol 2.87, although 

no phenol groups were present in that case.59 

 

 

 

O

O

O

OH

OH

O

HO

O

O

OH

OH

O

HO

OH HO

O

O

O

OH

OH

H

O

O

2.75

2.76

TFA (25 % v/v)

DCE
80oC, 12h

75%2.57

1:1

X-ray of 2.57:



 
 
 

66 

 

Scheme 2. 19. Maiti’s Studies for Aromatic Aldehydes Decarbonylation. 

 

Compound 2.85 was submitted to a reduction, oxidation, and decarbonylation sequence to 

yield 2.86 in 63% and lead eventually to (S)-bisoranjidiol 2.85  (Scheme 2.21).  

Scheme 2. 20. Tsuji’s Methodology for Decarbonylation of Aromatic Aldehydes. 

 

 

Several catalysts were studied for the decarbonylation of 2.75 and 2.76. The mixture of 2.75 

and 2.76 was easily separated using a C18 column and preparative HPLC. Initial studies using 

2.75 with Pd(OAc)2 as the catalyst and potassium carbonate as the base provided a 30% yield of 

rhodomyrtone  A 2.1 (Table 2.7 entry 1).  
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Scheme 2. 21. Kozlowski Synthesis of (S)-Bisoranjidiol. 
 

 

Using the same catalyst under microwave conditions led mostly to absence of conversion 

(Table 2.7 entry 2).  

Table 2. 7. Studies toward the Decarbonylation of 2.50 and 2.51. 

 
 

Entry Reactant Catalyst  Solvent Product Yield  

1 2.75 
Pd(OAc)2 10 mol % 

K2CO3 2.5 equiv 
 

EtOAc, 
80 °C 2.1 39 % 

2 2.75 
Pd(OAc)2 10 mol % 

K2CO3 2.5 equiv 
 

EtOAc, 
"w,100 °C 2.1 0 % 

3 2.75 or 2.76 
RhCl(PPh3)3 

10 mol % 
 

CH2Cl2 
90 °C 2.2 0 % 

4 2.76 

[Ir(cod)Cl]2 

25 mol % 
PPh3 50 mol % 

 

Dioxane 
110 °C 2.2 60 % 
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25 mol % 
PPh3 50 mol % 

Dioxane 
110 °C 2.2 30 % 
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Using Wilkinson’s catalyst and conditions similar to those used by Kozlowski did not provide 

any decarbonylated product using either 2.75 or 2.76 (Table 2.7 entry 3). Finally, using 

[Ir(cod)Cl]2 with triphenylphosphine as the ligand provided 60% of 2.2 starting from 2.76 and 

30 % of 2.1 starting form 2.75.  

In order to avoid preparative HPLC separation, further optimization studies using [Ir(cod)Cl]2 

were undertaken on the mixture of 2.75 and 2.76. The mixture of 2.75 and 2.76 was treated with a 

catalytic amount of [Ir(cod)Cl]2
60 in the presence of JohnPhos ligand and did not provide to any 

desired mixture of 2.1 and 2.2. 

Although we were not able to design an efficient and reliable way to produce rhodomyrtone 

A 2.1 , this project allowed us to understand the effect of different substituents on the acylated 

phloroglucinol partner onto the 1,4 conjugate addition and the regioselectivity of the dehydrative 

cyclization event. Hydrogen bonds play a crucial role to control the selectivity of the dehydrative 

cyclization and our attempt to control the regioselectivity of the cyclization reaction by 

introducing activating hydrogen bond generating group was encountered with success and 

verified our hypothesis. 

 

2.6 Future Plan: Toward an Enantioselective Synthesis  

Rhodomyrtone A 2.1 and rhodomyrtosone B 2.2 have been isolated as a racemic compound 

and biological studies have been performed with a racemic mixture of the compound. Therefore, 

developing an enantioselective synthesis became of interest and may allow for a better 

assessment of biological activities, toxicities and pharmacokinetic properties associated with each 

enantiomers of rhodomyrtone A 2.1 and rhodomyrtosone B 2.2 for potential drug development 

endeavors. 

 



 
 
 

69 

 

2.6.1 Nickel-based Enantioselective 1,4 Conjugate Addition: Background 

Several catalytic systems using nickel (II) have been used for the development of 

enantioselective 1,4 conjugate additions with a wide range of substrates.  These systems can be 

sorted in four different classes: amino-alcohol ligands and nickel (II), biphosphine ligands and 

nickel (II), PyBox ligands and nickel (II), and binuclear nickel catalysts. Select examples of these 

different catalytic systems are described below. 

2.6.1.a. Amino-alcohol and diamine ligands, and Nickel (II)  

In the early 2000’s several groups were investigating 1,4 conjugate addition of organozinc 

reagents to a range of enones with control of the enantioselectivity.61 Among them, the Nayak 

group introduced a $-amino alcohol as a ligand to control the enantioselectivity of the addition of 

diethylzinc to chalcones. By using Ni(acac)2 with  $-amino alcohol 2.89 in acetonitrile, they were 

able to submit a large scope of chalcones 2.88 to the reaction conditions and obtained adducts 

2.90-2.95 (Scheme 2.22).62  

Scheme 2. 22. Nayak’s Catalytic System. 
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Scheme 2. 23. Evans’ Catalytic System. 

 

Evans and coworkers furthered the field by introducing a readily prepared nickel based 

catalyst containing two chiral diamine ligands for the conjugate addition of 1,3 dicarbonyl 

compounds to conjugated nitroalkenes. By using substituted cyclohexanediamine ligands and 

NiBr2, they were able to prepare bench stable catalyst 2.98, which was used for the conjugate 

addition of malonates with $-ketosester 2.96 to obtain adducts 2.99-2.105 in high yield and 

enantioselectivity. The stereoinduction was proposed to stem from dipole reduction and 

minimization of the interaction ligand-substrate (Scheme 2.23). 63  

2.6.1.b. Biphosphine ligands, and Nickel (II)  

Corey group and Evans group, both developed biphosphine ligand and nickel (II) catalytic 

systems to enable the development of enantioselective 1,4 conjugate additions. In their work, the 

Corey group used a H8-BINAP ligand 2.108 to control the conjugate addition of alkynes 2.107 to 

cyclohexanone derivatives 2.106. They were able to obtain adducts 2.109-2.112 with high yield 

and high selectivity and to extend the methodology to 7 members ring !,$-enone 2.113 (Scheme 

2.24).64  
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Scheme 2. 24. Corey’s Catalytic System. 

 
 

The Evans group used a similar catalytic system to develop enantioselective Michael 

additions involving $-ketoesters 2.114 and unsaturated N-acylthiazolidinethiones 2.113 to obtain 

adducts 2.116-2.120 very efficiently (Scheme 2.25).65 

Scheme 2. 25. Evans’ Catalytic System-Biphosphine Ligand. 

 

 

O
Me2Al R3

Ni(2.108)Br2 (8 mol %)
PhMe, -45 °C

O

R3

R1

R2

O

Ph

O

SiMe3

O

Ph

O

R3

O

Ph

PPh2

PPh2

2.106 2.109-2.113

2.109
71 %, 90 % ee

2.112
74 %, 84 % ee

2.113
63%, 86 % ee

2.111
67 %, 89 %

2.110
69 %, 85 % ee

2.108

2.107

S N

S O

R
2.115 ( 10 mol %)

EtOAc, 0 °CCO2t-Bu
Me

O

S N

S O R

CO2t-Bu

O

Me

S N

S O Me

CO2t-Bu

O

Me S N

S O Et

CO2t-Bu

O

Me S N

S O n-Pr

CO2t-Bu

O

Me

S N

S O CO2Et

CO2t-Bu

O

Me S N

S O i-Pr

CO2t-Bu

O

Me

(Tol)2
P

P
(Tol)2

Ni
Br
Br

2.115

2.116 95 %, 93 % ee

2.120 10 %, 70 % ee2.119 97 %, 97 % ee

2.118 91 %, 95 % ee2.117 88 %, 95 % ee

2.116-2.1202.1142.113



 
 
 

72 

 

The biphosphine ligand nickel systems allowed the use of more diverse nucleophiles for the 1.4-

conjugate addition. 

2.6.1.c. PyBox ligands and Nickel (II)  

In an effort to broaden the scope for enantioselective 1,4 conjugate addition the Kanemasa group 

has brought an important contribution by introducing PyBox nickel(II) catalytic systems. In their 

initial work, they were able to effectively catalyze the addition of malonitrile 2.120 with 2.121 

using 2.122 as a catalyst to obtain adducts 2.123-2.125 with high yield and selectivity. In these 

reactions, they proposed addition of the deprotonated malonitrile to the nickel-chelated 

electrophile. These conditions proved superior when bulkier substituents were present in the !-

position of the enone 2.121, whereas they were less effective with highly electron rich 

substituents. Stereocenters were assigned to be of (S) configuration, implying that the attack of 

the malonitrile was coming from the Re face of the electrophile (Scheme 2.26a). 66 

Kanemasa and coworkers were able to utilize these conditions with dimedone 2.126 and 

2.127 to synthesize enol lactones 2.128-2.131 with high yield and selectivity using 2.132 and 

nickel perchlorate hexahydrate complex as the catalyst.  Acetic anhydride was used as an additive 

in these reactions to prevent double addition and formation of dimers (Scheme 2.26b).67 

2.6.1.d. Binuclear Nickel Complex 

 Some of the latest advancements in the field of enantioselective 1,4 conjugate additions 

were developed in the late 2000’s by the Shibasaki and Matsunaga groups and involved  

dinuclear metallic complexes, which are containing two nickel metal centers. In their 

methodology, they studied the addition of unsaturated !-butyrolactams 2.132 with nitroalkenes 

2.133. The nickel dinuclear complex 2.134 was the most effective and other metallic complexes 

or hetero-metallic complexes, which contained two metals centers including, only one nickel 
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center were found inefficient in this process. Shibasaki and coworkers were able to obtained 

several adducts 2.135-2.138 in high yield and selectivity (Scheme 2.27). 

Scheme 2. 26. Kanemasa’s Catalytic Systems. 
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TMP 10 mo l%

rt, 48 h, -20 °C, THF

2.120 2.121

O N

O

R

O NC CN
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Br

O N

O

Me

O NC CN
2.123 90%, 85 % ee

O N

O
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O NC CN

O N

O

Ph

O NC CN

O

O

O

Me
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O

O

O

n-Pr

2.129 94 %, 92 % ee

O

O

O

2.130 73 %, 89 % ee

O

O

O

Ph

2.131 94 %, 99 % ee

O N
O

O N
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Ph
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H
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w

w
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2.124 90%, 87 % ee 2.125 95%, 75 % ee

O

2.122 R,R-DBFOX/Ph
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Scheme 2. 27. Shibasaki and Matsenuga Catalytic System: Butyrolactams Example. 

 
The mechanism for this process was proposed to involve the bifunctional character of the 

dinuclear catalyst, which possesses Lewis-acid and Brønsted-base functionalities.68 

 The addition of nucleophiles into nitroalkenes was later expanded to include !-ketoanilide 

nucleophiles.  

 

2.6.2 Preliminary Studies 

 
To begin our studies we selected several catalytic systems that had been successfully 

used previously. Our investigational work started with a screen of catalytic systems for the 

conjugate addition of 2.4 and 2.5 (Table 2.8). The ligands 2.139 and 2.140 were obtained from 

our laboratory library and were obtained following reported procedures.69 The binuclear nickel 

complex 2.141 was also prepared according to reported procedures (Figure 2.9).70  
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Figure 2. 9. Catalytic Systems. 

 
The reaction utilizing ligand 2.139 with nickel perchlorate provided 52 % of 2.3 (Table 2.8, 

Entry 1). The enantiomeric excess could not be measured on the 1,4 adduct 2.3 due to its 

atropisomeric character. Therefore, cyclizations under acidic conditions to obtain 2.2 were 

attempted. The cyclization of intermediate 2.3 obtained from the entry 1 reaction using 

hexafluoroisopropanol and trifluoroacetic acid provided 22 % of the desired 2.2. We attempted to 

measure the enantiomeric excess after cyclizations without success. The reaction utilizing ligand 

2.140 with nickel perchlorate provided 17 % of 2.3 (Table 2.8, Entry 2), further cyclization was 

not successful due to the very limited amount of material obtained. Similarly, The reaction 

utilizing the catalytic system 2.141 provided 15 % of 2.3 (Table 2.8, Entry 3), further cyclization 

was not successful due to the very limited amount of material obtained. 

For further development, other PyBox ligands, the Kanemasa group DBPhox/Ni catalytic 

system and other binuclear complexes with nickel or copper may be screened. 
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Table 2. 8. Catalytic Systems Screen for the Development of an Enantioselective Nickel-

Mediated 1,4 Conjugate Addition. 

 

 

 

 

Entrya,d 
Catalytic 

System 

1,4 

Conjugate 

Addition 

Yield 

Cyclization 

(HFIP, TFA) 

Yieldb 

ee 

1 
Ni(ClO4)2.6H2O 

+ 2.139 
52 % 22 % - 

2 
Ni(ClO4)2.6H2O 

+ 2.140 
17 % - - 

3 2.141 15 % - - 

a Reactions conducted with monoalkylidene 2.4 (5 mg, 0.02 mmol, 1 equiv) and acylphloroglucinol 2.5 (2.5 

mg, 0.02mmol, 1 equiv) in 0.5 mL of CH2Cl2 with Lewis acid catalyst (1.45 mg, 0.004 mmol, 0.2 equiv). 

bYields reported after isolation by silica gel column chromatography.dSolvents thoroughly degassed using 

the freeze-pump-thaw method. 
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2.7 Biological Data 

During the course of our studies we became interested in evaluating the biological activities 

of the diverse analogues, which had been synthesized. A sample of natural rhodomyrtone A was 

provided by the group of Prof. Voravuthikunchai from the Prince of Songkla University. The 

enantiomeric composition of this sample was evaluated by chiral HPLC using a ChiralCel-OD 

column and the natural sample was found to be a racemic mixture (Figure 2.10).  

The solubilities of natural rhodomyrtone A 2.1, rhodomyrtosone B 2.2 and analogues 2.3, 

2.57 and 2.73 were also evaluated. Rhodomyrtone A 2.1 has been reported to be only partially 

soluble in water and ongoing studies are evaluating liposome encapsulation in order to increase 

solubility of 2.1 and subsequently its potency against bacterial strains.71 It was found that 2.1, 2.2, 

2.3 were soluble at the require concentration of 3.2 mg.mL-1 for further biological testing. 

Analogues 2.57 and 2.73 were found to be not soluble enough, which may explain their lack of 

potency (Figure 2.11). 
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Figure 2. 10. Chiral HPLC Analysis of 2.1 Natural Sample. 

 
 

Peak Injection Retention Time % Area 

1 1 35.646 53.87 

2 1 40.862 46.13 

 
 
 
 

 
 
Figure 2. 11. Evaluated Analogues for Solubility. 
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Table 2. 9. Analogues Biological Activities Against Select Bacterial Strains (MIC, "g.mL-1). 

Entry 
 

E. coli 

ATCC 

25922 

S. Aureus 

USA300 

(MRSA) 

S. aureus 

ATCC29213 

E. faecalis 

ATCC 

29212 

S. 

pneumoniae 

ATCC 49619 

1 2.1 >32 8 4 16 >32 

2 2.2 >32 16 16 32 8 

3 2.3 NS NS NS NS NS 

4 2.57 NS NS NS NS NS 

5 2.73 NS NS NS NS NS 

NS: not soluble at the required concentration 
 

Data showed that a non-dehydrated compound such as 2.3 were not active against S. aureus 

strains (Table 2.9, entry 3). Therefore a fully cyclized structure may be correlated to biological 

activity for this class of natural product. Rhodomyrtone A 2.1 was the most active compound 

with a lowest MIC value of 4 "g.mL-1 corresponding to concentration of 9 nM. This may indicate 

that the biological target of 2.1 possesses a very specific conformation. Supporting this 

hypothesis, the regioisomer rhodomyrtosone B 2.2 was shown to be less active in most case with 

a lowest MIC concentration of 18 nM (Table 2.9, entry 2).  

 
2.8 Conclusion 

During the course of our studies, we were able to develop and efficient nickel-mediated 1,4 

conjugate addition of acylated-phloroglucinols with monoalkylidene 2.4. We synthesized 

rhodomyrtosone B 2.2 and evaluated several analogues for biological activities. Additionally, we 

were able to evaluate and understand the effect of different substituents on the acylated-
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phloroglucinols onto the dehydrative cyclization selectivity. This allowed us to highlight the 

importance of hydrogen bonds for selectivity control in this process.  

 

2.9 Experimental Section 

2.9.1 General Information 

 
1H NMR spectra were recorded at either at 400 MHz or 500 MHz (as noted) at ambient 

temperature with CDCl3 as the solvent unless otherwise stated. 13C NMR spectra were recorded 

either at 100.0 MHz or 125.0 MHz (as noted) at ambient temperature with CDCl3 as the solvent 

unless otherwise stated. Chemical shifts are reported in parts per million relative to CDCl3 (1H, % 

7.27; 13C, % 77.0). Data for 1H NMR are reported as follows: chemical shift, integration, 

multiplicity (app = apparent, par obsc = partially obscure, ovrlp = overlapping, s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet) and coupling constants. All 13C NMR spectra were 

recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 

670 FT-IR spectrophotometer. High-resolution mass spectra were obtained in the Boston 

University Chemical Instrumentation Center using a Waters Q-TOF mass spectrometer. Melting 

points were recorded on a Mel-temp (Laboratory Devices). Analytical thin layer chromatography 

was performed using 0.25 mm silica gel 60-F plates. Preparative TLC was conducted with glass 

backed 1000 "m silica gel 60-F plates (Silicycle, Inc.). Flash chromatography was performed 

using 200-400 mesh silica gel (Scientific Absorbents, Inc.). Preparative HPLC was performed 

using the Gilson™ PLC 2020 and a SunFire™ preparative C18 column (OBD™ 5 "m, 19x50 

mm). Yields refer to chromatographically and spectroscopically pure materials, unless otherwise 

stated. All reactions were carried out in flame-dried glassware under an argon atmosphere unless 
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otherwise noted. The ArthurTM Suite Reaction Planner (Symyx Technologies, Inc.) was used for 

experimental procedure planning. 

 

2.9.2 Reagents and solvents 

HPLC grade tetrahydrofuran, methylene chloride, diethyl ether and hexanes were purchased 

from Fisher and VWR and were purified and dried by passing through a PURE SOLV® solvent 

purification system (Innovative Technology, Inc.). Methanol was purchased from Fisher and used 

after distillation following a procedure previously described by Lund and Bjerrum.72  

All other chemicals and reagents were used as received from Sigma-Aldrich, except for syncarpic 

acid, prepared from a reported procedure,73 compound 6 was prepared from syncarpic acid S1 by 

using intermediate S2 (see below), and acylated phloroglucinol compound 2.5 and formylated 

compound 2.57 and 2.58 were prepared using literature described procedures.74, 50 

 

2.9.3 Characterization Data 

Additional characterization data for syncarpic acid 2.S1:  

 2.S1 

Rf: 0.33 (hexanes/EtOAc=1:1 plus 5% MeOH) UV-KMnO4 

Mp: 185-189 °C (water) 

IR (thin film): 3922.02, 3849.90, 3669.18, 2980.8, 2940.55, 2718.36, 2661.31, 2599.83, 1709.24, 

1609.93, 1535.85, 1478.29, 1377.61, 1343.15, 1303.09, 1247.81, 1232.00, 1180.43, 1042.27 cm-1 

1H NMR (CDCl3, 500 MHz): % 3.626 (s, 2H), 1.338 (s, 12H) 

13C NMR (CDCl3, 100 MHz): % 208.4, 177.3, 175.1, 147.0, 131.7, 129.2 (two carbons 

overlapping), 128.8, 126.2 (ovrlp), 123.4, 71.5, 51.2, 44.7, 41.3, 39.8, 32.8, 25.4, 20.7, 20.0 

OH

O

O
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HRMS--ESI (m/z): [M+Na]+ calculated for C10H14NaO3, 183.1021; found, 183.1016 

 

Experimental Procedure for the synthesis of acylated phloroglucinol 2.5:74 

 

Into a large flask was added 1,3,5-benzenetriol 2.S2 (5 g, 40 mmol, 1 equiv) and aluminum 

trichloride (9.95 g, 74.6 mmol, 1.8 equiv) in methylene chloride (25 mL) at room temperature. 

Then, nitromethane (4.04 mL, 74.6 mmol, 1.8 equiv) was added dropwise at 0°C. The reaction 

was heated to 30°C and from 35°C to 40°C over 5 min. Gas was released during this step. 

Isovaleryl chloride, (5 g, 40 mmol, 1 equiv) was added dropwise carefully at 40oC using an 

addition funnel under an inert atmosphere with an exit needle to avoid over pressurization and the 

reaction was heated to reflux for one hour. The reaction mixture thickened and yellow brown 

flakes were observable on the surface of the liquid. The reaction mixture was cooled to 0oC and 

iced cold water was very slowly poured in the oversized flask. Solvents in the resulting mixture 

were distilled under atmospheric pressure (solvent evaporation can also be done using a Rotovap 

for small scale-under 1-2 g) until the water was the only solvent remaining in the reaction flask.  

The resulting precipitate was recrystallized from water and filtered through a fritted funnel to 

afford 4.8 g (60 %) of 2.5 as yellow crystalline solid. 

Rf : 0.58 hexanes: ethyl acetate: MeOH (1:1:0.1)  

Mp: >250°C (water, nitromethane) 

IR (thin film): 3092.63, 3059.51, 3027.47, 3008.10, 2996.09, 2957.73, 2944.06, 2912.77, 

2893.45, 2850.40 cm-1 

OH

HO OH

OOH

HO OH

AlCl3 (1.8 equiv)
MeNO2 (1.8 equiv)

Isovaleryl chloride (1.2 equiv)

CH2Cl2, 0oC to 40oC
60 %2.S2 2.5
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1H NMR (CDCl3, 500 MHz): % 0.97 (d, J= 5 Hz, 6H), 1.56 (s, 12H), 2.26 (m, J= 10Hz, 1H), 2.92 

(d, J=5 Hz, 2H), 5.36 (broad s, 1H), 5.86 (s, 2H)  

13C NMR (MeOD, 125.67 MHz): % 23.31, 26.85, 53.83, 95.88, 105.73  

HRMS--ESI (m/z): [M+Na]+ calculated for C11H14O4, 211.0970; found, 211.0979 

 

Experimental procedure for the synthesis of adduct 2. S3:  

 

To a flask was added syncarpic acid 2.S1, (500 mg, 3 mmol, 1 equiv) and anhydrous diethyl ether 

(45 mL). The resulting solution was cooled to 0oC and pyrrolidine (275 µL, 3.29 mmol, 1.2 

equiv) was added dropwise followed by the addition of isovaleraldehyde (370 µL, 3.43 mmol, 

1.25 equiv). The solution became slightly cloudy. The reaction was stirred at 0 oC until a white 

precipitate was formed (about 30 min). The white solid was filtered and washed with cold ether 

and dried in vacuo to yield 2. S3 as a white powder (800 mg, 90 %).  

Rf : 0.44 hexanes:EtOAc:MeOH (1:1:0.1)  

Mp: 165-168 °C (diethyl ether) 

IR (thin film): 2974.01, 1698.89, 1583.04, 1470.19, 1455.19, 1410.05, 1366.04, 1296.99, 

1215.98 cm-1 

1H NMR (CDCl3, 500 MHz): % 0.83 (s, 3H), 0.90 (s, 3H), 1.30 (s, 12H), 1.37 (t, J=9.9 Hz), 1.46 

(s, 1H), 1.96 (s, 2H+1H), 2.01 (t, J= 9.9 Hz), 2.13 (s, 1H), 2.82 (t, J= 5 Hz), 2.98 (s, 1H), 3.30 (s, 

1H), 3.54 (s, 1H), 4.43 (d, J= 9.9 Hz) 

13C NMR (CDCl3, 125.67 MHz): % 216.91, 98.68, 77.48, 77.23, 76.98, 69.45, 54.08, 48.92, 

32.06, 25.27, 24.51, 22.58, 20.43, 17.52 ppm  

O

O OH

Pyrrolidine ( 1.2 equiv)
Isovaleraldehyde (1.25 equiv)

(CH3CH2)2O, 0oC, 20 min
90 %

O

O OH

N

2.S32.S1
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HRMS--ESI (m/z): [M+H]+ calculated for C19H31NO3, 322.2382; found, 322.2384 

 

Experimental procedure for the formation of monoalkylidene compound 2.4: 

 

To a flask was added adduct 2.S3 (200 mg, 0.62 mmol) then methylene chloride was added (15 

mL, 0.04 M). A 1M solution of hydrochloric acid in water was prepared and saturated with 

ammonium chloride. This solution (15 mL, 0.04 M) was added to the reaction mixture. The 

mixture was vigorously stirred at room temperature for 1h. The organic layer was washed with 

saturated brine (3 times) and gathered organic fractions were dried over anhydrous sodium sulfate. 

Solvents were concentrated in vacuo to yield compound 2.4 (116 mg, 75 %) as a pale yellow oil. 

Rf : 0.6 hexanes:EtOAc (3:1) 

IR (thin film): 2965.63, 1695.43, 1606.38, 1465.51, 1383.58,1296.07, 1215.98. 1132.50, 

1039.52 cm-1 

1H NMR (CDCl3, 500 MHz): % 7.52 (t, J = 7.6 Hz, 1H), 2.61 (t, J = 7.3 Hz, 2H), 1.89 (ddt, J = 

13.5, 10.8, 6.8 Hz, 1H), 1.46 – 1.42 (m, 3H), 1.40 – 1.36 (m, 3H), 1.15 (d, J = 7.0 Hz, 3H), 1.06 

(d, J = 6.9 Hz, 3H), 1.00 (dd, J = 14.8, 6.7 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H). 

13C NMR (CDCl3, 125.67 MHz): % 208.79, 199.50, 196.40, 159.10, 133.10, 58.55, 57.93, 38.86, 

35.62, 28.68, 22.55, 22.26, 21.96.  

HRMS--ESI (m/z): [M+H]+ calculated for C15H22O3, 251.1647; found, 251.1647 

 

2.S3 2.4

O

O

N

OH

NH4Cl aq in 1M HCl

CH2Cl2, rt
75 %

O

O O
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Experimental procedure to form compounds 2.3 and 2.36:  

The dichloromethane and acetic acid used in this reaction were previously degassed using the 

freeze-pump-thaw method (x3). To acyl phloroglucinol 2.5 (25 mg, 0.12 mmol, 1.5 equiv) was 

added Ni(ClO4)2.6H2O (2.9 mg, 0.0080 mmol, 0.1 equiv) and methylene chloride (2 mL) at room 

temperature under argon followed by addition of 4Å MS (20mg). Next, a solution of 

monoalkylidene 2.4 (20 mg, 0.08 mmol. 1 equiv) in dichloromethane (1 mL) was added to the 

reaction mixture followed by acetic acid (0.5 mL). The global concentration of 2.4 was 0.04 M. 

The reaction was stirred at room temperature for 5 h and heated to 40 oC for 12 h. The reaction was 

quenched with water and a solution of 1M KHSO4 at 0 oC until reaching a pH ( 2. The reaction 

mixture was extracted with CH2Cl2 and washed with saturated brine. Organic fractions were 

gathered and dried over anhydrous sodium sulfate. Solvents were evaporated in vacuo yielding an 

yellow oil. Column chromatography purification on silica gel with a gradient of CH2Cl2: MeOH 

(90:1 to 20:1) provided compound 2.3 in 80% yield and only traces of the endoperoxide byproduct 

2.36.  

Characterization data for 2.3 

Rf : 0.45 CH2Cl2:MeOH 

Mp: 51-54 °C (hexanes, MeOH) 

IR (thin film): 2958.19, 2872.19, 1716.58, 1622.77, 1594.68, 1467.34, 1383.88, 1367.29, 

1300.61, 1215.23, 1118.62, 754.18 cm-1 
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1H NMR (CDCl3, 500 MHz): % 0.83 (quad, J= 5 Hz, 6H), 0.97 (d, J= 5 Hz, 6H), 1.23 (s, 3H), 

1.31 (d, J= 5 Hz, 3H), 1.36 (d, J=5 Hz, 3H), 1.42 (broad m, 1H), 1.47 (s, 3H), 1.75 (m, J= 10 Hz, 

1H), 2.06 (m, J= 10 Hz, 1H), 2.25 (m, J=10Hz, 1H), 2.95 (d, J= 5Hz, 2H), 4.34 (t, J= 10 Hz, 1H), 

5.86 (s, 2/3H) and 5.92 (s, 1/3H), 10.28 (s, 2/3H) and 10.55 (s, 1/3H); 11.15 (s, 1/3H) and 11.57 

(s, 2/3H) 

13C NMR (CDCl3, 125.67 MHz): % 22.56, 22.76, 23.07, 24.51, 25.50, 26.37, 27.10, 28.19, 29.59, 

29.92, 38.44, 48.87, 52.43, 55.32, 98.25, 109.50, 114.94, 158.60, 176.83, 203.38, 206.41, 212.51  

HRMS--ESI (m/z): [M+Na]+ calculated for C26H36O7, 461.2539; found, 461.2534 

Characterization data for 2.36 

Diastereomer 1: 

Rf : 0.67 hexanes:EtOAc (2:1) 

Mp: 115-120 oC (CH2Cl2, MeOH) 

IR (thin film): 3408.97, 2975.64, 1726.15, 1690.59, 1633.86, 1469.19, 1377.38, 1286.22, 

1216.22, 1159.82.11, 1100.16 cm-1 

1H NMR (500 MHz, Chloroform-d) % 7.29 (d, J = 1.6 Hz, 1H), 4.74 (dd, J = 5.9, 1.6 Hz, 1H), 

3.51 (s, 1H), 2.03 (dt, J = 13.4, 6.8 Hz, 1H), 1.38 (d, J = 8.1 Hz, 7H), 1.31 (s, 3H), 1.06 (dd, J = 

6.8, 1.4 Hz, 7H), 1.03 (s, 3H). 

13C NMR (126 MHz, cdcl3) % 210.48, 197.69, 137.86, 134.34, 97.92, 83.48, 54.90, 51.68, 30.50, 

26.61, 24.06, 20.67, 18.18, 17.89, 15.12. 

HRMS--ESI (m/z): [M+H]+ calculated for C15H22O5, 283.1545; found, 265.1440 [M+H-H2O]+ 

Diastereomer 2: 

Rf :  0.38 hexanes:acetone (2:1) 

IR (thin film): 3000.50, 2933.43, 2872.53, 1693.60, 1638.03, 1470.98, 1375.00, 1262.55, 

1187.51, 1131.25, 1100.01 cm-1 
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1H NMR (500 MHz, Chloroform-d): % 7.43 (d, J = 4.1 Hz, 1H), 4.13 (dd, J = 8.3, 4.1 Hz, 1H), 

3.62 (s, 1H), 2.19 – 2.09 (m, 1H), 1.43 (s, 3H), 1.39 (d, J = 5.4 Hz, 6H), 1.33 (d, J = 3.4 Hz, 3H), 

0.97 (d, J = 6.7 Hz, 6H) 

13C NMR (126 MHz, cdcl3): % 207.08, 197.87, 149.01, 137.88, 97.62, 84.95, 32.22, 31.08, 30.12, 

26.78, 24.21, 21.12, 20.04, 19.19, 15.35. 

HRMS--ESI (m/z): [M+H]+ calculated for C15H22O5, 283.1545; found, 283.1547 [M+H]+ 

Experimental procedure to form rhodomyrtosone B 2.2 from compound 2.3: 

 

To a solution of 1,4 adduct 2.3 (20 mg, 0. 04 mmol, 1 equiv) in hexafluoroisopropanol (0.2 mL) 

was added trifluoroacetic acid (0.05 mL) at room temperature. The reaction was stirred at 60°C 

for 12h. Then, the reaction was dissolved in water and saturated brine and the mixture was 

extracted with ethyl acetate (three times). Gathered organic fractions were dried over anhydrous 

sodium sulfate and solvents were evaporated in vacuo to yield a yellow solid. 

Purification using column chromatography on silica gel with an hexane:acetone gradient (12:1 to 

4:1), provided 8 mg of rhodomyrtosone B 2.2 (60% yield). 

Rf : 0.4 hexanes : acetone (3:1) 

Mp: 58-62 °C (hexanes, acetone) 

IR (thin film): 3359.86, 2959.21, 2925.37, 2869.81, 1719.44, 1656.43, 1625.75, 1597.94, 

1504.38, 1469.46, 1431.80, 1388.20, 1368.12, 1255.28, 1161.24, 1121.96, 1041.55, 1015.89 cm-1 

O

O OH

OH

HO OH

O

O

O

O

OH

OH

O

25 % v/v TFA
HFIP, 60 °C

60 %

2.3 2.2
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1H NMR (CDCl3, 500 MHz): % 13.46 (s, OH), 6.26 (s, OH), 4.30 (t, J = 6.1 Hz, 1H), 3.24 – 2.89 

(m, 2H), 2.36 (dd, J = 13.2, 6.6 Hz, 1H), 1.64 (s, 3H), 1.47 (s, 3H), 1.43 (s, 3H), 1.39 (s, 3H), 

1.39 – 1.31 (m, 4H), 1.02 (dd, J = 14.3, 6.6 Hz, 6H), 0.87 (dd, J = 8.5, 6.4 Hz, 6H). 

13C NMR (CDCl3, 125.67 MHz): % 211.72, 203.88, 198.28, 167.21, 164.24, 159.53, 153.06, 

114.53, 105.92, 105.57, 100.19, 56.10, 53.41, 47.22, 46.88, 25.35, 25.02, 24.75, 24.72, 24.46, 

24.43, 24.22, 23.39, 23.08, 22.88, 22.62. 

HRMS--ESI (m/z): [M+H]+ calculated for C26H34O6 443.2434; found, 443.2427 

 

Table 2. 10. NMR Data Comparison for Natural Rhodomyrtosone B and Synthetic 

Rhodomyrtosone B. 

 

 C ppm (mult)  H ppm (m, J Hz)  
C# Natural 2.2 Synthetic 2.2 Natural 2.2 Synthetic 2.2 
1 197.6 s 198.28   
2 56.1 s 56.1   
3 211.7 s 211.72   
4 47.2 s 47.22   
4a 166.9 s 167.21   
4b 153.3 s 153.06   
5 105.9 s 105.57   
6 159.0 s 164.24a   
7 100.3 d 100.19 6.23 (s) 6.26 (s) 
8 159.0 s 159.53   
8a 105.9 s 105.92   
9 25.1 d 25.02 4.25 (t, 6.0) 4.3 (t, 6.06) 
9a 114.5 s 114.53   
10 24.3 q 24.22 1.39 (s) 1.39 (s) 

O

OHO

O OH

O

12
3 4 4a 4b

9
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11 24.4 q 24.43 1.42 (s) 1.43 (s) 
12 24.8 q 24.72 1.63 (s) 1.64 (s) 
13 25.4 q 25.35 1.47 (s) 1.47 (s) 
1' 204.0 s 203.88   

2' 53.6 t 53.41 
3.18 (dd, 17.0, 6.5), 
2.96 (dd, 17.0, 6.5) 3.07 (m) 

3' 24.5 d 24.46 2.37 (m, 6.5) 2.36 (dd, 6.57, 13.23) 
4' 22.9 q 22.88 1.04 (d, 6.5) 1.02 (dd, 6.64, 14.29) 
5' 22.6 q 22.62 1.01 (d, 6.5) 1.02 (dd, 6.64, 14.29) 
1'' 46.9 t 46.88 1.38 (obscure) 1.37 (m) 
2" 24.9 d 24.75 1.38 (obscure) 1.37 (m) 
3" 23.4 q 23.39 0.89 (d, 6.5) 0.87 (dd, 6.37, 8.47) 
4" 23.1 q 23.08 0.87 (d, 6.5) 0.87 (dd, 6.37, 8.47) 
6-

OH   13.43 (s) 13.46 (s) 

8-
OH   6.40 (br s)  

 

Figure 2. 12. HMBC Data for Rhodomyrtosone B 2.2. 

 

 

General procedure for synthesis of 2.59 and 2.60:  

 

O
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Ni(ClO4)2.6H2O (0.1 equiv)

CH2Cl2
rt-40 °C, 12 h

OH

HO OH

O

OHO

R2

R1 R1

2.57 R1= CHO
     R2= C(O)CH2CH(CH3)2
2.58 R1= C(O)CH2CH(CH3)2
     R2= C(O)CH2CH(CH3)2

2.59 R1= CHO                           
     R2= C(O)CH2CH(CH3)2
     yield= 70 %
2.60 R1= C(O)CH2CH(CH3)2     
     R2= C(O)CH2CH(CH3)2
     yield= 84 %
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The dichloromethane used in this reaction was previously degassed using the freeze-pump-thaw 

method three times. To phloroglucinol derivatives 2.57 or 2.58 (1.5 equiv) was added 

Ni(ClO4)2.6H2O (0.1 equiv) and CH2Cl2 at room temperature under argon and 4Å MS (10 w/w 

Ni(ClO4)2.6H2O). Next, a solution of monoalkylidene 2.4 (20 mg, 0.08 mmol. 1 equiv) in CH2Cl2 

was added to the reaction mixture. The global concentration of 2.4 was 0.04 M. The reaction was 

stirred at room temperature for 1h and heated to 40 oC for 12 h. The reaction was quenched with 

water and a solution of 1M KHSO4 at room temperature until reaching a pH ( 2-3. The reaction 

mixture was extracted with dichloromethane and washed with saturated brine. Organic fractions 

were gathered and dried over anhydrous sodium sulfate. Solvents were evaporated in vacuo. 

Characterization data for 2.59  

Column chromatography purification on silica gel with a gradient of hexanes: acetone (15:1 to 

6:1) provided compound 2.59 (70 %) as a pink solid 

Rf: 0.40 hexanes: acetone (3:1) 

Mp: 156-160 oC (hexanes, acetone) 

IR (thin film): 2957.24, 2609.21, 1721.14, 1629.31, 1428.14, 1278.11, 1189.78, 1049.16, 914.23 

cm-1 

1H NMR (CDCl3, 500 MHz): % 4.34 (t, J = 7.6 Hz, 1H), 3.02 (dd, J = 6.7, 1.8 Hz, 2H), 2.27 (dq, 

J = 13.4, 6.7 Hz, 1H), 2.12 – 2.01 (m, 1H), 1.79 (dt, J = 14.1, 7.3 Hz, 1H), 1.50 (d, J = 3.1 Hz, 

4H), 1.41 (s, 3H), 1.39 (d, J = 4.3 Hz, 2H), 1.36 (d, J = 3.2 Hz, 6H), 1.27 – 1.23 (m, 1H), 1.01 (dd, 

J = 6.7, 1.5 Hz, 7H), 0.91 – 0.81 (m, 7H). 

13C NMR (CDCl3, 100 MHz): % 207.35, 203.95, 193.91, 177.29, 167.11, 114.53, 52.21, 48.82, 

38.24, 27.64, 27.19, 27.01, 26.34, 25.29, 24.36, 22.94, 22.63, 22.53, 22.47. 

HRMS--ESI (m/z): [M+H]+ calculated for C27H36O8; 489.2488 found, 489.2493 

Characterization data for 2.60 
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Column chromatography purification on silica gel with a gradient of Hexane: Acetone (15:1 to 

6:1) provided the 1,4 adduct as a yellow solid in 84% yield. 

Rf: 0.85 (hexanes:acetone, 3:1) 

Mp: 55-60 °C (hexanes, acetone) 

IR (thin film): 2959.31, 2871.52, 1720.96, 1619.79, 1586.75, 1468.58, 1428.35, 1383.92, 

1367.30, 1197.89, 1049.16 

1H NMR (CDCl3, 500 MHz): % 12.88 (s, 1H), 12.00 (s, 0.5H), 11.25 (s, 0.5H), 10.40 (s, 1H), 4.44 – 4.28 

(m, 1H), 3.13 (ddd, J = 16.1, 14.1, 6.6 Hz, 1H), 3.06 – 2.98 (m, 3H), 2.34 – 2.19 (m, 2H), 2.12 – 1.98 (m, 

2H), 1.78 (dt, J = 13.8, 7.3 Hz, 1H), 1.50 (d, J = 3.7 Hz, 3H), 1.41 (s, 3H), 1.39 (d, J = 3.8 Hz, 3H), 1.38 – 

1.35 (m, 6H), 1.00 (ddd, J = 6.9, 4.4, 2.7 Hz, 12H), 0.90 – 0.80 (m, 6H). 

13C NMR (CDCl3, 100 MHz): % 211.93, 207.88, 203.92, 171.06, 168.14, 167.21, 114.65, 107.50, 

105.71, 103.78, 55.05, 53.37, 52.42, 48.87, 38.32, 27.90, 27.11, 26.34, 25.46, 25.25, 24.40, 22.98, 

22.67, 22.50. 

HRMS--ESI (m/z): [M+H]+ calculated for C31H44O8; 545.3114 found, 545.3105 

 

Experimental procedure for the cyclization of 2.58 leading to 2.73: 

 

To a flask containing a solution of 2.58 (100 mg, 0.18 mmol) in toluene 10 mL was added p-

TsOH (17 mg, 0.9 mmol, 0.5 equiv). The flask was equipped with a Dean-Stark apparatus and a 

reflux condenser. The reaction was heated to reflux for 12 h.  The reaction was allowed to cool to 

room temperature and was quenched with a saturated sodium bicarbonate aqueous solution and 

O OH

OH

O

OH HOO

O

O

O

p-TsOH (0.5 equiv)

PhH, reflux
Dean-Stark

70 %

O

OH

OH

O

O
2.58 2.73
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brine. The reaction mixture was extracted with ethyl acetate and the organic fractions were 

gathered and dried over anhydrous sodium sulfate and concentrated in vacuo to yield a yellow 

solid. Column chromatography purification over silica gel using a gradient of hexanes:acetone 

(10:1 to 5:1) provided 2.73 in 70 % (66 mg) as a pink  solid.  

Rf: 0.6 (hexanes:acetone 3:1) 

Mp:  >250 °C (toluene, hexanes, acetone) 

IR (thin film): 2957.95, 2946.29, 2932.27, 2871.61, 2857.80, 1721.37, 1663.59, 1615.02, 

1498.24, 1384.01, 1299.52, 1193.51,1158.69, 1121.93, 1048.47 cm-1 

1H NMR (CDCl3, 500 MHz): % 4.31 (t, J = 6.0 Hz, 1H), 3.18 (dd, J = 17.2, 7.5 Hz, 1H), 3.08 (dd, J = 15.9, 

6.6 Hz, 1H), 3.03 – 2.94 (m, 2H), 2.42 – 2.34 (m, 1H), 2.28 (hept, J = 6.7 Hz, 2H), 1.63 (s, 3H), 1.45 (s, 

3H), 1.42 (s, 3H), 1.38 (s, 4H), 1.03 (dd, J = 18.1, 6.7 Hz, 6H), 0.99 (dd, J = 6.6, 0.8 Hz, 6H), 0.89 (dd, J = 

8.2, 6.3 Hz, 6H). 

13C NMR (CDCl3, 100 MHz): % 211.52, 207.51, 204.45, 197.31, 168.97, 168.79, 165.96, 156.77, 115.37, 

107.37, 106.51, 103.59, 53.49, 47.18, 46.89, 25.40, 25.34, 25.03, 24.91, 24.71, 24.57, 24.37, 24.14, 23.37, 

23.37, 23.22, 23.05, 22.96, 22.89, 22.75. 

HRMS--ESI (m/z): [M+H]+ calculated for C31H42O7; 527.3009 found, 527.3002 

Experimental procedure for the formation of 2.74: 

 

To sealed tube glassware was added 2.73 (10 mg, 0.018 mmol) and 1,2-dichloroethane (1 mL) 

followed by triflic acid (1.58 "L, 0.018 mmol, 1 equiv) and water (1.56 "L). The tube was sealed 

and heated to reflux for 1 h. The reaction was allowed to cool to room temperature and them 

quenched by adding brine. The reaction mixture was extracted with dichloromethane and the 
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CF3SO3H:H2O (1:1) (1 equiv)

reflux, DCE
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organic fraction were gathered and dried over anhydrous sodium sulfate. Solvents were 

evaporated in vacuo to yield a pale yellow oil. Column chromatography purification over silica 

gel using a hexanes:acetone gradient (8:1 to 1:1) provided 2.74 in 80 % (5 mg) as a transparent 

gummy oil. 

Rf : 0.2 Hexane: Ethyl Acetate (3:1) 

IR (thin film): 3341.11, 3324.23, 2980.19, 2949.07, 2920.42, 2857.80, 1628.82, 1599.33 

1517.81, 1466.80, 1391.22, 1281.22 cm-1 

1H NMR (CDCl3, 500 MHz): % 0.81 (d, J= 5 Hz, 3H), 0.84 (d, J= 5 Hz, 3H), 1.23 (s, 3H), 1.35 (s, 

3H), 1.38 (s, 3H), 1.39 (s, 3H) 4.17 (t, J= 7.5 Hz, 1H) 4.76 (s, 1H), 4.93 (s, 1H), 6.14 (d, J= 5Hz, 

1H), 6.20 (s, 1H)  

13C NMR (MeOD, 125.67 MHz): % 23.88, 24.43, 24.88, 25.15, 25.33, 26.29, 30.82, 47.19, 48.58, 

56.97, 95.49, 100.31, 106.20, 115.07, 153.93, 157.28, 170.04, 199.74, 199.75, 213.95, 213.96 

HRMS--ESI (m/z): [M+Na]+ calculated for C21H26O5, 359.1858; found, 359.1859 

 

 

Experimental procedure for the cyclization of 2.57: 

 

To compound 2.57 in a solution of 1,2 dichloroethane (44 mg, 0.09 mmol in 9 mL of solvent, 

0.01 M) under inert atmosphere and at room temperature was added 25% v/v of trifluoroacetic 

acid. The reaction was warmed to 80 °C for 12 h. The reaction solvents were evaporated in vacuo 

and the remaining oil was purified by column chromatography on a silica gel column to provide 

OH

HO OH

O

OHO

2.57

O

OH

O

O

O

OH

OH

O

HO

O

O

O

OH

OH

H

O

O2.75 2.76
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30 mg (70 %) of a 1:1 mixture of compound 2.75 and 2.76. For characterization, 2.75 and 2.76 

were separated using preparative HPLC to provide 2.75 (14 mg, 33 %) and 15 (13.5 mg, 32 %) of 

2.76. 

 

Characterization Data for 2.75: 

Rf: 0.645 (hexanes : acetone 2:1) 

IR (thin film): 2959.21, 2933.32, 1720.48, 1660.32, 1631.93, 1455.01, 1423.83, 1383.85, 

1366.93, 1294.69, 1163.79, 1129.83, 1001.61 cm-1 

1H NMR (CDCl3, 500 MHz): % 10.18 (s, 1H), 4.29 – 4.21 (m, 1H), 3.10 – 2.96 (m, 1H), 2.34 – 

2.22 (m, 1H), 1.00 (d, J = 6.7 Hz, 3H), 0.95 – 0.73 (m, 3H) 

13C NMR (CDCl3, 100 MHz): % 211.29, 207.05, 197.40, 190.35, 167.61, 165.76, 156.77, 115.14, 

53.20, 47.39, 46.19, 25.39, 25.11, 25.04, 24.85, 24.82, 23.99, 23.40, 23.26, 22.93, 22.85. 

HRMS--ESI (m/z): [M+H]+ calculated for C27H34O7; 471.2383 found, 471.2374 

Characterization Data for 2.76: 

Rf: 0.7 (hexanes : acetone 2:1) 

IR (thin film): 2959.28, 1721.59, 1661.33, 1627.14, 1451.38, 1382.79, 1308.03, 1216.87, 

1192.68, 1152.62, 1121.14, 1048.27 cm-1 

1H NMR (CDCl3, 500 MHz): % 13.26 (s, 1H), 10.31 (s, 1H), 4.29 (dd, J = 6.5, 5.8 Hz, 1H), 3.22 

– 2.90 (m, 2H), 2.43 – 2.31 (m, 1H), 1.03 (dd, J = 15.6, 6.7 Hz, 6H), 0.90 (dd, J = 6.4, 4.1 Hz, 

7H) 

13C NMR (CDCl3, 100 MHz): % 211.29, 204.32, 197.26, 193.38, 168.74, 166.70, 165.91, 158.12, 

115.21, 107.22, 106.14, 104.01, 56.50, 53.58, 47.18, 47.00, 25.41, 25.29, 24.86, 24.49, 24.45, 

24.15, 24.01, 23.41, 23.02, 22.74. 

HRMS--ESI (m/z): [M+H]+ calculated for C27H34O7; 471.2383 found, 471.2373 
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2.9.4 Enantioselective System Screen 

2.8.4.a General Information 

The ligands and catalyst for the following experiments were prepared according to reported 

procedures.49, 50 Characterization data for those ligands and catalyst are available in the literature. 

2.8.4.b Screen 

 

The dichloromethane used in these reaction were previously degassed using the freeze-pump-thaw method (x3). a Reactions 

conducted with monoalkylidene 2.4 (5 mg, 0.02 mmol, 1 equiv) and acylphloroglucinol 2.5 (2.5 mg, 

0.02mmol, 1 equiv) in 0.5 mL of CH2Cl2 with Lewis acid catalyst (0.004 mmol, 0.2 equiv). bYields 

reported after isolation by silica gel column chromatography.dSolvents thoroughly degassed using the 

freeze-pump-thaw method. 

 

For Table 2.8, Entries 1 and 2: To Ni(ClO4)2.6H2O (1.45 mg, 0.004 mmol, 0.2 equiv) in methylene 

chloride (0.5 mL) was added 2.139/2.140 (1.47(2.139) mg/ 2.08(2.140) mg 0.004 mmol, 0.2 equiv). 

After stirring for 10 min, acyl phloroglucinol 2.5 (2.5 mg, 0.02mmol, 1 equiv) was added at room 

temperature under argon followed by addition of 4Å MS (5 mg). Next, a solution of 

monoalkylidene 2.4 (5 mg, 0.02 mmol, 1 equiv) in methylene chloride (0.5 mL) was added to the 

reaction mixture. The reaction was stirred at room temperature for 1h and heated to 40 oC for 12 h. 

The reaction was quenched with water and a solution of 1M KHSO4 at 0 oC until reaching a pH ( 2. 

The reaction mixture was extracted with CH2Cl2 and washed with saturated brine. Organic fractions 

were gathered and dried over anhydrous sodium sulfate. Solvents were evaporated in vacuo 

2.5 2.3
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HO OH
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Catalytic System (0.2 equiv)
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yielding a yellow oil. Column chromatography purification on silica gel with a gradient of CH2Cl2: 

MeOH (90:1 to 20:1) provided compound 2.3 in 52 % yield when using ligand 2.139 and in 197% 

when using ligand 2.140.  

For Table 2.8, Entry 3: To acyl phloroglucinol 2.5 (2.5 mg, 0.02mmol, 1 equiv in methylene 

chloride (0.5 mL) was added 2.141 (3.55 mg 0.004 mmol, 0.2 equiv) and 4Å MS (5 mg) at room 

temperature under argon. Next, a solution of monoalkylidene 2.4 (5 mg, 0.02 mmol, 1 equiv) in 

methylene chloride (0.5 mL) was added to the reaction mixture. The procedure from Table 2.8, 

Entries 1 and 2 was then followed. Column chromatography purification on silica gel with 

agradient of CH2Cl2: MeOH (90:1 to 20:1) provided compound 2.3 in 15 % yield. Cyclization 

reactions were performed using the same procedure as described for compound 2.2. The reactions 

yielded 22% of 2.2  with 1.239 and led to no decomposition for 1.240 and 1.241. 
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2.9.5 Chiral HPLC Data for Natural 2.1 
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2.9.6 Biological Data 

 
Solubility Test Protocol 

1) A reference UPLC spectra of target compounds was obtained. 

2) Appropriate volumes of 20 mM stocks were diluted to obtain 50 uL of 3.2 mg/mL stocks. 

3) 10uL of 3.2 mg/mL stock were pipeted into 1 mL deionized water – glass vial. 

4) Visible precipitate apparition was observed. 

5) Aqueous from glass vial were transferred to a plate for centrifuge. 

6) Water samples were centrifuged. 

7) Supernatant was pipeted off into eppendorf. 

8) Eppendorf were dried down on Genevac. 

9) Dried supernatants were resuspended in 100 uL DMSO. 

10) DMSO solutions were transfered to conical UPLC vial. 

11) UPLC in (conical vial) were acquired and were analyzed and compared to original sample to 

check for presence of compound. 

Determination of minimum inhibitory concentration (MIC)  

Assay plate prep protocol for MIC experiments 

1) Compound samples: to be prepared as 3.2 mg/mL stock solutions in DMSO; 250 µL per 

sample. 

2) Compound stock plates: sterile 96-well round-bottom polypropylene plates, 0.5 mL (Nunc 

267334) 

2x dilution series in anhydrous DMSO, 10 points (columns 1-10) in duplicate 

100 µL/well sample or DMSO in column 1, 50 µL/well DMSO in columns 2-12. 



 
 
 

99 

 

50 µL transfers from column 1 into successive columns containing 50 µL DMSO, to column 

10.Final concentration range will be 3.2 mg/mL to 0.00625 mg/mL. Columns 11 and 12 contain 

DMSO only. Rows C and F contain DMSO only. 

Final result is 50 µL per well.  Compound stock plates will be sealed for storage at -20 °C with 

desiccant (Costar 6570 aluminum seals, non-sterile). 

3) Assay stock plate: sterile 96-well round-bottom polypropylene deep well plates, 2.0 mL 

(Axygen 47749-930; VWR catalog #P-DW-20-C-S) 

Prepare by 100x dilution of DMSO stocks into appropriate growth medium (1% DMSO final); 

mix. (e.g., 16 µL into 1.6 mL cation-adjusted Mueller-Hinton, followed by mixing). 

4) Assay plates: Corning 3799 (sterile polystyrene, individually wrapped with lid) 

Dispense 100 µL per well from assay stock plate using Bravo (in hood). 

Lids to be replaced immediately (no stacking of unlidded plates), no plate seals. 

Place lidded plates in Ziploc bags, freeze/store at -80 °C (long term) or -20 °C (short term). 

Transfer to Core A for MIC testing. 
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2.10 Select NMR Spectra 
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2.11 X-ray Crystallographic Data for Compound 2.3 and Compound 2.39 

2.9.1 X-ray Crystallographic Data for Compound 2.3 
 
Figure 2. 13. ORTEP X-Ray for Compound 2.3. 

 
 

Crystals of compound 2.3 suitable for x-ray analysis were obtained by slow evaporation from 

a solution in hexanes with a couple drops of diethyl ether for solubility purposes. 

(Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre 

(CCDC 978312). Copies of the data can be obtained free of charge on application to the CCDC, 

12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: 

deposit@ccdc.cam.ac.uk. 

 

Table 2. 11. Crystal Data for Compound 2.3. 
 
 
  C26H36O7 V = 2460.74 (11)  Å3 

Mr = 460.55 Z = 4 
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Monoclinic, P21/c Cu K" radiation, l = 1.54178 Å 

a = 10.9488 (3) Å # = 0.73 mm-1 

b = 11.2504 (3) Å T = 100 K 

c = 20.0504 (5) Å 0.11 ) 0.05 ) 0.03 mm 

$= 94.903 (2)°  
 

Table 2. 12 . Data Collection Parameters for Compound 2.3. 
 
  Bruker Proteum-R *diffractometer 9339 independent reflections 

Absorption correction: multi-scan *SADABS 
(Sheldrick, 1997) 6243 reflections with I > 2s(I) 

Tmin = 0.773, Tmax = 0.864 Rint = 0.052 

9339 measured reflections  
 

Special details 
 
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)   are estimated 

using the full covariance matrix.  The cell esds are taken   into account individually in the 

estimation of esds in distances, angles   and torsion angles; correlations between esds in cell 

parameters are only   used when they are defined by crystal symmetry.  An approximate 

(isotropic)   treatment of cell esds is used for estimating esds involving l.s. planes. 

Table 2. 13. Refinement Data for 2.3. 

  R[F2 > 2s(F2)] = 0.065 136 restraints 

wR(F2) = 0.209 H-atom parameters constrained 

S = 1.06 D"max = 0.44 e Å-3 

9339 reflections D"min = -0.32 e Å-3 

398 parameters  
 

Refinement. Refinement of F2 against ALL reflections.  The weighted R-factor wR and   

goodness of fit S are based on F2, conventional R-factors R are based   on F, with F set to zero for 
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negative F2. The threshold expression of   F2 > 2sigma(F2) is used only for calculating R-

factors(gt) etc. and is   not relevant to the choice of reflections for refinement.  R-factors based   

on F2 are statistically about twice as large as those based on F, and R-   factors based on ALL data 

will be even larger.  

Table 2. 14. Fractional Atomic Coordinates and Isotropic or Equivalent Isotropic 

Displacement Parameters (Å2). 

 
 x y z Uiso*/Ueq 

O1 -0.22465 
(18) 0.7186 (2) 0.56403 (9) 0.1130 (8) 

O2 0.48108 (13) 1.04885 (13) 0.43100 (7) 0.0654 (4) 

O3 0.29875 (13) 1.15970 (11) 0.25116 (7) 0.0552 (4) 

H3 0.2503 1.1740 0.2173 0.083* 

O4 0.01721 (14) 0.84770 (14) 0.25940 (7) 0.0630 (4) 

H4 -0.0130 0.8012 0.2864 0.094* 

O5 0.33160 (12) 0.89024 (12) 0.43663 (7) 0.0558 (3) 

H5 0.3967 0.9289 0.4453 0.084* 

O6 0.17386 (13) 0.82016 (13) 0.52131 (7) 0.0597 (4) 

H6 0.2192 0.8322 0.4903 0.090* 

O7 -0.11577 
(13) 0.72908 (12) 0.34317 (7) 0.0587 (4) 

C1 -0.1517 (2) 0.74213 (19) 0.52386 
(11) 0.0637 (6) 

C2 -0.0227 (2) 0.77330 (17) 0.54965 
(10) 0.0562 (5) 

C3 0.06408 (18) 0.78369 (15) 0.49556 
(10) 0.0498 (5) 

C4 0.03846 (18) 0.75459 (14) 0.42988 (9) 0.0470 (4) 

C11A 0.1489 (5) 0.7450 (5) 0.3874 (3) 0.0405 (12) 

H11A 0.2216 0.7328 0.4204 0.049* 

C12A 0.1450 (3) 0.6332 (2) 0.34159 
(15) 0.0504 (8) 
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H12A 0.1305 0.5622 0.3690 0.060* 

H12B 0.0749 0.6407 0.3072 0.060* 

C13A 0.2622 (4) 0.6142 (5) 0.3065 (2) 0.0503 (10) 

H13A 0.2686 0.6829 0.2753 0.060* 

C14A 0.3768 (4) 0.6153 (5) 0.3533 (2) 0.0902 (16) 

H14A 0.3950 0.6969 0.3681 0.135* 

H14B 0.4453 0.5842 0.3301 0.135* 

H14C 0.3649 0.5654 0.3923 0.135* 

C15A 0.2504 (3) 0.5027 (3) 0.26301 
(19) 0.0686 (10) 

H15A 0.2380 0.4333 0.2913 0.103* 

H15B 0.3254 0.4919 0.2403 0.103* 

H15C 0.1802 0.5111 0.2296 0.103* 

C16 0.17694 (17) 0.85893 (15) 0.34956 (9) 0.0456 (4) 

C17 0.27683 (16) 0.92545 (15) 0.37608 (9) 0.0458 (4) 

C18 0.32439 (17) 1.02671 (15) 0.34432 (9) 0.0460 (4) 

C22 0.4341 (2) 1.08423 (19) 0.37550 
(10) 0.0597 (5) 

C23A 0.4748 (4) 1.2016 (4) 0.34409 
(18) 0.0489 (10) 

H23A 0.4928 1.1865 0.2973 0.059* 

H23B 0.4066 1.2595 0.3432 0.059* 

C24A 0.5865 (4) 1.2547 (3) 0.38194 
(19) 0.0601 (12) 

H24A 0.6478 1.1902 0.3928 0.072* 

C25A 0.5562 (9) 1.3140 (8) 0.4467 (4) 0.0631 (19) 

H25A 0.4914 1.3731 0.4369 0.095* 

H25B 0.6296 1.3532 0.4677 0.095* 

H25C 0.5280 1.2538 0.4773 0.095* 

C26A 0.6430 (5) 1.3473 (4) 0.3376 (3) 0.0776 (15) 

H26A 0.6656 1.3091 0.2965 0.116* 

H26B 0.7163 1.3815 0.3618 0.116* 

H26C 0.5833 1.4105 0.3262 0.116* 
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C6 -0.19282 
(19) 0.73947 (16) 0.44964 

(10) 0.0543 (5) 

C10 -0.2691 (3) 0.8511 (2) 0.43350 
(15) 0.0892 (9) 

H10A -0.3384 0.8530 0.4614 0.134* 

H10B -0.2999 0.8502 0.3862 0.134* 

H10C -0.2179 0.9217 0.4426 0.134* 

C9 -0.2698 (2) 0.6278 (2) 0.43530 
(13) 0.0790 (7) 

H9A -0.2178 0.5573 0.4424 0.119* 

H9B -0.3056 0.6295 0.3888 0.119* 

H9C -0.3356 0.6250 0.4655 0.119* 

C5 -0.08718 
(19) 0.73932 (15) 0.40452 

(10) 0.0509 (5) 

C19 0.25960 (18) 1.06197 (15) 0.28317 (9) 0.0471 (4) 

C20 0.15812 (18) 1.00107 (16) 0.25719 (9) 0.0484 (4) 

H20 0.1154 1.0271 0.2166 0.058* 

C21 0.11676 (17) 0.90090 (16) 0.28987 (9) 0.0482 (4) 

C8 -0.0251 (3) 0.8900 (2) 0.58873 
(14) 0.0875 (8) 

H8A 0.0579 0.9092 0.6079 0.131* 

H8B -0.0794 0.8815 0.6249 0.131* 

H8C -0.0554 0.9540 0.5585 0.131* 

C7 0.0269 (3) 0.6717 (3) 0.59697 
(14) 0.0957 (9) 

H7A 0.0296 0.5975 0.5715 0.144* 

H7B -0.0273 0.6617 0.6330 0.144* 

H7C 0.1096 0.6919 0.6162 0.144* 

C11B 0.1201 (12) 0.7385 (12) 0.3707 (7) 0.048 (4) 

H11B 0.0677 0.7066 0.3315 0.057* 

C12B 0.2207 (9) 0.6462 (6) 0.3908 (5) 0.078 (3) 

H12C 0.1821 0.5720 0.4051 0.093* 

H12D 0.2744 0.6769 0.4292 0.093* 

C13B 0.3001 (15) 0.6184 (14) 0.3315 (8) 0.094 (5) 
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H13B 0.3438 0.6932 0.3208 0.113* 

C14B 0.2264 (12) 0.5783 (13) 0.2682 (8) 0.114 (4) 

H14D 0.1747 0.5107 0.2784 0.170* 

H14E 0.2822 0.5544 0.2350 0.170* 

H14F 0.1746 0.6439 0.2503 0.170* 

C15B 0.3887 (16) 0.5367 (12) 0.3572 (10) 0.150 (6) 

H15D 0.4592 0.5797 0.3788 0.224* 

H15E 0.4152 0.4878 0.3207 0.224* 

H15F 0.3534 0.4856 0.3902 0.224* 

C23B 0.5277 (6) 1.1576 (5) 0.3422 (3) 0.0531 (15) 

H23C 0.6114 1.1374 0.3614 0.064* 

H23D 0.5222 1.1406 0.2936 0.064* 

C24B 0.5019 (5) 1.2878 (5) 0.3538 (2) 0.0523 (16) 

H24B 0.4118 1.3013 0.3444 0.063* 

C25B 0.5684 (7) 1.3606 (5) 0.3037 (4) 0.0697 (19) 

H25D 0.6553 1.3385 0.3070 0.105* 

H25E 0.5608 1.4454 0.3137 0.105* 

H25F 0.5319 1.3447 0.2582 0.105* 

C26B 0.5391 (15) 1.3261 (14) 0.4264 (5) 0.071 (4) 

H26D 0.6270 1.3118 0.4369 0.107* 

H26E 0.4925 1.2798 0.4569 0.107* 

H26F 0.5216 1.4108 0.4315 0.107* 
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2.11.1 X-ray crystallographic data for compound 2.57 

Figure 2. 14. ORTEP X-Ray for Compound 2.57. 

 

Crystals of compound 2.39 suitable for x-ray analysis were obtained by slow evaporation 

from a solution in hexanes with a couple drops of acetone for solubility purposes. 

(Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre 

(CCDC 978313). Copies of the data can be obtained free of charge on application to the CCDC, 

12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: 

deposit@ccdc.cam.ac.uk. 

Table 2. 15. Crystal Data for Compound 2.57. 

  C27H36O8 # = 71.976 (1)° 

Mr = 488.56 V = 1236.90 (7)  Å3 

Triclinic, P+1 Z = 2 

a = 9.1154 (3) Å Cu K$ radiation, % = 1.54178 Å 

b = 11.3915 (3) Å µ = 0.79 mm-1 

c = 12.7117 (4) Å T = 100 K 

$ = 82.220 (1)° 0.16 ) 0.12 ) 0.06 mm 

& = 81.963 (1)°  
 
Table 2. 16. Data Collection Parameters for Compound 2.57. 

  Bruker Proteum-R  
diffractometer 

4310 independent reflections 

Absorption correction: multi-scan  4204 reflections with I > 2'(I) 
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SADABS (Sheldrick, 1997) 

Tmin = 0.709, Tmax = 0.753 Rint = 0.033 

27208 measured reflections  

 
Table 2. 17. Refinement Data for 2.57. 
 

  R[F2 > 2'(F2)] = 0.036 54 restraints 

wR(F2) = 0.093 H atoms treated by a mixture of 
independent and constrained refinement 

S = 1.05 ("max = 0.25 e Å-3 

4310 reflections ("min = -0.23 e Å-3 

378 parameters  

 

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)   are estimated 

using the full covariance matrix.  The cell esds are taken   into account individually in the 

estimation of esds in distances, angles   and torsion angles; correlations between esds in cell 

parameters are only   used when they are defined by crystal symmetry.  An approximate 

(isotropic)   treatment of cell esds is used for estimating esds involving l.s. planes. 

Refinement. Refinement of F2 against ALL reflections.  The weighted R-factor wR and   

goodness of fit S are based on F2, conventional R-factors R are based   on F, with F set to zero for 

negative F2. The threshold expression of   F2 > 2sigma(F2) is used only for calculating R-

factors(gt) etc. and is   not relevant to the choice of reflections for refinement.  R-factors based   

on F2 are statistically about twice as large as those based on F, and R-   factors based on ALL data 

will be even larger.  
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Table 2. 18. Fractional atomic coordinates and isotropic or equivalent isotropic 

displacement parameters (Å2). 

 

 x y z Uiso*/Ueq 

O2 0.11073 (11) 0.42702 (8) 0.14848 (8) 0.0248 (2) 

H2 0.214 (2) 0.3991 (16) 0.1324 (14) 0.037* 

O3 0.41309 (10) 0.34609 (8) 0.07961 (8) 0.0228 (2) 

H3 0.4637 (19) 0.3778 (15) 0.0184 (12) 0.034* 

O4 0.57526 (11) 0.37837 (8) -0.08239 (8) 0.0289 (2) 

O5 0.81127 (10) -0.00096 (8) -0.04844 (7) 0.0227 (2) 

H5 0.8398 (19) -0.0866 (17) -0.0246 (14) 0.034* 

O6 0.44154 (10) -0.06046 (8) 0.23395 (7) 0.0196 (2) 

H6 0.347 (2) -0.0271 (15) 0.2646 (13) 0.029* 

O7 0.81972 (11) -0.21286 (8) 0.04560 (8) 0.0270 (2) 

O8 0.15571 (10) 0.02601 (8) 0.31521 (7) 0.0217 (2) 

C24 -0.12073 (15) 0.37742 (12) 0.20094 (11) 0.0244 (3) 

C27 0.05328 (14) 0.33875 (11) 0.20106 (10) 0.0195 (3) 

C18 0.14270 (14) 0.23053 (11) 0.24866 (9) 0.0178 (3) 

C13 0.31454 (14) 0.21207 (12) 0.25706 (10) 0.0207 (3) 

H13 0.3223 0.2986 0.2473 0.025* 

H13A 0.3283 0.1346 0.3070 0.025* 

C11 0.42991 (13) 0.14918 (11) 0.16772 (10) 0.0171 (3) 

C12 0.48466 (14) 0.22382 (11) 0.08441 (10) 0.0179 (3) 

C6 0.61038 (14) 0.17800 (11) 0.00514 (10) 0.0183 (3) 

C5 0.65211 (14) 0.26594 (11) -0.07989 (11) 0.0213 (3) 

C4 0.78560 (15) 0.22901 (12) -0.16456 (11) 0.0227 (3) 

H4A 0.7866 0.1497 -0.1887 0.027* 

H4B 0.8835 0.2143 -0.1326 0.027* 

C2 0.78151 (16) 0.32469 (12) -0.26205 (11) 0.0265 (3) 

H2A 0.7586 0.4086 -0.2369 0.032* 

C1 0.93950 (17) 0.29345 (14) -0.32708 (12) 0.0339 (3) 
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H1A 0.9637 0.2108 -0.3514 0.051* 

H1B 1.0187 0.2944 -0.2827 0.051* 

H1C 0.9378 0.3550 -0.3891 0.051* 

C23A -0.19549 (19) 0.28992 (16) 0.27575 (18) 0.0249 (5) 

C3 0.65557 (18) 0.32686 (14) -0.33029 (12) 0.0343 (3) 

H3A 0.6543 0.3890 -0.3918 0.052* 

H3B 0.5545 0.3480 -0.2875 0.052* 

H3C 0.6770 0.2450 -0.3554 0.052* 

C7 0.68488 (14) 0.04875 (11) 0.01605 (10) 0.0177 (3) 

C8 0.62609 (14) -0.02999 (11) 0.09446 (10) 0.0175 (3) 

C10 0.49495 (13) 0.02135 (11) 0.16672 (9) 0.0167 (3) 

C9 0.70122 (14) -0.16161 (12) 0.10271 (10) 0.0209 (3) 

H9 0.6574 -0.2124 0.1551 0.025* 

C14A 0.36865 (15) 0.16256 (13) 0.36757 (11) 0.0186 (3) 

H14A 0.4770 0.1638 0.3661 0.022* 

H14B 0.3687 0.0749 0.3821 0.022* 

C15A 0.27134 (18) 0.23362 (15) 0.45996 (12) 0.0202 (4) 

H15A 0.1655 0.2229 0.4672 0.024* 

C16A 0.2541 (2) 0.37158 (14) 0.44172 (13) 0.0336 (4) 

H16A 0.3570 0.3839 0.4263 0.050* 

H16B 0.2006 0.4113 0.5059 0.050* 

H16C 0.1937 0.4086 0.3812 0.050* 

C17A 0.34453 (18) 0.17699 (15) 0.56293 (14) 0.0269 (4) 

H17A 0.3519 0.0886 0.5744 0.040* 

H17B 0.2802 0.2193 0.6231 0.040* 

H17C 0.4485 0.1867 0.5576 0.040* 

C19 0.07409 (14) 0.13325 (11) 0.28956 (9) 0.0187 (3) 

C20 -0.10106 (14) 0.15580 (12) 0.30389 (10) 0.0207 (3) 

C14B 0.3462 (12) 0.2815 (9) 0.3310 (7) 0.015 (2) 

H14C 0.3135 0.3694 0.3012 0.017* 

H14D 0.4604 0.2570 0.3302 0.017* 

C16B 0.2997 (19) 0.3825 (11) 0.5024 (11) 0.0336 (4) 

H16D 0.4048 0.3893 0.4824 0.050* 
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H16E 0.2832 0.3648 0.5801 0.050* 

H16F 0.2239 0.4608 0.4798 0.050* 

C17B 0.3624 (16) 0.1531 (12) 0.5079 (12) 0.0269 (4) 

H17D 0.3545 0.0852 0.4714 0.040* 

H17E 0.3131 0.1479 0.5813 0.040* 

H17F 0.4719 0.1467 0.5089 0.040* 

C15B 0.2800 (18) 0.2783 (13) 0.4483 (10) 0.0202 (4) 

H15B 0.1669 0.2866 0.4526 0.024* 

C22 -0.14133 (16) 0.07371 (14) 0.23218 (12) 0.0302 (3) 

H22A -0.2538 0.0881 0.2400 0.045* 

H22B -0.0895 -0.0138 0.2534 0.045* 

H22C -0.1062 0.0946 0.1575 0.045* 

C21 -0.14981 (16) 0.11733 (16) 0.42083 (11) 0.0338 (3) 

H21A -0.1226 0.1676 0.4674 0.051* 

H21B -0.0958 0.0295 0.4387 0.051* 

H21C -0.2621 0.1304 0.4310 0.051* 

C26A -0.1631 (2) 0.3754 (2) 0.08744 (15) 0.0348 (4) 

H26A -0.1197 0.4322 0.0371 0.052* 

H26B -0.2762 0.4015 0.0878 0.052* 

H26C -0.1201 0.2911 0.0657 0.052* 

C25A -0.1906 (2) 0.50968 (17) 0.2345 (2) 0.0410 (6) 

H25A -0.1614 0.5126 0.3052 0.062* 

H25B -0.3038 0.5334 0.2370 0.062* 

H25C -0.1510 0.5674 0.1826 0.062* 

O1A -0.33129 (13) 0.32462 (13) 0.30732 (17) 0.0457 (7) 

O1B -0.3160 (16) 0.2947 (16) 0.225 (2) 0.059 (9) 

C23B -0.184 (2) 0.2761 (17) 0.245 (2) 0.0249 (5) 

C26B -0.155 (2) 0.4303 (18) 0.0864 (12) 0.0348 (4) 

H26D -0.1278 0.5079 0.0690 0.052* 

H26E -0.2660 0.4466 0.0803 0.052* 

H26F -0.0943 0.3703 0.0366 0.052* 

C25B -0.179 (3) 0.4854 (17) 0.2754 (17) 0.0410 (6) 

H25D -0.1468 0.4541 0.3469 0.062* 



 
 
 

125 

 

H25E -0.2922 0.5175 0.2798 0.062* 

H25F -0.1337 0.5522 0.2459 0.062* 
 
 
 
 
 
2.12 Mass Spectrospcopy Data: Mechanistic Studies 

A. Data were acquired by direct injection after every hour. The reaction followed is shown in 

Figure 2.16. 

 
Figure 2. 15. Mechanistic Studies: Reaction. 

 
 
B. Compound 2.5 (25.2 mg, 0.024 mmol, 2 equiv) was placed in a flask containing 

dichloromethane. Then, Ni(ClO4)2.6H2O (21.9 mg, 0.012 mmol, 1 equiv) was added. The reaction 

was stirred at room temperature and followed every hour for three hours and direct injection data 

were obtained. Then, 2.4 (15mg, 0.012 mmol, 1 equiv) was added to the reaction. The reaction 

was stirred at room temperature for an additional three hours and a sample was obtained for direct 

injection. Then, the reaction was heated at 40 °C for 12h. The workup and purification used, were 

described in the procedure for the formation of 2.3 (see above). Compound 2.3 was obtained in 

37 % yield. 

 
 
 
 
 
 
 

OH

HO OH

OO

O O

1.5 equiv

Ni(ClO4)2.6H2O 0.1 equiv
CH2Cl2:AcOH (5:1)  0.04 M

4•  MS
rt-40 oC, 18 h

OH

HO OH

O

OHO

O

80 %
2.4 2.5 2.3

O
O

O

O
OH

2.56



 
 
 

126 

 

Data for experiment A: 
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Data for experiment B: 
2 h 
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3 h 
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5 h after monoalkylidene addition 
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Chapter 3 

Synthesis of Rhodomyrtosone A and Studies toward the Tomentosones A, B and 

Bullataketals A, B. 

3.1   Introduction 
 

Rhodomyrtosone A 3.1 and tomentosones A 3.2 and B 3.3 were isolated from the 

Rhodomyrtus genus and present an intriguing bis-furan acylphlroglucinol core.2,3 Recently, the 

natural product watsonianone B 3.4 containing the same bis-furan core has been isolated from a 

parent genus growing in Australia (Corymbia watsonia).75 The tomentosones and watsonianone 

were found to possess anti-malarial properties (vide infra) (Figure 3.1).2,3, 2 

Figure 3. 1. Rhodomyrtosone A, Tomentosones A and B, and Watsonianone B. 

 

 

3.1.1 Biological Activities 
 

Malaria is an entirely preventable mosquito borne disease, which has caused significant 

suffering and mortality over the course of human history than perhaps any other disease.  In 2013, 

malaria transmission occurred in more than 90 countries and over three billion people were at risk 
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to be exposed to the disease with more than one billion people at high risk to be exposed. About 

207 million cases of malaria inducing more than half a million death were observed worldwide in 

2012.  Children aged five and under represent 70 % of the death toll, which occurred in majority 

in sub-Saharian Africa.76 

The search for antimalarial remedies had been ongoing for centuries and reached inflection 

points with the isolation and identification of quinine 3.5 in 1820 and much later the isolation and 

identification of artemisinin 3.6 in the mid-1970s (Figure 3.2).3 Today, the standard of care to 

treat malaria generally consists of artemisinin-combination-therapy (ACT). Artemisinin is 

obtained from semi-synthetic processes relying heavily on the availability of raw plant material 

and the production process remains costly. Several chemical syntheses of artemisinin have been 

reported. The first synthesis, starting from (-)-isopulegol, was reported by Hofheinz and 

coworkers in 1983.77 It was followed by several synthetic efforts by other research groups. More 

recently, Cook and coworkers proposed a concise synthesis of (+)-artemisinin 3.6.78 

Figure 3. 2. Antimalarial Artemisinin and Quinine. 

 
Although these synthetic efforts tried to reduce the artemisinin high production cost, current 

hopes reside in artemisinin production using bioengineered microorganisms, developed mainly by 

the San Fransisco Bay area company Amyris. Additionally, resistance to ACT treatment has 

started to emerge in Cambodia and Vietnam and has begun to spread more widely to Africa 

reinforcing the need for the discovery and development of new therapeutic agents. Therefore, 

investigating the chemical space to identify and synthesize novel anti-malarial therapeutics is 
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both a moral imperative and of great interest to the scientific community. 

Both tomentosones A 3.2 and B 3.3 possesses anti-malarial properties. The compounds were 

tested against chloroquine-sensitive (3D7) and chloroquinine-resistant (Dd2) strains of the 

malaria parasite Plasmodium falciparum and showed parasite growth inhibition IC50 values of 

1.49 ± 0.45 "M and 1.0 "M, respectively, for tomentosone A 3.2. Tomentosone B 3.3 was 

significantly less active against both strains, reaching only 75% and 45% inhibition at the highest 

dose (40 "M) tested, respectively.1 This may be an indication that the relative stereochemistry 

between the bis-furan isopropyl chain and the isovaleryl subtituent is important for antiplasmodial 

activity. Both compounds were also tested for cytotoxicity toward human embryonic kidney cells 

(HEK) and no toxicity was observed for either compounds up to 40 "M making tomentosone A 

an interesting candidate for future development. 

Watsonianone B 3.4 was found to inhibit the growth of chloroquine sensitive (3D7) and 

resistant (Dd2) strains of the malarial parasite, Plasmodium falciparum. Human cell cytotoxicity 

was assessed using the mammalian cell line HEK-293. Watsonianone B was more active than 

tomentosone A and B against both the (Dd2) and (3D7) strains displaying IC50 values of 0.44 and 

0.29 "M, respectively.   

It is interesting to note that watsonianone B 3.4 is more active than tomentosone A 3.2. The 

compounds differ only by the addition of a second alkyl syncarpic acid in 3.2 and the replacement 

of the benzyl group  in 3.4 with an isopropyl group in 3.2. Therefore, the second syncarpic acid 

group may reduce activity or alternatively replacement of the isopropyl with a benzyl group may 

enhance antimalarial activity. The tomentosones and watsonianone represent the first reported $-

triketone inhibitors of P. falciparum. 
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3.1.2 Proposed Retrosynthetic Analysis 
 

Both their challenging bis-furan structure and their enthralling biological activities lead us to 

consider rhodomyrtosone A 3.1 and the tomentosones A 3.2 and B 3.3 as possible synthetic 

targets.  

We envisioned a synthetic pathway for rhodomyrtosone A 3.1, which was inspired by their 

biosynthesis (Scheme 4.1).79 Rhodomyrtosone A 3.1 may be obtained from addition of acyl-

phloroglucinol 3.7 with endoperoxide 3.8 and bis-furan formation (Scheme 4.1). Endoperoxide 

3.8 could arise from [4+2] cycloaddition of oxygen and the dienol 3.10 which may be obtained 

via photo-enolization of monoalkylidene 3.11. 

Scheme 3. 1. Retrosynthetic Analysis for Rhodomyrtone A 4.1 and Tomentosones A 4.2 and 
B 4.3. 
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Several challenges and questions arose from this proposed synthesis. The formation of the 

bis-furan core will constitute one of the main challenges of this synthesis. The bis-furan 

formation may be an acid-mediated event for which two limiting mechanisms can be proposed 

(Scheme 3.2).  

Both pathways may start with the formation of vinyloxocarbenium intermediate 3.13 upon 

protonation of 3.8 to form intermediate 3.12 and dehydration to form 3.13. Intermediate 3.13 

could undergo a Kornblum DeLaMare80 like rearrangement to form diketone intermediate 3.14, 

which would then react with acyl-phloroglucinol 3.7 via 1,4 conjugate addition and subsequently 

form hemiketal intermediate 3.15. Acid-mediated ketal formation would provide rhodomyrtosone 

A 3.1. In pathway B, 1,4 conjugate addition with the reactive vinyloxocarbenium 3.13 and acyl-

phloroglucinol 3.7 may occur first to form intermediate 3.16. Upon rearrangement, 3.16 may lead 

to the keto intermediate 3.17, which may promptly undergo ketalization under acid-mediated 

conditions to provide rhodomyrtosone A 3.1. 

The development of an efficient and high yielding process to prepare endoperoxide 3.8 is also 

of high interest in this synthetic proposal. We turned our attention to the pioneering work of 

Snider and coworkers in order to better understand the challenge at hand. In their synthesis of 

racemic chondrillin and plakorin, both biologically active compounds isolated from marine 

organisms, Snider and coworkers extensively studied the formation of endoperoxides. Upon 

photoirradiation of 3.18, they obtained a 1.7:1 mixture of diastereomers 3.23 in 72 % yield and 

1.7:1 diastereomeric ratio (Scheme 3.3). They proposed a facile photoisomerization of ketone 

3.18 to its E isomer 3.19 in order to allow the photo-enolization to occur and produce reactive 

dienol 3.20. Dienol 3.20 can exist as a mixture of two diastereomers. Then, photo-

hydroperoxidation may occur.  
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Scheme 3. 2. Limiting Mechanisms for the Formation of Rhodomyrtosone A. 

 
 

Although very minor, the formation of trans-enone 3.21 was observed by NMR in this process 
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photo-isomerization process. Upon cyclization, cis-enone 3.22 may yield 3.23. Although this 

process was proposed to be stepwise and to involve intermediates 3.21 and 3.22, a concerted 

process cannot be ruled out. 

 
Scheme 3. 3. Snider’s Mechanistic Observation. 

 
 

During their studies, Snider and coworkers ruled out the possibility that singlet oxygen may 

be involved. Additionally, they proposed that the role of the sensitizer Rose Bengal Lactore 

(RBL) may be to promote the formation of the dienol intermediate and excite this dienol to an 

excited state to allow it to react with triplet oxygen or serve as an initiator for a radical process.  

In the context of our proposed retrosynthesis, efficient formation of endoperoxide is of 

crucial importance. Photo-irradiation of monoalkylidene 3.11 may provide dienol 3.10 which may 

undergo a concerted [4+2] cycloaddition with triplet oxygen. In this case a possible photo-

isomerization from the E, Z dienol to the E, E dienol therefore may occur providing a mixture of 

diastereomeric endoperoxides 3.8A and 3.8B. Alternatively, dienol 3.10 may undergo photo-

mediated hydroperoxidation to produce enone 3.24 and/or its isomer 3.25. Enone 3.25 would 

provide a mixture of diastereomeric endoperoxides 3.8A and 3.8B upon cyclization.  
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Scheme 3. 4. Mechanistic Considerations for the Formation of Monoalkylidenes 3.8. 

 
These mechanistic considerations will need to be addressed in our work. This prompted us to 

gain a better understanding of the methodologies available to prepare endoperoxides as well as to 

gather more information regarding their reactivities and uses. 

 

3.2 Literature Background on Endoperoxides 
 

Several groups have been investigating methods to prepare efficiently endoperoxides and all 

have studied their reactivity and used them as intermediates en route to the syntheses of more 

advanced compounds. As previously mentioned, endoperoxides have been of interest in the 

development of new anti-malarial compounds. Although there is no consensus regarding the 

mechanism through which artemisinin derivatives kill the parasites, several research groups have 

proposed that artemisinin exerts its antimalarial action by perturbing redox homeostasis in 

malaria parasites.81 Redox homeostasis is induced when the malaria causing parasites consume 

red blood cells, which contain hemoglobin, a process that generates oxidative stress. A theory is 

that the iron of the heme directly reduces the peroxide bond in artemisinin, which damages the 

parasite and lead to its death. Accordingly, some of the reactivity studies presented herein involve 

iron reduction of endoperoxides. 
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3.2.1 Endoperoxides: Preparation, Reactivity and Mechanism 
 

In 1979, Adam and coworkers synthesized !-pyrone endoperoxides and studied their thermal 

decomposition. 82  !-Pyrone endoperoxides were prepared from !-pyrone 3.26 which upon 

exposure to light (589 nm) and oxygen at 0 °C provided formal [4+2] adduct 3.27 in over 90 % 

yield. They proposed a radical mechanism for this event involving singlet oxygen. Then, thermal 

decomposition of 3.27 extruded carbon dioxide to provide two compounds, diketone 3.28 and 

endoperoxide 3.29. Adam and coworkers hypothesized that diketone 3.28 may be an intermediate 

in the formation of 3.29 by a 6, electrocyclization or may be the result of further decomposition 

of 4.29 by an electrocyclic ring opening. Their studies lead them to conclude the second was 

more likely (Scheme 3.5). During their work they noticed a chemiluminescence phenomena, 

which prompted them to use fluorescers to enhance the phenomenon. When running the 

decomposition reaction of 3.27 in chloroform in a sealed tube under vacuum and in the presence 

of the fluorescer rubrene, the chemiluminesence rate was increased and consequently the rate for 

the decomposition of 3.27 as well. This provided evidence for their proposed radical mechanism 

for the decomposition of 3.27 (Scheme 3.5). 

Scheme 3. 5. Adam’s Pioneering Work. 

 
In 1982, Holfheinz and coworkers achieved the first synthesis of artemisin 3.6 (also named 

qinghaosu) from (-)-isopulegol 3.30. By using a photo-oxygenation reaction with 3.31, methylene 

blue as singlet sensitizer, oxygen at -78 °C, they were able to obtain racemic artemisisin 3.6 after 

acidic workup with formic acid in 30 % yield over two steps (Scheme 3.6).4 
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Scheme 3. 6. Hofheinz Synthesis of Artemisinin. 

 
In 1989, Yoshida and coworkers prepared several endoperoxides using electrochemistry to 

generate the required radicals to form 3.35-3.38 in 11 % to 79 % yields (Scheme 3.7).83 They 

were able to confirm that a radical mechanism may likely be involved by repeating their 

experiment using AIBN as a radical initiator and successfully obtained 3.35-3.38 in 12 % to 90% 

yield.  Calculations demonstrated that the chair–chair conformation and a cis-junction was 

favored for the bicyclic endoperoxides.  

Scheme 3. 7. Yoshida’s Synthesis of Endoperoxides. 
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observe any reaction and that the oxidation of cyclopentadione 3.34 was likely the first step of the 

reaction sequence. They setup to study the reactivity of endoperoxides 3.35 and found that upon 

exposure to acidic conditions endoperoxides 3.35 was forming diketone 3.41.  

Scheme 3. 8. Yoshida’s Mechanistic Proposal for the formation of 3.35-3.38. 

 

They confirmed the formation of a tertiary carbocation at the bicyclic junction in intermediate 

3.39 by repeating the experiment in methanol and obtaining the methanol-substituted 
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evaluated (Scheme 3.9, b).  
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found to be catalytic with respect to the ferrous sulfate.  

Scheme 3. 9. Yoshida’s Reactivity Studies. 

 
 

In their work to access endoperoxypropellanes, Asahi and coworkers used manganese 

triacetate and acetic acid as the solvent, under air exposure.84 They applied these conditions to 

triketones 3.46 and alkene 3.45 to obtain endoperoxy propellanes 3.47-3.50 (Scheme 3.10, a). 

When applied to 3.52, the reaction was not complete and provided 3.53 in 94 % yield. Activating 

3.53 with a Lewis acid was attempted and provided the desired endoperoxypropellane 3.55. By 

selecting EtAlCl2 the reaction was driven to completion and afforded 97 % of desired 3.55 

(Scheme 3.10, b).  

Both limiting mechanisms may be operating in this process. Intermediate 3.53 may be 

activated by the Lewis acid EtAlCl2, which may ionize the hydroxyl group and allow 

peroxycarbenium 3.56 to form (Scheme 3.11). Reactive intermediate 3.56 may be attacked by an 

enolate in an intramolecular fashion to form endoperoxypropellane 3.55 (Scheme 3.11 a). 

Alternatively, EtAlCl2 may activate the ketone and render it more electrophilic allowing for the 
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as the operative one although they did not discuss the first one. 

Scheme 3. 10. Asahi’s Synthesis of Endoperoxypropellanes. 

 
 

 

 

Scheme 3. 11. Proposed Mechanism for the Formation of Endoxypropellane 3.55. 
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In their work toward the synthesis of antimalarial G regulators, Andre-Barres and coworkers 

proposed triplet oxygen-mediated formation of related endoperoxides (Scheme 3.12).  

Scheme 3. 12. Andre-Barres’ Mechanistic Work. 

 
In their studies, they demonstrated that endoperoxide formation was not inhibited in the 

presence of DABCO, a well-known triplet quencher, confirming their hypothesis. They proposed 

that the formation of endoperoxide may involve dienol 3.61 which needs to be formed to allow 

oxygen to add. The formation of dienol 3.61 was not inhibited by acid addition and therefore this 

ruled out the hypothesis of a required base-mediated formation. Therefore, Andre-Barres and 
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different radicals intermediate in the reaction process.85  Although EPR-spin studies were not able 
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mechanism implying the homolytic cleavage of the peroxo-bond in 3.64-3.66 and the formation 

of radical intermediate 3.67 in equilibrium with 3.68 was proposed. After formation of 3.67; 

opening of the triketone may occur yielding 3.69. Then, three divergent pathways may lead to the 

different products observed. First, in pathway A and C, a 5-exo trig may occur yielding five 

member ring radical intermediate 3.70, which may form cyclopropane radical 3.71. Then the two 

pathways A and C diverge. In pathway A, upon opening of 3.71, 3.72 may be obtained (Scheme 

3.13, pathway A). In pathway C, the presence of the electron-withdrawing fluoro-substituent, 

may be operative and cyclopropane intermediate may open forming a more stable radical 3.74 

eventually leading to 3.75, which upon lactonization and fluorohydric acid elimination may yield 

3.76 (Scheme 3.13, pathway C). For compound 3.65 pathway A may exist along with pathway B, 

which may involve a dismutation and lactonization event yielding 3.77 and 3.78 (Scheme 3.13, 

pathway B).  

Johnson and coworkers obtained Meldrum-acid-derived endoperoxides using a copper (I)-

mediated hydroperoxidation of derivatives 3.79 (Scheme 3.14, a). Methyl, alkene and alkynes 

substituents were well tolerated in this reaction, providing hydroxyperoxides 3.80-3.82 in high 

yields.87 Then, a gold-mediated endoperoxidation with 3.83 afforded 3.84 in 83 % yield (Scheme 

3.14, b). Compound 3.84 was subsequently reduced in a two-step sequence. Using palladium on 

carbon and hydrogen, they obtained compound 3.85, which was further reduced under ionic 

hydrogenation conditions yielding tetrahydrofuran 3.86 in 90 % yield. Interestingly, when 

reversing the order of these two steps, endoperoxide intermediate 3.87 was obtained and 

rearranged to form lactone 3.88 during the second reduction.  
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Scheme 3. 13. Andre-Barres’ Reduction Studies. 
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Scheme 3. 14. Johnson’s Hydroperoxidation of Meldrum Acid Derivatives. 
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3.2.2 Bis-Furan Formation 
 

Using endoperoxides to access bis-furan core structures has never been reported to the best of 

our knowledge, and therefore, our approach will constitute a novel way to access the bis-furan 

core of rhodomyrtosone A. Additionally, relatively few compounds possess a similarly 

substituted bis-furan core and very few synthetic examples for the synthesis of similar bis-furan 

structure were described in the literature.  

During their synthetic studies toward the racemic lysidicin A 3.93, Watanabe and coworkers 

prepared the required --diketone precursor 3.91 in 83 % yield by performing an ozonolysis of 

intermediate 3.90, which was obtained from 3.89 in 10 steps.88 After ozonolysis, deprotection of 

the acetyl protecting group was achieved, followed by acid-mediated ketal formation using p-

TsOH in 81 % yield over two steps, providing lysidicin A precursor 3.92 in 81 % yield after 

benzyl protection (Scheme 3.15). Lysidicin A 3.93 was obtained after 3 additional steps 

involving acylation and deprotection.  

In this work, the --diketone precursor 3.91 was obtained from ozonolysis and not from an 

endoperoxide intermediate. Nevertheless, these studies illustrate the relevance of such 1,4 

diketone intermediate in a synthetic sequence.  

Finally, Yin and coworkers were able to prepare several substituted bis-furan compounds.89  

Starting from easily accessible substituted furan intermediates 3.94, they used a palladium 

(II)/TMEDA-mediated Claisen rearrangement/dearomatization/aromatization sequence to obtain 

compounds 3.95-3.99 in good yields (Scheme 3.16). 
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Scheme 3. 15. Watanabe’s synthesis of racemic lysidicin A. 

 

 
 

Scheme 3. 16. Yin’s Dihydro-furo-furans and Polysubstituted Furans Synthesis. 
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All the previous examples have provided useful insights about the reactivity of 

endopereoxides and the likely mechanism occurring when opening them, as well as some 

information about the type of intermediate formed upon opening. These literature precedents for 

ketal formation provide some insight regarding reaction conditions that could ultimately be used 

for bis-furan formation. 

 
3.2.3 Vinyloxocarbeniums: Literature Precendents 

 
The relevance of a peroxycarbenium intermediate in our retrosynthetic analysis prompted us 

to examine our previous investigators studies regarding vinyloxocarbenium intermediates 

preparation and reactivity. In their excellent review, Harmata and coworkers gave an overview on 

ways to generate vinyl oxocarbeniums or oxocarbeniums as well as their uses in cycloaddition 

reactions.90  These methodologies include Lewis acid mediated, Brønsted acid mediated or 

thermal generations. 

 

3.2.3.a. Vinyl oxocarbeniums in [4+2] cycloadditions. 
 

In 1994, Sammakia and coworkers revisited the ionic Diels-Alder methodology initially 

developed by Gassman91 and coworkers in the late 1980s. Sammakia and coworkers developed a 

diastereoselective variant, which instead of using Brønsted acid to generate the ionized partners, 

utilized a mixture of titanium tetrachloride and titanium isopropoxide as activating Lewis acids.92 

They were able to react chiral acetal 3.100 with isoprene using excess titanium (IV) in 

dichloromethane at low temperature. The Diels-Alder adduct 3.103-3.104 were obtained in 54 % 

to 85 % yield and moderate diastereomeric ratio. The diastereoselectivity was proposed to stem 

from the minimization of A1,3 steric interactions between the two methyl groups in the transition 

state 3.101 as well as the favored eclipsed interaction between the oxygen chelated to the Lewis 

acid and the C-H bond ! to the oxonium ion (Scheme 3.17).  
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Scheme 3. 17. Sammakia’s Lewis Acid Mediated Vinyloxocarbenium Synthesis. 

 

In 1995, Sammakia and coworkers were able to generate vinyl oxocarbenium intermediates 

and use them in Diels Alder reaction with simple dienes 3.106-3.108. They used catalytic 

fluoroboric acid as Brønsted acid to generate the vinyl oxocarbenium intermediate in toluene and 

synthesized 3.109-3.111 in moderate to good yields and excellent diastereoselectivities, which 

may likely be linked to the size of the substituent in the !’ position (Scheme 3.18).93  

Scheme 3. 18. Sammakia’s Brønsted Acid Mediated Vinyl Oxocarbeniums Preparation. 
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vinyl oxocarbeniums is a powerful method allowing for asymmetric reaction development.    
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a triflimide 3.114 to catalyze the [4+2] cycloaddition of !,$-unsaturated acetals 3.112 with 
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simple dienes 3.113 to obtain substituted cyclohexenes 3.115-3.118 in moderate yield, 

diastereoselectivity, and enantioselectivity (Scheme 3.19).94 

Scheme 3. 19. Nagorny’s Enantiocontrolled Bronsted Acid-Mediated Vinyloxocarbenium 
Preparation. 

 

 

3.2.3.b. Vinyl oxocarbeniums in [3+2] cycloadditions. 
 

Although rare, [3+2] cycloadditions involving vinyl oxocarbenium intermediate have been 

described in the literature. Lee and coworkers and Nakamura and coworkers were among the first 

to develop [3+2] cycloaddition with vinyloxocarbenium.95  

More interestingly, in 2004 and 2006, Wilson and coworkers synthesized the xyloketals A 

3.119 and xyloketals B 3.120, C 3.121 analogues using a vinyloxocarbenium carbenium 

intermediate and phloroglucinol as the nucleophile (Figure 3.3).  
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Figure 3. 3. Xyloketals A, B , and C. 

 
The xyloketals were isolated from the Xylaria genus 96 and possess a [4.3.0] fused bicyclic 

ketal moiety although with a different bond connectivity than in the bullataketals could be 

assembled by the addition of phloroglucinol 3.9 with vinyl oxocarbenium intermediate 3.124, 

which was generated in situ from hydroxylated precursor 3.123. They were able to obtain 

xyloketal A 3.119 in 79 % yield, and in a 5:2 diastereomeric ratio by using a stoichiometric 

amount of boron trifluoride etherate in diethyl ether at -78 °C.97 They proposed that the 

diastereoselectivity may stem from the steric effects induced by the methyl substituent at C-4 

with regard to the ether oxygen in 3.123 (Scheme 3.20 a). They were able to use their synthetic 

strategy to prepare xyloketals B and C analogues 3.127-3.129 (Scheme 3.20 b).98  

      To achieve the syntheses of 3.127-3.129, the investigators introduced an ester group on the 

phloroglucinol to obtain 3.126 and were able to block selectively one of the nucleophilic sites and 

only generate two additions. By reacting 3.125 with 3.126, they were able to obtain a mixture of 

linear and an angular pentacyclic fused bicyclic ketals 3.127-3.129 in a 58 % combined yield and 

a 5:5:1 selectivity. The products were obtained as a mixture of diastereoisomers due to a lack of 

selectivity control with this methodology. 
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Scheme 3. 20. Synthesis of Xyloketal A and B and C Analogues. 

 
 

Removal of the ester group using a decarboxylative saponification using sodium hydroxide in 

a methanol and water mixture under reflux conditions provided xyloketals B and C analogues. 

These synthetic examples provided encouraging insights for our proposed synthetic approach. 

Indeed, they demonstrated the feasibility of a formal [3+2] using vinyl oxocarbeniums as active 

intermediates. 
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3.3 Synthetic Studies: Rhodomyrtosone A, Plan Toward The Tomentosones 
 
 

3.3.1 Flow-Mediated Synthesis of Endoperoxides: Literature Precedent 
 

We first attempted to prepare our initial endoperoxides as efficiently as possible under 

photochemical conditions. Synthetic photochemistry carried out in classic batch reactors has, for 

over half a century, proved to be a powerful but underutilized technique in organic synthesis. 

Recent developments in flow photochemistry have the potential to allow this technique to be 

applied in a more mainstream setting.99  

Bond formation using ultra-violet light irradiation in synthetic organic chemistry has a long 

history dating back to the mid-19th century. The most common apparatus, which had been used 

for the past 50 years, was the immersion-well photo-reactor in conjunction with mercury-vapor- 

discharge lamps. Although pioneering work has been achieved in this field, many chemists shied 

away from photochemistry due to several pitfalls associated with the batch method. The 

equipment was often not suitable and it may have been difficult to identify the right lamp for the 

proper irradiation. Additionally, safety concerns such as over-heating mercury lamps and 

potentially damaging UV radiation have rendered the technique less desirable.  

Finally, and perhaps the biggest issue with the medium, was the difficulty to scale up, at least 

at the laboratory scale, limiting synthetic efforts. Therefore, this method has been underutilized 

and many interesting bond connections were not achieved photochemically.   

Flow chemistry has begun to emerge about 15 years ago and has been pioneered by the Ley 

group and others.100 This technology has started to make a major impact in the way many organic 

chemists perform synthesis. Complex organic molecules can be constructed continuously in well-

designed multi-reactor systems linked in sequence and under precise software control allowing to 

perform nearly all-common reaction which were usually run in batch.  
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Flow chemistry has made photochemistry more attractive as it has solved many of the issues 

associated with the technique.  Under flow conditions, only a very small amount of the total 

reaction solution is exposed intense UV irradiation from the light source at a given time, thus 

leading to very efficient, uniform irradiation of the whole reaction solution over time. Both the 

under and over irradiation problems, often encountered when performing batch reaction, can be 

addressed by precisely controlling the UV exposure using different flow-rates and reactor 

volumes. Scaling-up is now allowed efficiently. Flow devices usually operate continuously and 

therefore are scale independent, a single reactor can in principle be used to process a few 

milligrams of substrate up to nearly a kilogram per day. Both high concentration and very low 

concentration reaction are enabled due to shorter path length. Finally, most of the safety concerns 

are alleviated. With this method, the bulk of the solution is kept remote from the lamp and only a 

minimal amount of flammable solvent is near a potential ignition source at any one time.   

Scheme 3. 21. Seeberger’s Flow-Mediated Synthesis of Artemisin 4.6. 
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ethylene propylene (FEP) tubing wrapped around a Schlenk photochemical reactor containing a 

450W medium-pressure mercury lamp that was cooled to 25 °C. A solution of 3.131 in 

dichloromethane (2.5 mL.min-1) was added by a Vapourtec R2C+ pump and oxygen gas (5 

mL.min-1) was delivered by a mass-flow controller connected to a gas cylinder. The solution of 

3.131 and the oxygen gas were mixed using an ethylene tetrafluoroethylene (ETFE) T-mixer. 

Tetraphenylporphyrin (TPP) was used as a sensitizer. Under these conditions, 1.5 mmol of 3.136 

was produced per minute, in 91% conversion and 75% yield. Then, the Hock cleavage was 

investigated independently and TFA was found to be the best Brønsted acid to mediate this 

reaction.102 Optimal results were obtained when a 42 mL reactor was used with the solution of 

3.131 in dichloromethane added at a flow rate of 2.5 mL.min-1, oxygen at 5.0 mL.min-1, and TFA 

in dichloromethane at 0.5 mL.min-1. The first portion of the reactor (32 mL) was maintained at 

room temperature while the last portion (10 mL) was heated to 60 °C to push the reaction to 

completion. Hock cleavage took place in a PTFE reactor (26 mL volume total, with 16 mL 

maintained at room temperature and 10 mL heated at 60°C). A residence time of approximately 

2.5 min was required for the Hock cleavage, oxidation with triplet oxygen, and further 

condensation. After a total residence time of 4.5 min, a product stream comprising mainly 

artemisinin was obtained in a 39 % from 3.6 after purification. This gave us confidence that 

endoperoxides could be obtained using this method. 

 

3.3.2 Flow-Mediated Synthesis of Endoperoxide 3.8 
 
3.3.2.a Initial Set-Up 
 

Our studies were initiated with the preparation of monoalkylidene 3.11 described in Chapter 

2, followed by the evaluation of different solvent systems in batch, using a Rayonet apparatus for 
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irradiation. We obtained a 20% yield of a 3.8 using dichloromethane and methanol as a solvent 

system, which was saturated with oxygen (Table 3.1, entry 1).  

Adding a triplet sensitizer, either in stoichiometric or catalytic amount, did not improve the 

reaction yield (Table 3.1, entries 2-4). Switching to triplet sensitizing solvent also yielded 20 % 

of 3.8 (Table 3.1, entry 5). We then hypothesized that a base could facilitate the formation of the 

require dienol intermediate 3.10. Adding a catalytic amount of DBU decreased the yield by half 

producing only 10 % of the desired endoperoxide.  

Inclusion of either triplet sensitizers or bases was found to be inefficient. Accordingly, we 

decided to utilize dichloromethane and methanol to develop photo-flow conditions (Table 3.1, 

entries 6 and 7). 

Table 3. 1. Optimization Studies for the Synthesis of Endoperoxide 4.8. 

 
 

Entry Solvent Additives (equiv) Process Yield (3.8) 

1 CH2Cl2:MeOH 
(1:1) none Rayonet 20 % 
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3 CH2Cl2 
 

Rose Bengal   
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Rayonet 20 % 
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6 CH2Cl2 
 

DBU  
(0.1 equiv) 

Rayonet 10 % 

7 CH2Cl2 

 
DBU  

(0.1 equiv) 
     Rose Bengal  

(2.5 mol%) 

Rayonet Decomposition 

8 CH2Cl2:MeOH 
(1:1) none Flow (rate= 0.6 

mL/min; RT = 5.1 min) 40 % 

9 MeOH none 
 

Flow (rate=0.5mL/min; 
RT= 6.2 min) 

54 % 

 
We used Idex Health Science PFA (perfluoroalkoxyalkane) tubing (ID 0.062 in, OD 0.125 in, 

500 psi max pressure). This material offered the advantage to be highly transluscent and to have 

higher tolerance for high temperature and a broader chemical compatibility. The reactor was 

1.614 meter in length and the total volume was 3.1 mL. The lamp provided UV light at 350 nm.  

Using a flow rate of 0.6 mL.min-1 provided 40 % of the diastereomeric mixture (Table 3.1, entry 

8). Switching the solvent to methanol and slowing down the flow rate provided 50 % of the 

diastereomeric mixture (Table 3.1, entry 9). The flow-chemistry set-up is shown in Figure 3.4. 

These results demonstrated that flow photochemistry is superior to regular batch 

photochemistry for this process probably reducing the decomposition of products.  Additionally, 

we believe that the dienol 3.10 formation is photo-mediated whereas the [4+2] reaction may not 

be and may involve triplet oxygen (see Chapter 3, 3.1.2). This was reported for similar substrates, 

by Andre-Barres and coworkers.11 
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Figure 3. 4. Flow Set-Up for The Synthesis of Endoperoxides 3.8. 
 

 

3.3.2.b Disatereomeric Outcome: Discussion and Rationale 

In this process, both diastereomers of 3.8 are formed in a ratio close to 1:1. This prompted us 

to undertake model studies. Both the cis-dienol 3.10B and the trans-dienol 3.10A can form during 

the photo-enolization process. After performing DFT calculations, the trans-dienol 3.10A was 

found to be slightly lower in energy by 1.77 kcal.mol-1 at ground-state (Figure 3.5). Since 

formation of both dienols involves photo-irradiation, this process may likely implicate excited 

state intermediates and therefore the ground-states energy difference may not influence the 

reaction outcome. The [4+2] cycloaddition with oxygen may then occur and produce trans-

endoperoxide 3.8A and cis-endoperoxide 3.8B. DFT calculations have found that trans-

endoperoxide 3.8A and cis-endoperoxide 3.8B were only separated by 0.19 kcal.mol-1 and we 

experimentally observed a 1:1 ratio for this process. Therefore, the formation of the dienol may 

likely influence the diastereomeric outcome of this process.  

Exposing dienols to triplet oxygen was the limiting factor in this flow set-up. The reactions 

were run with balloons of oxygen constantly bubbling in the starting material flask and the 

receiving flask. Because it was difficult to control the amount of oxygen incorporated in the 

solvent the reliability of this process was low. 
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Figure 3. 5. DFT Models for 3.10 and 3.8. 

 
3.10A (trans) rel. E: 0 kcal.mol-1   3.10B (cis) rel. E: 1.77 kcal.mol-1  

 

 
3.8A (trans) rel. E: 0 kcal.mol-1   3.8B (cis) rel. E: 0.19 kcal.mol-1  

 
 

Additionally, we observed the formation of several non-isolable byproducts with higher 

molecular masses and some decomposition during the course of the reaction. Decreasing the 

concentration of the starting material solution helped reducing the occurrence of high molecular 

mass byproducts. Decomposition was still an issue and may have been due to the presence of 

irradiated oxygen in the photo-enolization process. Utilizing only one balloon of oxygen in the 

receiving flask did not yield any products probably because the amount of oxygen in contact with 

the dienols was not sufficient. 

3.3.2.c Improved Flow Set-up: Preliminary Studies 

To improve the yield for the endoperoxides formation and obtain a cleaner reaction profile, 

we decided to revisit the flow set-up. We attached a chamber containing a PFA gas porous tubing 

loop to the photo-box exit. This chamber could be sealed and put under a constant pressure of 

oxygen. The oxygen pressure could be controlled with a back-pressure regulator (Figure 3.6). 

Our hypothesis was that by suppressing the oxygen from the starting material solution and 
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therefore in the photo-enolization process the reaction profile would be significantly cleaner. 

Additionally, applying a sufficient pressure of oxygen in the chamber could efficiently promote 

the [4+2] cycloaddition.  

Figure 3. 6. Oxygen Pressured Flow Set-up. 

 

Our initial experiment was done with an oxygen pressure of 4 PSI and a flow rate of 0.7 ml.min-1. 

It provided only 10 % of a 1:1 mixture of 3.8A and 3.8B. The mixture of 3.8A and 3.8B  was the 

only product observed in this reaction and unreacted monoalkylidene 3.11 constituted the rest of 

the mass balance(Scheme 3.23a).  When the flow rate was decreased to 0.46 mL.min-1 the yield 

was doubled and the reaction profile remained clean (Scheme 3.23b).  

We believed that in this case the low conversion observed was due to the limited formation of 

dienol 3.10 from 3.11. This may be explained by several phenomena. The flow rate may be too 

rapid to allow for a complete conversion of 3.11 to 3.10 and therefore some non-reacted 3.11 

remained in the reaction.  
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Scheme 3. 22. Initial Experiment with the Oxygen Pressured Flow Set-Up. 

 
 

Additionally, several questions regarding the lifetime of the dienol were brought to our 

attention. In their work, Weedon and coworkers, found that after being formed from 3.134, dienol 

3.135 was involved in a reketonization process via a 1,5 hydride shift. This process was found to 

be very rapid and the half-lifes of the studied dienols were ranging from 20-100 "s (Scheme 

3.23).103 

Scheme 3. 23. Weedon’s Dienol Lifetime Studies. 

 
 Therefore, we believed that in our studies dienol 3.10 may be involved in a similar process 

and when dioxygen was added at the end of the photoenolization only a small amount of reactive 

dienol 3.10 was available to react. This may explain the lower yields observed in the second flow 

set-up experiments. The cleaner reaction profile may be explained by the fact without irradiation 

the dienol 3.10 can only engage in a reketonization process and reform 3.11. Additionally, the 

reketonization may be faster than the cycloaddition with oxygen impairing the conversion of 3.10 
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to 3.8 even more. In the first set-up the presence of oxygen in the irradiation process may help 

trap the dienol promptly which may explain the higher yields observed but it may also caused 

byproducts formation which may explain the messy reaction profile.  

Future development may involve the determination of a slower optimal flow rate to obtain a 

higher yielding process as well as the determination of a more efficient way to incorporate 

oxygen in the reaction. 

 
3.3.3 Rhodomyrtosone A 
 

With a reliable way to produce endoperoxide 3.8, we next investigated the synthesis of 

rhodomyrtosone A 3.1, in order to develop methodology for bis-furan-containing natural product 

syntheses. Endoperoxide 3.8 and acyl-phloroglucinol 3.7 were submitted to acidic conditions 

(excess AcOH) and heat and provided the bis-furan containing rhodomyrtosone A 3.1 in 60 % 

yield (Scheme 3.24). 

Scheme 3. 24. Synthesis of Rhodomyrtosone A 3.1. 

 
This methodology could be utilized to access watsonianone B and more complex members of 

the family. 
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intermediates formation under acidic conditions. We submitted a solution of endoperoxide 3.8 

(one isolated diastereomer) in CDCl3 to 30 mol % of triflimide (Figure 3.7). After five minutes, 

the hydroxyl proton had disappeared letting us suspect that protonation of the hydroxyl group 

may have occured. After one hour, a peak at 9.64 ppm started to form. After five hours a ratio of 

1.4:1 was observed between the peak at 9.64 ppm and the protons at 4.73 ppm (H-8) and at 7.29 

ppm (H-7). This suggested that about 40 % of the endoperoxide had converted to a non-isolable 

reactive intermediate.  

We propose that the reactive intermediate formed may be tetraketone 3.14 or active 

peroxycarbenium intermediate 3.13. 104 We calculated a model of 3.14 and estimated the 1H NMR 

and 13C NMR spectra of 3.14 by using an EDF2, DFT equilibrium geometry conformer model 

(Figure 3.8). A peak at 8 ppm was found to account for the vinylic proton Ha. Additionally, 

similar compounds were successfully isolated by other researchers and are reported to have 

vinylic protons in the 8 to 9 ppm range. 105 The experimental data and the calculated and reported 

data differed by more than 1 ppm. Although our experiments showed the formation of reactive 

intermediates, the data gathered were not sufficient to clearly identify the type of intermediate 

formed.  

Figure 3. 7. 1H NMR Studies: Evidence for the Formation of Diketone 3.14. 
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Figure 3. 8. Model of Tetraketone 3.14.  
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obtain 3.14. Biphasic conditions involving ammonium chloride dissolved in hydrochloric acid 

and dichloromethane let to no reaction. Using trifluoroacetic acid was also unsuccessful as it 

yielded to decomposition and formation of unidentifiable byproducts. Finally, a substoichiometric 

amount of triflimide was attempted without success.  

Scheme 3. 25. Independent Synthetic Work toward Tetraketone 3.14. 

 
 

Although mechanistic evidence strongly support the formation of an active intermediate 

during the formation of rhodomyrtosone A 3.1, the nature of this intermediate remains unclear. 

Both peroxycarbenium intermediate 3.13 and diketone 3.14 are possible relevant intermediates in 

the process, determination of the order of events for the 1,4 addition of 3.8 with acyl-

phloroglucinol 3.7 will require further studies. Either the 1,4 addition may occur with the 

peroxycarbenium intermediate 3.13 and a rearrangement may occur and form a diketone 

intermediate or the diketone 3.14 may form first and then the 1,4 addition may occur (see Scheme 

3.2).  
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presented our nickel-mediated 1,4 conjugate addition. With these synthetic tools in hand we are 

proposing two synthetic routes to access the tomentosones 3.2-3.3. 

In our first proposed route, endoperoxide 3.8 may be reacted with racemic rhodomyrtone A 

3.140 under acid-mediated conditions to produce a diastereomeric mixture of tomentosone A 3.2 

and B 3.3 (Scheme 3.26). 

Scheme 3. 26. Synthesis of Tomentosones A and B from Rhodomyrtone A. 
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Scheme 3. 27. Synthesis of Tomentosones A and B from Rhodomyrtosone A. 

 
 
 

 
3.4 Studies Toward the Bullataketals 

 
Bullataketals A 3.143 and B 3.144 were isolated from the leaves of the plant Lophomyrtus 

bullata in New Zealand.12 Named “ramarama” by the Maori people, it was extensively used as a 

folk medicine to dress cuts and bruises. The dichloromethane extracts demonstrated cytotoxic and 

more importantly antibiotic activities, which confirmed the traditional ethno-pharmacopeia and 

later were attributed to bullataketals A 3.143 and B 3.144 (Figure 3.9). 
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Figure 3. 9. Bullataketals A and B. 

 

 
 

Both 3.143 and 3.144 possess a $-triketone moiety (syncarpic acid) attached by an alkyl 

linkage to a phloroglucinol derived bicyclic ketal. They were isolated as racemates. Importantly, 

this unique bicyclic ketal structure has been observed in only three other natural products named 

castavinols 3.145-3.147 (Figure 3.10). The castavinols were isolated from Bordeaux red wines 

and also possess the unique [3.2.1]-bicyclic ketal moiety.107  

Figure 3. 10. The Castavinols. 
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efficient treatments. Bullataketals A 3.143 and B 3.144 demonstrated activity against P388 mouse 
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subtilis with an IC50 of 30 "g per disk. These biological activities render these targets very 

attractive from a medicinal point of view and for further SAR studies. 

No syntheses have been achieved to date for the bullataketals 3.143-3.144, which added to 

their unique and challenging structure and their interesting biological activities, makes them 

compelling synthetic targets and warrants investigation. 

The proposed structure for bullataketals A 3.143 and B 3.144 was ultimately confirmed by X-

ray crystallography. Interestingly, the bullataketals A 3.143 and B 3.144 co-crystallized in a 

single unit cell, a phenomenon also oberserved for the kunzeanones A and B.108 Bullataketals A 

5.1 and B 5.2 were found to be epimeric at C-7’.  

 
3.4.1 Biosynthesis 
 

We were interested in developing a biomimetic synthesis for the bullataketals A 3.143 and B 

3.144 based on the proposed biosynthetic pathways discussed in the literature.  

In their work during the isolation of the bullataketals A 3.143 and B 3.144, Perry and 

coworkers proposed an aldol reaction/reduction sequence between acylated phloroglucinol 3.152 

and compound 3.153 to account for the formation of intermediate 3.154.1 The authors also 

proposed that the central acyl phloroglucinol fragment 3.152 may be derived from isobutyryl-

CoA 3.149 by a polyketide synthase (PKS) leading to 3.151 and then adding three malonyl-CoA 

units 3.150. Then a poly-methylation of 3.152 with S-adenosyl methionine (SAM) may lead to 

the formation of 3.153. A first Aldol reaction/reduction sequence involving the fragments 3.152 

and 3.153 may provide 3.154, which will undergo a second Aldol reaction/reduction sequence 

with intermediate 3.158 to yield 3.159. Intermediate 3.158 may stem from a biosynthetic Claisen 

condensation of benzoyl-CoA 3.155 and 3.151 followed by a dehydrative cyclization to form 

bullatenone 3.158. Bullatenone 3.158 was co-isolated with the bullataketals and therefore may 
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likely be a relevant intermediate in their biosynthesis. Intermediate 3.159 may undergo an acid 

catalyzed cyclization to afford bullataketals A 3.143 and B 3.144 (Scheme 3.28).  

Scheme 3. 28. Perry’s Bullataketals A and B Proposed Biosynthesis. 
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3.161 to form oxonium 3.162 (Scheme 3.29). Upon addition of the non-conjugated alkene into 

the ketone, the bicyclic ketal 3.163 may form while generating a tertiary oxonium. An enzymatic 

reduction may provide the desired castavinols bicyclic ketal 3.164. 

Both biosynthetic proposals offer some insight on possible reaction intermediates, which 

could be envisioned for the synthesis of the bullataketals 3.143-3.144.  Bullatenone 3.158 may be 

an intermediate in the synthesis, which also may require the formation of an activated oxonium 

species for the formation of a bicylic ketal core. 

Scheme 3. 29. Vercauteren’s Proposed Castavinols Biosynthesis. 
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which itself may be obtained rapidly from bullatenone 3.158 through reductive dehydration. 

Bullatenone 3.158 may be obtained from benzoyl chloride 3.167 and alkyne 3.168 by a 

Sonogashira coupling/cycloisomerization sequence. Acyl phloroglucinol 3.166 may be obtained 

from a selective acylation of phloroglucinol 3.9 (Scheme 3.30). 

Scheme 3. 30. Retrosynthetic Analysis for Bullataketals A 5.1 and B 5.2. 
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ethanolic diethylamine solution followed by acid treatment to provide bullatenone 3.158 in 60 % 

yield (Scheme 3.31).  

Scheme 3. 31. First Synthesis of Bullatenone 5.19. 

 
 

The ynone intermediate 3.170 seemed to be a relevant intermediate in the synthesis of 

bullatenone and therefore we were interested in finding a more expeditious way to obtain 3.170, 

which will not require harsh conditions or high pressure of carbon dioxide as reported by Inoue 

and coworkers.110 

Attracted by the idea of utilizing a mild Sonogashira reaction for the preparation or 3.170 we 

were pleased to find that Maleczka and coworkers developed a methodology to enable 

Sonogashira coupling of alkyne 3.171 with aromatic acyl chloride 3.172 to obtain ynones 3.170, 

3.173-3.174 (Scheme 3.32).111  Using polymethylhydrosiloxane (PMHS) as an additive with 

cesium fluoride, copper chloride and NMP as solvent, they obtained ynones 3.170, 3.173-3.174 in 

47 %, 68 % and 73 % yields respectively (Scheme 3.32).   

Scheme 3. 32. Maleczka’s Ynone Synthesis. 
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Similarly, Müller and coworkers developed mild Sonogashira conditions during their 

synthetic work towards iodopyrroles. Using aromatic acyl chloride 3.175 and alkyne 3.176 in the 

presence of catalytic PdCl2(Ph3P)2 and copper iodide they were able to prepare ynones 3.177, 

which were readily reacted sodium iodide under acidic conditions to produce 4-iodopyrroles 

3.178 in moderate to high yields (Scheme 3.33).112 

Scheme 3. 33. Müller Iodopyrroles Synthesis. 

 

3.4.4 Synthesis of Vinyloxocarbenium Precursor 
 

Our synthesis of bullataketals 3.143 and 3.144 began with the preparation of the 
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3.170 in 60 % yield (Scheme 3.34).113 Diethylamine-mediated cycloisomerization of 3.170 
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and coworkers. DIBAL-H-mediated 1,2 reduction of 3.158 in a THF:Toluene (1:1) solvent 

mixture provided alcohol 3.179 quantitatively (Scheme 3.34).   
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Scheme 3. 34. Synthesis of a vinyloxocarbenium precursor 3.179. 
 

 

 
 
3.4.5 Formation of Core 3.164 
 

Our hypothesis was that bullataketal core 3.164 could be accessed by reacting bullatenol 

3.179 and acyl phloroglucinol 3.167 under acidic conditions, which would allow for the active 

vinyloxocarbenium 3.165 species to form (Scheme 3.35 a).  

During this reaction, both the ortho and para -phenol of acyl-phloroglucinol 3.167 may react 

as the nucleophile in the cyclization event occurring in the second step to provide 3.164 and 

3.164’. This regio-selectivity question is similar to the one raised during our studies toward 

rhodomyrtone A and rhodomyrtosone B (see Chapter 2). A similar rationale could be utilized to 

explain the outcome of this process. DFT minimization studies of 3.164 and 3.164’ models 

showed that 3.164 was thermodynamically favored by 8 kcal.mol-1 (Figure 3.12), Additionally 

3.164 was also found more stable than the adduct 3.165’ resulting from the 1,4 addition of acyl-

phloroglucinol 3.167 with vinyloxocarbenium 3.165. Finally, the ortho-phenol of acyl-

phloroglcuinol 3.167 may be rendered more nucleophilic due to the proximity of the acyl ketone, 

which may form an activating hydrogen bond with the ortho phenol. 
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Scheme 3. 35. Formation of the Bullataketals Core. 

 
 

Therefore, in this process the ortho cyclization may be kinetically and thermodynamically 
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proposed that a vinyloxocarbenium carbenium intermediate may be involve in this process 
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NOESY data allowed us to assign 3.164 to be the desired core, these data are reported in the 

supporting information section. 

 

 

 

 

OH

HO

O

OH O

OH

Acid Conditions

O

OH

HO

O

O
O

a)

3.167 3.179 3.164

3.165

OH

HO

O

OH O

OH

NHTf2 30 mol %

CHCl3
18 %

OH

HO

O

O
O

3.167 3.179

HO

OH O

OH

O

HO

OH

OH

O

ortho-cyclization

-H2O H+

OH

HO O
O

O

3.164'
para-cyclization

b)

3.164

3.165'



 
 

 

 
 

178 

Figure 3. 11. DFT Minimization of Intermediate 3.164 and 3.164’ and 3.165’. 

 
3.165’ rel. E: 5.1 kcal.mol-1               3.164’ rel. E: 8 kcal.mol-1          3.164 rel. E: 0 kcal.mol-1 
 
 
3.4.6 Future Plan: End Game 
 

With a methodology available to access the core of the bullataketal core 3.164, we proposed 

to access the bullataketal A 3.143 and B 3.144 by using the methodology we developed for the 

synthesis of rhodomyrtosone A 3.1. The last step would involve our previously described nickel-

mediated 1,4 conjugate addition. Reacting monoalkylidene 3.60 with the core 3.164 may afford 

bullataketals A 3.143 and B 3.144 as a mixture of diastereomers (Scheme 3.36).  

Scheme 3. 36. Nickel-Mediated 1,4 Conjugate Addition for the Bullataketals End Game. 
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control the enantioselectivity of the last step to afford bullataketal A or B selectively (Scheme 

3.37). 

Scheme 3. 37. Proposed Enantioselective Synthesis of Bullataketals. 

 
3.5 Conclusion 

 
In this chapter, we described the synthesis of rhodomyrtosone A 3.1 via a flow photo- 
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the bis-furan or bicyclic ketal core was proposed. Acid-mediated formation of rhodomyrtosone 

3.1 and 3.164 was undertaken and 1H NMR mechanistic studies provided preliminary evidences 

for the formation of active carbenium species.  Application of these newly developed reaction 

methodologies to the synthesis of more complex targets and to the enantioselective synthesis of 

the bullataketals was proposed. 
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3.6 Experimental Section 
 

3.6.1 General Information 
 

1H NMR spectra were recorded at either at 400 MHz or 500 MHz (as noted) at ambient 

temperature with CDCl3 as the solvent unless otherwise stated. 13C NMR spectra were recorded 

either at 100.0 MHz or 125.0 MHz (as noted) at ambient temperature with CDCl3 as the solvent 

unless otherwise stated. Chemical shifts are reported in parts per million relative to CDCl3 (1H, % 

7.27; 13C, % 77.0). Data for 1H NMR are reported as follows: chemical shift, integration, 

multiplicity (app = apparent, par obsc = partially obscure, ovrlp = overlapping, s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet) and coupling constants. All 13C NMR spectra were 

recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 

670 FT-IR spectrophotometer. High-resolution mass spectra were obtained in the Boston 

University Chemical Instrumentation Center using a Waters Q-TOF mass spectrometer. Melting 

points were recorded on a Mel-temp (Laboratory Devices). Analytical thin layer chromatography 

was performed using 0.25 mm silica gel 60-F plates. Preparative TLC was conducted with glass 

backed 1000 "m silica gel 60-F plates (Silicycle, Inc.). Flash chromatography was performed 

using 200-400 mesh silica gel (Scientific Absorbents, Inc.). Preparative HPLC was performed 

using the Gilson™ PLC 2020 and a SunFire™ preparative C18 column (OBD™ 5 "m, 19x50 

mm). Yields refer to chromatographically and spectroscopically pure materials, unless otherwise 

stated. All reactions were carried out in flame-dried glassware under an argon atmosphere unless 

otherwise noted. The ArthurTM Suite Reaction Planner (Symyx Technologies, Inc.) was used for 

experimental procedure planning. 

HPLC grade tetrahydrofuran, methylene chloride, diethyl ether and hexanes were purchased 

from Fisher and VWR and were purified and dried by passing through a PURE SOLV® solvent 
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purification system (Innovative Technology, Inc.). Methanol was purchased from Fisher and used 

after distillation following a procedure previously described by Lund and Bjerrum.72  

 

3.6.2 Characterization Data 
 

All chemicals and reagents were used as received from Sigma-Aldrich. Acyl-phloroglucinols 

3.7 and 3.167 were prepared following a previously described procedure.74 Ynone 3.170 was 

prepared following a reported procedure by Muller and coworkers38 and bullatenone 3.158 was 

prepared following a reported procedure by Wilkinson and coworkers.3 The procedure to prepare 

monoalkylidene 3.11 was described in Chapter 2, section 2.9.3. Compound 3.137 was obtained 

using a reported procedure and characterization have also been reported.106, 116 

 

Experimental Procedure for the formation of endoperoxides 3.8A and B: 

Rayonet procedure:  

 

A 0.01M solution of monoalkylidene 3.11 (40 mg, 0.16 mmol) was prepared in 16 mL of 

methanol in a flamed dried pyrex tube under argon at room temperature. A balloon of oxygen was 

bubbled through the solution until it was completely empty. This operation was repeated twice. 

The pyrex tube with a balloon of oxygen still bubbling through was placed in a ice-filled beaker 

in order to avoid over-heating during the irradiation process and to maintain a temperature close 

to 23 °C during the overall process. The beaker was placed in the Rayonet apparatus for 6 h and 

the balloon of oxygen was replaced as needed to maintain an oxygen flow during that time. After 

6 h, the reaction was stopped and the solvents were evaporated in vacuo. Purification using 
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column chromatography over silica gel and a gradient of hexanes:acetone (20:1 to 10:1) provided 

9 mg , 20 % yield of 3.8 as a 1:1 mixture. 

Flow procedure: 

 

A 0.01M solution of monoalkylidene 3.11 (80 mg, 0.32 mmol) was prepared in 32 mL of 

methanol in a flamed dried flask under argon at room temperature. A balloon of oxygen was 

bubbled through the solution until it was completely empty. This operation was repeated twice. 

The reaction flask with a balloon of oxygen still bubbling through was placed hooked to the flow 

set-up. We used Idex Health Science PFA (perfluoroalkoxyalkane) tubing (ID 0.062 in, OD 0.125 

in, 500 psi max pressure). This material offered the advantage to be highly transluscent and to 

have higher tolerance for high temperature and a broader chemical compatibility. The reactor was 

1.614 meter in length and the total volume was 3.1 mL. The lamp provided UV light at 350 nm.  

A chiller maintain set to -10 °C and a fan were used to maintain the overall temperature at 23 °C. 

The optimal flow rate used was 0.5 mL.min-1. After the entire solution was consumed the system 

was flushed with an additional 5 mL of methanol and the receiving flask was replaced by a waste 

container. The irradiation was stopped. The flow set-up was flushed clean with benzene. The 

solution contained in the receiving flask was collected and the solvent was evaporated in vacuo. 

Purification using column chromatography over silica gel and a gradient of hexanes:acetone (20:1 

to 10:1) provided 45 mg of 3.8 as a 1:1 mixture. 

Characterization data for both diastereomers can be found in Chapter 2, Section 2.9.3. 
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Experimental Procedure for the formation of rhodomyrtosone A 3.1: 

 

A solution of endoperoxides 3.8 (1:1 mixture) (6 mg, 0.021 mmol) in acetic acid 1mL was placed 

in a sealed tube and heated a 100 °C for 12 h. Then the reaction mixture was dissolved with water 

and quenched with a saturated sodium bicarbonate solution. The pH was kept slightly acidic. The 

reaction mixture was extracted with ethyl acetate (3 times) and the organic fractions were 

gathered and dried over anhydrous sodium sulfate. The solvents were evaporated in vacuo to 

yield a dark yellow oil. Purification by column chromatography over silica gel provided 6 mg 

(60 %) of 3.1 as a pale yellow gum. 

Rf : 0.7 hexanes:EtOAc 1:1 

IR (thin film): 2960.88, 2930.37, 2873.99, 1720.40, 1649.79, 122.93, 1469.93, 1420.62, 1384.14, 

1305.44, 1215.98, 1171.78, 1052.58, 921.63 cm-1 

1H NMR (500 MHz, Chloroform-d): $ 13.27 (s, 1H), 9.79 (s, 1H), 6.11 (s, 1H), 4.49 (s, 1H), 2.96 (dd, 

J = 14.7, 6.6 Hz, 1H), 2.76 (dd, J = 14.7, 7.2 Hz, 1H), 2.40 (d, J = 6.8 Hz, 1H), 1.52 (s, 3H), 1.42 (d, J = 

5.3 Hz, 6H), 1.34 (s, 3H), 1.10 (dd, J = 11.8, 6.8 Hz, 6H), 1.00 (dd, J = 10.8, 6.7 Hz, 6H). 

13C NMR (126 MHz, cdcl3): $ 211.28, 203.82, 198.45, 179.82, 166.83, 159.90, 159.76, 129.50, 

113.32, 104.34, 101.84, 99.70, 55.26, 51.69, 45.76, 45.10, 35.50, 26.06, 24.50, 24.26, 23.28, 

22.91, 22.87, 15.87, 15.81 

HRMS--ESI (m/z): [M+H]+ calculated for C26H32O7; 457.2226 found, 457.2218 
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Table 3. 2. NMR Data Comparison for Synthetic Rhodomyrtosone A and Natural 

Rhodomyrtosone A. 

 

C# 
13C NMR(ppm) 

 
Natural 3.1 

 
 

Synthetic 3.1 

1H NMR (ppm, 
 

Natural 3.1 

mult, J Hz) 
 

Synthetic 3.1 
1 198.3 s 198.45   
2 55.1 s 55.26   
3 211.1 s 211.28   
4 45.6 s 45.76   
4a 179.7 s 179.82   
4b 159.8 s 159.9   
5 101.7 s 101.84   
6 166.7 s 166.83   
7 99.6 d 99.7 6.11 (s) 6.11 (s) 
8 159.6 s 159.76   
8a 104.2 s 104.34   
9 45.0 d 45.1 4.50 (s) 4.49 (s) 
9a 113.2 s 113.32   
10 24.4 q 24.5 1.52 (s) 1.52 (s) 
11 24.1 q 24.26 1.42 (s) 1.42 (d, 5.3) 
12 23.1 q 23.28 1.34 (s) 1.34 (s) 
13 25.9 q 26.06 1.41 (s) 1.42 (d, 5.3) 
1# 203.7 s 203.82   

2# 51.5 t 51.69 
2.96 (dd, 14.7, 
6.6), 2.76 (dd, 

14.7, 6.6) 

2.96 (dd, 
14.7, 6.6), 
2.76 (dd, 
14.7, 7.2) 

3# 25.8 d 25.94 2.17 (m, 6.6) 2.17 (m, 6.6) 

4# 22.8 q 22.91 1.01 (d, 6.6) 1.00 (dd, 
10.8, 6.7) 

5# 22.7 q 22.87 0.99 (d, 6.6) 1.00 (dd, 
10.8, 6.7) 

1" 129.4 s 129.5   
2" 35.4 d 35.5 2.40 (hept, 6.9) 2.40 (hept, 

O
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6.8) 

3" 15.7 q 15.87 1.11 (d, 6.9) 1.11 (dd, 
11.8, 6.8) 

4" 15.6 q 15.81 1.09 (d, 6.9) 1.09 (dd, 
11.8, 6.8) 

6-OH   13.27 (s) 13.27 (s) 
8-OH   9.78 (s) 9.79 (s) 

 
 

Experimental Procedure for the mechanistic studies with endoperoxides 3.8: 

 

Pure diastereomer 1 (see chapter 2) (6 mg, 0.021 mmol, 1 equiv) was dissolved in 0.5 mL of 

CDCl3 and placed in an NMR tube. A triflimide solution (15.3 mg in 1 mL of CDCl3) was 

prepared. At t= 0 min, 0.1 mL of the triflimide solution (1.53 mg, 0.006 mmol, 0.3 equiv) was 

added to the NMR tube. 1H NMR spectra were acquired at 5 min, 15 min, 1 h, 2.2 h, 3 h and 5 h. 

 

Experimental Procedure for the formation of bullatenol 3.179: 

 

Bullatenone 3.158 (50 mg, 0.26 mmol, 1 equiv) was placed in a flask under argon at 0 °C. A 1:1 

solution of THF:toluene was prepared and 2 mL were added to the reaction flask. DIBAL-H (1M 

in hexanes, 364 "L, 0.364 mmol, 1.4 equiv) was added at -78 °C to the reaction mixture. The 

mixture turned bright orange. The reaction mixture was allowed to warm up to room temperature 

and was stirred until TLC analysis showed complete consumption of the starting material (about 

30 min). Then, it was quenched with a Rochelle salt solution. The reaction mixture was 

O
O

O

O
OH

3.8

NHTf2 30 mol %

CDCl3 O
O

O

O O

O

O
O

3.13 3.14

OPh

O

Me
Me

DIBAL-H
THF:Toluene (1:1)

-78 ¡C
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OH
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Me
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thoroughly washed with brine and extracted with ethyl acetate. Gathered organic fractions were 

dried over anhydrous sodium sulfate and solvents were evaporated in vacuo to yield 50 mg (quant. 

yield) of a bright yellow-orange oil. 

Rf : 0.41 hexanes:EtOAc (2:1) 

IR (thin film):  2960.53, 1620.14, 1434.97, 1368.56, 1299.85, 1214.95, 1085.65 cm-1 

1H NMR (500 MHz, Chloroform-d): % 7.63 – 7.59 (m, 1H), 7.36 – 7.33 (m, 1H), 5.46 (d, J = 

2.9 Hz, 0H), 4.47 (d, J = 2.9 Hz, 0H), 1.49 (s, 2H), 1.36 (d, J = 0.5 Hz, 2H). 

13C NMR (126 MHz, cdcl3): % 159.12, 129.39, 128.42, 97.22, 87.72, 80.95, 26.39, 20.88. 

HRMS--ESI (m/z): [M+H]+ calculated for C12H14O2; 191.11072 found 173.0966 [M-H2O+H]+ 

 

Experimental Procedure for the formation of bullataketals core 3.164: 

 

A bullatenol 3.179 (9 mg, 0.047 mmol, 1 equiv) solution in chloroform 1 mL was placed in flask 

under argon. Triflimide (3.4 mg, 0.0141 mmol, 0.3 equiv) was added to the flask. The reaction 

mixture was stirred at room temperature for 30 min and turned orange-pink. Then, acyl-

phloroglucinol 3.167 (11 mg, 0.056 mmol, 1.2 equiv) was added to the reaction flask. The 

reaction mixture was stirred at room temperature for 12 h and when no further conversion was 

observed it was dissolved in water and quenched with a saturated solution of sodium bicarbonate. 

The reaction mixture was extracted with ethyl acetate and gathered organic fractions were dried 

over anhydrous sodium sulfate. Solvents were evaporated in vacuo and provided a dark orange oil. 

Column chromatography purification over silica gel using and hexanes:ethyl acetate gradient 

provided  3 mg (18 % yield) of 3.164 as a pale yellow oil. 

OH

HO

O

OH O

OH

NHTf2 30 mol %

CHCl3
18 %

OH

HO

O

O
O
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Rf : 0.55 hexanes:acetone (2:1) 

IR (thin film): 2977.67, 2926.66, 2873.24, 1614.78, 1448.88, 1368.66, 1260.32, 1198.02, 

1138.21, 1095.69, 1063.66 cm-1 

1H NMR (500 MHz, Chloroform-d): % 13.35 (s, 1H), 8.57 (s, 1H), 8.09 – 7.88 (m, 2H), 7.69 – 

7.55 (m, 1H), 7.49 (dd, J = 8.3, 7.4 Hz, 2H), 5.96 (s, 1H), 3.71 (p, J = 6.7 Hz, 1H), 3.54 – 3.41 

(m, 2H), 3.33 (dd, J = 19.1, 10.2 Hz, 1H), 1.47 (s, 3H), 1.38 (s, 3H), 1.16 (d, J =6.7 Hz, 6H). 

13C NMR (126 MHz, cdcl3): % 208.84, 202.93, 166.33, 161.53, 160.17, 136.05, 134.59, 129.01, 

128.98, 128.59, 108.23, 97.45, 90.83, 41.66, 41.47, 38.49, 30.13, 28.51, 23.65, 19.52, 18.75. 

HRMS--ESI (m/z): [M+H]+ calculated for C22H24O5; 369.11702 found 369.1701. 

Figure 3. 12. NOESY Data for 3.164. 

 
 

Experimental Procedure for the formation of bullataketals core 3.139: 

 

To a solution of syncarpic acid 3.138 (30 mg, 0.164 mmol, 1 equiv) in 2 mL diethyl ether at 0 C 

was added pyrrolidine (16 L, 0.197 mmol, 1.2 equiv) followed by a solution glyoxal 3.137 (20 

mg, 0.164 mmol, 1 equiv) in 0.4 mL of diethyl ether. A white precipitate was formed after 15 min 

and it was filtered on fritted funnel to provide 10 mg (20 % yield) of 3.139 as a white gum. 

Rf : 0.4 hexanes:acetone (1:1) 
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IR (thin film): 3390.41, 2975.72, 2939.52, 1702.62, 1587.49, 1518.99, 1457.33, 1400.88, 

1178.87, 1030.16 cm-1 

1H NMR (400 MHz, Chloroform-d): % 5.44 (d, J = 0.8 Hz, 1H), 3.16 – 3.01 (m, 2H), 2.80 (dt, J 

= 13.7, 7.0 Hz, 1H), 2.06 (s, 4H), 1.96 – 1.83 (m, 2H), 1.43 – 1.21 (m, 12H), 1.05 (ddd, J = 37.8, 

6.9, 0.8 Hz, 6H). 

13C NMR (101 MHz, cdcl3): % 216.56, 207.59.192.74, 97.56, 70.94, 53.18, 45.51, 45.41, 36.23, 

25.14, 24.76, 19.92, 19.83, 18.07. 

 
HRMS--ESI (m/z): [M+H]+ calculated for C19H29NO4; 336.2175 found 369.2176. 
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3.7 Select Spectra 
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