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ABSTRACT 

	
  
Olivine is the most abundant mineral in Earth’s upper mantle and is one of the major 

minerals discovered in extraterrestrial objects. Its physical properties govern the 

dynamics of the upper mantle. The most dynamic regions of the upper mantle are sites 

where melting and melt segregation occurs. These regions are also the most variable in 

terms of their oxygen fugacity. We therefore conducted piston cylinder experiments to 

determine the intergranular melt distribution, and explore a range of oxygen buffers. We 

annealed olivine aggregates in metallic and graphite capsules to determine the oxygen 

fugacities set by the capsule materials. These experiments show that oxygen fugacities 

are below their corresponding metal-oxide buffers. The oxygen fugacity in nickel80-iron20 

and graphite capsules most closely represents the intrinsic oxygen fugacity of Fo90 

olivine, while iron capsules are too reducing perhaps explaining the formation of “dusty” 

olivine in chondrites. 
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We annealed olivine-basalt aggregates in order to determine the melt distribution. The 

results show that the length of olivine grain boundaries wetted by melt (grain boundary 

wetness) increases with increasing melt content to values well above those predicted by a 

simplified model which is commonly applied to this system. At fixed melt content the 

grain boundary wetness increases with increasing grain size. These observations 

emphasize that the dihedral angle of the simplified system is not adequate to characterize 

the melt distribution in partially molten rocks. Our observations indicate that at upper 

mantle grain sizes the shear viscosity of partially molten rocks is one order of magnitude 

lower than predicted by the simplified model. 

 

Naturally partially molten rocks exist in the form of olivine-rich troctolites or plagioclase 

dunites, but the conditions for their formation are not entirely clear. We therefore 

conducted step-cooling experiments that indicate that slow cooling of samples with a 

steady-state microstructure reproduces the interstitial geometry observed in natural 

samples. The grain boundary wetness determined from the interstitial phases is somewhat 

reduced during slow cooling relative to samples quenched from high temperature. The 

microstructural similarity of experimental and natural samples suggests that mush zones 

identified beneath mid-ocean ridges may have lower melt contents than previously 

envisioned. 
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CHAPTER I 

INTRODUCTION 
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1. Olivine – the Most Abundant Mineral in the Upper Mantle 

Olivine is a magnesium iron silicate with the formula (Mg,Fe)2SiO4. The ratio of 

magnesium and iron ranges between the two end members of the solid solution series: 

forsterite (Mg2SiO4) and fayalite (Fe2SiO4). Commonly compositions of olivine are 

expressed as molar percentages of forsterite (Fo). Olivine is typically found in mafic 

rocks such as basalt, gabbro, and is the primary mineral in ultramafic rocks such as dunite 

and peridotite. Since the upper part of the Earth’s mantle is composed of ultramafic 

rocks, olivine is therefore the most abundant mineral in the Earth’s upper mantle. Its 

physical properties govern behaviors of upper mantle rocks, and hence the dynamics of 

the upper mantle.  

 

Olivine and its high-pressure polymorphs are also major minerals discovered in 

extraterrestrial objects. Although no samples of the moon mantle have been found, 

seismic studies show that at least the middle mantle of the moon is composed of an 

olivine-bearing pyroxenite (e.g. Kuskov et al., 1995); Spectral reflectance data indicates 

that exposures of olivine on the moon surface are believed to be mantle origin 

(Yamamoto et al., 2010). Similar to the upper mantle of the Earth, the upper mantle of the 

Mars consists of perodotite that is primarily of mineral olivine (Longhi et al., 1992). 

Moreover, Most chondrites are rich in olivine. 

 

Since olivine is so abundant in Earth’s upper mantle and on other terrestrial planets, 

investigating olivine and olivine-rich rocks promotes understanding properties and 
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dynamics of not only the Earth’s upper mantle but also potentially formation and 

evolution of other planets. 

 

2. The Redox State of the Mantle 

The redox state of the Earth’s mantle has long been studied by various geological 

disciplines. It has broad impacts on C-O fluids equilibria (Blundy et al., 1991), partial 

melting behaviors, such as degassing of volatile components (Kasting et al., 1993) and 

magma generation (Holloway 1998), and physical properties of olivine, such as electrical 

conductivity (Dai and Karato 2014) and rheology (Ryerson et al., 1989).  

 

Oxygen fugacity is a key parameter in describing the redox state in the interior of the 

Earth. By definition it is simply the partial pressure of oxygen in a gas phase, 

representing the chemical potential of oxygen (Carmichael, 1991). Oxygen fugacity 

controls the redox conditions at which a rock forms and exists. It affects physical 

properties of rocks and minerals including diffusion, deformation, phase equilibrium and 

electrical conductivity, etc. Laterally, the most dynamic regions of the upper mantle such 

as mid-ocean ridges, plumes (hot-spots) and subduction zones are sites where melting 

and melt segregation occurs. These regions are also the most variable in terms of their 

oxygen fugacity. Longitudinally, oxygen fugacity has a wide impact not only on the near 

surface evolution of the earth, but also on the processes associated with the core 

formation.  
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When describing oxygen fugacity, we usually refer the value to a redox buffer. A redox 

buffer is formed by a chemical reaction involving an assemblage of minerals or 

compounds that constrains oxygen fugacity as a function of temperature at a given 

pressure. The most common buffer used to describe oxygen fugacity in the upper mantle 

is fayalite- magnetite-quartz (FMQ) buffer, which refers to the reaction 3 Fe2SiO4 + O2 = 

2 Fe3O4 + 3SiO2. Most of upper mantle oxygen fugacity data measured from mantle 

xenoliths is reported corresponding to FMQ buffer. Other common buffers include 

magnetite-hematite (MH) buffer, indicating very oxidizing chemical environment that is 

approximately 5 log units above FMQ buffer. It is constrained by the reaction 4Fe3O4 + 

O2 = 6Fe2O3. In contrast, iron-wustite (IW) buffer represents very reducing redox state 

that is approximately 5 log units below FMQ buffer. The corresponding reaction is 2Fe + 

O2 = FeO. 

 

In the Earth’s upper mantle, oxygen fugacity has a large influence on the magma, 

determining the abundance and composition of minerals, fluid-melt partitioning and the 

physical properties of the melt (Behrens and Gillard, 2006). Oxygen fugacity is different 

among various tectonic settings of the upper mantle, and constrained by a range of fluid 

and melt phases associated with volatiles phase. Water plays an important role in shaping 

the oxygen fugacity of the upper mantle. Based on experimental results of Matveev et al. 

(1997), high-density silicates and normally anhydrous upper mantle minerals still 
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dissolve an amount of water. This process alters the composition of free fluid phase and 

therefore affects the oxygen fugacity. Furthermore, the mantle convection process brings 

high-density hydrous silicates and constitutional water in anhydrous mantle minerals to 

the uppermost mantle. The dehydration process at subduction zones brings water to the 

free fluid phase and changes the upper mantle oxygen fugacity. 

 

The most dynamic regions of the upper mantle such as mid-ocean ridges, plumes and 

subduction zones are the most variable in terms of their oxygen fugacity. The general 

trend and constraint of oxygen fugacity among these different tectonic settings are  

 

1) Subduction zone has the highest oxygen fugacity 

The high oxygen fugacity is related to the rehydration and carbonation processes in 

subduction zones. The downgoing slabs bring a large amount of oxides (recycling of 

hydrous fluids) to the upper mantle, In this subduction process, mantle fluid system is 

replenished by free fluid H2O and CO2, and dehydration and decomposition of carbonate, 

bringing up the oxygen fugacity (Ringwood, 1994). As a result, arc magmas have more 

oxidized environments in general. Lee et al. (2010) investigated the redox state of arc 

mantle using Zn/Fe systematics and imply oxygen fugacity is between FMQ -1 and FMQ 

+1 log unit. 

 

2) Mid-ocean ridges have lower oxygen fugacity than continental mantle. 
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The oxygen fugacity of most of the Earth’s mid-ocean ridge systems are revealed by 

either analyzing the Fe3+ to total Fe ratios in quenched MORB glasses, or oxygen 

thermobarometry measurements of abyssal spinel peridoties. Oxygen fugacity of mid-

ocean-ridges is up to 4 log units below FMQ (Bryndzia et al., 1989) to at FMQ (Cottrell 

and Kelly, 2011). Oxygen fugacities of continental mantle are estimated by geobarometry 

methods. These analyses indicate oxygen fugacity is from slightly above FMQ to 2 log 

units below the FMQ (Wood et al. 1990, Frost and McCammon 2008). The less oxygen 

fugacity of oceanic mantle may associate with the fact that more partial melting takes 

place in oceanic region.  

 

3) Melt-free area has higher oxygen fugacity than partial melting area 

In partial melting process, a large amount of H2O and CO2 dissolve in melt and this 

process decreases the oxygen fugacity of mantle. At the oxygen fugacity of primary 

mantle melts genesis that is around FMQ, oxidation of small amounts of sulfide to sulfate 

buffers the melt and prevents the ferric/ferrous ratio of the residual mantle from 

increasing (Cottrell and Kelly, 2011). Thus increasing in fraction of partial melting area 

will decrease the oxygen fugacity unless a processed exists to reintroduce oxygen to the 

mantle.  

 

4. Mantle plumes have lower oxygen fugacities than mantles at the same depth. 

The mechanism may be similar to partial melting. Higher temperature of plumes than that 

of surrounding mantle makes less oxygen stays in plume phase. 
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Compared to our knowledge of oxygen fugacity of the upper mantle, much less data is 

available to constrain oxygen fugacity in the lower mantle. Rock and mineral samples 

from the lower mantle are lacked to measure intrinsic oxygen fugacity. O’Neill and Wall 

(1987) have used nickel precipitation curve to constrain the minimum oxygen fugacity of 

the upper mantle. Since Ni-rich metallic phase is not observed in most peridotite, they 

conclude that the minimum oxygen fugacity of the upper mantle is above the nickel 

precipitation curve, which is almost coincident with the IW buffer. Given Earth is 

composed of a metallic Ni-Fe core, oxygen fugacity of the lower mantle is below the IW 

buffer. 

 

The stability of olivine is limited by the redox state of iron. Control of redox conditions 

in experiments is therefore of importance. The experimental study described in Chapter II 

explores the responses of mineral olivine to different redox conditions. The various 

oxygen fugacities are set by using different capsule materials to form redox couples with 

olivine crystals. The change in olivine composition as a function of oxygen fugacity is 

investigated. 

 

3. Partial Melting in the Upper Mantle 

Partial melting plays a key role for shaping the continued evolution not only in the solid 

Earth but also the Earth’s surface. In Earth’s upper mantle, olivine in peridotite never 
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melts due to its high melting temperature. Partial melting is triggered when the geotherm 

is higher than the solidus of some minerals with lower melting points in peridotite, such 

as clinopyroxene and garnet (basaltic ingredients). These minerals melt to form basaltic 

magma distributed in olivine matrix.  The magma may further migrate to leave the 

olivine matrix at certain conditions. The most dynamic regions of the upper mantle such 

as mid-ocean ridges, plumes and subduction zones are sites where melting and melt 

segregation occurs. Furthermore, potentially the asthenosphere is partially molten at 

small degrees.   

 

Partial melting in the mantle cannot be observed directly, but are commonly inferred 

from geophysical observations. The low seismic velocity and high attenuation zones and 

numerous zones of high electrical conductivity anomaly are associated with presence of 

melt. These indirect methods indicate that the most dynamic regions of the upper mantle 

such as mid-ocean ridges, subduction zones and hot spots are partially molten at different 

degrees. Analysis of seismic low velocity zone in the mantle wedge of northeastern Japan 

infers that subduction zones contain 0.04 - 6% melt (Nakajima et al., 2005). Electrical 

conductivity measurements at East pacific Rise indicate that mid-ocean ridges contain 1-

4% melt (Baba et al. 2006) and seismic structure of Iceland suggests that hotspots have 1-

5% melt (Li and Detrick 2006). Furthermore, in the asthenosphere away from these 

dynamic regions associated with magma ascending, partial melting may still occur. 

Seismic study by Gutenberg (1948) shows that the low velocity zone in the asthenosphere 

at a depth between 70 and 80 km may be explained by the presence of a small amount of 
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melt. Anderson and Sammis (1970) suggest that the low velocity zones cannot be 

interpreted by high temperature gradients along. A small amount of partial melting is 

consistent with the decrease in seismic velocity. Melt content in the sub-oceanic 

asthenosphere interpreted from electrical conductivity data is approximately 0.45-9% 

(Drury, 1978). A recent electrical conductivity study of the lithosphere-asthenosphere 

boundary confines the melt content to 1-2.1% for a mantle containing moderate H2O 

(Naif et al., 2013). 

 

Melt contents in the upper mantle deduced from seismic or electrical conductivity models 

require and are very sensitive to specific melt geometry. At a constant degree of seismic 

attenuation or electrical conductivity anomaly, the derived melt content changes with 

using different melt distribution models. This emphasizes the importance of determining 

actual melt geometry in the upper mantle. The first melt distribution model applied to 

rocks is adapted from the discipline of materials science and assumes that melt forms an 

interconnected network of tubes along grain edges (Bulau and Waff, 1977, Waff and 

Bulau, 1979, Bulau et al., 1979). Subsequent melt distribution models are from 

observations of laboratory produced partially molten rock samples using either natural or 

synthetic upper mantle minerals and melt powder. Early experimental studies indicate 

that the melt not only forms triple junctions, but also larger pockets surrounded by four or 

more grains  (Waff and Faul, 1992; Faul et al., 1994; Faul, 1997). These melt inclusions 

(melt pockets) cause greater seismic wave velocity reduction (Hammond and 

Humphreys, 2000). Recent high-resolution imaging of experimental samples improves 
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the model by confirming that melt also wets some two-grain boundaries of olivine grains 

(Garapić et al., 2013), which will have a significant influence on melt contents 

determined from previous seismic and electrical conductivity studies.  

 

Determining actual melt geometry reconciles the discrepancies in melt retention and melt 

segregation derived from geochemical and seismic models. Geochemical models of 

partial melting at mid-ocean ridges suggest that melt segregates from the source region at 

porosities of order 0.1% (e.g. Spiegelman and Elliott, 1993; Richardson and McKenzie, 

1994; Salters and Longhi, 1999; Lundstrom, 1999) and upwells rapidly (Richardson and 

McKenzie, 1994; Salters and Longhi, 1999). However, seismic data obtained by the 

mantle electromagnetic and tomography (MELT) experiment (The MELT Seismic Team, 

1998) differs with the geochemical models, predicting a seismic low velocity zone 

consisting of 1-2% basaltic melt based on the geometry of thin, elongated inclusions 

(Faul et al., 1994). A permeability model using the same melt geometry (Faul, 2001) 

implies that a deep, volatile-rich melt with low viscosity and density is mobile at 0.1% 

porosity, which is consistent with the geochemical models, but basaltic melt is able to 

migrate only at a porosity over 1%. This permeability model also requires melt retention 

in a broad zone, consistent with the seismic data. 

 

The mechanical properties of partially molten upper mantle rocks are very sensitive to the 

melt geometry. Rocks deformation studies (Jackson et al., 2004;Faul et al., 2004) using 

the melt geometry of thin, elongate inclusions (Faul et al., 1994) predict that melt affects 
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seismic velocities and attenuation by elastically accommodated grain boundary sliding. 

However, the existence of individual melt layers on two-grain boundaries excludes the 

grain boundary sliding mechanism and suggests the melt squirt theory (Garapić et al., 

2013) that the flow of melt between adjacent melt inclusions squirt from one crack to 

another with respect to the stress (Mavko and Nur, 1975).  

 

The experimental study described in Chapter III simulates the melt distribution in a kind 

of olivine-rich upper mantle rock named dunite at pressure and temperature conditions 

beneath mid-ocean ridges. The quantified melt distribution at micro scales is extrapolated 

to upper mantle’s grain size to infer the physical state of the region beneath mid-ocean 

ridges where magma generates and the seismic low velocity zone in the asthenosphere 

where partial melting may occur. 

 

4. Olivine-rich Troctolites: a Window into Partial Melting in the Mantle 

Mid-ocean ridges are the most productive source of magma. Partial melting occurs within 

the ascending upper mantle beneath mid-ocean ridges as a result of decompression 

melting. The upwelling magma cools before approaching the surface to form gabbro and 

quenches at the surface to produce mid-ocean ridge basalt (MORB), making up the 

oceanic crust from surface to depth. At shallow depth of mid-ocean ridges, the ascending 

melt towards the surface passes through a partially crystallized mush zone (Sinton and 

Detrick, 1992) and accumulates on top of it to form a shallow crustal magma chamber 
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(melt lens) in the oceanic crust. Olivine-rich troctolites form in gabbroic sequences of the 

mush zone, and are found by deep drilling at mid-ocean ridges (e.g. Suhr et al., 2008; 

Drouin et al., 2010) and in ophiolites from the surface (e.g. Faul et al., 2014; Renna and 

Tribuzio, 2011; Sanfilippo et al, 2013). This kind of rock is characterized by high volume 

proportion of olivine with interstitial plagioclase and clinopyroxene, relatively rare in 

terms of composition and texture. Preliminary observations suggest that the formation of 

interstitial texture is due to crystallization of clinopyroxene and plagioclase from basaltic 

melt in rocks of mantle origin. It is believed that the interstitial geometry preserved in 

olivine-rich troctolites may reveal the basaltic melt distribution in the upper mantle, 

which is observed only in experiments. Therefore, natural olivine-rich troctolites serve as 

an important link between experiments, direct observations in the field and indirect 

observations such as seismic and electromagnetic imaging and of partially molten 

regions. 

 

The experiments stated in Chapter IV tests the hypothesis that the formation of olivine-

rich troctolites is a result of melt impregnation of former mantle rocks and following 

crystallization. These processes are simulated by evenly mixing basaltic melt into olivine 

grains, and lowering the temperature to allow crystallization of pyroxene and plagioclase 

from the melt. The experimental analogues are compared with naturally olivine-rich 

troctolites to explore the similarities in texture. The comparisons between experimental 

and natural samples help apply experimental results at micro scales at upper mantle’s 

conditions to larger scales in space and time of natural partially molten regions, leading 
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to a better understand the process of melt genesis and migration.   
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CHAPTER II 

OXYGEN FUGACITY SET BY DIFFERENT CAPSULE MATERIALS IN 

PISTON CYLINDER EXPERIMENTS 
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Abstract 

The stability of olivine is limited by oxidation/reduction of iron. Control of redox 

conditions in experiments is therefore of importance. Samples of anhydrous Fo90 olivine 

aggregates were annealed in iron, nickel, nickel80-iron20 and graphite capsules in direct 

contact with capsule materials at a range of temperatures and a pressure of 1 GPa in a 

piston cylinder apparatus for 168 hours to determine the oxygen fugacities set by the 

capsule materials. A few olivine samples were annealed with added metal-oxides at 

different duration or with platinum oxygen fugacity sensors. Post-run samples were 

imaged and analyzed compositionally.  Oxygen fugacities of olivine aggregates in these 

capsules were determined from compositional and thermodynamic data. The results show 

that oxygen fugacities are below their corresponding metal/metal-oxide buffers but keep 

relative order. Specifically, oxygen fugacities in nickel capsules are in between CCO and 

IW buffers (2-3 log units below NNO buffer); in nickel80-iron20 and graphite capsules are 

at or 1 log unit below IW buffer, most closely representing the intrinsic oxygen fugacity 

of anhydrous melt-free Fo90 olivine; while in iron capsules are 2 log units below IW 

buffer, which are too reducing that relate to redox conditions of core formation and on 

other terrestrial planets and planetesimals perhaps explaining the formation of “dusty” 

olivine in chondrites. For those experiments with added metal-oxides in iron and nickel 

capsules, no metal-oxides were preserved in post-run samples, indicating that 

metal/metal-oxide buffers cannot maintain oxygen fugacities at their corresponding 

buffers for relatively long duration in piston cylinder experiments. Heterogeneity of 

oxygen fugacity observed in experiments with platinum oxygen fugacity sensors 
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emphasizes that it is important to minimize their volume while using platinum as external 

oxygen fugacity sensors. 
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1. Introduction 

Oxygen fugacity is specifically defined as the partial pressure of oxygen in a gas phase, 

which takes into account the chemical potential of oxygen (Carmichael, 1991). It is the 

measure of the availability of oxygen to participate in chemical reactions in a system. 

Oxygen fugacity controls the redox conditions at which a mineral or rock forms and 

exists. It affects physical properties of rocks and minerals including diffusion, 

deformation, phase equilibrium and electrical conductivity, etc. The oxygen fugacity of 

the mantle various in different tectonic settings and is described by common redox 

buffers like MH, FMQ and IW in order of decreasing oxygen fugacity. 

 

1.1. Oxygen Fugacity Control in Piston Cylinder Experiments 

End-loaded piston cylinder apparatus is widely used in high-pressure and high-

temperature studies. This instrument allows relatively long experimental duration at 

upper mantle’s high pressure and high temperature conditions to form equilibrium 

texture. The oxygen fugacity control in the experimental sample is very crucial and 

complicated. Unlike pressure and temperature can be directly adjusted once the 

instrument is well calibrated, normally oxygen fugacity is imposed to the rock/mineral 

sample by the invariant reaction in the surrounding metal/metal-oxide redox buffer 

during the course of the run. To simplify the sample assembly, a large number of 

experimental studies used a metallic sample container and the corresponding metal-oxide 

powder of the metallic sample container together to form a redox buffer. The 
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corresponding metal-oxide powder is placed at top and/or bottom of the silicate sample 

(Figure 1). A redox buffer can also consist of a metal piece and the corresponding metal-

oxide inside the capsule if the sample container is made up of another metal or 

nonmetallic material. When the chemical reaction of the metal/metal-oxide buffer reaches 

its equilibrium, composition of the silicate sample changes to accommodate the imposed 

oxygen fugacity. Simply speaking, if the chemical environment is too oxidizing, excess 

oxygen will oxidize the metal to form metal-oxide. In contrast, metal-oxide will be 

reduced to release oxygen if the chemical environment is too reduced. In either way the 

oxygen fugacity is constrained to a constant value by this redox buffer. The oxygen 

fugacity can be determined from the compositions of all chemical components 

participating this reaction and thermodynamic data of this reaction. (see appendix I for 

detail of this part). When using a metal/metal-oxide buffer, it is assumed that the buffer 

imposed its oxygen fugacity to the assembly, so the oxygen fugacity of this system is 

determined by thermodynamic data of the metal/metal oxide reaction itself. It is also 

assumed that the fO2 of the specimen rapidly reaches its equilibrium value (Raterron et 

al.1998). 

 

There are three common used metal/metal-oxide buffers in experimental studies: NNO, 

IW and CCO. Oxygen fugacity of NNO buffer is constrained by the reaction 2Ni + O2 = 

2NiO. This buffer is close to the natural fayalite-iron-quartz (FMQ) buffer, representing a 

relatively oxidizing condition at the earth’s uppermost mantle. Whereas IW buffer is 

around 4 log-bar units below the NNO buffer. At oxygen fugacity slightly below the IW 
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buffer, NiO in olivine will be reduced to form nickel-rich metal and reduced iron metal 

will also partition into the Ni to form alloy (O’Neill and Wall, 1987) relating to the redox 

condition of core formation, so IW buffer represents a very reducing redox state in lower 

mantle.  The oxygen fugacity buffered by CCO is relatively neural comparing to NNO 

and IW (figure 2). CCO buffer is confined by chemical reactions that carbon reacts with 

oxygen to produce carbon oxides. 

 

Oxygen fugacity of the experimental sample can not only be imposed by the surrounding 

redox buffer as mentioned above, but can also be constrained by the capsule and the 

housed sample itself. In the latter case, the silicate sample is directly in contact with the 

metallic capsule and the silicate/metallic capsule couple serves as an oxygen fugacity 

buffer. The oxygen fugacity is controlled by the reaction between the capsule material 

and the silicate sample. In previous high-pressure and high-temperature studies, iron, 

nickel, nickel-iron alloy and graphite were used as capsule materials. These studies are 

summarized in the following four paragraphs. 

 

Iron capsules have been used by several Fe-Me interdiffusion studies to control oxygen 

fugacity (Bertran-Alvarez et al., 1992; Bejina et al., 1997,1999; Raterron et al., 1998). 

They report that olivine and iron maintain oxygen fugacity at known value within the 

stability field of olivine (Nitsan 1974). This technique does not require extra metal-oxide 

to buffer the oxygen fugacity, which simplifies the sample assembly. The ductile 

behavior of iron also protects olivine samples from deformation. This behavior is more 
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important when housing single crystal olivine (Bertran-Alvarez et al. 1992 and Bejina et 

al. 1999). Pure iron has also been used by Jackson et al. (2004) to house melt-bearing 

olivine aggregates to perform mechanical testing. 

 

Nickel capsules (jackets) were used in deformation studies of olivine aggregates in the 

diffusion creep regime. Hirth and Kohlstedt (1995) housed olivine +enstatite +/- melt 

aggregates in nickel jacket to conduct deformation experiments from 1100-1300 oC at 

300 MPa for 5 hours. S. Zhang et al. (2000) tested simple shear stress of olivine 

aggregates by jacketing the sample into a nickel sleeve and deforming it at 1200-1300 oC 

and up to 300 MPa. They claimed that the oxygen fugacity was likely controlled by the 

NNO buffer. Since no nickel oxide was added to the sample assembly, a possible 

explanation is that presumably a nickel oxide layer was formed on the surface of nickel 

sleeve at high temperature and the metal and metal-oxide together buffered the oxygen 

fugacity. 

 

Nickel-iron alloy capsules were also used in varied deformation studies of olivine 

aggregates. Iron and nickel loss from olivine and alloy with the adjacent metallic capsule 

is a common problem in high-pressure and high-temperature experimental studies.  Iron-

nickel alloy capsules overcome this problem by pre-equilibrium the composition of the 

nickel-iron alloy with the olivine. This technique has been used by Jackson et al. (2002), 

Jackson et al. (2004), Faul and Jackson (2007), Jackson and Faul (2010), and Farla et al. 

(2010) in deformation experiments of olivine aggregates. The olivine specimens were 
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surrounded by Ni70Fe30 foil in experiments reported by above studies. The variation in 

composition of nickel-iron alloy can also impose different oxygen fugacity to the olivine 

sample. If the alloy that contains more iron than the equilibrium composition, metallic 

iron will be oxidized and released to the silicate as FeO until the equilibrium alloy 

composition is reached. This reaction consumes oxygen and the Fe-bearing samples gain 

extra iron from the metallic capsule. If the alloy contains less iron than the equilibrium 

composition, FeO in iron-bearing silicates will be reduced and alloy with the nickel 

capsule. This reaction releases oxygen to the sample. If the alloy is pre-equilibrium with 

the olivine, the oxygen fugacity in the capsule will be somewhat neutral.  

 

Graphite capsules were first used by Ito and Kennedy (1967) in melting experiments to 

overcome the iron loss problem, and have became widely used in high-pressure and high-

temperature experiments of anhydrous Fe-bearing samples especially for partially molten 

samples. The oxygen fugacity is limited by the presence of graphite at or below CCO 

(Taylor and Green 1989, Ulmer and Luth 1991). 

	
  

1.2. Motivation of This Study 

Oxygen fugacity imposed by iron, nickel, and nickel-iron alloy at high-pressure and high-

temperature conditions for a relatively long duration is uncertain and needs to be studied 

systematically.  Published estimates of oxygen fugacity in different capsules were 

predominately from diffusion and deformation experiments, which do not require 
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relatively long experimental duration. In addition, these estimates are hard to compare 

because they did not provide compositional information of their sensors or used different 

thermodynamic models to estimate oxygen fugacity. This study annealed olivine 

aggregates from the same batch in iron, nickel, nickel-iron alloy and graphite capsules at 

1 GPa and a range of temperature for relatively long duration of 168 hours. All the 

experimental parameters except oxygen fugacity were under controlled conditions. 

Therefore the changes in oxygen fugacity only reflect the influences of different capsule 

materials. A few experiments with added metallic oxides were performed to explore the 

efficiency of metal-oxide buffer at relatively long duration. Some short duration 

experiments were conducted to study the change of oxygen fugacity with experimental 

duration. 

	
  

2. Methods 

2.1. Experimental Setup 

All runs were carried out in a 1/2’’ diameter end-loaded piston cylinder apparatus at a 

pressure of 1 GPa and temperatures from 1200 ºC to 1400 oC for 24 to 168 hours (Table 

1). The furnace assembly consisted of an outer NaCl sleeve, Pyrex sleeve, graphite heater 

and MgO inner spacers. San Carlos or sol-gel Fo90 olivine powder was placed in high 

purity graphite, pure iron, pure nickel and iron-nickel alloy capsules. Selected capsules 

contained nickel oxide/iron oxide or single crystal orthopyroxene as oxygen fugacity 

buffer materials or platinum wire/foil/powder as oxygen fugacity sensors. An alumina 
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disk was placed between the thermocouple and the capsule to prevent penetration of the 

thermocouple into the sample, as well as for insulation of the capsule.  All furnace 

components were kept in a drying oven at 105 ºC for at least 24 hours before use to 

ensure anhydrous condition. Temperature and run duration were controlled by a 

Eurotherm controller by using a type B (Pt-Rh) thermocouple. The power was manually 

increased until the temperature reached 400 ºC. Then the temperature was increased at a 

rate of 50 ºC/ minute until reached the target temperature. When the runs were finished, 

samples were quenched to room temperature in less than a minute by turning off the 

power to the furnace, followed by pressure release. 

 

2.2. Post-run Sample Preparation, Image Capturing and Compositional Analysis 

The post-run samples were sectioned through the long axis, vacuum-impregnated in 

epoxy and polished with diamond paste, then alumina suspension and finally with 

colloidal silica to produce surfaces free of damage for image capturing. 

 

High-resolution secondary electron images were obtained on a Zeiss Supra 55 VP field 

emission scanning electron microscope (SEM) at 5-15 kV acceleration voltage and 4.5 

mm working distance, with an aperture of 30 or 60 µm. Compositional Analysis was 

processed by using an EDAX energy dispersive spectroscopy (EDS) detector integrated 

with the microscope. Compositions of olivine and orthopyroxene were calibrated by 
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standard mineral samples from Department of Mineral Sciences, Smithsonian Institution, 

Washington, D.C. (Jarosewich et al. 1980; Jarosewich 2002). 

 

3. Experimental Results 

3.1. Description of Post-run Samples 

3.1.1. Overview 

High-pressure and high-temperature annealing changed the dimension of capsules and 

texture of olivine grains. Metallic capsules show good mechanical integrity and the initial 

aspect ratios were somewhat preserved. No wide cracks crossing through entire samples 

were observed in those olivine aggregates annealed in metallic capsules (Figure 3a to 3c). 

Olivine samples housed in graphite capsules shrank along vertical axis and expanded 

along horizontal axis. Wide cracks go all the way through the entire sample vertically 

(Figure 3d). These observations indicate graphite capsules were deformed during cold 

pressing. Olivine aggregates have experienced grain growth and the post-run grain sizes 

are multiple times coarser than the starting grain size (Figure 4a to 4d).  

 

Figure 3 shows the entire post-run olivine aggregates in pure iron, pure nickel, nickel-

iron alloy and graphite capsules. These samples were annealed at 1 GPa and 1400 oC for 

168 hours, representing typical experimental conditions of this study. Figure 3a shows 

cross-section of olivine aggregate housed in Fe capsule. A large number of metallic blebs 
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visible at this low magnification are distributed throughout the entire olivine sample. 

Slightly more metallic blebs are at the top and bottom. Olivine aggregate annealed in Ni 

capsule is shown in Figure 3b. Relatively big metallic blebs in olivine aggregate are 

aligned along olivine-capsule contact. A few big metallic blebs are in the center of the 

olivine aggregate (indicated by white arrows). Olivine aggregate annealed in Ni-Fe 

capsule (Figure 3c) has a large number of olivine grains plucked out during polishing. 

The plucking indicates that the strength of chemical bonding at grain boundaries were 

reduced and grain boundaries mobility was enhanced. Similar to Figure 3b, metallic blebs 

in olivine grains are aligned along olivine-capsule contact (indicated by black arrows), 

but show smaller sizes. No metallic blebs in the center can be resolved at this 

magnification. Figure 3d shows an intact area of olivine aggregate annealed in graphite 

capsule. As mentioned above, this post-run sample deformed when cold pressing due to 

relatively low density of the capsule material graphite. No metal particles can be detected 

at this magnification. 

 

Figure 4 shows higher magnification SEM images of olivine grains in the center of the 

above four capsules. In iron capsule (Figure 4a), cracks formed from quenching distribute 

across olivine grains. Large metallic blebs with average diameter of 10 µm are along 

olivine grain boundaries and at triple junctions. Intermediate metallic blebs with average 

diameter of 3 µm are along cracks inside olivine grains. Much smaller metallic blebs 

(0.5-2 µm in diameter) appear in the interior of olivine grains. In nickel capsule (Figure 

4b), pattern of cracks is similar to that formed in iron capsule. Metallic blebs with 0.5-2 
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µm diameters appear in the interior of olivine grains. The small holes in the interior of 

olivine grains are presumably produced by loss of metallic blebs during polishing. Melt-

like phase formed at a few triple junctions and some of them penetrate further through 

olivine grain boundaries, even connect adjacent triple junctions of relatively finer grains. 

A melt-like pocket is surrounded by eight olivine grains. Relatively large metallic blebs 

(diameter around 5 µm) include in melt-like pockets and triple junctions. In nickel-iron 

capsule (Figure 4c), a few tiny holes are in olivine interiors. The total numbers are much 

less than that in olivine grains in nickel capsule. A few number of these holes are filled 

with metallic blebs with 0.5-2 µm diameters. A portion of olivine grain boundaries is 

separated by gaps. Some of the grains were already plucked off during polishing. Olivine 

grains in graphite capsule (Figure 4d) also have tiny holes in the interior and along grain 

boundaries filled with metallic blebs with 0.5-1 µm diameters. A large number of opx 

grains (grain sizes are much smaller than olivine) present along olivine grain boundaries 

and in the interior of olivine grains. Cracks formed during quenching are across olivine 

grains. 

	
  

3.1.2. Orthopyroxene Rinds at Sample-capsule Contacts 

Orthopyroxene rinds were observed at capsule-crystal contacts in all runs housed in metal 

capsules. Texturally they were revealed by relatively darker color and lower topography 

than olivine grains in SEM images (Figure 5). Compositionally, they were identified by 

roughly 50% less Si atoms than that in olivine grains. Figure 6 shows an EDS line scan of 
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major elements concentrations from capsule towards olivine grains. The orthopyroxene 

rind is distinguished from olivine by the plateau in Silicon concentration line and 

corresponding the step in Magnesium concentration line. 

	
  

3.1.3. Post-run Metal Oxides 

For those runs with metal/metal-oxide buffers (CAP6, CAP7 and CAP8), no metal-oxides 

were detected from SEM images or EDS analysis. Figure 7a shows a very rough 

boundary between iron capsule and silicate grains (CAP7). A large number of metallic 

clots are within olivine grains and partially connected with the iron capsule. A few fine-

grained olivine crystals are enclosed in the iron capsule near the contact. These 

observations indicate that a portion of the iron oxide has been reduced and alloyed with 

the original iron capsule to form a new rough contact and the rest metallic iron reduced 

from iron oxide are distributed in olivine grains close to the contact. Olivine grains 

housed in nickel capsule with added nickel oxide for 168 hours (CAP6) does not show 

any difference with those samples without nickel oxide annealed at the same condition 

(Figure 7b). Although the run duration of the other nickel/nickel-oxide experiment at 

same pressure and temperature condition (CAP8, Figure 7c) was only 24 hours, no oxide 

was left in the post run sample. The rough contact between metallic nickel and crystals 

indicate that reduced nickel from nickel oxide was alloyed with the nickel capsule. 

Olivine grains close to the contact are brighter then those towards the center, indicating 

they have higher metal concentration.  
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3.2. Olivine Composition 

Forsterite numbers (Fo#) of olivine aggregate housed in the same capsule material 

increased with increasing temperature at constant run duration (Figure 8). Olivine 

samples housed in Ni capsules have the highest Fo#, which implies relatively more iron 

loss. At 1200 oC, relative great gradient of Fo exists between olivine grains in the center	
  

and at edge. Olivine grains in the center slightly lost iron, whereas grain at edge lost 

much more iron. The gradient decreases with increasing temperature. At 1400 oC, almost 

all Fe diffused out from olivine grains in the entire capsule and the gradient does not 

exist. Fo# of olivine grains housed in the center of iron capsules increase from Fo90 at 

1300 oC to Fo93 at 1400 oC.  Olivine grains at edge systematically have lower Fo number 

than those in the center. At 1300 oC, the starting composition of olivine grains in the 

center has been preserved. Olivine grains at edge gained iron from the iron capsule, 

showing a lower Fo# of 88. At 1350 oC with added iron oxide, the starting composition of 

olivine grains in center was somewhat preserved, with slightly iron loss.  Fo# of olivine 

grains at edges are 5 units lower than those in center.  At 1400 oC, olivine grains 

experienced iron loss, resulting in a higher Fo# of 93. Grains at edge has a little bit lower 

Fo# than those in the center. Fo# of olivine housed in graphite and Fe-Ni capsules were 

approximately 90, indicating no iron was diffused out from olivine and the starting 

olivine composition was preserved. 
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Figure 9 shows Fo# of olivine grains in the center of nickel capsule versus run duration. 

For those samples without nickel oxide added, fayalite concentration decreases with 

increasing run duration for both series of samples annealed at 1200 oC and 1300 oC. For 

the 24-hour run with added nickel oxide, the starting fayalite concentration was 

somewhat preserved. The starting fayalite concentration of the 240-hour run with added 

nickel oxide was not preserved but is significantly higher than those without nickel oxide. 

	
  

3.3. Oxygen Fugacity 

Figure 10 shows all oxygen fugacities determined from available EDS data as a function 

of temperature (data is from Table 8-11 in Appendix I). Four different methods were 

employed to calculate the values, depending on availability of phases. The first method 

(termed FePt) used olivine-opx-metal equilibria, indicated by the following two 

equations: 

Fe2SiO4 =2 Fe + SiO2 + O2     [1] 

Mg2SiO4 + SiO2 = Mg2Si2O6  [2] 

Olivine                     orthopyroxene 

Since platinum foils/particles were inserted into the sample prior to the runs, iron reduced 

from olivine crystals alloyed with the platinum oxygen fugacity sensors. Reaction [2] 

represents the formation of opx rind at edge of samples. This reaction buffered silica 

activity in reaction [1]. The oxygen fugacity determined from this equilibria is (full 

derivation available in Appendix I) 
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𝑙𝑜𝑔𝑓𝑂! = 𝑙𝑜𝑔𝐾 − 2𝑙𝑜𝑔𝑎!"!"� − 𝑙𝑜𝑔𝑎!"#! + 𝑙𝑜𝑔𝑎!"!" + 𝑙𝑜𝑔𝑓𝑂!! 

                                              =
−∆𝐺!

2.303𝑅𝑇 +
∆𝑉(𝑃 − 1)
2.303𝑅𝑇 − 2 log 𝛾!"!"# .𝑋!"!"# − 𝑙𝑜𝑔𝑎!"#! + log 𝛾!"!" .𝑋!"!"  

𝑋!"!"# in the above equation represents mole concentration of iron in iron-platinum alloys, 

and 𝑋!"!"  stands for mole concentration of fayalite (Fe2SiO4) in olivine adjacent to the 

iron-platinum alloy. These two values were determined by EDS measurement. The other 

thermodynamic parameters are available from literature (see Appendix I). The second 

method (termed FeNi) followed the same equations above but measured mole fractions of 

iron alloyed with nickel blebs or nickel capsules and fayalite concentration in olivine 

grains adjacent to the metal alloy, and used their corresponding thermodynamic data (see 

Appendix I).  

 

The third method (termed NiFe) is suitable for natural San Carlos olivine. The minor 

amount of Ni2SiO4 contained in this natural olivine was reduced to form metallic nickel, 

silica and oxygen: 

Ni2SiO4 =2 Ni + SiO2 + O2  [3]    

This reaction taked place with reaction [1] at the same time during annealing. 

Compositional data for using this method to calculate oxygen fugacity was mole 

concentrations of nickel in nickel-iron alloy and Ni2SiO4 in olivine adjacent to the metal 

alloy. The equation for oxygen fugacity calculation is similar to the one for FePt method 

but iron and fayalite are substituted with nickel and Ni2SiO4, respectively. 
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𝑙𝑜𝑔𝑓𝑂! = 𝑙𝑜𝑔𝐾 − 2𝑙𝑜𝑔𝑎!"!"# − 𝑙𝑜𝑔𝑎!"#! + 𝑙𝑜𝑔𝑎!"!!"#!!" + 𝑙𝑜𝑔𝑓𝑂!! 

                                              =
−∆𝐺!

2.303𝑅𝑇 +
∆𝑉(𝑃 − 1)
2.303𝑅𝑇 − 2 log 𝛾!"!"# .𝑋!"!"# − 𝑙𝑜𝑔𝑎!"#!

+ log 𝛾!"!!"#!!" .𝑋!"!!"#!!"  

The associated thermodynamic data is summarized in Appendix I. 

 

The last method (termed opx) refers to the equilibria between iron, silica, oxygen and opx 

rind: 

Fe + SiO2 + 0.5O2 = FeSiO3 [4] 

The oxygen fugacity equation for this equilibria is (full derivation in Appendix I) 

               logfO2	
  = - 2logK + 2logXFs + 2logγFs - 2logXFe - 2logγFe - 2logaSiO2	
  

Mole concentrations of iron in iron-nickel alloy and Ferrosilite (FeSiO3) in 

orthopyroxene were measured by EDS. Other parameters are indicated in Appendix I. 

 

CAP1, CAP3, CAP4, CAP6, CAP7, CAP9, CAP11, CAP12 and CAP18 were determined 

by using multiple methods mentioned above. The differences between these methods 

from the same sample were within 1 log unit, and most of them were within 0.5 log unit, 

showing good data agreement. This figure emphasizes that oxygen fugacities of runs in 

different capsules were lower than their corresponding buffers, but preserve relative 

orders.  Oxygen fugacity of runs in the same capsule material increases with increasing 

temperature, which is consistent with the trend of the corresponding buffer. 
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3.3.1. Oxygen Fugacity in Different Capsules 

Figure 11 shows oxygen fugacities of samples annealed in nickel capsules as a function 

of temperature. This figure emphasizes that oxygen fugacity of olivine in nickel capsules 

fall in the area between CCO buffer and IW buffer. Differences between determined 

oxygen fugacities from the same sample vary from 0.1 to 0.9 log unit. At 1200 oC and 

1400 oC, determined oxygen fugacities match each other very well. The sample annealed 

for 50 hours has slightly higher oxygen fugacity than that annealed for 168 hours. At 

1300 oC, 10 data points from 3 samples annealed at 168 hours distribute across 1.2 log 

units. 

	
  

Oxygen fugacities for olivine grains housed in iron capsule were 2 log units below IW 

buffer (Figure 12). Oxygen fugacity of the run annealed at 1350 oC for 168 hours with 

added Fe2O3 does not show higher value than those without oxide added. For the two 

samples annealed at the same run condition, oxygen fugacity of CAP1 determined from 

nickel concentration in olivine and iron capsule and that of CAP14 determined from iron 

concentration in olivine and platinum are highly matched with each other. 

	
  

Oxygen fugacities for olivine housed in graphite and nickel80-iron20 capsule for 168 hours 

were within 1 log unit and approximately 2.5 log unit below CCO buffer (Figure 13). The 

sample annealed in graphite capsule for 50 hours had oxygen fugacity slightly lower than 
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CCO buffer. Differences for oxygen fugacities of same sample   determined from 

different methods were within 0.5 log units. 

	
  

3.3.2. Oxygen Fugacity versus Run Duration 

Varies samples annealed in nickel capsules for a range of duration indicate that oxygen 

fugacities remain constant with increasing time. Figure 14 shows oxygen fugacities of 

olivine aggregates annealed in nickel capsules determined from iron concentration in 

nickel. From 94 to 240 hours run duration, oxygen fugacity kept at approximately -9 log 

units. The sample with added nickel oxide annealed for 240 hours did not show a 

significant higher oxygen fugacity than that in other samples without nickel oxide. EDS 

analysis did not indicate any nickel oxide left, either. Oxygen fugacity in the sample with 

added nickel oxide annealed for 24 hours was 0.5 log units higher than that in the other 

samples. EDS analysis shows nickel oxide added at top and bottom of the capsule were 

consumed after 24 hours; olivine grains adjacent to capsule at top and bottom have higher 

nickel concentration. 

	
  

4. Discussion 

This experimental study systematically investigated oxygen fugacities of olivine 

aggregates annealed in iron, nickel, nickel80-iron20 and graphite for relatively long 

experimental duration. In general, these metallic/graphite only capsule techniques cannot 

maintain the oxygen fugacity of anhydrous melt-free olivine aggregates at their 
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corresponding metal/metal-oxide buffers for run duration over 24 hours. In other words, 

metal oxide coatings do not form at metal-crystal interface at the reported pressure and 

temperature condition to buffer the oxygen fugacity with the capsule materials. However, 

metallic/graphite only capsule techniques are able to control the oxygen fugacity of 

olivine grains over the course of run at values lower than their corresponding 

metal/metal-oxide buffers. Their relative orders are kept and remains unchanged 

throughout the course of the run.  

 

Post-run olivine aggregates are still within the stability field of olivine (Nitsan 1974). 

Although olivine grains annealed in these capsules have varies degree of iron loss, EDS 

analysis shows that their compositions are still stoichiometric (except those adjacent to 

metallic capsule turned to orthopyroxene).  

 

 

4.1. Graphite and Ni80Fe20 Capsules 

The identical oxygen fugacity determined from olivine aggregates in graphite and 

Ni80Fe20 capsules represent the intrinsic oxygen fugacity of olivine samples. It suggests 

that the intrinsic oxygen fugacity of anhydrous melt-free Fo90 olivine is at or 1 log unit 

below IW buffer. The preserved starting composition of entire olivine aggregates in both 

types of capsules indicates that these grains were neither oxidized nor reduced. It is 

consistent with the observations of SEM images that these samples do not show metallic 
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blebs along grain boundaries and cracks. Nickel and iron concentrations of the post-run 

Ni80Fe20 remained unchanged, indicating that this alloy is pre-equilibrium with the 

olivine aggregates and will not release or consume oxygen at the experimental pressure 

and temperature conditions. 

 

Olivine grains annealed in Ni80Fe20 capsules were easy to pluck off during polishing, 

indicating bonds between olivine grains are relatively weaker than those annealed in 

other capsules. 

 

4.2. Nickel Capsules 

Nickel is the most studied capsule material in this experimental study. The oxygen 

fugacity determined in nickel capsule is 2-3 log units below NNO buffer. It is the highest 

oxygen fugacity among that of all capsule materials investigated in this study. All olivine 

grains in nickel capsules have experienced different degrees of iron loss. Due to the iron 

concentration gradient at crystal-capsule contact, olivine grains adjacent to nickel 

capsules have more severe iron loss than those in the center. This process is similar to the 

observations of iron loss to noble-metal capsules being reported by various experimental 

studies as early as 1962 (Yoder and Tilley noticed iron loss from basalt to platinum 

container). At high temperature and relatively low oxygen fugacity, high activity of 

metallic iron leads to the reduction of iron oxide from olivine grains. The metallic iron is 

readily to diffuse into the metallic capsule and alloy with nickel.  
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The use of nickel oxide cannot increase oxygen fugacity for experiments longer than 24 

hours, but only reduces the rate of iron loss to the nickel capsule. This study implies that 

although oxygen fugacity is very stable in nickel capsules during long duration 

experiments, this technique is not suitable for studying upper mantle olivine due to the 

iron loss problem.  

 

4.3. Iron Capsules 

The oxygen fugacity determined in iron capsule is 2 log units below IW buffer, which 

represents a strong reducing condition. This study shows that olivine grains have iron loss 

problem at 1400 oC in iron capsules, but this problem can be fixed by lowering the 

temperature to 1350 oC or 1300 oC and combining with add Fe2O3.  

 

Previous high-pressure and high-temperature studies of iron-bearing samples in iron 

capsules had much higher pressures and much shorter durations than those in this study. 

These studies were mainly diffusion studies at pressures ranging from 4.6-9 GPa and run 

duration from 15 minutes to several hours. Bertran-Alvarez et al. (1992) report an oxygen 

fugacity of -0.5 log units below IW buffer from a 6-hour diffusion experiment of a single 

crystal San Carlos Fo90 olivine at 900 oC and 7 GPa. Raterron et al.1998 determined that 

the oxygen fugacity was 1-2 log units above IW buffer by following the experiments 

described by Bertran-Alvarez et al. (1992) with much shorter run duration of only half an 
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hour. Other diffusion studies of single crystal olivine by Jaoul et al. (1995) and Bejina et 

al. (1999), and a deformation study of single crystal garnet by Cordier et al. (1996) 

estimated the oxygen fugacities following Bertran-Alvarez et al. (1992) and claimed that 

their experiments were conducted under known oxygen fugacity conditions established 

by placing crystals in direct contact with iron capsules. The determined oxygen fugacities 

from the 30-min experiment by Bertran-Alvarez et al. (1992), 6-hour experiment by 

Raterron et al. (1998) and 168-hour experiments from this study imply that the oxygen 

fugacity of capsuling olivine in iron capsules is 1-2 log units above IW buffer at the 

beginning, then quickly drops to IW buffer after 6 hours, and keeps decreasing until 

reaches 2 log units below IW buffer and remains unchanged for up to 168 hours. This 

observation suggests that iron capsules are not suitable for housing olivine aggregates at 

oxygen fugacity above IW buffer in high-pressure and high-temperature experiments that 

require relatively long duration (i.e. partial melting experiments requiring steady state 

grain growth).  

 

A notable feature for olivine grains annealed in iron capsule is the significant amount of 

metallic blebs. Relatively larger metallic blebs are close to the iron capsules and along 

grain boundaries and cracks. Small metallic blebs are mainly inside olivine grains. EDS 

analysis shows composition of these metallic blebs are iron alloyed with small amount of 

nickel. In reducing chemical environment, iron oxide in olivine quickly reduced to 

metallic iron. The concentration gradient between metallic iron capsule and olivine leads 

to the metallic iron to be oxidized and diffuse into olivine crystal lattice to compensate 
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reduced FeO. This process keeps iron diffusion from capsule to the center of olivine 

aggregates, causing a large number of big metallic blebs throughout olivine grain 

boundaries and cracks. Since grain boundaries and cracks provide paths for iron 

diffusion, larger metallic blebs are nucleated along grain boundaries and cracks. At this 

extremely oxygen fugacity, nickel oxide in olivine grains are also reduced to metallic 

nickel and are readily to alloy with metallic iron. This observation further suggests that 

iron capsule is not suitable for annealing olivine samples at upper mantle’s pressure and 

temperature for relatively long time. The low oxygen fugacity imposed by the 

equilibrium between the capsule material and olivine sample itself leads to nucleation of 

metallic phase in olivine, which is not observed in natural samples from the upper mantle. 

 

These iron-nickel blebs are similar to the “dusty” olivine grains in different kinds of 

chondrites, which are characterized by the presence of Fe-Ni metallic particles 

throughout the interior of olivine grains. The texture of “dusty” olivine has been 

experimentally reproduced by researches using low-pressure furnaces. Boland and Duba 

(1981) heated single crystal Fo92 olivine to temperatures in the range of 950-1500 oC for 

several hours under controlled oxygen fugacity by mixing of gas and observed that half 

of the iron in olivine has been reduced to metallic phase. Fe inclusions are also observed 

in olivine single crystal over a few microns from the Fe capsule after 35 minutes at 6.4 

GPa and 1490-1595 oC (Raterron et al.1998). Recently, Cohen and Hewins (2004) used 

vertical muffle tube furnaces to heat powder of chondritic meteorite composition at 1 atm 

and 1580 oC  for 1-18 hours under controlled oxygen fugacity of -11.8, which was 3.7 log 
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unites below the IW buffer. They observe metallic iron both as melt droplets and 

inclusions in olivine, similar to those found in chondrules. Oxygen fugacities of iron-

capsules experiments in my study at higher pressure of 1 GPa and similar temperature 

from 1300-1400 oC were approximately 2 log unites below the IW buffer, which is 

consistent with the low-pressure furnace studies. The small amount of nickel in the 

metallic phase reported in these studies indicate that the oxygen fugacity is below the 

nickel precipitation curve (approximately at IW buffer, refer to O’Neill and Wall 1987), 

which matches oxygen fugacities determined in my study. 

 

Although iron capsules have some problems to house olivine grains at upper mantle’s 

pressure and temperature conditions for long duration, they are ideal for studying 

physical properties of iron-bearing rocks under redox conditions relates to core formation 

and on other terrestrial planets and planetesimals. As mentioned above, IW buffer is close 

to the nickel precipitation curve, which is associated with the redox condition of core 

formation (O’Neill and Wall 1987). Based on mineralogical and geochemical studies of 

meteorites and lunar samples, oxygen fugacity of small asteroidal bodies ranges from 

IW-5 to IW+1; lunar samples yield IW-2 to slightly above IW, and the basaltic 

shergottites on Mars are from close to or slightly below IW to IW+2 (summarized by 

Wadhwa 2008).  
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4.4. Size of Platinum Sensors 

The size of platinum sensor affects the texture and composition of olivine grains 

surrounding the sensors. For the sample with added micron size platinum powder as 

oxygen fugacity sensor, no textural and compositional changes were observed from 

olivine grains around platinum powder. For the olivine aggregate in iron capsule with 

relatively big platinum foil, a metallic bleb-free halo around the foil is very obviously 

observed (Figure 15). In contrast, olivine grains outside the halo show a large number of 

metallic blebs along grain boundaries and in the interior of olivine grains. This 

observation outside the halo is very similar to that of CAP1. These two samples had the 

exactly same run condition, but CAP1 is without platinum foil. 

	
  
Relatively large size of platinum sensors may cause oxygen fugacity heterogeneity. 

In CAP14, iron in adjacent olivine grains incorporated into the metallic Pt phase until an 

alloy with the equilibrium composition is produced. Oxygen was released during this 

process and the produced oxygen tended to oxide olivine grains surrounding the Pt foil. 

This oxygen fugacity heterogeneity is indicated in the image by the much less metallic 

blebs inside the halo than the outside. Although the oxygen fugacity outside the halo in 

CAP14 cannot be determined from nickel concentration in olivine and metallic iron (sol-

gel olivine does not contain nickel oxide), it should be close to the oxygen fugacity in 

CAP1 due to the same experimental conditions. Based on the oxygen fugacity determined 

from CAP1 and that determined from the iron concentration in the Pt-Fe alloy, the 

oxygen fugacities outside and inside the halo are -12 and -11 log units, respectively. This 
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difference implies that although the iron capsule imposed an extremely reduced chemical 

environment to the entire sample, locally this low oxygen fugacity is somewhat relieved 

by released oxygen due to iron incorporation to platinum foil. 

	
  

This study emphasizes the importance of minimizing the oxygen fugacity imposed by the 

platinum sensor. This problem has been noticed by grove (1981), who used PtFe alloy 

that is in equilibrium with basaltic melt as oxygen fugacity sensor to eliminate releasing 

oxygen. The method used in this study provides an alternative way to solve this problem 

and has advantages in three aspects. Firstly, the micron size platinum particles will 

quickly equilibrate with the iron-bearing experimental samples and excessed oxygen is 

negligible. In contrast, EDS data shows that the platinum foil in CAP14 was still not 

equilibrated with iron after 168 hours indicating release of oxygen was throughout the 

entire experiment duration. Secondly, using this method does not require calculations of 

the equilibrium composition of PtFe alloy. Lastly, the post-run composition of PtFe 

particles is measureable from multiple points evenly distributed throughout the entire 

sample, ensuring the accuracy of determined oxygen fugacity. 

 

5. Conclusions 

This study systematically investigated oxygen fugaciteis set by iron, nickel, nickel80-

iron20 and graphite capsules at relatively long experimental duration. The results show 

that these capsule materials effectively control oxygen fugacity between slightly below 

CCO buffer to 2 log units below IW buffer. Oxygen fugacities in nickel capsules are in 
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between CCO and IW buffers (2-3 log units below NNO buffer); in nickel80-iron20 and 

graphite capsules are at or 1 log unit below IW buffer, most closely representing intrinsic 

oxygen fugacity of anhydrous melt-free Fo90 olivine; and in iron capsules are 2 log units 

below IW buffer, representing a strong reducing condition that relates to core formation 

and on other terrestrial planets and planetesimals perhaps explaining the formation of 

“dusty” olivine in chondrites. For those experiments with added metal-oxides in iron and 

nickel capsules, no metal-oxides were preserved in post-run samples, indicating that 

metal/metal-oxide buffers cannot maintain oxygen fugacities at their corresponding 

buffers for relatively long duration in piston cylinder experiments. Heterogeneity of 

oxygen fugacity observed in experiments with platinum oxygen fugacity sensors 

emphasizes that it is important to minimize their volume while using platinum as external 

oxygen fugacity sensors. 
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Tables 
 
Table 1. Summary of experimental conditions 

	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  

Run # Capsule 
Material 

Temperature 
(◦C) 

Pressure 
(Gpa) 

Duration 
(hours) Sensors 

CAP1 Pure Iron 1400 1 168   
CAP2 Pure Nickel 1400 1 168   
CAP3 Ni-Fe Alloy 1400 1 168   
CAP4 Pure Nickel 1300 1 168   
CAP5 Pure Nickel 1300 1 80 NiO 
CAP6 Pure Nickel 1300 1 240 NiO 
CAP7 Pure Iron 1350 1 168 Fe2O3 
CAP8 Pure Nickel 1300 1 24 NiO 
CAP9 Graphite 1400 1 168   
CAP10 Ni-Fe Alloy 1400 1 168   
CAP11 Pure Nickel 1300 1 168   
CAP12 Pure Nickel 1200 1 168 Pt wires 
CAP13 Pure Iron 1300 1 168 Pt wires 
CAP14 Pure Iron 1400 1 168 Pt foil 
CAP15 Graphite 1400 1 48 Pt foil 
CAP16 Pure Iron 1300 1 108 Pt foil 
CAP17 Pure Nickel 1200 1 50 Pt powder 
CAP18 Pure Nickel 1300 1 94 Pt powder 
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Figures 
 
 

                                  
	
  
Figure 1. Metal/metal oxide buffer assembly. Metal/Metal Oixde buffer assembly used in 

this study. This assembly is commonly used by other researchers. Metal oxide is added at 

top and bottom of the olivine sample. 
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Figure 2. Oxygen fugacities of metal/metal-oxide buffers at pressure (1 GPa) and 

temperature conditions of this study. 
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Figure 3. SEM images of sectioned experimental capsules. Same San Carlos olivine 

powder was annealed in 4 different capsules for 168 hours at 1400 oC and 1 GPa. (a) 

Olivine aggregate in Fe capsule (CAP1). Metal particles visible at low magnification are 

distributed throughout the entire cross section of olivine aggregate. Slightly more metal 

particles are at the top and bottom. Compared to CAP2 and CAP3, CAP1 has much more 

metal particles presented. (b) olivine aggergate in Ni capsule (CAP2). Visible metal 

particles at low magnification are distributed in olivine grains along olivine-capsule 

contact. Multiple metal particles are in the center of the cross section of olivine aggregate 

(indicated by white arrows). (c) olivine aggregate in Ni-Fe capsule (CAP3).  A large 
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number of olivine grains were plucked out when polishing. The plucking indicates that 

the strength of chemical bonding at grain boundaries were reduced and grain boundaries 

mobility was enhanced. (high resolution image show cracks along grain boudnaries). At 

this magnification, metal particles are only detected in olivine grains along olivine-

capsule contact (indicated by black arrows). (d) olivine aggregate in graphite capsule 

(CAP9). This post-run sample was shrank along vertical axis and expanded along 

horizontal axis due to relatively low density of the capsule material graphite. No metal 

particles can be detected at this magnification. 
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Figure 4. High magnification SEM images showing center of olivine aggregates 

annealed at 1400 oC and 1 GPa for 168 hours in different capsules. (a) CAP1 iron 

capsule. (b) CAP2 nickel capsule. (c) CAP3 iron-nickel capsule. (d) CAP9 graphite 

capsule. 
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Figure 5. Orthopyroxene rinds formed in different metal-crystal contacts. Compared to 

olivine, opx rind shows lower topography and darker color. (a) in Ni80-Fe20 capsule 

(CAP10). (b) in iron capsule (CAP1). (c) in nickel capsule with added NiO powder 

(CAP6). (d) in nickel capsule (CAP11).  
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Figure 6. Orthopyroxene rinds indicated by EDS line scan. Orthopyroxene rinds are 

distinguished from olivine by the plateau in Silicon concentration line and 

correspondingly the step in Magnesium concentration line. 
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Figure 7. capsule-crystal contacts where metal-oxides were added. (a) Rough boundary 

between iron capsule and silicate grains (CAP7). A large number of metallic clots are 

within olivine grains and partially connected with the iron capsule. A few fine-grained 

olivine crystals are enclosed in the iron capsule near the contact. (b) Olivine grains 

housed in nickel capsule with added nickel oxide for 168 hours (CAP6) does not show 

any difference with those samples without nickel oxide annealed at the same condition. 

(c) Although the run duration of the other nickel/nickel-oxide experiment at same 

pressure and temperature condition (CAP8) was only 24 hours, no oxide was left in the 

post run sample. The rough contact between metallic nickel and crystals indicate that 

reduced nickel from nickel oxide was alloyed with the nickel capsule. Olivine grains 

close to the contact are brighter then those towards the center, indicating they have higher 

metal concentration. 
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Figure 8. Summary of Fo# of post-run samples. The red line indicates the Fo# of pre-run 

olivine. Each symbol represents the average Fo# of multiple points from the same 

sample, with error bar indicating the standard deviation. For those symbols without error 

bars, the error bar is smaller than the symbol itself. Symbols with solid fill represent Fo# 

of olivine grains in the center of samples, whereas symbols without solid fill represent 

Fo# of olivine grins adjacent to the capsules. The five diamond symbols connected by 

straight lines at top show Fo# of samples annealed in nickel capsules for 168 hours from 

1200 oC to 1400 oC. The three delta symbols connected by straight lines show Fo# of 

sample annealed in iron capsules for 168 hours from 1300 oC to 1400 oC. They imply that 

Fo# of olivine aggregate housed in the same capsule material increase with increasing 

temperature at constant run duration. 
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Figure 9. Fo# of olivine grains in the center of nickel capsule versus run duration. For 

those samples without nickel oxide added, fayalite concentration decreases with 

increasing run duration for both series of samples annealed at 1200 oC and 1300 oC. For 

the 24-hour run with added nickel oxide, the starting fayalite concentration was 

somewhat preserved. The starting fayalite concentration of the 240-hour run with added 

nickel oxide was not preserved but is significantly higher than those without nickel oxide. 

	
   	
  

NiO	
  

NiO	
  

90	
  

92	
  

94	
  

96	
  

98	
  

100	
  

0	
   50	
   100	
   150	
   200	
   250	
   300	
  

Fo
#	
  

Run	
  duration	
  (hrs)	
  

1300	
  oC	
  

1200oC	
  



	
  
	
  

	
  

67	
  

	
  
	
  
Figure 10. All oxygen fugacities determined from available EDS data as a function of 

temperature. This figure emphasizes that oxygen fugacities of runs in different capsules 

were lower than their corresponding buffers, but preserve relative orders.  Oxygen 

fugacity of runs in the same capsule material increases with increasing temperature, 

which is consistent with the trend of the corresponding buffer. 
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Figure 11. Oxygen fugacities of samples annealed in nickel capsules as a function of 

temperature. Samples are distinguished by symbols. Colors indicate different methods to 

calculate oxygen fugacities. 
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Figure 12. Oxygen fugacities of samples annealed in iron capsules as a function of 

temperature. Samples are distinguished by symbols. Colors indicate different methods to 

calculate oxygen fugacities. 
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Figure 13. Oxygen fugacities of samples annealed in nickel80-iron20 and graphite 

capsules as a function of temperature. Samples are distinguished by symbols. Graphite 

capsules are indicated by delta and squares. Colors indicate different methods to calculate 

oxygen fugacities.  
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Figure 14. Oxygen fugacities of olivine aggregates annealed in nickel capsules versus 

experiment duration.  This figure emphasizes that oxygen fugacities remain constant with 

increasing time.   
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Figure 15. Metallic bleb-free halo around Platinum foil in sample housed in iron capsule 

(indicated by yellow dash line).  
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Abstract 

Samples of Fo90 olivine and basaltic melt were annealed at a range of temperatures and a 

pressure of 1 GPa in a piston cylinder apparatus from 1 to 336 hours. Post-run samples 

have melt contents from 0.03% to 6.8% and mean grain sizes from 4.3 to 84.5 µm. The 

grain boundary wetness, a measure of the intergranular melt distribution, was determined 

by analyzing high-resolution SEM images. The results show that grain boundary wetness 

increases with increasing melt content to values well above those predicted by the 

idealized isotropic equilibrium model for a finite dihedral angle. Additionally, at fixed 

melt content grain boundary wetness increases with increasing grain size. Samples 

annealed at a range of temperatures and constant melt content show that grain boundary 

wetness does not depend on temperature. These observations emphasize that the dihedral 

angle alone is not adequate to characterize the melt distribution in partially molten rocks. 

Including the grain size sensitivity of the grain boundary wetness, diffusion creep 

viscosities at upper mantle grain sizes are significantly lower compared to predictions 

from the idealized model, suggesting that diffusion creep may be the dominant 

deformation mechanism for partially molten regions of the upper mantle.	
  

  



	
  
	
  

	
  

75	
  

1. Introduction 

The grain scale distribution of melt plays a key role for physical properties of partially 

molten regions in Earth’s upper mantle (Shankland and Waff, 1977; Hirth and Kohlstedt, 

1995; Faul 2001; ten Grotenhuis, 2005, Yoshino et al., 2009). The physical principle 

governing the grain scale melt distribution in partially molten rocks is the surface energy 

between solid grains and melt (Waff and Bulau, 1979, Bulau et al., 1979). This was 

originally expresses as a balance of surface tensions, establishing a fixed dihedral angle 

between two crystalline grains and the melt. For a dihedral angle greater than 0º and up to 

60º, grain boundaries are melt free and the melt forms an interconnected network along 

three-grain edges (triple junctions) at all melt fractions. For dihedral angles greater than 

60º, a threshold melt fraction is needed to form an interconnected network. A dihedral 

angle of 0º implies complete wetting of all grain boundaries. A model developed for the 

three-dimensional melt distribution based on surface tension equilibrium assumes grains 

of a fixed size with space filling geometry and isotropic surface energy. The predicted 

melt geometry has constant interfacial curvature and is self-similar, i.e. independent of 

grain size and melt fraction (von Bargen and Waff, 1986). 

 

Experimental observations indicate that the melt geometry of partially molten rocks is not 

adequately described by this idealized isotropic equilibrium model (Waff and Faul, 1992; 

Faul et al, 1994; Faul 1997). Observations from post-run samples show that melt not only 

forms triple junctions with constant interfacial curvature, but also larger pockets 

surrounded by four or more grains with faceted crystal-melt interfaces. Faceting is due to 
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anisotropic surface energy of olivine, first noted by Cooper and Kohlstedt (1982). The 

faceted crystal-melt interfaces are slow growing and tend to stabilize the melt pockets 

(Waff and Faul, 1992). High-resolution imaging shows that triple junctions include 

smoothly curved as well as faceted interfaces (Cmíral et al., 1998). Importantly melt also 

wets some, but not all, two-grain boundaries (Faul 1997, Garapić et al., 2013).  

 

A key aspect not considered in the idealized model is that surface energy reduction also 

drives grain growth. Theories for normal grain growth predict that polycrystalline 

aggregates have a stationary normalized grain size distribution, with grains below a 

critical size shrinking, while grains above the critical size grow (Atkinson 1988). In 

particular, at sites where grains shrink and disappear, neighboring grains not previously 

in contact have to adjust their grain boundary plane orientations to the new environment. 

Consequently, the interstitial melt geometry is not static as assumed in the idealized 

model, but a dynamic, continuously evolving distribution. In analogue experiments where 

the growth process could be directly observed with a microscope Walte et al. (2003) 

showed that this process produces transiently wetted two-grain boundaries even in near 

isotropic systems with a dihedral angle that is larger than that of the olivine-basalt 

system.  

 

Experimental observations coupled with grain growth models therefore imply that the 

melt geometry in partially molten systems cannot be characterized by the dihedral angle 

alone. A parameter is needed that better accounts for the variability of the melt geometry 
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observed in partially molten rocks. Dividing the melt geometry into different geometrical 

categories (Faul, 1997, Cmíral et al., 1998) incurs the problem that the division is 

necessarily somewhat arbitrary, as a continuous range of geometries is observed. A 

relatively straight forward parameter that is model-independent and includes 

measurement of the total interfacial area is the grain boundary wetness ψ (Takei, 1998, 

2002). It is defined as the ratio of the length of solid-liquid boundaries (Lsl) divided by 

the total grain boundary length (solid-liquid + solid-solid) (Yoshino et al, 2005): 

𝜓 =
𝐿!"

𝐿!" + 2𝐿!!
 

 

 Since grain growth is an important aspect of the melt geometry the wetness needs to be 

determined for a range of grain sizes. The measurements need to be made over a 

sufficiently large area to be representative of the melt distribution, and at sufficiently high 

resolution to include melt cusps deeply penetrating between two grains, as well as fully 

wetted two-grain boundaries with a thickness to 100 nm (Cmíral et al., 1998, Garapić et 

al., 2013). 

 

2. Methods 

2.1. Experimental Setup 

The starting material for the experiments consisted of solution-gelation derived Fo90 

olivine powder with a mean grain size of 1 µm. For details of the preparation of the 
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powder see Jackson et al. (2002). The olivine powder was mixed with basaltic glass 

powder by grinding in an agate mortar (see Table 2 of Faul et al. 2004 for the 

composition of the oxide-derived basalt). All experiments were carried out in a 1/2’’ 

diameter end-loaded piston cylinder apparatus at a pressure of 1 GPa and temperatures 

from 1250 ºC to 1450ºC for 1 to 336 hours (Table 2).  Only anhydrous components were 

used for the furnace assembly consisting of an outer NaCl sleeve, Pyrex sleeve, graphite 

heater and MgO inner spacers. The sample material was encapsulated in high purity 

graphite capsules. A small number of experiments were conducted in graphite-Pt double 

capsules and NiFe capsules. No discernable differences were observed between the 

different capsule materials. For all assemblies the capsule was separated from the 

graphite heater by a thin alumina sleeve. The fully dense alumina sleeve also ensured the 

mechanical integrity of the capsule during initial compression. An alumina disk was 

placed between the thermocouple and the capsule to prevent penetration of the 

thermocouple into the capsule, as well as for insulation of the capsule. All furnace 

components were kept in a drying oven at 105 ºC for at least 24 hours before use. Starting 

materials for 1-hour runs were annealed at 450 ºC in a muffle oven overnight.  

 

Temperature and run duration were controlled with a Eurotherm controller using a type B 

(Pt-Rh) thermocouple. The power was manually increased until the temperature reached 

400 ºC. The temperature was then ramped up by the controller at a rate of 50 ºC/ minute 

until reached the target temperature. At the end of an experiment the samples were 

quenched by turning off the power to the furnace, followed by pressure release.  



	
  
	
  

	
  

79	
  

 

The capsule was placed at the center of the hot zone of the furnace in order to avoid melt 

segregation due to thermal gradients (Lesher and Walker, 1988). To determine the hot 

zone axial temperature profiles were mapped by conducting a number of temperature 

calibration experiments following the method of Watson et al. (2002).  This method uses 

the fact that Al2O3 reacts with MgO at high pressures and temperatures to form a spinel 

layer. The width of the spinel layer is a function of temperature (T, in K), pressure (P, in 

GPa) and time (t, in s): ∆X = [8.58 x 1011 · exp(-48865/T – 2.08 · P0.5) · t]0.5 (Watson et al., 

2002). The upper part of the calibration assemblies consisted of an Al2O3 thermocouple 

sleeve inside a MgO sleeve, with the thermocouple at the position of the bottom of the 

capsule in the actual experiments. The lower part of the graphite furnace consisted of an 

MgO spacer with empty Al2O3 thermocouple sleeve along axis. After each calibration 

experiment the whole assembly was sectioned longitudionally in order to measure the 

spinel layer width every 0.5 mm. The axial temperature distribution for each experiment 

was constructed by using the equation above. The results show that the temperature along 

the length of sample location varies by less than 10 ºC and temperatures measured by the 

thermocouple do not need to be corrected (Figure 16). 
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2.2. Post-run Sample Preparation and Image Processing 

The post-run samples were sectioned through the long axis, vacuum-impregnated in 

epoxy and polished with diamond paste, then alumina suspension and finally with 

colloidal silica to produce surfaces free of damage for imaging. 

 

High-resolution secondary electron images were obtained on a Zeiss Supra 55 VP SEM 

at 5-15 kV acceleration voltage and 4.5 mm working distance, with an aperture of 30 µm. 

Each image consists of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 µm/pixel 

(depending on magnification). For each sample, we made mosaics of 6 x 6 or 8 x 8 

overlapping images to obtain a representative area (Table 1).  

 

The public domain software ImageJ was used for digital imaging processing. Melt-solid 

boundaries were traced on screen for conversion to binary images. Grain boundaries were 

traced by orientation contrast of neighboring grains and connecting triple junctions to 

obtain solid-solid boundaries. The mean grain diameter was calculated from the average 

circle-equivalent grain area in an image and multiplied by 4/pi to correct for sectioning 

effects of a sphere (Faul and Scott, 2006). Dihedral angles for select samples were 

measured on the same maps. 
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3. Results 

3.1. Description of the Melt Geometry 

As outlined above, the melt geometry needs to be determined for steady state grain 

growth conditions. The smallest mean grain size of this study is approximately four times 

the starting grain size so that considerable microstructural evolution has taken place from 

the initial powders. Normalized grain size distributions confirm that steady state grain 

growth conditions were achieved even at the shortest run durations (Figure 17). 

Normalized grain size distributions are independent of the mean grain size (see e.g. Faul 

and Scott, 2006). 

 

While the melt distribution in the isotropic model is independent of melt fraction, 

experimental observations show a change of the melt geometry with increasing melt 

content at constant grain size. At 0.5% most of the melt resides in triple junctions of 

varied size and shape (Figure 18a). At 1.7% melt penetrates further onto grain boundaries 

(Figure 18b). A number of adjacent triple junctions are connected by melt layers, 

implying fully wetted grain boundaries and a dihedral angle of 0º. Larger melt pockets 

occur at four or more grain corners. At higher melt contents and particularly at coarse 

grain sizes, the majority of the grain boundaries tend to be wetted by melt (Figure 18c, d). 

While crystal-melt interfaces of coarse-grained aggregates are frequently rounded, 

faceted crystal-melt interfaces dominate at small grain sizes (Figure 18e). Wetted-two 

grain boundaries occur only infrequently at the fine grain sizes. 
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In addition to changes with melt fraction the melt geometry also changes with grain size 

at constant melt content (Figure 19). In the fine-grained sample with a mean grain size of 

8.6 µm (Figure 19a) the melt resides predominantly in triple junctions and larger melt 

pockets of varied sizes and shapes. In contrast, at a mean grain size of  40.5 µm (Figure 

19b), wetted two-grain boundaries are common and connect melt pockets. A few small 

triple junctions are surrounded by relatively small grains. The images illustrate that the 

melt distribution of coarser-grained samples includes more wetted two-grain boundaries 

compared to fine-grained samples at the same melt content.  

 

3.2. Grain Boundary Wetness 

For a more quantitative assessment of the melt distribution we measured the grain 

boundary wetness ψ of 18 samples with grain sizes from 4 to 84 µm and melt contents 

from below 0.1 to 6.8% (Table 1, Figure 20). For reference, grain boundary wetness was 

also calculated with the idealized isotropic equilibrium model for a rhombic dodecahedral 

grain shape for dihedral angles of 10º and 30º (Takei, 2002). The grain boundary wetness 

of experimental samples with a mean grain size smaller than 10 µm falls on the contour 

predicted by the idealized model for a dihedral angle of 30º up to a melt content of 3%. 

The wetness of samples with grain sizes from 20 – 30 µm falls near the contour for a 

dihedral angle of 10º to about 2% melt. Coarse-grained samples (mean grain size > 40 
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µm) with melt contents near 2% and higher have values for the wetness well above those 

predicted by the idealized model. 

 

The relationship between grain boundary wetness and grain size is shown in Figure 21. 

Two subsets of the data from Figure 20 with similar melt contents show that at near 

constant melt content wetness increases with grain size. The increase at the coarsest grain 

size at 2% melt reflects the increase in wetness seen in Figure 20 at this melt content. The 

melt content at which this increase occurs may depend on grain size, such that the 

increase occurs below 2% for coarser grain sizes.  

 

In order to evaluate a possible dependence of wetness on temperature experiments were 

conducted at (near) constant melt content and a range of temperatures (Figure 22). At a 

melt content of 2% two samples with very similar grain size near 13 µm yield the same 

grain boundary wetness, even though their experimental temperature differed by 200ºC. 

The most coarse-grained sample in this Figure has the highest grain boundary wetness, 

despite a temperature that is 100ºC lower than that of a more fine-grained sample, 

emphasizing that it is grain size that determines the wetness rather than temperature.  

 

Additionally, dihedral angles were measured for the same samples to evaluate a possible 

dependence of wetness on temperature. Zero dihedral angles indicating wetted two-grain 

boundaries, were included in the measurements. At constant melt content and grain size 

the dihedral angle is independent of temperature for two experiments differing by 200ºC 
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(Figure 22). The Figure shows that dihedral angle does not depend on temperature but is 

sensitive to grain size, similar to the wetness. 

 

4. Discussion 

The principal difference between the assumptions of the isotropic equilibrium model and 

real systems is that polycrystalline aggregates at elevated temperatures do not have a 

static microstructure, but rather one that evolves due to surface energy driven grain 

growth (Walte et al., 2003). This results in a broadening of the grain size distribution (the 

size difference between the smallest and the largest grains increases with mean grain 

size), in contrast to the assumption of grains of a single size and uniform shape. 

Establishment of slow growing, facetted crystal-melt interfaces further stabilizes larger 

melt pockets (Waff and Faul, 1992). 

 

The most important observations of this study are the grain size dependence of the 

wetness at constant melt content and the increase in wetness at melt contents of about 2% 

above the predictions of the idealized model. This increase in wetness takes place at a 

similar melt content where Faul (1997) inferred interconnection (overlap) of melt pockets 

approximated as ellipsoidal inclusions.  Since the wetness is grain size dependent (Figure 

21), this transition likely occurs at lower melt contents at larger grain sizes. 
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4.1. Limitations of the Present Study 

Grain growth and microstructural maturation require relatively long duration experiments 

at high temperature (up to 1400ºC). The graphite in the furnaces used in our study was 

relatively fine-grained and stronger than the surrounding materials, leading to the 

development of cracks in the furnaces during pressurization. At high temperatures glass 

infiltrated the cracks, increasing the furnace resistance over time to levels where 

temperature could no longer be maintained and the experiment had to be terminated. 

Additionally the resultant relatively small radial variations in temperature can cause 

inhomogeneity of the melt distribution, with melt accumulating at higher temperatures 

patches. We therefore limited the experimental durations to two weeks. As grain growth 

rates correlate with melt content we were not able to obtain relatively coarse-grained 

samples (> 40 µm) at low melt contents (< 2%). Clinopyroxene begins to crystallize from 

the basalt composition used in our study at temperatures below 1250º. 

 

The coincidence of the wetness predicted by the isotropic model and the measured 

wetness at small grain sizes (Figure 20) illustrates the limitation of using wetness as a 

parameter to characterise the melt distribution. At small grain sizes the melt resides in 

relatively isometric pockets bounded by faceted crystal-melt interfaces. The surface to 

volume ratio of this melt geometry is similar to that calculated for melt residing in a triple 

junction network with constant interfacial curvature. Measuring the wetness can not 

discern these differences in the melt geometry. Grain size dependence and melt fraction 

dependence also create a non-uniqueness so that both parameters need to be given along 
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with the wetness. However, including all interfaces in a given area into a measure of the 

melt distribution is preferable over essentially point measurements at selected locations 

(dihedral angles) for characterization of the melt geometry. Wetted grain boundaries (i.e. 

dihedral angles of zero degrees) are typically not included in distributions of measured 

dihedral angles.  

 

4.2. Comparison with Previous Studies 

The importance of resolution for observation of the melt geometry has been pointed out 

previously. Cmíral et al. (1998) showed from high resolution transmission electron 

microscope images that true dihedral angles (where the grain boundary was tilted parallel 

to the electron beam) between olivine and basaltic melt have values of 10º or below. By 

contrast earlier studies using light micrographs to measure dihedral angles reported much 

larger values for the same system (Waff and Bulau, 1979, von Bargen and Waff, 1986).  

Garapić et al. (2013) demonstrated with high resolution SEM imaging and serial 

sectioning that the thin layers on two-grain boundaries observed earlier (Faul et al., 1994, 

Faul 1997) as well as in this study are indeed wetted two-grain boundaries.  

 

Similarly, grain boundary wetness will be underestimated at insufficient resolution, 

particularly if layers on two-grain boundaries with a width of 100 nm are not resolved. 

For example Yoshino et al. (2005) imaged their samples with resolutions ranging from 

0.06 to 0.3 µm/pixel, while Zhu et al. (2011) in their synchrotron study had a resolution 
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of 0.7 µm/voxel. Thin layers on two-grain boundaries, contributing disproportionally to 

wetness but little to area (volume) of melt, could not be resolved in these studies, while 

larger triple junctions and pockets were imaged. These authors concluded therefore that 

the isotropic model provides a sufficient description of the melt geometry.  

 

A dependence of the melt geometry on melt fraction was noted in previous studies. Hirth 

and Kohlstedt (1995) observed an increase in wetness in with increasing melt content in 

their samples with mean grain sizes ranging from 10 to 18 µm. They observed a large 

number of wetted two-grain boundaries at a melt content greater than 5% with a decrease 

of the dihedral angle from 38 º to close to 0º.  A change of the melt distribution as a 

function of melt content was also noted by Yoshino et al. (2005), who described an 

increasing number of wetted two grain boundaries at melt contents above 2%. 

 

4.3. Temperature Sensitivity of Dihedral Angle and Grain Boundary Wetness 

Yoshino et al. (2009) reanalyzed the 1 GPa experiments with a lherzolite composition of 

Yoshino et al. (2005) and conducted additional experiments at higher pressures to 

examine the melt distribution. Based on their observations they concluded that the 

dihedral angle decreases with increasing temperature to values near zero at the highest 

temperatures in their study (1500 - 1720ºC). However, in contrast to the starting 

composition of the present experiments with olivine and a fixed amount of basaltic melt, 

Yoshino et al. (2009) examined the melt distribution as a function of temperature of a 
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lherzolite composition. For a lherzolite at fixed pressure the melt content will increase 

with increasing temperature as the pyroxene mode decreases (e.g. Baker and Stolper, 

1994, Walter, 1998). As is shown in Yoshino et al. (2005, Table 1, KLB1 composition) 

as temperature increases the melt content increases from 2.4% at 1200ºC to 30% at 

1350ºC with a concomitant increase in grain size from 13 to above 50 µm. As the results 

presented here show, the apparent decrease in dihedral angle at this temperature range is 

related to the increase in melt fraction and grain size in their experiments. Additionally 

the cumulative frequency diagrams of dihedral angles in Figure 2 of Yoshino et al. (2009) 

do not include angles with a value of zero.  

 

We did not observe a temperature dependence of wetness or dihedral angle (Figure 22), 

consistent with measurements at high resolution at a temperature range from 1200 to 

1450oC by Cmíral et al (1998) and Faul and Scott (2006). In the present study samples 

with a mean grain size below 10 µm have larger dihedral angles due to the larger number 

of junctions formed by facetted crystal-melt interfaces. Overall no temperature 

dependence of wetness or dihedral angle is observed at temperatures up to 1450ºC when 

grain size and melt fraction are accounted for.  

 

5. Implication on Viscosity of the Upper Mantle 

Diffusion creep experiments are carried out with fine-grained aggregates in order to avoid 

the transition to dislocation creep at experimentally accessible stresses and strain rates. 
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Grain sizes in the experiments of Hirth and Kohlstedt (1995) and Mei et al. (2002) that 

deformed in diffusion creep were < 15 µm, with melt geometries dominated by facetted 

crystal-melt interfaces (Figure 3 of Hirth and Kohlstedt, 1995, Figure 5 of Mei et al., 

2005), similar to the fine-grained samples of this study (Figures 18e, 19a). At low melt 

contents (1 – 5%) the enhancement of creep rates due to melt is therefore moderate. 

Figure 19 illustrates how the melt geometry changes as a function of grain size. The 

increased number of wetted grain boundaries at grain sizes of tens of µm should enhance 

creep rates for these aggregates, but this is difficult to verify experimentally.  

 

Takei (1998) examined the relationship between macroscopic mechanical properties and 

microscopic geometry of solid-liquid composites. She concluded that the grain boundary 

contiguity ϕ (ϕ = 1- ψ, i.e. 1 – wetness) is the primary factor that determines the 

macroscopic properties of granular composites. The melt content affects the properties 

only indirectly through the grain boundary contiguity. Takei and Holtzman (2009a) 

develop this model further to derive constitutive relations of partially molten rocks 

deforming by grain boundary diffusion creep (termed compositional model). When finite 

liquid diffusivity and reaction rates are included at low melt fractions, they predict a 

decrease in viscosity from melt-free conditions to a melt content of 1% by one order of 

magnitude (Takei and Holtzman 2009a,b). This prediction is consistent with experimental 

observations that show a substantial increase in strain rates in the diffusion creep regime 

for the first percent of melt (Faul and Jackson, 2007).  
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The resistance to diffusion, γ, in the Takei and Holtzman (2009a, b) model is determined 

by the ratio of the total cross-sectional area of grain boundaries to that of the liquid. This 

ratio decreases with increasing grain size. The model viscosity is linked to the melt 

fraction by the melt fraction-dependent grain boundary wetness. The latter is calculated 

with the idealized isotropic model for a dihedral angle of 30º. Since this model is self 

similar, the wetness itself is independent of grain size. The significantly weaker 

dependence on melt content above 1% melt is due to the fact that at higher melt contents 

the viscosity is mainly controlled by diffusion through the liquid. 

 

Figure 23 shows a comparison of experimental parameters (wetness, grain size and melt 

fraction) with calculations of the resistance to diffusion based on the idealized model 

(Takei and Holtzman (2009a,b). When the experimental data are superimposed on 

contours of grain size at their measured wetness one can see that the resistance to 

diffusion in the experiments decreases more rapidly with increasing melt content relative 

to the idealized model. This is due to the more rapid increase of the experimentally 

determined wetness relative to the prediction of the idealized model (Figure 20), 

combined with the grain size dependence of wetness (Figure 21). 

 

Figure 24 shows the normalized shear viscosity calculated with the Takei-Holtzman 

(2009a, b) model. At melt contents above 1% the grain size sensitivity is minor for grain 
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sizes above 50 µm. Below 1 % the viscosity decrease at the onset of melting becomes 

increasingly a step-like drop for grain sizes approaching 1 mm. Since the measured 

wetness increases more quickly with melt content than predicted by the idealized model 

the viscosity decreases more quickly as well above 1% melt. The difference to the 

isotropic model reaches 30% for melt contents between 1.5 and 2% and 60% for melt 

contents of 4%. A remaining question is at what melt content the wetness increases above 

the predictions of the idealized model for mantle grain sizes. The decreased resistance to 

diffusion also implies that the melt geometry remains surface energy controlled, as fast 

diffusion alleviates stress heterogeneities.  

 

6. Conclusions 

This experimental study of partially molten dunite shows that grain boundary wetness 

increases with increasing melt content to values well above those predicted by the 

idealized isotropic equilibrium model. At constant melt content, grain boundary wetness 

increases with increasing grain size, in contrast to the assumption of a self-similar melt 

distribution in the idealized model.  No temperature sensitivity of the melt geometry is 

observed when grain size and melt fraction as factors influencing the melt distribution are 

accounted for. The experimental observations indicate that wetness increases more 

quickly as a function of melt content at mm to cm grain sizes inferred for the upper 

mantle. With the experimentally measured wetness the resistance for diffusion through 

the liquid phase in the solid-liquid composite model of Takei and Holtzman (2009a, b) 
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decreases more quickly than predicted by the idealized model. Correspondingly the shear 

viscosity decreases more quickly, enhancing diffusion creep at small melt fractions. 

Diffusion creep may therefore dominate in partially molten regions of the upper mantle. 
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Tables 
 
Table 2. Summary of run conditions and image analysis 

	
  
Sample T  (oC) 

(oC) 
t 

(hour) 
(hour) 

Wetness     
(ψ) 

Melt 
fraction (φ) 

Grain size 
(µm) 

# of grains 

MELT4 1350 120 0.69 0.041 40.5 109 

MELT5 1350 27 0.38 0.022 25.3 136 

MELT10 1350 81 0.19 0.004 30.9 120 

MELT13 1350 336 0.52 0.019 49.8 137 

MELT18 1350 288 0.16 0.004 15.3 170 

MELT19 1350 1 0.1 0.003 8.9 180 

MELT20 1350 1 0.38 0.03 8.6 340 

MELT21 1350 1 0.23 0.012 8.7 135 

MELT22 1350 336 0.21 0.005 32.5 104 

MELT23 1400 336 0.76 0.068 84.5 122 

MELT24 1350 1 0.21 0.011 7.8 166 

MELT25 1400 130 0.43 0.017 43 108 

MELT27 1250 1 0.19 0.01 4.3 327 

MELT28 1450 1 0.34 0.021 13.5 122 

MELT29 1250 72 0.27 0.019 8.6 269 

MELT30 1250 140 0.34 0.019 12.9 147 

MELT31 1250 361 0.21 0.009 12.6 249 

MELT33 1350 304 0.27 0.015 17.5 167 
 
The	
  pressure	
  was	
  1GPa	
  for	
  all	
  experiments.	
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Figures 
	
  

 	
   	
   	
   	
   	
   	
   	
  
 

 
	
  
Figure 16. Temperature distribution along the long axis of the furnace assembly 

determined from the width of a spinel layer of a calibration experiment at 1400 ºC and 1 

GPa after one week. 0 mm on the x axis indicates the top of the designed capsule 

location. The positive and negative numbers represent the distances from the top of 

capsule towards the bottom and top of the furnace, respectively. The temperature is 

within 10 ºC from top to bottom of the designed capsule location (0 to 4 mm) at the peak 

of the temperature distribution. The thermocouple is located within this broad peak, 

therefore no correction to the sample temperature is applied.  
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Figure 17. Histograms of grain size distributions. Grain sizes are normalized by the 

mean. (a) A fine-grained sample with a mean grain size of 8.7 µm (MELT20). (b) A 

coarse-grained sample with similar melt content (MELT32). Both histograms show 

lognormal distributions indicating that steady state grain growth conditions were 

established at the shortest run duration.  
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Figure 18. SEM images of experimental samples at 1 GPa, The images represent parts of 

the larger maps from which wetness and grain sizes were measured. (a) to (c), show the 

influence of increasing melt content at near constant grain size (approximately 40 µm). 

The predominant melt geometry changes from triple junctions (a) to wetted two-grain 

boundaries and melt pockets (c). (a) 0.5% melt (MELT22). (b) 1.7% melt (MELT25). (c) 

4.1% melt (MELT4). (d) shows the experiment with the coarsest mean grain size and 

highest melt content in this study (84.5µm and 6.8% melt, MELT23). Only few solid-

solid grain boundaries are present in this image (arrows), most of the grain boundaries are 

wetted by melt. (e) Melt distribution in a fine-grained sample (8.6 µm, 3%, MELT 20). 

Comparison with (b) at similar melt content but significantly larger grain size illustrates 
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the changes in melt distribution with increasing grain size towards increasing wetness 

(Table 1). 
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Figure 19.	
  Influence of mean grain size on the melt distribution. (a) Binary image of a 

portion of MELT20 with a melt content of 3.8% and a mean grain size of 8.6 µm. The 

original SEM image has a resolution of 0.014µm /pixel. (b) Binary image of MELT4 
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with 4.1% melt and 40.5 µm mean grain size. The original SEM image has a resolution 

of 0.029µm/pixel. These two images show that coarser grained samples have more 

wetted two-grain boundaries at a similar melt content, and consequently higher grain 

boundary wetness. 
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Figure 20.	
  Grain boundary wetness as a function of melt fraction for all samples of 

this study. The lines indicate grain boundary wetness calculated with the ideal 

isotropic model for dihedral angles of 10º and 30º. Labels show the mean grain size 

of each sample. Relatively fine grained samples (yellow triangles) follow the line 

predicted for a 30º dihedral angle (purple line) up to a melt fractions of  0.03. 

Medium grained samples (orange squares with 30.9, 32.5 and 25.2µm mean grain 

sizes) follow the contour line predicted for 10º dihedral angle up to a melt fraction of 

0.02 (blue line). Coarse grained samples (red dots and the three orange squares over 

38µm) have wetness values well above those predicted by the ideal isotropic model at 

melt fraction above about 0.016. 
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Figure 21. Grain boundary wetness as a function of mean grain size. Dots show 

experiments with melt contents of approximately 2%, diamonds 0.3-0.5%. The data 

indicate that grain boundary wetness increases with increasing mean grain size for 

constant melt content. Comparison with Figure 20 indicates that the higher wetness of the 

most coarse-grained sample is suggestive of a steeper increase at this grain size and melt 

fraction.  
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Figure 22. Effect of temperature on wetness and dihedral angle at a melt content of 2%. 

The mean grain size (in µm) and dihedral angle of each experiment is indicated by the 

numbers on and adjacent to the symbols, respectively. Two experiments with nearly 

identical grain size (12.9 and 13.5 µm) have the same grain boundary wetness and 

dihedral angle (within the error of measurement), although there is a temperature 

difference of 200 ºC. Wetness and dihedral angle therefore do not depend on temperature  

for fixed grain size and melt fraction. 
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Figure 23. Resistance to diffusion through the liquid phase in a solid-liquid composite 

calculated from wetness and contoured by grain size (eq. 37 Takei and Holtzman 2009b). 

The contours show that at a fixed grain size the resistance decreases steeply initially and 

then more moderately with increasing wetness. The melt content shown at the top of the 

figure is used to calculate the grain boundary wetness from the idealized isotropic 

equilibrium model for a dihedral angle of 30º. For this idealized model at fixed melt 

content the resistance deceases with increasing grain size. The squares show the wetness 

measured in the experiments at the corresponding grain sizes and their calculated 

resistance to diffusion. The measured melt contents are shown next to each data point. 

Comparison of the experimentally determined melt contents with the melt contents of the 
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idealized model (top horizontal axis) at a given wetness (bottom horizontal axis) show 

that the resistance to diffusion decreases more quickly with melt content than predicted 

by the idealized model. 
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Figure 24. Shear viscosity normalized by the viscosity of a melt-free aggregate 

calculated as a function of grain boundary wetness and grain size with the model of Takei 

and Holtzman (2009b). Symbols represent experimental wetness and grain size 

measurements with melt contents indicated next to the symbols. As for Figure 23, melt 

contents corresponding to the wetness on the bottom axis for the idealized model are 

shown at the top axis. Similar to the resistance to diffusion the viscosity calculated from 

the experimental parameters decreases more quickly with increasing melt content 

compared to the predictions of the idealized model. 
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CHAPTER IV 

EXPERIMENTAL STUDY OF OLIVINE-RICH TROCTOLITES 
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Abstract 

Naturally partially molten rocks exist in the form of olivine-rich troctolites or plagioclase 

dunites, but the conditions for their formation are not entirely clear. The primary purpose 

of this study is to investigate the effects of cooling process on the geometry of the 

interstitial phases. We therefore conducted experiments where olivine-basalt aggregates 

were annealed at 1350 ◦C and 0.7 GPa for 5 to 7 days to produce a steady state 

microstructure. At this temperature only olivine and minor orthopyroxene are present as 

crystalline phases. We then cooled the samples over one week below their solidus 

temperature, following different protocols. The post-run samples were sectioned, 

polished, imaged at high resolution and analyzed by using a field emission scanning 

electron microscope. The geometry of the interstitial phases was quantified by 

determining the grain boundary wetness, in this case the ratio of the length of polyphase 

to single phase (olivine-olivine) boundaries. Observations show that at 1200 oC 

clinopyroxene nucleates distributed throughout the aggregate at many sites, forming 

relatively small, rounded to near euhedral grains. During slow cooling below 1200 oC 

few clinopyroxene grains nucleate and grow with a poikilitic shape, partially or fully 

enclosing olivine grains, as is observed in natural samples. The experiments indicate that 

slow cooling of samples with a steady-state microstructure reproduces the interstitial 

geometry of plagioclase and clinopyroxene observed in natural samples. The grain 

boundary wetness determined from the interstitial phases is somewhat reduced during 
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slow cooling relative to samples quenched from high temperature. Crystallization of 

interstitial solid phases reduces grain boundary wetness more at lower melt content.  

The microstructural similarity of experimental and natural samples suggests that the grain 

boundary wetness of olivine-rich troctolite layer in the mush zone is somewhat lower 

than that in the region of partially-molten dunite at constant melt content. Furthermore, 

the shear velocity in troctolite layer may be higher than that in the region of partially 

molten dunite. 
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1. Introduction 

The earth’s upper mantle is partially molten in varies tectonic settings including mid-

ocean ridges, subduction zones and hotspots. Due to mantle rising beneath mid-ocean 

ridges, shallow crustal magma chamber (melt lens) is formed beneath many fast- and 

intermediate-spreading centers (Detrick et al., 1987). Seismic studies have detected a 

network composed of crystallized rock and melt under the melt lens, which is termed the 

mush zone (Sinton and Detrick, 1992). The fitting of seismic data indicates the mush 

zone consists of 2.5-18% melt (Crawford et al., 1999). Olivine-rich troctolite intervals are 

found from gabbroic sequences of the mush zone by deep drilling program at mid-ocean 

ridges (e.g. Suhr et al., 2008; Drouin et al., 2010), and in ophiolites (e.g. Faul et al., 2014; 

Renna and Tribuzio, 2011; Sanfilippo et al, 2013). These sill-like lenses are generally 

tens of meters thick and hundred of meters long (Detrick et al., 1987). The olivine-rich 

troctolites are characterized by high volume proportion of olivine with interstitial 

plagioclase and clinopyroxene. Typically the clinopyroxene occurs in the form of few 

large, poikilitic grains.  

 

Whether olivine-rich troctolites are formed from melt impregnation of former mantle 

rocks or a cumulate derivation of primitive melt (fractional melting) is still in debate. 

Reasons supporting a cumulate nature include cumulus-intercumulus appearance at a first 

glance, located at the bottom of a magma chamber, and compositionally the Fo# of 

olivine in olivine-rich troctolites is in between that of olivine in gabbros and that of 

mantle olivine (summarized by Suhr et al. 2008). Lissenberg and Dick (2008) favors that 
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the formation of olivine-rich troctolites is from reaction between migrating melt and 

olivine matrix crystallized from primitive cumulates. They state that troctolites and 

olivine gabbros from Kane gabbro suite contain cumulus assemblages of olivine with 

anhedral to euhedral shapes and plagioclase. Suhr et al. (2008), Renna and Tribuzio 

(2011) and Sanfilippo et al. (2013) suggest that olivine-rich troctolites are derived from 

partial dissolution of replacive mantle dunite and later the olivine-rich matrix is 

impregnated by MORB-type melt. Renna and Tribuzio (2011) studied olivine-rich 

troctolites from Ligurian ophiolites and observed that the relatively coarse-grained and 

mainly subhedral olivine and spinel are included in clinopyroxene occurring as large 

poikilitic grains. The high Mg# and Cr contents of poikilitic clinopyroxene indicates their 

formation through reaction between an olivine-spinel matrix and an infiltrating MORB 

type melt. Suhr et al. (2008) studied olivine-rich troctolites samples from Atlantis Massif. 

Compositionally, the high Ni in olivine for a given Mg# and high Cr in cpx suggest they 

are more mantle origin. Textually, although the olivine grains are relatively small 

resembling cumulus feature, the optical extinction across adjacent grains indicates that 

these grains were formerly larger but became dissected by dissolution. They suggest that 

the 50 m thick olivine-rich troctolite layer was originated from a former hartburgite or 

lherzolite mantle trapped between two intrusive units. Then the rock body was converted 

to a coarse-grained crust-mantle transition zone dunite, a precursor to the olivine-rich 

troctolites. Followed by melt percolation, the coarse-grained dunite body was lowered in 

Mg# and became fine-grained. At the final stage, clinopyroxene and plagioclase were 

crystalized from the interstitial melt. Similar texturally and compositional evidence were 
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found in samples from the Parece Vela Basin, supporting a melt-rock reaction between a 

MORB-like melt and dunite (Sanfilippo et al. 2013). 

 

As indicated by the paragraph above, Suhr et al. (2008), Renna and Tribuzio (2011) and 

Sanfilippo et al. (2013) suggest replacive features of the host olivine-rich rocks, but 

whether the host olivine-rich rocks shows replacive feature is also debatable. Cann et al. 

1999 states that dunites are derived from fractures filled with olivine precipitated from 

migrating melt. These dunites are replacive features, formed by dissolution of pyroxene 

and precipitation of olivine in migrating MORB magma at the same time (Kelemen et al. 

1995a, b).  Faul et al. (2014) and Faul and Garapić (2014) studied Krivaja-Konjuh massif 

and found evidence of impregnation by melt from the abundant patches of plagioclase in 

the spinel lherzolites. The trapped melt started off at larger depth and was silica 

undersaturated when it reached the plagioclase stability field. This melt dissolved 

pyroxene and locally converted the peridotites to massive olivine-rich troctolites. The 

high Ni content and euhedral texture of olivine grains indicate they are mantle origin and 

remained texturally equilibrated with the presumably MORB-type melt. Faul and Garapić 

(2014) observed progressive misorientation across individual grains due to previous 

deformation, further indicating mantle origin of olivine grains. In contrast, they did not 

observe signs of deformation in the interstitial clinopyrxoene and plagioclase, showing 

that the interstitial phases were crystallized from the melt. Similarly, Drouin et al. (2010) 

studied olivine-rich troctolites from the Atlantis Massif and reported that the 
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misorientations of olivine grains are consistent with deformation of mantle peridoties. 

These grains are embedded in large, undeformed pyroxene and plagioclase poikiloblasts. 

 

This experimental study aims to complement filed observations of olivine-rich troctolites 

in ophiolites and from mid-ocean ridges. The compositions of starting materials were 

controlled so that the olivine grains remained and texturally equilibrated with the melt, 

simulating original mantle olivine. The primary purpose of this study is to investigate the 

effects of cooling process on the geometry of interstitial clinopyroxene and plagioclase. 

 

2. Experimental Setup and Image Processing 

All runs were carried out in a 1/2’’ diameter end-loaded piston cylinder apparatus. The 

starting material was prepared by mixing sol-gel Fo90 olivine with a mean grain size of 1 

µm and approximately 10 wt% of synthetic basaltic glass powder together in an agate 

mortar. The olivine-basalt aggregates were housed in graphite capsules. The furnace 

assembly was similar to those described in chapter II and all furnace components were 

kept in a drying oven at 105 ºC for at least 24 hours before starting the experiments.  

Initially, the olivine-basalt aggregates were annealed at 1350 ºC and 0.7 GPa for 5 to 7 

days to produce a steady state microstructure. At this temperature only melt and olivine 

exists. The samples were then cooled over one week below their solidus temperature, 

following different protocols. During cooling orthopyroxene crystalizes first, then 

clinopyroxene and finally plagioclase. Experiments were ended by quenching the 
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samples to room temperature in less than one minute. Temperature-time paths for each 

experiment are show in Figure 25. After quenching, the experimental capsules were 

unloaded, mounted in epoxy and sectioned longitudinally. The sections were polished on 

diamond pastes, followed by alumina suspension and silica suspension to produce 

surfaces free of damage. Finally the samples were carbon coated for imaging and EDS 

analysis. 

 

The polished samples were imaged at high resolution and analyzed by using a Zeiss 

Supra 55 field emission SEM. The public domain software ImageJ was used for digital 

image processing. Each sample has a mosaic of 6 x 6 to 8 x 8 overlapping images, and 

each image has a size of 2048 x 1536 pixels and resolution of 0.014 to 0.029 µm/pixel 

depending on grain size. At least 200 olivine grains were covered in the imaging areas. 

Determination of grain boundary wetness is similar to the processes described in chapter 

2. For the digitization of interstitial phases, boundaries of former melt and pyroxene were 

traced separately (Figure 26).  

 

3. Results 

3.1. Overview 

Both quenched samples and step-cooled samples show steady-state grain growth of 

olivine. The melt distribution in the samples quenched from 1350 oC is homogeneous. 
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The interstitial phases in the samples XTAL2 to XTAL8 experienced step-cooling are 

homogenous. In XTAL1 there is a melt layer accumulated at the top of olivine aggregate. 

Some melt pockets are vertically aligned. More clinopyroxene is crystalized at the bottom 

of the aggregate. These observations indicate a temperature gradient during the course of 

the run and the bottom of the aggregate was colder than the top. Mean grain sizes of 

olivine in samples annealed at 1350 oC for 1 week and those followed by step-cooling for 

another week are almost identical, indicating that grain growth rate is very temperature 

sensitive and the growth rate at 1350 oC is significantly faster than that below 1250 oC. 

 

The two samples quenched from 1350 oC show that only olivine is presented as solid 

phase and melt is presented as liquid phase at this annealing temperature. These 

observations indicate that all phases other than these two are products of step-cooling at 

lower temperatures. In order to find out proper cooling protocols, MELTS modeling 

(Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) was conducted to predict solid 

phases crystalized from the MORB basalt from 1350 oC to 1100 oC. The result shows that 

plagioclase crystalizes at temperature below 1230 oC at 0.7 GPa (Figure 27). In addition, 

equilibrium crystallization experiments of basalt at 0.7 GPa reported by Villiger et al. 

(2007) shows that orthopyroxene, clinopyroxene and plagioclase crystalized below 1210 

oC and are stable phases between 1210 oC and 1150 oC. Hence, the fist step of cooling 

protocols was to drop the temperature from1350 oC to 1250 oC at a fairly fast rate (in 24 
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hours), then the rate was decreased to allow crystalize of plagioclase and clinopyroxene, 

following different temperature-time paths.  

 

Whether interstitial pyroxene phases crystalize depends on cooling time and rate at or 

below 1200 oC. The results show that interstitial orthopyroxene and clinopyroxene are 

able to crystalize at 1200 oC for a week. Alternatively, the cooling time needs to be below 

1175 oC for at least 5 days. In contrast, the sample annealed at 1175 oC for 4 days did not 

crystalize clinopyroxene, and the sample cooled from 1200 oC to 1150 oC for 2 days does 

not show interstitial clinopyroxene or orthopyroxene.  

 

3.2. Major Element Compositions of Minerals 

3.2.1. Olivine 

The starting compositions of olivine grains have been preserved (Table 4). This is 

expressed by an average Fo number between 89.9 to 90.5. Olivine grains do not show 

compositional gradient in samples without thermal gradient. Anhedral and rounded 

olivine grains enclosed in interstitial to poikilitic clinopyroxene have slightly lower Fo 

number of 89.9. Fo numbers of olivine grains in the matrix are in between 90.1 and 90.5. 

Olivine grains do not show compositional variations with cooling history.  
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3.2.2. Clinopyroxene 

Table 5 shows major element clinopyroxene compositions. Most major element 

concentrations in interstitial clinopyroxene show correlations with cooling history. The 

sample step-cooled until 1100 oC (XTAL4) has most concentration variations comparing 

to other samples. Concentrations of TiO2, Al2O3, CaO, and K2O show negative 

correlations with Mg# of clinopyroxene. (Figure 28 to 31) CaO concentrations distribute 

from 13.6 to 17.8, decreasing with increasing Mg# of clinopyroxene.  In general, the 

longer duration the sample annealed at lower temperature, the higher the CaO 

concentration. Majority of the samples have average TiO2 concentrations from 1.12 to 

1.78. Average TiO2 concentration of XTAL4 is 4.64, which is a bit higher than other 

samples. Average Al2O3 concentration of XTAL4 is 16.1, which is significantly higher 

than that of other samples ranging from 4.6 to 5.6. Average Na2O concentration is 

confined from 0.6 to 0.7, not showing variation with cooling history. 

 

3.2.3. Orthopyroxene 

Orthopyroxene grains are depleted in those oxides not included in starting basaltic glass 

powder, and enriched in FeO and MgO, which are major oxides in olivine (Table 6). 

Concentrations of major oxides are constrained in narrow ranges. Mg# of orthopyroxene 

is between 90 and 91. Orthopyroxene grains do not contain Na2O, TiO2 and K2O. 

Concentrations of SiO2 and Al2O3 show correlations with final temperatures. Average 

SiO2 concentrations drop with decreasing final temperatures, from 56.4 (XTAL5) to 55.6 
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(XTAL6) to 55 (XTAL4 and XTAL8). Average Al2O3 concentrations increase with 

decreasing quenching temperatures, from 1.5 (XTAL5), to 2.3 (XTAL6) and to 4.2 

(XTAL4). Average CaO concentrations range from 1.21-1.38 except XTAL6 that is 4. 

No compositional difference between interstitial orthopyroxene and orthopyroxene 

enclosed in poikilitic clinopyroxene. 

 

3.2.4. Plagioclase 

Major element plagioclase compositions are shown in Table 7. The anorthite content in 

plagioclase (An#) ranges from 0.4 to 0.62 and positively correlates with increasing Mg# 

of interstitial clinopyroxene (Figure 32). Both An# and Mg# decrease with lowering final 

temperatures. Compared to starting composition of the basaltic powder, plagioclase 

crystalized from the melt is enriched in Al2O3 and Na2O; decreased in FeO, MgO and 

CaO; concentrations of TiO2 and K2O are slightly increased. In general, these trends 

mentioned above are more obviously reflected by plagioclase crystalized at lower 

temperatures. 

 

3.3. Description of the Interstitial Phase Geometry 

SEM images show that interstitial phases and their geometries change with cooling 

temperature. For the sample cooled from 1350 oC to 1200 ºC over four days (XTAL5, 

Figure 33a, also Figure 34a), cpx grains nucleate adjacent to former melt pockets, 
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sometimes forming relatively small, rounded to near euhedral grains. A few large opx 

grains occur, surrounding olivine grains. Fewer grain boundaries are wetted by melt. The 

sample experienced fast cooling from 1350 oC to 1250 oC in a day, and then slow cooling 

from there to 1150 oC (XTAL8, Figure 33b, also Figure 34b) exhibit different interstitial 

phase geometry. During slow cooling below 1200 ºC, cpx occurs distributed throughout 

the aggregate with poikilitic shape, partially or fully enclosing olivine grains. In contrast 

to the olivine grains not enclosed in clinopyroxene, the olivine chadacrysts are more 

rounded and smaller. Some large opx grains are formed adjacent to poikilitic cpx grains. 

The sample quenched from l125 oC has higher pyroxene vol.% that that cooled from 

1200. Plagioclase phase has geometry similar to that quenched from 1350 oC. For 

example, the triple junctions and pockets have low dihedral angles. A few olivine grains 

are separated by former melt thin layers. In contrast, interstitial pyroxene phase is usually 

rounded at corners, yielding greater dihedral angles. 

 Cooling rate also affects interstitial phase geometry. The cooling rate of both XTAL5 

and XTAL8 were relatively slow, showing smooth boundaries of interstitial phases. 

These boundaries are clearly indicated by the EDS mapping of silicon concentration 

(Figure 34a and 34b). The interior of pyroxene phase is smooth, not showing holes or 

former melt pockets in the interiors. Although XTAL2 and XTAL8 were quenched from 

similar temperature, the fast cooling rate of XTAL2 makes it exhibits very different 

interstitial phase geometry (Figure 34c). The clinopyroxene phase in XTAL2 has very 

rough edges and includes tiny former melt pockets and orthopyroxene grains. The 
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clinopyroxene grains are poikilitic, partially or fully enclosing olivine grains, which is 

similar to the texture in XTAL8. 

 

3.4. Grain Boundary Wetness and Corresponding Melt Geometry 

Grain boundary wetness was determined from step-cooling samples, and compared with 

samples quenched from 1350 oC with similar melt contents. Results from two groups of 

experiments demonstrate that the difference in grain boundary wetness between quenched 

sample and step-cooled sample varies with melt content. Comparison between the 

quenched sample with 43 μm grain size (MELT35) and step-cooled sample with 39 μm 

grain size (XTAL2) at approximately 9% melt content indicates that the grain boundary 

wetness decreases from 0.9 to 0.6. SEM image shows that at this melt content only 

basaltic melt is present as interstitial phase in the quenched sample. Almost all olivine 

grain boundaries are wetted by basaltic melt (Figure 35a). In contrast sample, SEM image 

of the step-cooled sample (Figure 35b) shows that interstitial phases retreated from 

olivine grain boundaries. The dihedral angles between olivine and interstitial phases are 

increased from those in the quenched sample overall. The rounded dihedral angles 

formed between olivine grains and pyroxene phase are much greater than those relatively 

sharp dihedral angles between olivine grains and plagioclase phase. Plagioclase best 

preserves the interstitial melt geometry. At 12% melt content and 47 μm grain size, grain 

boundary wetness of the step-cooled sample (XTAL8) is 0.65, which is only slightly 

lower than that of the quenched sample (MELT40) of 0.71. SEM image of the quenched 
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sample (Figure 36a) shows that at this melt content majority of the melt forms very big 

pockets fully or partially enclosing olivine grains. Some of these olivine grains show 

euhedral crystal shape. Unlike most olivine grain boundaries are separated by melt at 9% 

melt content, at 12 % melt content the flat grain boundaries of these euhedral olivine 

grains partially form olivine-olivine grain boundaries with adjacent olivine grains. SEM 

image of the step-cooled sample (Figure 36b) shows that pyroxene phases crystalized 

from the very big melt pockets existed at 1350 oC. The dihedral angles between olivine 

and interstitial phases are somewhat greater than those shown in the quenched sample. 

This observation is more obviously demonstrated by the dihedral angles between olivine 

and pyroxene phases. 

 

4. Discussion 

4.1 Reduction of Grain Boundary Wetness 

The comparisons between quenched samples and step-cooled samples at different melt 

contents suggest that crystallization of interstitial solid phases reduces grain boundary 

wetness more at lower melt content. This observation is mainly due to the different melt 

geometry of quenched samples (partially molten dunite) at different melt contents. At 

relatively lower melt content of 9%, a large portion of the olivine grain boundaries are 

wetted by melt (Figure 35a). During cooling, the retreat of interstitially crystallizing solid 

phases from olivine boundaries results in decreased grain boundary wetness. The rounded 
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dihedral angles between olivine and pyroxene phases shown in Figure 35b emphasize that 

pyroxene appears to retreat from grain boundaries relatively quickly. At 12% melt 

content, there are much more free spaces filled by basaltic melt around olivine grains 

(Figure 36a) than those at 9% melt content in the quenched sample. These spaces indicate 

that a large number of olivine grains are able to grow freely without constraining by their 

neighboring grains and therefore these unconstrained grain boundaries have low surface 

energy. As a result, olivine-basalt aggregate at this high melt content has much less 

locally transient, high-energy configurations to form wetted two-grain boundaries (Walte 

et al. 2003) than those in the sample at lower melt content. Although the dihedral angles 

between olivine and interstitial phases are somewhat increased (Figure 36b), indicating 

retreat from olivine grain boundaries, this retreat does not cause significant decrease in 

grain boundary wetness due to less wetted two-grain boundaries at this high melt content. 

 

4.2. Comparison with Other Experimental Studies 

4.2.1. Geometry of Clinopyroxene 

Comparison of my experiments with the experiments reported by Saper and Liang (2014)  

and Tursack and Liang (2012) shows that the geometry of poikilitic clinopyroxene 

crystalized from melt depends on the CaO concentration in the melt, cooling rate and 

final temperature. Saper and Liang conducted reactive dissolution and crystallization 

experiments (2014) to test whether the formation of plagioclase-bearing peridotites 
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results from impregnation of basalt into residual peridotites.  The reaction couple 

consisted of spinel lherzolite + 12% MORB mixture and MORB basaltic powder. The 

sample PDLS-6 was annealed at 1300 oC and 1 GPa for 24 hours, then cooled to 1050 oC 

as pressure dropped to 0.7 GPa and quenched after 72 hours. A control experiment 

annealed the melt-impregnated lherzolite at 1300 oC for 24 hours show that all minerals 

except olivine were completely incorporated into the melt. Hence in fact the 

crystallization experiment started from a partially molten dunite at the side far from the 

melt-rock reaction boundary, which is similar to the experimental condition of my study. 

Their SEM image of the area far from the melt-rock reaction boundary shows interstitial 

plagioclase and relatively large poikilitic clinopyroxene grains with smaller, rounded 

olivine chadacrysts. The geometry of plagioclase from their study shows high similarity 

to that in sample XTAL8 from my study. Both clinopyroxene phases from their sample 

and my samples are poikilitic, but their poikilitic clinopyroxene grains are much larger 

than those in my experimental samples. Presumably this discrepancy comes from the 

higher CaO concentration in their MORB basalt (12.5 vs. 10.7). More importantly, their 

melt composition when crystallization began incorporated with 13% dissolved 

clinopyroxene from lherzolite. In addition, their final temperature was 1050 oC, which 

was 100 to 150 oC lower than my final temperatures. Although their sample had much 

less cooling time, but the high concentration of clinopyroxene ingredient enriched in the 

melt with decreasing temperature and lower final temperature mainly contributed to the 

crystallization of large poikilitic clinopyroxene grains. The experiment PDET 1 reported 

by Tursack and Liang (2012) used a reaction couple formed by lherzolite and basaltic 
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powder. The composition of the basaltic powder is similar to that used in my study in 

terms of SiO2 and CaO concentrations. The sample was annealed at 1300 oC for 24 hours 

and fast-cooled to 1200 oC in one hour. Similar as PDLS 6, the lehrzolite turned to 

partially molten dunite after annealing at 1300 oC for 24 hours and the crystallization 

started from this condition. SEM images show that the region far from dunite-melt 

interface is composed of small, near euhedral clinopyroxene grains and occasionally 

relatively small poikilitic clinopyroxene, which is similar to the geometry of 

clinopyroxene shown in one of my samples cooled until 1200 oC (XTAL5, Figure 34a). 

Grain edges of clinopyroxene in PDST 1 are rough, which is similar to that in my fast-

cooled sample XTAL2 (Figure 34c).  

 

4.2.2. Formation of Orthopyroxene 

Comparison of orthopyroxene in my experimental samples to that in samples reported by 

Tursack and Liang (2012) and Saper and Liang (2014) suggests that the formation of 

poikilitic orthopyroxene requires pre-existing orthopyroxene at relatively high 

temperature. Orthopyroxene is shown in their crystallization experiments after annealing 

at 1300 oC for only 1 hour reported. These grains are poikilitic with inclusions of olivine 

and/or clinopyroxene. Some of orthopyroxene grains are adjacent to poikilitic 

clinopyroxene grains. The sample cooled for longer duration shows relatively larger 

poikilitic grains. These observations are similar to the geometry of orthopyroxene from 

my experimental samples. They attributed the formation of poikilitic orthopyroxene to 
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short duration that helps preserve a higher SiO2 concentration and orthopyroxene 

crystallized around undissolved orthopyroxene. Although the starting materials of my 

experiments do not contain orthopyroxene, the basaltic glass powder used in my 

experiments is silica oversaturated and could react with olivine grains. This high 

abundance of silica is consistent with the observation that my olivine-basalt aggregates 

annealed at 1350 oC with relatively low melt contents exhibit minor amount of rounded 

orthopyroxene grains and more orthopyroxene grains are presented in those samples 

annealed at 1250 oC (described in Chapter II). These rounded orthopyroxene grains 

played the similar role to those undissolved orthopyroxene described in Tursack and 

Liang (2012) and Saper and Liang (2014). Upon cooling, orthopyroxene crystallized 

around pre-existing orthopyroxene to from poikilitic texture. 

 

4.3. Comparison with Field Observations 

 Figure 37 is an EBSD map of an olivine-rich troctolite from Krivaja-Konjuh (geological 

settings described in Faul et al., 2014). In this EBSD map green represents olivine grains, 

red is cpx, light blue is plagioclase, dark blue and pink are spinel. Black is not indexed 

but is predominantly altered interstitial plagioclase. This map indicates that cpx is more 

resistant to alteration and preserves the interstitial geometry better. Although plagioclase 

is mostly altered but the texture still shows interstitial geometry. Comparison between 

experimental and natural samples show that upon slow cooling of samples equilibrated at 
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high temperatures reproduces similar interstitial geometry of plagioclase and cpx 

observed in olivine-rich troctolties from field samples. 

As indicated by other field studies (e.g. Suhr et al. 2008; Renna and Tribuzio 2011; 

Sanfilippo et al. 2013), plagioclase is interstitial to olivine, euhedral to subhedral within 

poikilitic clinopyroxene, or subhedral to poikilitic clinopyroxene in natural olivine-rich 

troctolites. Plagioclase in my experimental samples shows similar interstitial geometry 

distributed in olivine-rich matrix. A few small former melt pockets composed of 

plagioclase with faceted edges are enclosed in poikilitic clinopyroxene (Figure 34c). 

These plagioclase grains in former melt pockets may resemble euhedral to subhedral 

plagioclase within poikilitic clinopyroxene observed in field samples. But individual 

plagioclase grains are too fine-grained to be resolved by SEM. A TEM study by Faul et 

al. (2004) shows that individual plagioclase grains in a sample after staged cooling are 

down to nanometer range. Such nanocrystalline plagioclase excesses the resolution of 

SEM. The discrepancy in grain size between natural and experimental plagioclase is due 

to the very different cooling time. Intrusive igneous rocks usually require millions of 

years to cool. Compared to such a geologic time scale, the cooling time for the formation 

of plagioclase in lab is way too short to grow relatively big enhedral to subhedral grains. 

Clinopyroxene in olivine-rich troctolites from field samples shapes from granular to 

interstitial to poikilitic. All these features have been observed in my experimental 

samples with different cooling history. Rounded to near euhedral clinopyroxene is shown 

in the sample cooled at 1200 oC (Figure 34a). Interstitial to poikilitic clinopyroxene has 
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been observed in the samples cooled below 1200 oC (Figure 34b and 34c). Overall, my 

experimental samples serve as analogues to the olivine-rich troctolties from ophiolites 

and mid-ocean ridges. The interstitial textures of plagioclase and clinopyroxene can be 

reproduced upon slow cooling. The difference in grain size is due to different cooling 

time.  

 

5. Implications 

5.1. Melt Content and Shear Velocity in Mush Zone 

This study provides better constrains on the melt content estimated from shear viscosities 

in the mush zone beneath mid-ocean ridges. Crawford et al. calculated the shear viscosity 

in mush zone beneath east pacific rise and estimated a range of melt content from 2-18% 

(1999). The wide range is introduced by using two seismic models assuming different 

melt geometry. One melt geometry that needs a large volume of melt causes equivalent 

shear wave attenuation to another melt geometry that requires less melt and therefore is 

more efficient at reducing seismic velocities (Mavko, 1980). Specifically, the lower 

bound is estimated from a model assuming a thin film or sphere melt geometry (Goetze, 

1977; Mavko et al. 1979) with strong anelastic effects while the upper bound is based on 

a tube geometry without anelastic effects. The tube geometry is similar to the ideal 

isotropic model suggested by Bulau and Waff (1977), Waff and Bulau (1979) and Bulau 

et al. (1979). According to the results of quenched and step-cooled samples of olivine-
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basalt aggregates, the melt geometry of olivine-basalt aggregate is neither pure film nor 

pure tube. For a combined melt geometry of thin films and tubes, the melt content in the 

mush zone is higher than the previously estimated lower bound and lower than the upper 

bound. Measurement of grain boundary wetness suggests that a large portion of the 

olivine grain boundaries are wetted by melt and the degree of wetting is somewhat 

decreased during cooling. It indicates that the grain boundary wetness of olivine-rich 

troctolite layer in the mush zone is somewhat lower than that in the region of partially-

molten dunite at constant melt content. Furthermore, the shear velocity in troctolite layer 

may be higher than that in the region of partially-molten dunite. 

 

6. Conclusions 

To better understand the formation of olivine-rich troctolites found in ophiolites and mid-

ocean ridges, step-cooled experiments of olivine-basalt aggregates were conducted. The 

results show that slow cooling of samples equilibrated at high temperature reproduces 

interstitial geometry of plagioclase and clinopyroxene observed in field olivine-rich 

troctolites. For those samples cooled until 1200 oC, tnterstitial phases and their 

geometries change with cooling temperature. Clinopyroxene grains form relatively small, 

rounded to near euhedral grains. During slow cooling below 1200 oC, clinopyroxene 

occurs distributed throughout the aggreagate with poikilitic shape, partially or fully 

enclosing olivines. Some large orthopyroxene grains are formed adjacent to poikilitic 

clinopyroxene grains. Clinopyroxene at slow cooling history shows smooth boundaries, 
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while rapid cooling results in rough edges and includes tiny plagioclase pockets and 

orthpyroxene grains.  

 

During cooling retreat of interstitially crystallizing solid phases from olivine boundaries 

results in decreased grain boundary wetness. Plagioclase best preserves the interstitial 

melt geometry, while orthopyroxene appears to retreat from grain boundaries relatively 

quickly. The comparisons between quenched samples and step-cooled samples at 

different melt contents indicate that crystallization of interstitial solid phases reduces 

grain boundary wetness more at lower melt content. The microstructural similarity of 

experimental and natural samples suggest that the grain boundary wetness of olivine-rich 

troctolite layer in the mush zone is somewhat lower than that in the region of partially-

molten dunite at constant melt content. Furthermore, the shear velocity in troctolite layer 

may be higher than that in the region of partially-molten dunite. 
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Tables 
	
  
Table 3. Conditions of step-cooling experiments. 

 
Final cooing strategies at/below 1200 oC Phases 

XTAL1 at 1200 oC for 7 days ol opx cpx plag 

XTAL2 at 1150 oC for 7 days ol opx cpx plag 

XTAL3 1200 oC to 1150 oC at 25 oC/day ol plag 

XTAL4 1200 oC to 1100 oC at 20 oC/day ol opx cpx plag 

XTAL5 at 1200 oC for 7 days ol opx cpx plag 

XTAL6 at 1175 oC for 4 days ol  opx plag 

XTAL7 1200 oC to 1150 oC at 10 oC/day ol opx cpx plag 

XTAL8 1200 oC to 1130 oC at 14 oC/day ol opx cpx plag 

 

The final pressure of all experiments was 0.7 GPa. 

  



	
  
	
  

	
  

139	
  

 
 
Table 4. Major element olivine compositions (average values, wt %) 

 SiO2 FeO MgO Fo# 

XTAL1 40.6 9.79 49.59 90 
XTAL2 40.37 9.36 50.28 90.5 
XTAL3 43.94 9.08 47.00 90.16 
XTAL4 40.74 9.6 49.66 90.2 
XTAL5 40.34 9.7 49.96 90.18 
XTAL6 40.48 9.54 49.99 90.3 
XTAL7 40.26 9.6 50.14 90.3 
XTAL8 41.06 9.63 49.32 90.13 
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Table 5. Major element clinopyroxene compositions (average values, wt %) 

 SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O Total Mg# 

XTAL1 48.55 2.73 10.98 3.55 16.23 16.95 0.78 0 99.95 89 

XTAL2 52.16 1.78 5.6 3.96 20.1 15.64 0.7  0 99.94 90 

XTAL4 43.7 4.64 16.13 3.57 13.55 17.76 0.61 0 99.96 87 

XTAL5 52.86 1.81 5.12 4.33 21.29 14.58 0.62  0 100 89.8 

XTAL6 53.12 1.14 4.59 4.68 22.27 13.56 0.64 0  100 89.5 

XTAL7 53.04 1.12 4.7 4.34 21.83 14.41 0.575  0 100 90 

XTAL8 52.65 1.14 5.56 4.12 20.44 15.6 0.48 0 100 90 
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Table 6. Major element orthopyroxene compositions (average values, wt %) 

 SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O Total Mg# 

XTAL1 54.9 0.5 3.93 6.17 32.67 1.8 0 0 100.1 90.4 

XTAL4 54.97 0 4.19 6.22 33.05 1.38 0 0 100 90.4 

XTAL5 56.38 0 1.48 6.02 34.73 1.22 0.37 0 100 91.1 

XTAL6 55.56 0.64 2.32 6.58 31.19 4.04 0 0 100 89.4 

XTAL8 55.09 0.68 2.33 6.66 30.4 4.5 0.36 0 100 89.0 
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Table 7. Major element plagioclase compositions (average values, wt %) 

 SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O Total An# 

Initiala 47.90 2.40 13.90 10.70 11.60 10.70 2.20 0.50 99.90  

XTAL1 49.81 2.24 23.67 4.39 6.07 7.91 5.09 0.76 99.94 46 

XTAL2 50.99 3.10 20.86 5.01 6.73 8.21 4.60 0.56 100.06 50 

XTAL3 49.03 1.84 18.63 7.28 11.18 8.01 3.60 0.40 99.95 55 

XTAL4 52.41 3.06 24.39 3.69 4.17 6.13 5.09 1.07 100.00 40 

XTAL5 52.40 2.91 19.63 5.41 6.81 8.43 4.13 0.43 100.01 53 

XTAL6 52.82 3.03 17.89 5.82 6.86 9.39 3.71 0.50 100.00 58 

XTAL7 50.81 3.50 19.97 5.77 7.49 8.81 3.01 0.65 100.00 62 

XTAL8 51.41 2.90 20.23 5.50 7.21 8.16 4.02 0.60 100.00 61 
 
 a. Starting composition of basaltic powder 
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Figures 
 
 

	
  
	
  
Figure 25. Summary of typical run conditions. Initially, all samples were annealed at 

1350◦C and 0.7 GPa for 5 to 7 days to produce a steady state microstructure. At this 

temperature only melt and olivine exists. MELT 35 and MELT 40 were quenched 

directly from this temperature. The other XTAL samples were cooled over approximately 

one week below their solidus temperature, following different protocols as indicated by 

lines of different colors. During cooling orthopyroxene crystalizes first, then 

clinopyroxene and finally plagioclase. Experiments were ended by quenching to room 

temperature in less than one minute. 
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Figure 26. Example of image processing. (a) A portion from a high resolution mosaic. 

The original mosaic has a resolution of 0.014 µm/pixel. (b) Triple junctions, melt pockets 

and wetted-two grain boundaries formed by basaltic melt in Figure a were carefully 

traced on screen to convert to binary image (in red); Interstitial crystals in Figure a were 

traced on screen to convert to binary image (in black); Olivine-olivine grain boundaries 

in Figure a were traced on screen by orientation contrast and connecting triple junctions 

to create binary images of solid-solid boundaries (in blue). 
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Figure 27. MELT modeling (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) of the 

starting melt composition from 1350 oC to 1100 oC at 0.7 GPa. The x-axis indicates 

temperatures in oC x 1000. 
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Figure 28. TiO2 content versus Mg# in clinopyroxene. Generally, TiO2 content decreases 

with increasing Mg#.  
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Figure 29. Al2O3 content versus Mg# in clinopyroxene. As indicated by this figure, 

Al2O3 content decreases with increasing Mg# in general.  
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Figure 30. CaO content versus Mg# in clinopyroxene. Although data scatters at Mg# of 

90, it still shows a trend that when the Mg# increases from 87 to 90, CaO content keeps 

decreasing. 
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Figure 31. K2O content versus with Mg# in clinopyroxene. The trend is clear that with 

increasing Mg#, K2O content decreases. 
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Figure 32. Anorthite content (an#) in plagioclase versus Mg # of interstitial 

clinopyroxene. Generally, an# in plagioclase shows positive correlation with Mg# in 

clinopyroxene.  
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Figure 33. SEM images of sections of samples with different cooling history. (a) XTAL5 

quenched from 1200 ◦C. At this temperature, cpx grains nucleate adjacent to former melt 

pockets, sometimes forming relatively small, rounded to near euhedral grains. A few 

large opx grains occur. Compared to samples quenched from 1350 ◦C, fewer olivine grain 

boundaries are wetted. (b) XTAL8 cooled below 1200 ◦C. Cpx  occurs distributed 

throughout the aggregate with poikilitic shape, partially or fully enclosing olivine grains. 

Some large opx grains are formed adjacent to poikilitic cpx grains. 
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Figure 34.  SEM images and EDS mapping of major element concentrations of samples 

with different cooling protocols. (a) XTAL5. (b) XTAL8. (c) XTAL2. cpx at slow 

cooling history shows smooth boundaries (XTAL5 and XTAL 8)., while rapid cooling 

results in rough edges and includes tiny plagioclase pockets and opx grains (XTAlL2).  
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Figure 35. Comparison between quenched and step-cooled sampls at 9% melt content 

and similar grain size. (a) quenched sample with 43 µm grain size (MELT35). At this 

melt content only basaltic melt is present as interstitial phase in the quenched sample. 

Almost all olivine grain boundaries are wetted by basaltic melt. (b) step-cooled sample 

with 39 µm grain size (XTAL2). Interstitial orthopyroxene retreated from olivine grain 

boundaries. The dihedral angles between olivine and interstitial phases are greater than 
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those in the quenched sample (MELT35) overall. Plagioclase best preserves the 

interstitial melt geometry. 
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Figure 36. Comparison of quenched and step-cooled samples at 12% melt content and 47 

µm grain size. (a) The quenched sample (MELT40) at this melt content majority of the 

melt forms very big pockets fully or partially enclosing olivine grains. Some of these 

unconstrained olivine grains show euhedral crystal shape. These unconstrained grain 
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boundaries are low energy and partially or fully connected with adjacent grain boundaries 

(indicated by arrows). (b) The step-cooled sample (XTAL8) shows that pyroxene phases 

crystalized from the very big melt pockets existed at 1350 oC. The dihedral angles 

between olivine and interstitial phases are somewhat greater than those shown in the 

quenched sample (MELT40). This observation is more obviously demonstrated by the 

dihedral angles between olivine and pyroxene phases. 
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Figure 37. EBSD map of an olivine-rich troctolite from Krivaja-Konjuh (geological 

settings described in Faul et al., 2014). Green represents olivine grains, red is cpx, light 

blue is plagioclase, dark blue and pink are spinel. Black is not indexed but is 

predominantly altered interstitial plagioclase. This map indicates that cpx is more 

resistant to alteration and preserves the interstitial geometry better. Although plagioclase 

is mostly altered but the texture still shows interstitial geometry. 
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APPENDICES 
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Appendix I: Thermodynamic Background and Calculation of Oxygen Fugacity 

 

Definition of Terms 

Standard state   the standard state for an ideal gas is defined as P=1 bar, T. 

Species              In chemistry, a species can be defined as an ensemble of chemical 

identical molecular entities that can explore the same set of molecular 

energy levels on a characteristic or delineated time scale (from IUPAC). 

Phase                 A physically distinctive form of matter, such as solid, liquid, gas or 

plasma. A phase of matter is characterized by having relatively uniform 

chemical and physical properties (e.g. a gas mixture of O2 and H2 has 

one phase (gas) and two species (O2 and H2)) . 

 

List of Symbols 

P             pressure  

T             temperature 

 fi            fugacity of species I, which is the partial pressure of species I in the gas phase. 

It is closely related to the thermodynamic activity. 

ai                  activity of species i. It represents the concentration of species I in the system. 

Xi            mole fraction of species I, which equals weight percent of species I divided by   

its atomic/molecular weight. 

ϒi           activity coefficient of species i. It is defined as the ratio of the activity of 

speciesi to its mole fraction 



	
  
	
  

	
  

166	
  

K            equilibrium constant of a chemical reaction 

G            Gibbs free energy,  is a thermodynamic potential that measures the useful 

work obtainable from a thermodynamic system at a constant temperature and pressure 

(isothermal, isobaric).  

∆G         change in Gibbs free energy  

∆V        volume change 

R           gas constant, which is 8.314 J/mol K 
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1. Full Derivation of Oxygen Fugacity Equations 

1.1. Relationship Between Chemical Equilibrium and Concentration of Reactants 

Consider a general chemical reaction, 

dD + eE = gG + hH 

where D, E, G and H are chemical species and d, e, g and h are the stoichiometric 

coefficients (e.g., 2H2 + O2 = 2H2O). At given pressure and temperature, the equilibrium 

constant K is 

𝐾 =
[𝑎!]![𝑎!]!

[𝑎!]![𝑎!]!
 

The above equation is also called law of mass action. It states that the equilibrium 

constant is a function of activities of chemical species. Activity is a measure of the 

effective concentration of a species in a mixture and it relates to its chemical potential. 

For condensed species, the activities relate to their mole fraction, and this relationship is 

described by activity coefficient  

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝛾! =
𝑎!
𝑋!
=

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  𝑜𝑓  𝑖
𝑚𝑜𝑙𝑒  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑖 

In an ideal solution, a=X, then activity coefficient =1. A nonideal solution is one in which 

the activities of the species are not equal to their mole fractions. If >1, then the species i 

is said to exhibit a positive deviation from ideal behavior, and if <1, then the species I is 

said to exhibit a negative deviation. 

 

For a gas, the activity is simply the fugacity divided by a reference pressure to give a 
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dimensionless quantity. This reference pressure is called the standard state and normally 

chosen as 1 atmosphere or 1 bar. For example, the activity of oxygen in gas phase is 

                                                                                                                                  a!" =
!!"
!!"
! =𝑓!! 

So in geochemical systems, when both solutions and gases present in a chemical reaction, 

the chemical potentials of solutions (liquid and solid) are represented by activities, and 

the chemical potentials of gases are represented by fugacities. Thus, at standard state 

(P=1,T), the equilibrium constant K of a gas participated reaction dD + eE = gG + O2  is 

 

𝐾 =
[𝑎!]![𝑓!!]
[𝑎!]![𝑎!]!

                (1) 

Taking log at both sides and substituting activities with mole fractions and activity 

coefficients, we get 

𝑙𝑜𝑔𝐾 = log
𝑎!
!

𝑎!!𝑎!!
𝑓𝑂2 = log

𝑋!�!
!

𝑋!𝛾! ! 𝑋!𝛾! ! 𝑓𝑂2  

Rearranging parameters, the equation becomes 

𝑙𝑜𝑔𝐾 = 𝑙𝑜𝑔𝑓!! + 𝑔𝑙𝑜𝑔𝑋! + 𝑔𝑙𝑜𝑔𝛾! − 𝑑𝑙𝑜𝑔𝑋! − 𝑑𝑙𝑜𝑔𝛾! − 𝑒𝑙𝑜𝑔𝑋! − 𝑒𝑙𝑜𝑔𝛾!          (2) 

 

1.2. Relationship Between Equilibrium Constant and Gibbs Free Energy 

The Gibbs free energy of a system at any moment in time is defined as the enthalpy of the 

system minus the product of the temperature times the entropy of the system. 

G = H - TS 
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The Gibbs free energy of the system is a state function because it is defined in terms of 

thermodynamic properties that are state functions. The change in the Gibbs free energy of 

the system that occurs during a reaction is therefore equal to the change in the enthalpy of 

the system minus the change in the product of the temperature times the entropy of the 

system. 

G = H - (TS) 

The standard Gibbs free energy change for a reaction is ∆G!. At chemical equilibrium 

∆G=0, Neither the forward nor the reverse, the reaction becomes 

∆G! = −RTlnK!                            (3) 

This is a very important equation. It relates the standard Gibbs free energy change of a 

reaction to the experimentally determinable equilibrium constant. Based on Raoult’s law 

derived from gas mixtures, the vapor pressure of an ideal solution is dependent on the 

vapor pressure of each chemical species and the mole fraction of the species present in 

the solution. According to the equilibrium constant equation, equilibrium constant is a 

function of partial pressure. The ideal gas law PV = nRT, relates pressure, volume and 

mole fraction to temperature and gas constant. Combining all these equations together, 

equation (3) is derived (the full derivation is very long). Now this equation has been 

applied to general chemical equations. For example, in geochemistry, the equation for 

calculating metal/metal-oxide buffers (will be discussed later) is derived from equation 

(3). In this case, it considered condensed metal and metal oxide exist as vapor species in 



	
  
	
  

	
  

170	
  

the gas phase. It is also widely used in calculating oxygen fugacity in gas mixtures, 

minerals and melts. 

The next step is applying this equation at standard state to general pressure and 

temperature conditions. At constant temperature, the partial derivative of equation (3) to 

pressure gives 

(!∆!
!

!!
)!=−(

!!"#$%
!!

)! 

The variation of the molar Gibbs free energy of a closed system of fixed composition, 

with pressure at constant temperature, is given by the fundamental equation 

 dG = VdP 

So the change in volume is 

∆𝑉 = (!∆!
!

!"
)!, 

Substituting the partial derivative of ∆𝐺! with ∆V, and moving ∂P from right side to left 

side, we get 

∆𝑉𝑑𝑃 = −𝑅𝑇𝑑𝑙𝑛𝐾 

Integrating this equation from 1 bar (standard state) to given pressure gives 

∆𝑉𝑑𝑃 = −𝑅𝑇𝑑𝑙𝑛𝑘
!

!

!

!
 

∆𝑉∆ 𝑃 − 1 = [−𝑅𝑇𝑙𝑛𝐾]!! = 𝑅𝑇𝑙𝑛𝐾 − 𝑅𝑇𝑙𝑛𝐾!   

Where K is the equilibrium constant at given P, T, and K0 is equilibrium constant at 

standard state. Since at standard sate,  
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∆𝐺! = −𝑅𝑇𝑙𝑛𝐾! 

Substituting −𝑅𝑇𝑙𝑛𝐾!  with ∆𝐺!, we get 

∆𝑉 𝑃 − 1 = ∆𝐺! + 𝑅𝑇𝑙𝑛𝐾  

Therefore equilibrium constant at given P and T is 

𝑙𝑛𝐾 = −
∆𝐺!

𝑅𝑇 +
∆𝑉(𝑃 − 1)

𝑅𝑇  

Because log10/ln = 2.303,  

𝑙𝑜𝑔𝐾 = −
∆𝐺!

2.303𝑅𝑇 +
∆𝑉 𝑃 − 1
2.303𝑅𝑇                                                       (4) 

Plugging in equation (2), then equation (4) becomes 

𝑙𝑜𝑔𝑓!! + 𝑔𝑙𝑜𝑔𝑋! + 𝑔𝑙𝑜𝑔𝛾! − 𝑑𝑙𝑜𝑔𝑋! − 𝑑𝑙𝑜𝑔𝛾! − 𝑒𝑙𝑜𝑔𝑋! − 𝑒𝑙𝑜𝑔𝛾!

= −
∆𝐺!

2.303𝑅𝑇 +
∆𝑉(𝑃 − 1)
2.303𝑅𝑇  

Moving parameters other than oxygen fugacity to the right side of the above equation, we 

get 

𝑙𝑜𝑔𝑓!! = −𝑔𝑙𝑜𝑔𝑋! − 𝑔𝑙𝑜𝑔𝛾! + 𝑑𝑙𝑜𝑔𝑋! + 𝑑𝑙𝑜𝑔𝛾! + 𝑒𝑙𝑜𝑔𝑋! + 𝑒𝑙𝑜𝑔𝛾! −
∆𝐺!

2.303𝑅𝑇

+
∆𝑉 𝑃 − 1
2.303𝑅𝑇                                         (5) 

 

The standard Gibbs free energy changes ∆G0 at given P and T for a chemical reaction can 

be represented by the form ((𝐺𝑎𝑠𝑘𝑒𝑙𝑙, 2003)   

                                                            ∆𝐺! = 𝑎 + 𝑏𝑇  𝑙𝑛𝑇 + 𝑐𝑇    (𝐽)               6      
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Coefficients a and b can be checked from thermodynamic data, and lists the range of 

temperature in which the expression is valid. Similar as ∆G0, values of volume changes 

and activity coefficients can be found from published thermodynamic data. Mole fraction 

of each species can be measured by analytical techniques. Thus, if the mole fraction of 

species can be measured, and activity coefficients, standard Gibbs free energy change and 

volume change are literature values, the oxygen fugacity of this system can be calculated. 

 

1.3. Oxygen Fugacity Equation for Metal/Metal-oxide Buffers 

In high pressure high temperature experiments reported by literatures, oxygen fugacity 

during the course of experiment is controlled by metal/metal-oxide buffers. Some 

common buffers are 

2Ni + O2 = 2NiO      (NNO) 

2Fe + O2 = 2FeO      (IW) 

C + O2 = CO/CO2    (CCO) 

When using such a method, it is always assumed that the buffer imposes its oxygen 

fugacity to the assembly, and the oxygen fugacity is often calculated without taking into 

account the silicate specimen. It is also assumed that the oxygen fugacity of the specimen 

rapidly reaches its equilibrium value, which is assumed to be that of the calculated buffer 

oxygen fugacity at given pressure, temperature (Raterron et al., 1998). Such a chemical 

reaction involves a gas species and two condense species and can be represented by the 

following equation 

M + 0.5O2 = MO 
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Similar to equation (1), the equilibrium constant of the above equation is a function of 

activities of species, and the activity of gas species can be represented by fugacity. Thus, 

the chemical equilibrium at standard state is 

𝐾 =
[𝑀𝑂]
[𝑀] [𝑓!!]!.!

                 

The activity of pure substances in condensed phases (solid or liquids) is normally taken 

as unity (the number 1), which means pure liquids and solids do not contribute to the 

chemical equilibrium. In this case, when both metal and metal oxide phase exist, the 

activities of these two phases are set to 1 (Medard et al. 2008, Nicholis et al. 1971 and 

O’Neill 1987a) and So the above equation becomes  

𝐾 = 𝑓!!!!.! 

Take log at both sides 

𝑙𝑜𝑔𝐾 = −0.5𝑙𝑜𝑔𝑓!! 

Plug in equation (4) to get oxygen fugacity at given T, P  

−0.5𝑙𝑜𝑔𝑓!! = −
∆𝐺!

𝑅𝑇 +
∆𝑉(𝑃 − 1)

𝑅𝑇  

Plug in equation (6) 

𝑙𝑜𝑔𝑓!! = −
𝑎
𝑅𝑇 −

𝑏𝑇
𝑅𝑇 −

𝑐𝑇𝑙𝑛𝑇
�𝑇 +

∆𝑉(𝑃 − 1)
𝑅𝑇  

Now we can set –a/R=A, -b/R=B, -c/R=D, and ∆V/R=C. Rewriting the above 

equation, finally we get the equation for calculating metal/metal oxide buffer 

𝑙𝑜𝑔𝑓!! =
𝐴
𝑇 + 𝐵 + 𝐶 𝑃 − 1 /𝑇 + 𝐷𝑙𝑛𝑇 
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Coefficients for A, B, C and D of common buffers are summarized in Table 7 of 

Hirschmann et al., 2008. 

 

2. Applications in Geochemical Thermodynamic Calculations 

2.1. Oxygen Fugacity Calculation for Olivine-Opx-Metal Equilibria 

Experiments of olivine housed by Fe, Ni, Ni-Fe and graphite capsules show five phases 

coexist in the olivine-capsule systems: oxygen, silica, olivine, opx rind formed at olivine-

capsule contact, metallic iron (or nickel) alloyed with metal blebs or metallic capsules. 

The chemical reactions for iron reduction is 

Fe2SiO4 =2 Fe + SiO2 + O2     [1] 

Olivine      iron    silica    oyxgen 

The chemical equation for the formation of opx rind is  

Mg2SiO4 + SiO2 = Mg2Si2O6  [2] 

Olivine      silica      Orthopyroxene 

Where Fe2SiO4 is the Fe-rich end member of olivine (Fayalite) and is represented by 

symbol Fa. Mg2SiO4 is the Mg-rich end member of olivine (Forsterite), which is the 

majority composition of San Carlos olivine. In this system, silica activity in reaction [1] 

is buffered by reaction [2], as long as opx rind, olivine and iron coexist in the capsule, the 

oxygen fugacity is buffered by this olivine-opx-metal equlibria. The following three 

methods are basically based on this equlibria. 
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2.1.1. Using Fe Concentration in FePt Alloy 

The Fe reduced from olivine also alloys with Pt. Since the activity-composition relation 

of Fe-Pt alloy is known (earlier literature usually use activity coefficient from Heald 

1967, this study uses a recent calibration from Fonseca et al.,2009), the redox state of this 

system can be determined by inserting a Pt wire into olivine grains and calculating the 

oxygen fugacity based on thermodynamic properties of the Pt-Fe system (Jamieson et al. 

1991, Woodland and O’Neill 1997, Kessel et al. 2001). In the system with Pt sensor, 

reaction [1] takes place between Pt wire and adjacent olivine grains. The chemical 

equilibrium constant of this reaction is 

                                              𝐾 = !!"
!"#! .!!"#!
!!"
!"

.𝑎!!=!!"
!"#! .!!"#!
!!"
!"

. 𝑓𝑂2 

In above equation, 𝑎!"!"# is activity of Fe in Fe-Pt alloy, 𝑎!"!" is activity of Fa in olivine. 

asio2 is the activity of Silica, which is buffered by the presence of opx rind through 

reaction [2] (Rubie et al. 1993).  

Rewriting equation (5) we get oxygen fugacity equation for calculating olivine-opx-metal 

equilibria 

𝑙𝑜𝑔𝑓𝑂! = 𝑙𝑜𝑔𝐾− 2𝑙𝑜𝑔𝑎!"!"� − 𝑙𝑜𝑔𝑎!"#! + 𝑙𝑜𝑔𝑎!"!" + 𝑙𝑜𝑔𝑓𝑂!! 

                                              =
−∆𝐺![1]
2.303𝑅𝑇 +

∆𝑉(𝑃 − 1)
2.303𝑅𝑇 − 2 log 𝛾!"!"# .𝑋!"!"# − 𝑙𝑜𝑔𝑎!"#! + log 𝛾!"!" .𝑋!"!"  

In the above equation, mole fractions of Fe in alloy ( 𝑋!"!"# )and Fa in olivine (𝑋!"!" ) can 

be measured by EDS. Values of other parameters can be checked from literature 

mentioned in the following text. 
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Summary of Thermodynamic data 

Standard Gibbs Free Energy of Reactions [1] 

Equation is obtained by using electrochemical technique (O’Neill, 1987a).  

                            ∆G0[1]= -564800 + 144.4T  (J/mol)         

Silica Activity 

In equation [2], aSiO2 is given by (O’Neill 1987) 

𝑙𝑜𝑔𝑎!"#! =
∆𝐺!

2.303𝑅𝑇 + 𝑙𝑜𝑔𝑎!"!!"!!!
!"# − 𝑙𝑜𝑔𝑎!"!!"#!!"  

Since both Mg2SiO4 and Mg2Si2O6 are the major components of San Carols olivine and 

opx, their activity coefficients are close to 1. logaSiO2 is 

𝑙𝑜𝑔𝑎!"#! =
∆𝐺!

2.303𝑅𝑇 

Thus the calculation only depends on the accuracy of Gibbs free energy change of this 

equation (Holland and Powell, 1998).  

                                    ∆𝐺! = −14540  +   71.44T  −   8.9  Tln(T)   −   0.375  P  (in  kb)J/mol 

𝑙𝑜𝑔𝑎!"#! = (−14540+ 72.44𝑇 − 8.9 ln 𝑇 − 0.375𝑃)/(2.303𝑅𝑇) 

Activity Coefficient of Fe in Fe-Pt ALloy 

Equation for activity of Fe in Fe-Pt alloy is from equations 4-7 in Fonseca et al. (2009): 

𝑙𝑜𝑔𝛾!"!"# = (1− 𝑋!"!"#)![0.0062𝑇 − 12.302+ (0.0017𝑇 − 2.565) 4𝑋!!!"# − 1 ] 

Activity Coefficient of Fa in olivine 

Equation for activity of Fa in olivine is from O’Neill et al. (2003): 
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𝑙𝑜𝑔𝛾!"!" = (1− 𝑋!"!" )![(2600+ 108𝑃)/(2.303𝑅𝑇)] 

Change in volume 

                               ∆V◦ = 0.866 (J/bar)   

 

Data for oxygen fugacity calculation using this method is in Table 8. 

 

2.1.2. Using Fe Concentration in Ni-Fe Alloy 

If there are Ni-Fe alloys enclosed in the capsule with the presence of a opx rind, the 

oxygen fugacity can be calculated using the same method and equations described in 

section 2.1.1 but with activity-composition relation of iron in Ni-Fe alloy. 

𝑙𝑜𝑔𝑓𝑂! = 𝑙𝑜𝑔𝐾 − 2𝑙𝑜𝑔𝑎!"!"# − 𝑙𝑜𝑔𝑎!"#! + 𝑙𝑜𝑔𝑎!"!" + 𝑙𝑜𝑔𝑓𝑂!! 

                                              =
−∆𝐺!

2.303𝑅𝑇 +
∆𝑉(𝑃 − 1)
2.303𝑅𝑇 − 2 log 𝛾!"!"# .𝑋!"!"# − 𝑙𝑜𝑔𝑎!"#! + log 𝛾!"!" .𝑋!"!"  

Mole concentrations of iron in Ni-Fe alloy (𝑋!"!"#) and fayalite in olivine (𝑋!"!" ) are 

measureable. Required thermodynamic data are summarized below. 

 

Summary of thermodynamic data 

Standard Gibbs Free Energy of Reactions [1]  

                        Same as the one in section 2.1.1 

Silica Activity 

                         Same as the one in section 2.1.1 

Activity Coefficients of Fe in Fe-Ni Alloy  
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𝛾!"!"# at a range of mole fractions of Fe in Fe-Ni alloy are summarized in Talbe III of 

Conard et al.,1978. 

Activity Coefficient of Fa in Olivine 

Same as the one in section 2.1.1 

Change in Volume 

                                  ∆V◦ = 0.866 (J/bar)   

 

Data for oxygen fugacity calculation using this method is in Table 9. 

 

2.1.3. Using Ni Concentration in Ni-Fe Alloy 

Natural San Carlos olivine contains minor amount of Ni2SiO4. The following reaction 

takes place with reaction [1] at the same time, 

Ni2SiO4 =2 Ni + SiO2 + O2  [3]    

 

If nickel concentration in Ni-Fe alloy and Ni2SiO4 concentration in olivine are detectable, 

the oxygen fugacity can be calculated using an equation similar to that in section 2.1.2, 

but iron and fayalite are replaced by nickel and Ni2SiO4, respectively.  

𝑙𝑜𝑔𝑓𝑂! = 𝑙𝑜𝑔𝐾 − 2𝑙𝑜𝑔𝑎!"!"# − 𝑙𝑜𝑔𝑎!"#! + 𝑙𝑜𝑔𝑎!"!!"#!!" + 𝑙𝑜𝑔𝑓𝑂!! 

                                              =
−∆𝐺!

2.303𝑅𝑇 +
∆𝑉(𝑃 − 1)
2.303𝑅𝑇 − 2 log 𝛾!"!"# .𝑋!"!"# − 𝑙𝑜𝑔𝑎!"#!

+ log 𝛾!"!!"#!!" .𝑋!"!!"#!!"  
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Summary of Thermodynamic Data 

Standard Gibbs Free Energy of Reactions [3]  

∆G◦ = -485700 + 179.2T (J/mol) 

Silica Activity 

Same as the one in section 2.1.1 

Activity coefficient of Ni2SiO4 in olivine  

 Approximately 1. 

Activity Coefficients of Ni in Ni-Fe Alloy  

Available from the table in section 2.1.2 (Conard et al.,1978). 

Change in volume  

                                        ∆V=0.67 (J/bar) 

 

Data for oxygen fugacity calculation using this method is in Table 10. 

 

2.2. Oxygen Fugacity Calculation for Metal-Silica-Opx Equilibria 

With the presence of opx rind, oxygen fugacity is also buffered by the following 

equilibria: 

Fe + SiO2 + 0.5O2 = FeSiO3 [4] 

                                   Ferrosilite 

The equilibrium constant of this reaction can be expressed as  

                                                      𝑙𝑜𝑔𝐾 = log  ( !!"
!!"!!"#!!!!

!.!)             



	
  
	
  

	
  

180	
  

Then oxygen fugacity is 

                       logfO2 = -2logK + 2logaFs - 2logaFe - 2logaSiO2 

                                                    = -2logK + 2logXFs + 2logγFs - 2logXFe - 2logγFe - 2logaSiO2 

Mole concentrations of Ferrosilite in opx and iron in iron-nickel alloy are available from 

EDS data.  

 

Summary of Thermodynamic Data 

Equilibrium Constant 

logK = 12776/T-2.45+0.0079(P-1)/T   (Williams 1971)        

Silica Activity 

Same as the one in section 2.1.1 

Activity coefficient of iron in nickel  

Available from the table in section 2.1.2 (Conard et al.,1978). 

Activity coefficient of ferrosilite in opx  

logγfs = 0.22(1-Xfs)2          (Williams 1971)) 

 

Data for oxygen fugacity calculation using this method is in Table 11. 
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Tables 

Table 8. Data for oxygen fugacity calculation using Fe concentration in FePt alloy 

Run# Cap T 𝑋!"!"# 𝑋!"!"  
∆𝐺!

2.3𝑅𝑇
 2𝑙𝑜𝑔

𝑋!"!"

𝑋!"!"#
 2𝑙𝑜𝑔𝛾!"!"  2𝑙𝑜𝑔𝛾!"!"# logSi 

∆𝑉
2.3𝑅𝑇

 logfO2 

CAP11 Ni 1573 0.23 0.02 -11.21 -2.35 0.17 -3.08 -0.17 0.29 -9.85 

CAP18 Ni 1573 0.22 0.06 -11.21 -1.16 0.16 -3.12 -0.17 0.29 -8.63 

CAP17 Ni 1473 0.26 0.07 -12.48 -1.15 0.17 -3.44 -0.18 0.31 -9.55 

CAP15 C 1673 0.09 0.01 -10.09 -2.23 0.17 -3.53 -0.17 0.27 -8.19 

CAP14 Fe 1673 0.33 0.01 -10.09 -3.23 0.17 -1.65 -0.17 0.27 -11.06 

 Pressure = 1 Gpa 
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Table 9. Data for oxygen fugacity calculation using Fe concentration in FeNi alloy 

Run# Cap T 𝑋!"!"# 𝑋!"!"  
∆𝐺!

2.3𝑅𝑇
 2𝑙𝑜𝑔

𝑋!"!"

𝑋!"!"#
 2𝑙𝑜𝑔𝛾!"!"  2𝑙𝑜𝑔𝛾!"!"# logSi 

∆𝑉
2.3𝑅𝑇

 logfO2 

CAP1 Fe 1673 0.92 0.07 -10.09 -2.3 0.15 0 -0.17 0.27 -11.79 

CAP7 Fe 1623 0.75 0.11 -10.63 -1.66 0.14 -0.02 -0.17 0.28 -11.68 

CAP3 NiFe 1673 0.19 0.09 -10.09 -0.69 0.14 -0.58 -0.17 0.27 -9.61 

CAP2 Ni 1673 0.02 0.02 -10.09 0.03 0.16 -1.3 -0.17 0.27 -8.15 

CAP4 Ni 1573 0.04 0.04 -11.21 -0.67 0.17 -1.2 -0.17 0.29 -9.72 

CAP6 Ni 1573 0.02 0.03 -11.21 0.25 0.17 -1.32 -0.17 0.29 -9.00 

CAP8 Ni 1573 0.02 0.04 -11.21 0.81 0.17 -1.34 -0.17 0.29 -8.43 

CAP11 Ni 1573 0.01 0.02 -11.21 0.12 0.17 -1.36 -0.17 0.29 -9.10 

CAP18 Ni 1573 0.02 0.02 -11.21 0.11 0.17 -1.31 -0.17 0.29 -9.16 

CAP9 C 1673 0.28 0.10 -10.09 -0.93 0.14 -0.35 -0.17 0.27 -10.08 

 Pressure = 1 Gpa 
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Table 10. Data for oxygen fugacity calculation using Ni concentration in NiFe alloy 

Run# Cap T 𝑋!"!"# 𝑋!"!"  
∆𝐺!

2.3𝑅𝑇
 2𝑙𝑜𝑔

𝑋!"!"

𝑋!"!"#
 2𝑙𝑜𝑔𝛾!"!"  2𝑙𝑜𝑔𝛾!"!"# logSi 

∆𝑉
2.3𝑅𝑇

 logfO2 

CAP7 Fe 1623 0252 1e-4 -10.09 -2.3 0.15 0 -0.17 0.27 -11.79 

CAP3 NiFe 1673 0.81 0.01 -5.80 -4.22 0 -0.08 -0.17 0.21 -9.56 

CAP2 Ni 1673 0.99 0.03 -5.80 -3.12 0 6e-4 -0.17 0.21 -8.54 

CAP4 Ni 1573 0.97 0.01 -6.77 -3.81 0 3e-3 -0.17 0.22 -10.18 

CAP6 Ni 1573 0.99 0.02 -6.77 -3.47 0 -0.001 -0.17 0.22 -9.84 

CAP8 Ni 1573 0.985 0.13 -6.77 -1.79 0 -0.001 -0.17 0.22 -8.16 

CAP11 Ni 1573 0.99 0.03 -6.77 -3.10 0 9e-4 -0.17 0.22 -9.47 

 Pressure = 1 Gpa 
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Table 11. Data for oxygen fugacity calculation using Ferrosilite concentration in 
Orthopyroxene 

Run# Cap T 𝑋!"!"# 𝑋!"
!"# 2logSi 2K 2𝑙𝑜𝑔𝛾!"

!"# 2𝑙𝑜𝑔𝛾!"!"# logfO2 

CAP1 Fe 1673 1 0.07 -0.35 10.47 0.38 0.00 -12.11 

CAP3 NiFe 1673 0.19 0.07 -0.35 10.47 0.38 -0.58 -10.09 

CAP2 Ni 1673 0.01 0.01 -0.35 10.47 0.43 -1.37 -8.43 

CAP4 Ni 1573 0.02 0.02 -0.35 11.44 0.42 -1.32 -9.29 

CAP6 Ni 1573 0.01 0.01 -0.35 11.44 0.43 -1.37 -9.29 

CAP11 Ni 1573 0.02 0.02 -0.35 11.44 0.42 -1.34 -9.13 

CAP12 Ni 1473 0.02 0.05 -0.35 12.55 0.40 -1.25 -9.85 

CAP18 Ni 1573 0.02 0.02 -0.35 11.44 0.42 -1.26 -9.34 

CAP9 C 1673 0.28 0.09 -0.35 10.47 0.37 -0.37 -10.41 

       Pressure = 1GPa 
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Appendix II: Temperature Calibration of Piston Cylinder Apparatus  
	
  
	
  
1. Introduction 

Temperature measurements of piston cylinder experiments are achieved by inserting a Pt-

Rh thermocouple into the graphite furnace to measure the temperature right above the 

experimental sample (Figure 38).  The temperature measured by the Pt-Rh thermocouple 

may need to be corrected to reflect the actual temperature at the measurement point. 

Furthermore, the experimental sample is required to be placed at the hottest part of the 

furnace (hot zone) to avoid axial thermal gradient across the sample. Thermal gradients 

across the partially molten samples are severe problems that may cause inhomogeneous 

melt distribution/melt segregation (Lesher and Walker, 1988) and abnormal grain growth. 

Axial thermal gradients lead the melt to migrate along vertical channels (Figure 39a) and 

form a melt layer at the hotter end of the olivine aggregate (Figure 39b). Since grain 

growth rate of olivine is proportional to temperature, a thermal gradient can cause an 

axial grain size distribution with coarse-grained olivine grains towards the hotter end. In 

order to locate the hot zone of the furnace, the axial temperature distribution of the 

furnace needs to be mapped. This appendix describes temperature calibration 

experiments that I have conducted to correct potential measurement errors of the 

thermocouple and map the hot zone axial temperature profiles following the method of 

Watson et al. (2002).   

 

2. Methods and Experimental Setup 
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This method uses the fact that Al2O3 reacts with MgO at high pressures and temperatures 

to form a spinel rim. The width of the spinel rim is a function of temperature (T, in K), 

pressure (P, in GPa) and time (t, in s): ∆X = [8.58 x 1011 · exp(-48865/T – 2.08 · P0.5) · t]0.5 

(Watson et al., 2002). The upper part of the calibration assemblies consisted of an Al2O3 

thermocouple sleeve inside a MgO sleeve, with the thermocouple junction at the position 

of the bottom of the capsule in the actual experiments. The lower part of the graphite 

furnace consisted of an MgO spacer with empty Al2O3 thermocouple sleeve along axis. 

For the experiments conducted at 2 GPa, the two Al2O3 thermocouple sleeves covered 

entire axial length of the furnace, with direct contact at the thermocouple junction. For 

the experiments conducted at 1 GPa, the upper and lower Al2O3 thermocouple sleeves 

were separated by a thin Al2O3 disk. The lower sleeve did not go through the very bottom 

of the MgO spacer (Figure 40). The calibration experiments were conducted at 1400 oC 

and at 1 or 2 GPa for 168 hours. The whole post-run furnaces were sectioned along the 

axis, mounted in epoxy, and polished using the methods described in main chapters. The 

measurement was taken under a Zeiss Supra 55 field emission scanning electron 

microscope. The spinel rim is well defined by the layer sandwiching between coarse-

grained polycrystalline MgO and fine-grained polycrystalline Al2O3 under scanning 

electron microscope (Figure 41). The spinel layer width of each calibration experiment 

was measured every 0.5 mm on both sides of the cross section on screen. The axial 

temperature distributions were constructed by using the equation mentioned above.  

 

3. Results  
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A total of 10 experiments have been conducted. The first 6 experiments were used to 

address an issue of the proportional-integral-derivative (PID) controller issue of the 

piston cylinder apparatus and test calibration sample assemblies to allow the sample to 

maintain the designated pressure and temperature throughout the course of the run. The 

sample assemblies used in the last four experiments have yielded good results.  

 

Figure 42 shows axial temperature profiles for experiments at 1400 oC and 1 GPa and 2 

GPa for 168 hours. The profiles cover 15mm to 25 mm of the central portions of the 

furnace, given a total furnace length of 30 mm. Each point represent the average 

temperature measured from spinel layers at both sides. Temperature gradients at the 

center of the furnace are gentle and become steeper towards the two ends. Temperature 

distributions along the top of the furnace (measured from the top Al2O3 sleeve) do not 

show abrupt temperature change. In contrast, three of the four runs show abnormal 

temperature distributions at the bottom of the furnace.  

 

The axial temperature profiles at hot zone have reached the requirements for conducting 

real experiments. The temperatures measured from the width of spinel layer are identical 

to those measured by the thermocouple, indicating the thermocouple does not need to be 

corrected. Temperature variations along the length of actual sample location are within 

10 ºC. CAL9 shows the best temperature profile that the temperature gradient along the 

location of the actual sample is less than 5 oC.  
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4. Discussion 

The axial temperature profiles at hot zone were acquired at relatively extreme conditions, 

ensuring that the acquired calibration results can be applied to the real experiments. In 

other words, the results emphasize that the hot zone of the furnace is able to keep itself 

intact under the high pressure, high temperature and long duration conditions. The 

calibration temperature 1400 oC is almost the highest temperature in real experiments 

(only a partial-molten sample described in Chapter II was annealed at 1450 oC). The 

calibration pressure 2 GPa is much higher than that in the real experiments that conducted 

at or below 1 GPa. Although the duration of a large portion of the real experiments was 

longer than that of the calibration experiments, the lower pressure and temperature 

conditions in these real experiments could compensate the longer duration. 

 

The temperature distribution anomaly at the bottom is due to deformation of the furnace. 

The furnace assembly needs to be pressurized at room temperature so that each furnace 

part is in good contact with adjacent parts to ensure good electric conductivity. This cold-

press may cause deformations along the graphite furnace. With increasing pressure and 

temperature, the cracks caused by deformation will be enlarged by injected molten glass 

from the pyrex sleeve and local hotspots will develop at these cracks. Post-run furnaces 

show more cracks at the bottom of the furnace than those at the rest portion. More 

deformation features were observed from calibration samples annealed at higher pressure 

of 2 GPa. These observations are consistent with the temperature distribution anomaly at 

the bottom and more serious anomaly shown in calibration samples annealed at 2 GPa.  
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Although the deformation at the bottom of furnace does not affect the axial temperature 

profile of the hot zone, it indicates potential furnace failure and needs to be paid close 

attention. The results show that the deformation at bottom can be reduced by gently 

pressurizing the furnace to 0.4 GPa at room temperature, and then increasing the pressure 

to target pressure after the temperature reaches 400 oC. This method ensures that all 

furnace parts are compacted together but the moderate pressure avoids large deformation. 

When the temperature is above 400 oC, the furnace parts start to become softer as the 

plastic deformation is reduced. CAL9 followed this step pressurizing strategy and shows 

a very nice axial temperature profile from top to bottom of the furnace. Furthermore, the 

temperature variation along the length of the actual sample is less than 5 oC, indicating 

that this pressurizing strategy does benefit the accuracy of the real experiments.  

 

5. Conclusions 

In conclusion, the temperature calibration experiments indicates that  

1. The temperature measured by the thermocouple reflects the actual temperature at 

the measurement point. Hence no temperature correction was needed. 

2. The temperature variation along the length of the actual sample is within 10 oC 

and can be further reduced to 5 oC by using a step pressurizing strategy. This 

small temperature variation is able to maintain homogeneous melt distribution and 

normal grain growth.  
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3. Step pressurizing strategy can be used to reduce deformation of the furnace and 

further minimizes temperature variation along the length of the actual 

experimental sample. 

 

Overall, all the experiments described in the main chapters were conducted under 

carefully calibrated temperature conditions and therefore the data reliability were 

ensured.  
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Tables 
 
 
Table 12. Summary of temperature calibration experiments 

Experiment # Duration (hr) Temperature (oC) Pressure (Gpa) 
CAL7 168 1400 2 
CAL8 168 1400 2 
CAL9 168 1400 1 
CAL10 168 1400 1 
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Figures 
 
 

	
  
	
  

Figure 38. Cross-section of pressure vessel with graphite furnace inserted. The 

thermocouple only measures temperature at the point right above the actual experimental 

sample, but the axial temperature profile needs to be mapped in order to find out the hot 

zone of the furnace.  
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Figure 39. Melt migration caused by thermal gradients. (a) The arrows indicating an 

axial melt channel that caused by melt migration from bottom to top due to thermal 

gradient. In samples with homogeneous melt distribution, melt pockets are not aligned in 

one direction but shows various orientations. (2) The arrows indicating a melt layer 
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formed in between the capsule and olivine aggregate. The melt was driven by thermal 

gradient to migrate through various vertical channels and finally accumulated at the top. 
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Figure 40. Cross-section of furnace assemblies used in temperature calibration 

experiments. The assembly on the left was used in calibration experiments at 2 GPa. The 

two Al2O3 sleeves are in direct contact at the thermocouple junction. The lower Al2O3 

sleeve reaches the bottom graphite disk. The assembly on the right was used in 

calibration experiments at 1 GPa. The two Al2O3 sleeves are separated by a thin Al2O3 

disk right below the thermocouple junction. The lower Al2O3 sleeve does not reach the 

bottom graphite disk. 
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Figure 41. SEM image of spinel rims formed near the thermocouple junction. The spinel 

rims are indicated by the arrows. They are in between coarse-grained polycrystalline 

MgO spacer (to the two sides) and fine-grained polycrystalline Al2O3 thermocouple 

sleeve (adjacent to the thermocouple). 
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Figure 42. Axial temperature profiles of calibration experiments at 1400 oC and 1 GPa 

and 2 GPa for 168 hours. The length of the actual experimental sample is indicated by the 

section between the two red lines. The temperature variations in this section are within 10 

oC. Temperatures measured at the thermocouple junction (0 mm) from spinel width are 

exactly the target temperature 1400 oC. Temperature distribution abnormally is shown at 

the bottom of the furnace for experiments conducted at 2 GPa and one experiment 

conducted at 1 GPa. The experiment conducted at 1 GPa with step pressurizing (CAL9) 

shows normal temperature distribution throughout the entire furnace. 
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