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ABSTRACT 

 Type 1 Diabetes (T1D) is a complex autoimmune disorder in which T cells 

destroy the pancreatic islets, leading to a loss of insulin production and hyperglycemia. 

The disease incidence has increased globally over the last decades, primarily in 

individuals with low to moderate genetic risk. There is evidence that environmental 

factors play a role alongside genetic risk to trigger the disease. An environmental factor 

that has global influence is adoption of the Western diet, characterized by increased 

consumption of n-6 fatty acids, including linoleic acid (LA), and decreased consumption 

of n-3 fatty acids. Increased n-6/n-3 ratios are associated with enhanced susceptibility to 

autoimmune diseases. We sought to understand how linoleic acid affects the survival and 

function of T cells from the non-obese diabetic (NOD) mouse, a model for T1D. We 

found that linoleic acid's presence during in vitro activation of T cells led to an increased 

expansion of the cells in culture. Additionally, CD4+ and CD8+ T cells activated in 

linoleic acid's presence produced increased levels of pro-diabetogenic cytokines, 

including Interleukin-21 (IL-21) and Interferon-gamma (IFN-γ). In contrast, linoleic acid 
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reduced IL-10-producing CD4+ T cells, which are protective in T1D, significantly 

changing the balance between pro-and anti-inflammatory T cell subsets. Gene expression 

analysis of T cells exposed to linoleic acid during in vitro activation revealed decreased 

gene expression of lipid-regulated transcription factors, peroxisome proliferator-activated 

receptors (PPAR), PPARα and PPARγ. These data suggest a role for these transcription 

factors and their associated pathways in linoleic acid-mediated T cell functions. Finally, 

we tested whether the T cell fatty acid response is regulated by the cytokine IL-7, which 

modulates T cell immunometabolism. However, our data did not reveal a prominent role 

for IL-7 in regulating the T cell response to linoleic acid. Together, these studies add to 

evidence that fatty acids present in the microenvironment can directly alter T cell 

functions and that changes in dietary components may contribute to enhanced T1D 

susceptibility.  
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PREFACE 

“The endless cycle of idea and action, 

Endless invention, endless experiment, 

Brings knowledge of motion, but not of stillness; 

Knowledge of speech, but not of silence; 

Knowledge of words, and ignorance of the Word. 

All our knowledge brings us nearer to our ignorance.” 

― T.S. Eliot 
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CHAPTER ONE: INTRODUCTION 

Type 1 Diabetes 

 

Epidemiology and Treatments 

 The autoimmune disorder Type 1 Diabetes (T1D) is a chronic T cell-mediated 

immune disorder that leads to a loss of endogenous insulin production over time (1). 

Recent studies have demonstrated that more than 96,000 youths under 15 years of age are 

diagnosed with T1D globally every year in developed and developing countries (2). 

Within children T1D  is the most common form of diabetes and represents 80% of all 

cases in the United States, while only 10% of all adult diabetes cases in the U.S. are T1D 

(3). The T1D incidence rate has risen globally, and statistics indicate that the relative 

annual increase in T1D incidence is 1.8% based on data from the SEARCH multicenter 

observational study of new-onset youths who have been diagnosed with T1D within a ten 

year (2002-2012) period in the United States (4). When looking into specific racial and 

ethnic populations within the SEARCH study, there is a noticeable rise in the incidence 

of T1D among Hispanic youths (4.2%), Black youths (2.2%), and other minority/ethnic 

groups (4,5). The rise in incidence among racial and ethnic minority populations can 

present a challenge due to barriers to healthcare access and quality (6).  

 The onset of T1D is indicated by a gradual loss of endogenous insulin production 

as pancreatic β-cells are destroyed by autoreactive T cells (7). Loss of insulin production 

leads to polyuria, polydipsia, and hyperglycemia (7). Complications of T1D include 

nephropathy, ketoacidosis, cardiovascular disorders, difficulties managing blood glucose 
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levels, and decreased life expectancy by as much as 11-13 years compared to individuals 

without T1D (8).  Autoantibodies (AAs) against islet antigens formed before and during 

pathogenesis are used as biomarkers of disease and have helped to study T1D patient 

cohorts (9,10). The TRIALNET study of siblings, including twins who have a family 

member with T1D, screened children for risk genes and tracked children until the 

presence of AAs or development of diabetes (11). This study revealed that AA-positive 

twins had a 69% risk of developing T1D by three years compared with AA negative 

twins, whose risk is 1.5% (11) and indicates that genetics alone does not explain the risk 

of disease development. In non-identical twins, those who were positive for multiple 

autoantibodies had a 72% risk of T1D by three years compared to 13% for single 

antibody positive and 0% for autoantibody negative (11) and shows that islet 

autoantibodies can be used to track disease progression. Islet autoantibodies include 

Glutamic Acid Decarboxylase AAs (GADA), Insulin AAs (IAA), Islet Cell Cytoplasmic 

AAs (ICA), and AAs against many other target proteins (12). The presence of AAs to 

pancreatic islet antigens often precedes the onset of dysglycemia, which over a period of 

time (months/years) converts to diabetes due to insulin deficiency (13). 

 Standard of care for T1D includes diagnosis by C-peptide and blood glucose 

measurements and exogenous insulin supplementation to maintain euglycemia (14). 

Many immune-based therapies to prevent or reverse T1D have made it to clinical trials 

but have had low success rates. Often, issues with these therapies lie in the therapy's 

timing and whether a therapeutic is better suited for the prevention of disease in high-risk 

individuals since reversal upon disease onset is often difficult. Potential therapeutics 
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being investigated include immune modulation methods using antibodies such as anti-IL-

7Rα, adoptive immunotherapy with T regulatory cells, stem cell implantation to restore 

β-cells, and cytokine/cytokine complex supplementation (14–16). Of the more successful 

investigative therapeutics, antibody blockade of cluster of differentiation (CD) – 3 

(Teplizumab and Otelixizumab), which is important for T cell activation, has shown 

promise in restoring a level of lasting immune tolerance and maintenance of β-cell mass 

(17–19). Teplizumab has reached phase 3 clinical trials with new-onset patients (<6 

months diagnosed), but a similar therapeutic Otelixizumab has had no significant 

outcomes in its phase 3 clinical trials. (17,18,20,21). While there is an effort to try 

different therapeutic strategies to prevent and reverse diabetes, most investigative 

therapeutics have not produced promising results to expand their use in patients who can 

progress to T1D. Therefore, the only therapeutic option approved for T1D patient use is 

insulin supplementation, which presents its own set of challenges due to variable access 

and affordability of insulin in countries with unstable health insurance and health care 

systems (22) and suboptimal blood glucose regulation. 

 

Genetic Factors 

 T1D is a polygenic disorder with a variety of risk genes that can contribute to 

disease pathogenesis. The Major Histocompatibility Complex (MHC) locus in humans is 

subdivided into three Human Leukocyte Antigen (HLA) subclasses which include class I 

HLA, non-classical HLA, and class II HLA (22,23). The role of HLA is to present 

antigens to T cells; class I and II HLA are highly polymorphic and are thought to drive 
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associations with human immune diseases (22,23). The most characterized and important 

risk gene for T1D is the Human Leukocyte Antigen or HLA gene which accounts for 

nearly 50% of familial T1D risk (24).  The strongest associations with T1D risk are the 

class II HLA gene loci  DR and DQ (25). There is evidence that polymorphisms in the 

DNA of HLA genes can affect the binding affinity and repertoire of antigens bound (25). 

The HLA DR and DQ haplotypes most associated with the disease include DR4-DQ8 and 

DR3-DQ2, 30% of patients carry both haplotypes, and this subset has the most significant 

risk of T1D (OR=16) (26,27). HLA protective gene loci exist in non-Hispanic whites 

(28). HLA-DQB1*06:02 is present in 20% of the study population but only in 1% of T1D 

children demonstrating that this loci may offer some protective effects (28).  

 Many non-HLA genes have associations with T1D risk. The non-HLA gene with 

the strongest association is the insulin gene (29). Polymorphisms in the insulin gene are 

thought to cause variations in insulin RNA regulation in the thymus and influence 

immune tolerance to insulin (30). There have been over 50 non-HLA loci found by 

GWAS associated with T1D and other immune diseases (31). Some of these genes 

include the IL-2 receptor α subunit, which is thought to cause abnormalities in T cell 

sensitivity to IL-2 and disrupt the balance of T effector (Teff) and T regulatory cells 

(Tregs) (32,33). The PTPN22 gene encodes a lymphoid-specific phosphatase that can 

suppress T cell activation and has been associated with T1D risk along with Cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4), a receptor that negatively regulates T cells 

(34,35). In recent decades, there has been a reduction in the frequency of high-risk HLA 

patients with T1D (31,36,37). However, the incidence is increasing in people with low 
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and moderate risk genes, which points to environmental factors playing a role in 

triggering disease development (31,36,37). These observations indicate a shift in 

contributions of genetic and environmental factors in the pathogenesis of T1D (27,36,37).  

 

Environmental Factors 

 Genetic risk alone does not trigger the pathogenesis of T1D, and there are a 

variety of environmental factors linked to disease pathogenesis. Some of these 

environmental factors include viral infections, microbiome changes, and dietary factors 

(13,38). The viral infection hypothesis has many mechanisms by which different viruses 

are thought to induce T1D in those with genetic risk, and one hypothesis is that the 

Coxsackie B virus has strong tropism towards pancreatic β-cells and can induce 

inflammation that promotes autoimmunity (39). Other studies confirm that pancreatic β-

cells express the Coxsackie adenovirus receptor, a major receptor for the Coxsackie B 

virus for viral entry (40). The Diabetes Prediction and Prevention Study (DIPP) looked at 

Enterovirus serotypes by screening children with genetic risk of T1D for neutralizing 

antibodies against forty or more Enterovirus types (41,42). They found an increased risk 

of an AA-positive sample if Coxsackie B1 virus infection precedes the autoantibody 

appearance (41,42). The same association was seen in a group that proceeds to develop 

T1D, while if Coxsackie B3 or B6 virus infection was first, the risk of an autoantibody-

positive sample is lower (41,42). From maternal cord blood samples, the risk of T1D is 

greatest in the group of children that experienced Coxsackie B1 virus infection without 

the presence of maternal Coxsackie B1 viral antibodies (41).  
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 Changes to the gut microbiome have also been implicated in the triggering of 

T1D pathogenesis when combined with genetic risk (43). An infant acquires their 

microbiome through vaginal delivery and being fed breastmilk; afterward, environmental 

exposures, hygiene, and diet influence the development of the microbiome (44). The gut 

microbiota has a symbiotic relationship with the host GI tract: commensal microbiota 

helps the host by preventing pathogenic species colonization and producing metabolites 

beneficial to the body, such as short-chain fatty acids (45). Specific gut microbiota 

species such as Bifidobacteria ferment undigested fibers into short-chain fatty acids like 

butyrate, which can activate specific G-protein coupled receptors (free fatty acids 

receptors 2 and 3), inhibit histone deacetylases, and have an impact on immune cells such 

as T cells and their functions (45,46). The gut microbiota is easily influenced by 

antibiotic use and variations of foods in the diet that support the growth of specific 

bacteria species (47). Stool samples from children at risk for T1D in the TEDDY study 

were collected starting at three months until the clinical endpoints of islet autoimmunity 

or diabetes to study the natural history of the early infant gut and associations with T1D 

(47). This study found that the microbiomes of controls had a greater number of genes 

related to processes such as fermentation and the biosynthesis of short-chain fatty acids 

when compared to children who progressed to diabetes (47)(48). Comparing AA-positive 

and -negative children with T1D genetic risk, they found that there are increased 

Bacteroides species in fecal samples from those who progress to islet autoimmunity, and 

there is a low quantity of lactate- and butyrate-producing bacterial species such as 

Bifidobacteria (49). Short-chain fatty acids produced by specific commensal species of 
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bacteria are anti-inflammatory and promote tolerogenic effects on the immune system, 

such as expanding T regulatory (Treg) populations (48,50,51). There is an abundance of 

evidence that suggests dysregulated microbiomes can contribute to T1D pathogenesis in 

those with known HLA genetic risk. However, differences in microbiomes still do not 

explain the increased incidence of disease in populations with low and moderate risk 

genes. There is confusion about which gut microbiota species are considered beneficial or 

pathogenic and how they contribute to autoimmunity (38,52–54). 

 The diet's influence on disease development includes factors such as the 

variations of foods in the diet and when they were introduced during infancy, and the 

composition of nutrients (55–58). The DAISY study on children with low to moderate 

T1D risk genotypes revealed that cow’s milk protein is associated with an increased risk 

of islet immunity. This association was not seen in children with high-risk HLA 

genotypes (55). A different study, the Type 1 Diabetes Prediction and Prevention study 

(DIPP), found that exposure to cow’s milk protein in the formula before three months of 

age was not associated with risk of islet immunity or T1D (56). Gluten intake has also 

been considered a trigger for T1D pathogenesis (58). The BABYDIET study delayed 

gluten intake until 12 months of age in children at risk, but the delaying of gluten in the 

diet was not associated with reduced islet autoimmunity risk (58). The TEDDY study 

revealed that early introduction of gluten into the diet before four months of age was 

associated with reduced islet autoimmunity, while late gluten introduction was not 

associated with increased islet autoimmunity risk (57). There is no clear consensus that 

any particular dietary factors are associated with increased islet autoimmunity risk; 
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studies looking at the intake of specific foods often rely on self-reported data, which adds 

to the variable nature of results. 

 There have been human studies displaying a trend towards developing T1D in 

association with obesity and overnutrition. It has been shown that 22.1% of youth that 

develop T1D are overweight compared to 16% of non-T1D youth (59,60). This chronic 

exposure of immune cells to glucose and other dietary components such as lipids 

combined with reduced insulin production overtime can influence the activation state and 

differentiation of T cells central to T1D pathogenesis. There are limited studies that 

characterize autoreactive T cells' environment during T1D pathogenesis and how that can 

influence T cells and their pathogenicity. Other dietary factors that have been looked at 

are the intake of n-3 and n-6 fatty acids. One study found that the use of cod liver oil, 

which is rich in n-3 fatty acids, during the first year of life significantly reduced the risk 

of T1D in children (61). Another study looked at the early serum composition of fatty 

acids in association with the risk of T1D in HLA susceptible infants: this study found that 

the serum fatty acid compositions were different in infants who were breastfed compared 

to those who received formula (62). Moreover, it was found that higher n-6 fatty acids 

compared to n-3 fatty acids were associated with islet autoimmunity (62). These studies 

reveal that fatty acid composition and status during infancy may play a role in T1D 

pathogenesis. To support that fatty acid composition may play a role in disease 

development, other studies in children with genetic risk for  T1D reveal an inflammatory 

serum lipidome and reduced serum phospholipids in children who progress to disease 

versus non-progressors (63). Similar results showing an altered lipidome have been 
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revealed in the Non-obese Diabetic (NOD) mouse model of T1D (64). Since T1D is a 

complex autoimmune disease, it is expected that there are many different genetic and 

environmental factor combinations that can trigger disease pathogenesis.  

 

Pathogenesis 

 Disease pathogenesis occurs over months to years, usually in younger children, 

leading to diabetes. Most of the pathogenic events of T1D occur before the diagnosis 

where a patient usually has diabetes, and β-cells are depleted (10,65). T1D pathogenesis 

has basic steps where an immune response against β-cells is elicited by autoimmune cells, 

this response needs to develop into a pro-inflammatory response, and there must be a loss 

of immune tolerance, which regulates autoimmune responses (65). In T1D, autoreactive 

T cells that escape thymic deletion are activated. This activation process is unknown as 

there are many genetic and environmental factors involved in triggering disease (66). 

 In general, T1D is a T cell based disorder where the direct damage to β-cells is 

caused by CD8+ T cells and the inflammatory conditions created by CD4+ T cells. Other 

T cell subtypes involved are the CD4+ T cells which produce different cytokines 

depending on subset to promote a pro-inflammatory environment and help CD8+ T cells 

with the β-cell attack (66–69). A specific subset of CD4+ T cells, the T regulatory cell 

(Treg), which is tasked with preventing and inhibiting autoimmune responses, is less 

suppressive in murine and human T1D and fails to inhibit autoreactive effector T cells 

(70–72). There is also evidence in the NOD mouse model of T1D that Interleukin-2 (IL-

2), a critical cytokine Tregs need for proliferation and function, is produced in reduced 
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quantities, which is another mechanism of loss of tolerance along with a reduced 

expression of IL-2Rα and overall weaker signaling in IL-2R pathway (72,73).  It has been 

shown in human studies that islet antigen-specific CD4+ T cells from diabetic patients 

generate high levels of the pathogenic Th1 cytokine interferon γ (74). In contrast, islet 

antigen-specific CD4+ T cells from healthy controls recognizing the same antigen 

produce IL-10, an anti-inflammatory cytokine (74). Before an autoreactive T cell is 

directed to the pancreatic β-cells, islet antigens must be presented to T cells by antigen-

presenting cells which include cell types such as dendritic cells or macrophages to 

activate T cells which initiates islet autoimmunity (68,75). B cells in T1D have been 

shown to produce autoantibodies (AAs) against β-cell islet antigens, and the AAs are 

biomarkers of disease progression in patients and the NOD mouse model (76). AAs, 

however, do not play a role in pathogenesis, in contrast to other autoimmune disorders 

such as lupus (75–78). The role of macrophages in T1D is still not fully known. 

Macrophages have been found in immune infiltrates in the pancreatic islets and are 

thought to help remove dead cells (79). Dendritic cells are involved in  disease 

pathogenesis since they are required to start the anti-islet immune response and present 

antigens to T cells; thus, if dendritic cells are removed in NOD mice, there is no diabetes 

development (80). There is still a lot unknown about the direct contributions of immune 

cell types other than T cells to T1D pathogenesis; also, it is unknown how tolerance is 

broken and why autoreactive T cells fail to be suppressed. 
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T1D Mouse Model 

The NOD mouse is typically the standard model used to study T1D. The NOD 

mouse is comparable to T1D human patients in quite a few aspects, making them a 

reliable model for most studies involving immune dysfunction in T1D (81–84). The NOD 

mouse is an inbred mouse strain developed while attempting to establish a cataract-prone 

subline. It was realized that the NOD mice were not cataract-prone but had spontaneous 

diabetes after 10-20 weeks of age; the penetrance of disease is 60-80% in female mice 

compared to about 30% in male mice (81,84). 

Symptoms of diabetes in the mice are similar to humans and include 

hyperglycemia, polydipsia, and polyuria. NOD mice also produce autoantibodies like 

human T1D autoantibodies and include GAD- and insulin-specific antibodies, meaning 

they have similar antigen specificity (68,85). There also is a period of temporary 

remission from β-cell attack by T cells in the NOD mice and in humans found shortly 

after diagnosis of diabetes (82,84). The process is similar between human patients and 

NOD mice; insulitis and leukocyte infiltrates are also present in pancreatic islets (82,84).  

 

The highest genetic contributor to the risk of T1D in NOD mice is the MHC 

haplotype H2g7. In addition, there are more than 20 non-MHC Insulin-dependent diabetes 

(Idd) loci that can contribute to disease susceptibility in NOD mice, including loci in 

genes of IL-2, IL-2R, CTLA-4, and others (26,86,87). . In humans, HLA risk gene loci, 

as well as genes found in non-HLA loci, also contribute to disease susceptibility 

(9,81,85,88). Other evidence supporting NOD mice as a suitable model of T1D is that 
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there is defective IL-2 production and signaling, which is similar to humans with T1D. It 

is thought this defective IL-2 production leads to the breakdown of immune tolerance 

(72,73) by limiting Treg survival and function. Environmental factors are also involved in 

triggering disease in NOD mice. There is evidence that restricted gut flora contributes to 

pathogenesis in NOD mice, supporting the theory that altered gut microbiomes contribute 

to disease pathogenesis in humans with T1D risk (43,89). Studies have shown that 

metabolic perturbations exist in NOD mice of different ages and sex who progress to 

disease; some of these metabolic perturbations include markers of oxidative stress and 

reduced unsaturated fatty acids (90). This study's results are similar to the prospective 

human metabolome study in children at risk for T1D, where alterations in lipid 

metabolism exist before autoantibody production in children who progress to T1D 

(91,92). Other studies in NOD mice confirm the findings that NOD mice who progress to 

T1D have a similar metabolome to children with T1D risk that progress to disease (64). 

Moreover, when NOD mice are compared to healthy control C57BL/6J mice, they 

demonstrated an altered metabolome. (93). It has also been shown that NOD mice fed n-3 

fatty acids progress to disease more slowly than mice fed n-6 fatty acid arachidonic acid 

(94). These studies demonstrate that NOD mice are a suitable model for human T1D due 

to the similarities in genetic and environmental risk factors.  
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T-cell subsets and cytokines in T1D 

Introduction 

 T cell subsets in T1D play different roles in the pathogenesis of disease 

(74,95,96). The general T cell compartments involved in disease are CD4+ and CD8+ T 

cells (67). Within the CD4+ T cells, subsets such as Th1 are generally involved in the 

clearance of intracellular pathogens, Th2 involved in the allergic response, Th17 also 

involved in autoimmunity, Tfh which have a role in promoting B cell functions (95,97–

104). Dysfunctional Tregs and memory T cells are involved in disease pathogenesis by  

Tregs having compromised regulatory activities or memory T cells producing 

inflammatory cytokines (95,97–104). CD8+ T cells produce pathogenic cytokines and 

destroy pancreatic β-cells, promoting the loss of insulin production (105–107). The whole 

story of how these T cell subsets coordinate to promote pathogenesis is not fully known 

yet. Also, the plasticity of T cells, especially CD4+ T cells, allows for these defined T 

cell subsets to switch their lineage transcription factors and cytokine production 

depending on environmental cues such as dietary factors that change T cell environments, 

metabolic changes, and exposure to cytokines (95,108–110). The variety of T cell subsets 

involved in T1D pathogenesis and T cells’ ability to change their differentiation state 

adds difficulty in determining suitable therapeutic options to restore tolerance and inhibit 

autoreactive T cell subsets. 
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T helper-1 cells 

 Th1 cells express the lineage transcription factor T-bet and are induced by the 

cytokine IL-12 (111,112). Their general role in the immune system is to clear 

intracellular pathogens, and they are involved in macrophage activation (113,114). In 

T1D Th1 cells coordinate the attack of pancreatic β-cells by producing cytokines 

including IFN-γ and IL-2, which help with effector functions and proliferation of CD8+ T 

cells. (97,115,116). IFN-γ is a proinflammatory cytokine that has been shown to promote 

homing of autoreactive T cells to islets in NOD mice and has been associated with the 

progression to T1D (117,118). Also showing how important Th1 cells are to T1D, T cells 

that have diabetogenic T cell receptors can promote diabetes in neonatal mice when 

differentiated as Th1 cells but not Th2 (97).  

 

T helper-2 cells 

 The Th2 subset of T cells has been shown to be protective in T1D but usually are 

responsible for the response against parasites/extracellular pathogens (74,119). Th2 cells 

express the transcription factor GATA3 and are important for humoral immunity 

development and produce cytokines such as IL-4, IL-5, IL-13, and others (112,120).  It 

has been demonstrated that when IL-4, a Th2 cytokine, was administered to NOD mice, 

T1D development was inhibited (121). Also, helminth infection, which promotes a Th2 

response, has been shown to protect mice from diabetes (122).  
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T helper-17 cells 

 How Th17 cells contribute to pathogenesis in T1D is unclear, but studies suggest 

T cells that express both IFN-γ and IL-17 are expanded in T1D patients (95,99). Apart 

from IL-17A and IL-17F, Th17 cells can produce cytokines such as IL-21 and IL-22 

(112,123). The lineage transcription factor expressed by Th17 cells is RORγt, and these 

cells require TGF-β for differentiation (112,123). Th17 cells and their cytokines have 

been associated with autoimmune disease progression in the experimental autoimmune 

encephalomyelitis (EAE) mouse model of Multiple Sclerosis (MS) and mouse models of 

arthritis (124–126). Increased levels of serum IL-17 was found in TCR transgenic NOD 

mice and are associated with accelerated disease progression (127). In T1D, Th17 cells 

play a role in early inflammation, but the treatment of NOD mice younger than 5 weeks 

of age with αIL-17 revealed that treated NOD mice had a decrease in autoantibody levels 

(GAD) and an increase in Treg frequency but no effects on inhibiting diabetes (128). 

Also, αIL-17 treatment of NOD mice reduced the percentages of Th17 cells in insulitic 

lesions (127). 

 

T follicular helper cells 

 T follicular helper cells are similar to Th17 in that they both produce IL-21, but 

Tfh have a vastly different role in immunity, and there is evidence that they contribute to 

T1D pathogenesis (100,104,129). The role of Tfh in immunity is to contribute to the 

humoral immune response by assisting B cells through cytokine production and assist in 

the formation of germinal centers that can contribute to autoantibody production by B 
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cells in T1D (100,104,126,129). IL-21 produced by Tfh promotes the proliferation of B 

cells (130). The lineage transcription factor for Tfh is B-cell lymphoma 6 protein (Bcl-6) 

(129). However, Tfh are also identified by the expression of surface markers C-X-C 

Motif Chemokine Receptor 5 (CXCR5), which is a chemokine receptor used for 

migration to B cell zones, Programed cell death -1 (PD-1), a co-inhibitory receptor, and 

inducible co-stimulator (ICOS) a co-stimulatory molecule (129). As for Tfh contributions 

to T1D pathogenesis, it has been shown that there is an increase in T cells with a Tfh 

signature in peripheral blood in patients with T1D and new-onset patients 

(100,104,114,131). It is thought that Tfh cells are responsible for the increased IL-21 

levels found in T1D patients and NOD mice (104,126,131). 

 

T regulatory cells 

 T regulatory cells are typically responsible for suppressing effector T cells by 

producing anti-inflammatory cytokines like IL-10 (132). In T1D, however, not only are 

Tregs less suppressive due to deficiencies in IL-2, but effector cells are resistant to their 

suppression, dysfunctional Tregs promote defects in immune tolerance which a driver of 

disease pathogenesis (32,33,71,73,96,133,134). Tregs express the lineage transcription 

factor FoxP3 and surface marker CD25 (73,135). Humans that genetically lack FoxP3 

have a multi-system autoimmune disorder, X-linked, immune dysregulation, 

polyendocrinopathy, enteropathy (IPEX) (136,137). IPEX results in immune 

dysregulations due to a deficiency in Tregs. These patients often have multiple 

autoimmune disorders, including autoimmune diabetes (136,137). NOD mice treated with 
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αCD25, also known as the IL-2Rα chain that is important for Treg function (33,138,139), 

progressed to diabetes faster than controls (140). Studies show that the transfer of Tregs 

to NOD mice prevents autoimmunity if T1D antigens are present (101,139). Also, 

adoptive transfer of Tregs stops T1D pathogenesis through the inhibition of IFN-γ 

produced by autoreactive CD4+ and CD8+ T cells and inhibiting CD8+ T cells from 

infiltrating pancreatic islets (141). These studies demonstrate the crucial role Tregs have 

in preventing T1D autoimmunity.  

 T regulatory-1 cells (Tr1) are similar to both Th1 and Tregs (142–145). These Tr1 

cells are CD4+ and produce IL-10 (146–148), which inhibits antigen-presenting cells and 

antigen-specific T effector cells (143,149–151). Tr1 cells are mainly responsible for 

maintaining tolerance and controlling excessive inflammatory responses and 

autoimmunity (142,143,145,151). Tr1 cells typically have transient FoxP3 expression or 

lack it and can be induced with IL-27 alone or in combination with Transforming Growth 

Factor Beta (TGF-β) (142–144,147,148,151). In general, Tr1 cytokines produce IL-10, 

TGF-β, IFN-γ, and IL-5 (142–144,147,148). Some markers commonly used to identify 

Tr1 cells include CD49, Lymphocyte Activation Gene 3 Protein (LAG-3) (144), and the 

transcription factors: Maf-musculoaponeurotic fibrosarcoma (c-maf) (152), Aryl 

Hydrocarbon Receptor (Ahr) (153,154), and B Lymphocyte-Induced Maturation Protein-

1 (Blimp-1) (145,151,155).  
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Cytotoxic CD8+ T cells 

 The role CD8+ T cells have in T1D is to directly attack the pancreatic β- cells 

which leads to insulin loss (105,156). CD8+ T cells have been found in the islets of NOD 

mice (105) and insulitic lesions in biopsies from recent-onset T1D patients (157,158). 

CD8+ T cells receive cytokine messages from CD4+ T helper cells which help fuel their 

attack on pancreatic islets for which they have antigen specificity (159,160). Some 

cytokines involved in promoting their effector functions are IL-2 and IL-12  (159,160). 

Also, transcription factors that are important for controlling their effector functions 

include T-bet and Eomes (159,160). The attack on pancreatic islets consists of the release 

of perforins and granzyme B, which kill pancreatic β-cells (106,161,162). Cytotoxic 

CD8+ T cells also produce inflammatory cytokines such as IFN-γ, which adds to the 

inflammatory response found in T1D (106,161,162). Also, and IFN-γ is also toxic to 

pancreatic β-cells (106,161,162). Studies have also revealed that T1D pathogenesis in 

humans is delayed if exhausted islet antigen-specific CD8+ memory T cells are present 

since T cell exhaustion through co-inhibitory receptor expression limits their production 

of pathogenic cytokines IL-2 and IFN-γ  (107). These studies reveal the role CD8+ T 

cells have in the pathogenesis of T1D, where this specific T cell subset is responsible for 

the majority of β-cell death leading to diabetes.  

 

 

 

Memory T cells 
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 Both CD4+ and CD8+ memory T cells are significant contributors to 

pathogenesis in T1D (103,163). It is thought that these memory cells are the reason 

diabetes development comes in stages. Typically, after the first symptoms of diabetes, 

there is a period where T cells pause in attacking islets which allows the β-cells to 

recover somewhat and resume some insulin production (164–167). However, memory T 

cells can be activated and resume the destruction of islets over time until inducing full 

diabetes (164,165). Islet antigen-specific memory T cells contribute to difficulties in 

preventing pathogenesis in new-onset patients (163) and maintaining allogenic islet 

transplantation even with immunosuppressive medications (168). Memory T cells 

develop in the contraction phase of an immune response where T cells undergo the 

decision to undergo apoptosis or become memory cells (169,170). Within the memory 

cell subset, they can be further subdivided into T central memory cells that reside in 

lymphoid tissues (120,171), T effector memory cells that home to inflamed tissues 

(103,120,171), and T resident memory which homes and reside in specific peripheral 

tissues (157,172). Memory T cells have strong proliferative responses to IL-7 and IL-15 

(173,174), especially since memory T cells have increased expression of the IL-7 

receptor for survival and homeostasis (174–177). Blockade of the IL-7 receptor prevents 

and reverses diabetes through memory T cell inhibition in NOD mice (15,16). T effector 

memory cells may be dominant in T1D and other autoimmune diseases (178).  
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T cell Subset Metabolism and Metabolic Pathways 

Introduction 

 T cell function and differentiation are dependent on the cell’s metabolic program 

(179). T cells transition metabolic program as they go from one differentiation state to 

another and upon activation (179,180). Naïve states dependent on oxidative 

phosphorylation (OXPHOS), and upon activation there is a switch to glycolysis (aerobic 

and anaerobic) with less dependence on OXPHOS (179,180). T cells that also undergo 

memory formation transition their metabolic programs to depend on fatty acid oxidation 

and oxidative phosphorylation for their long-term functions (171,173,181). The plasticity 

of T cell differentiation is linked to changes in metabolic function (110,182). 

 

Metabolic Pathways Involved in T cell Functions. 

 Naïve T cells that circulate are quiescent and depend on OXPHOS breaking down 

nutrients to fuel cell survival (183,184). Upon TCR stimulation along with CD28 co-

stimulatory signals and IL2 receptor signaling, T cells are activated, and these activation 

signals switch the metabolism of naïve T cells from OXPHOS dependence to anaerobic 

glycolysis for proliferation and effector functions (183–185). This metabolic switch upon 

activation promotes energy production through anaerobic glycolysis, where the end 

products are glucose converted to pyruvate, ATP production, and the release of lactate 

which is excreted from the cell (183–185). CD28 co-stimulation and IL- promote the 

metabolic switch to glycolysis through the mechanism of PI3K activation of Akt, 

promoting the mechanistic target of rapamycin (mTOR) pathway to utilize glucose and 
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amino acids (183,185–188). If T cells cannot undergo glycolysis or are deprived of 

glucose, they exhibit reduced survival and proliferation (185,189,190). Cytokine 

production is also influenced by glycolysis. Inhibition of glycolysis has been shown to 

reduce the IFN-γ  cytokine production  by Th1 cells, and transgenic expression of 

GLUT1 enhances IL-2 and IFN-γ production (183,191,192). After effector T cell 

activation, there is a switch from using anaerobic-glycolysis to aerobic-glycolysis 

coupled with OXPHOS (183,184). The pyruvate created during glycolysis is transformed 

to acetyl-CoA, which then goes into the TCA cycle (183,184). The TCA cycle generates 

electron donors for the electron transport chain (ETC), allowing ATP production through 

OXPHOS (183,184).  

 Other metabolic pathways that that can influence the function of T cells include 

FAO coupled with OXPHOS to produce ATP. In FAO, fatty acyl-CoA is transported into 

the mitochondria across the outer mitochondrial membrane using CPT1 to undergo β-

oxidation and supply acetyl-CoA for the TCA cycle, which provides electron donors for 

OXPHOS and leads to ATP production (193,194). Treg and memory T cell functions are 

dependent on FAO metabolic program (181,195). FAO is induced in memory CD8+ T 

cells and promoted by the cytokine IL-15. Treating memory CD8+ T cells with IL-15 led 

to increased mitochondrial biogenesis and CPT1a expression (173). It is thought that 

FAO in memory T cells promotes long-term survival (196). CD8+ T resident memory 

(Trm) cells are dependent on exogenous free fatty acids (FFA) and FAO for long-term 

survival (172). In this study, deficiency of fatty acid-binding proteins 4/5 (FABP) 

impaired exogenous free fatty acid uptake in CD8+ Trm. Also, culturing CD8+ Trm cells 
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with exogenous FA’s increases FAO rates compared to CD8+ Tcm (172). In Tregs, it has 

been shown that blocking FAO can impede the development of Tregs while inhibiting the 

mTOR pathway in T cells increases the frequency of Tregs (197). Also, increasing 

AMPK activation with AMPK activator metformin increases the frequency of Tregs 

(198). This treatment leads to reduced GLUT1 expression, which is vital for glycolysis, 

promotes FAO in Tregs, and increases their numbers and frequency (199–201). These 

examples highlight the importance of FAO for specific T cell subset functions. However, 

exposure to FAs can have many other effects on individual cell physiology (202,203). 

Some of these effects include triacylglycerol accumulation and storage of FAs. 

Conversion into lipid mediators can influence T cell functions and cytokine production 

(202,203). Also, FAs also serve as ligands for nuclear signaling and affect metabolic 

pathways in that manner (202,203). The type of fatty acids, nutritional requirements of T 

cells, and T cell environment all determine the outcome of specific fatty acids in terms of 

how the cell handles the FA and what purposes further complicate fatty acid metabolism 

(204,205). 

 

Autoreactive T cell Metabolism 

 There is evidence that metabolic aberrations and altered energy metabolism in 

those with a genetic risk of T1D may promote autoimmunity (77,90–92,206–210). There 

is an altered lipid metabolome in human and NOD mouse T1D progressors (77,91). In the 

NOD mouse model, mice had increased expression of genes related to the TCA cycle, 

glycolysis, and gluconeogenesis (77). Metabolomic analysis of the high-risk mice 
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confirmed dysregulation of energy and amino acid metabolism, indicating increased 

energy demands before T1D progression (77). Studies of metabolites in humans at risk of 

T1D revealed that in early infancy, before T1D progression, there is a reduction in 

metabolites related to sugar derivatives and fatty acids, and LA metabolism is altered 

(92). These studies indicate that altered energy metabolism may trigger T1D 

autoimmunity and that autoreactive T cells may have heightened energy demands. 

Furthermore, in the progression to full diabetes, the lack of insulin also leads to 

irregularities in glucose, lipid, and protein metabolism (212), affecting T cell function 

and differentiation due to these functions being linked to metabolic pathways (208). 

There is a lack of information about how the reduction in insulin over time and the 

irregularities in metabolic pathways influence T cells over the timeline of T1D 

pathogenesis. Also unknown is how the autoreactive T cell environment changes and 

how they adapt, which may influence pathogenesis. Also not well understood are how T 

cell local environments can manipulate and influence the metabolic programs of T cells 

to either promote pathogenicity or tolerance. If metabolic pathways and environments of 

T cells are better characterized, we can understand how changes to the metabolic 

programs of T cells can promote pathogenic functions which lead to T1D and other T 

cell-mediated autoimmune diseases.   
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T cell Cytokines 

Introduction 

The cytokines produced by T cells are diverse and heavily dependent on subset 

phenotype, function, and environmental context. Since different T cell subsets are 

involved in T1D pathogenesi, there are several cytokines produced that can contribute to 

pathogenesis (207). Pathogenic cytokines include IFN-γ, IL-2, IL-21, and IL-7 (211), 

while IL-10 is considered anti-inflammatory (212). While many of these cytokines are T 

cell subset-specific, some, including IFN-γ, are produced by Th1 and CD8+ T cells (141), 

while IL-10 is produced by many immune cells but Tregs and Tr1 cells have increased 

production (132,151). Homeostatic cytokines such as IL-7 support the persistence and 

survival of autoreactive memory T cells, contributing to disease development (174,178). 

The anti-inflammatory cytokine IL-10 has a role in inhibiting effector T cell functions 

(132). The main producers of IL-10, Tregs, fail to suppress autoreactive effector cells and 

restore tolerance in T1D (71). Cytokines and their receptors have been studied as 

therapeutics and as targets to control autoimmunity (15,16,213) but require more studies 

of different cytokines' functions on T cells and other immune cells.  

 

Interferon-γ 

Interferon-γ, a pathogenic cytokine in T1D, is a homodimeric cytokine member of the 

type II class of interferons and has pleiotropic immune functions in tissue homeostasis 

and immune and inflammatory responses (214). It is typically produced by Th1 cells, 

CD8+ T cells, NK cells, and Innate Lymphoid Cells (ILCs) (215). IFN-γ binds and 
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signals via IFN-γ receptors (IFN-γ R1 and IFN-γ R2) which activate the JAK 1/2 and 

STAT1 pathway (214). STAT1 translocates into the nucleus and binds to a specific 

conserved IFN-γ  activation site DNA elements that directly activate the transcription of 

interferon-stimulated genes (214). These interferon-stimulated genes encode products 

that have direct effects on effector immune functions (214,215). IFN-γ amplifies Th1 

responses, which can inhibit Th2 and Th17 subset differentiation (214). For example, 

IFN-γ can suppress the IL-4-STAT6 pathway necessary for Th2 differentiation (216). 

IFN-γ can impact the progression of T1D at multiple points during disease pathogenesis 

(217). Blocking IFN-γ in NOD mice with αIFN-γ antibodies or soluble IFN-γ receptors 

reduces the incidence of diabetes and prevents the transfer of disease by splenocytes from 

diabetic NOD donor mice (217). Also, IFN-γ receptor deficiency prevents the 

development of T1D by CD4+ T cells but not CD8+ T cells (118). 

 

Interleukin-2 

IL-2 is an autocrine growth factor that can stimulate T cell proliferation (218,219). The 

IL-2 structure consists of four α-helices. IL-2 binds the IL-2R, which signals using three 

subunits including IL-2Rα (CD25), IL-2Rβ (CD122), and the common γ (CD132) 

(219,220). When IL-2 binds its receptor it leads to the phosphorylation and activation of 

STAT proteins, specifically STAT5A/B and STAT1/3 (219,220). Production of IL-2 is 

regulated by TCR and CD28 signaling (219). IL-2 promotes the expansion and 

proliferation of activated T cell populations (221). IL-2 is primarily produced by CD4+ T 

cells excluding Tregs (221). The IL-2Rα gene contains T1D and other autoimmune risk 
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variants conserved between mice and humans (222,223). IL-2Rα deficiency leads to 

chronic immunodeficiency. Humans and mice that lack IL-2Rα have autoimmunity that 

results from decreased numbers of Tregs  (136,137,222). Since a lack of IL-2 and Treg 

dysfunction are connected to a lack of immune tolerance, IL-2-based therapeutics have 

been studied to target Tregs for expansion to induce immune tolerance (224). Tregs 

express the high-affinity IL-2Rα chain to outcompete other T cells for IL-2 (224). An 

example of which are IL-2 complexes consisting of low IL-2 doses combined with αIL-2 

antibodies, which promote Treg expansion (134,225). In NOD mice, IL-2 complexes 

have been shown to inhibit diabetes by promoting antigen-specific Treg expansion (225). 

While successful in mice, the main issue with IL-2 based therapeutics for T1D is that 

while Tregs can be expanded by low doses of IL-2 (139), there is a risk that effector T 

cells can be expanded as well (218) and contribute to pathogenesis.  

 

Interleukin-10 

IL-10 is an anti-inflammatory cytokine responsible for inhibiting host immune responses 

(132). IL-10 dysregulation has been associated with increased autoimmunity risk (132). 

IL-10 can be produced by many different immune cell types such as T helper cells (Th 

cells), monocytes, macrophages, dendritic cells, B cells, and CD8+ T cells (132). Effects 

of the IL-10 cytokine are mediated through the heterodimeric IL-10R1 and IL-10R2 

(212).  IL-10R2 is ubiquitously expressed, while IL-10R1 is mainly expressed on 

leukocytes (212). When IL-10 binds its receptor, it activates JAK/STAT signaling, 

changing immunomodulatory genes' expression (226). These immunomodulatory gene 
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changes inhibit pro-inflammatory cytokine production, decrease antigen presentation, and 

decrease phagocytosis (149,226). STATs are important for IL-10 induction in myeloid 

and lymphoid cell types. STAT1 and 3 are critical for IL-27-induced IL-10 gene 

expression in T cells, while STAT3 promotes IL-6-mediated IL-10 production (149,226).  

The c-maf transcription factor has been implicated in IL-10 expression by T cell subsets 

Th1, Th2, and Th17 (149). In Th1 and Th17 popularions, c-maf dependent expression of 

IL-10 is reliant on the activation of ERK (149). In T cells, c-maf induces the production 

of IL-10 by binding MAF recognition element motif (MARE), in the IL-10 promoter 

(149). Apart from c-maf other transcription factors that participate in IL-10 regulation 

include SP1, C/EBPs, IRF, AP-1, NFκB, CREB, Blimp-1, Ahr, and others (149). One of 

their central cytokines produced for Treg suppressive functions is IL-10 (135). Early 

studies that injected NOD mice with IL-10 demonstrated that IL-10 was delayed disease 

and provided long-lasting protection (227). However, transgenic IL-10 production in 

pancreatic islets led to diabetes development, and genetic deletion of IL-10 led to no 

noticeable effects on disease pathogenesis (228,229). Neutralization of endogenous IL-10 

in NOD mice at three weeks of age inhibited insulitis development, but NOD mice 

injected at later stages displayed no significant effects on disease development (230,231). 

In first-degree T1D relatives and new-onset T1D patients, peripheral blood T cells have 

similar IL-10 responses, both of which are lower than IL-10 responses from healthy 

controls, and show more IFN-γ production than in healthy controls (119). As mentioned, 

the role of IL-10 in T1D is inconclusive, and the extensive regulation of IL-10 adds to the 

complexity of the role it plays in T1D pathogenesis.  
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Interleukin-21 

Produced by T cells and NK cells, IL-21 is a type I cytokine with pleiotropic effects on 

immune and non-immune cells (126,232,233). IL-21 binds to its IL-21 receptor, which 

consists of IL-21R and the common γ chain. IL-21 signals through JAK 1/3 in T cells, 

and IL-21 more strongly activates STAT3 compared to STAT1, 5A/5B (232). Genes 

targeted by IL-21 are regulated using the transcription factors and regulators BATF, JUN, 

IRF4, and STAT3 (232). Th17 cells produce IL-21, which stabilizes and expands this 

population, and induces RORγt expression which is the lineage transcription factor, and 

regulator of Th17 cells (125). IL-21 is also produced by T follicular helper (Tfh) cells and 

upregulates Bcl-6 and c-maf in Tfh cells (126,234). IL-21 also promotes proliferation and 

functional responses in CD8+ T cells and can regulate NK cells, macrophages, and DCs 

(235). Effects of IL-21 are complex and tend to vary. The cytokine is induced by TCR 

signaling, co-stimulation, and other cytokines which include IL-1β, IL-6, IL-27, and IL-

21 itself (232). IL-21 activates PI3K-Akt and MAPK signaling pathways that have a role 

in the proliferation of CD8+ T cells promoted by IL-21 (126,232,233). It also suppressed 

the differentiation and expansion of Tregs, inhibit IL-2 production by non-Tregs, and 

promote the differentiation of Th17 and Tfh (126). Culturing T cells with IL-21 skewed 

metabolism from aerobic glycolysis to FAO along with increased mitochondrial fitness 

and biogenesis and increased proliferation regardless of glucose concentrations (236). 

Also found were a higher CPT1a (FAO rate-limiting enzyme) expression in IL-21-treated 

T cells and greater mitochondrial spare respiratory capacity (SRC) which is the extra 
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ATP a cell can produce from OXPHOS to respond to a sudden increase in energy 

demand (236). In T1D, there are high levels of IL-21 in NOD mice and T1D patients and 

a Tfh signature in T1D patients (104,131). Tfh cells co-express TNFα and IFN-γ, which 

are pro-inflammatory cytokines implicated in T1D pathogenesis (114,223). It has been 

found that NODs lacking IL-21 signaling do not develop diabetes and the susceptibility 

loci for T1D (Idd3) contains the gene encoding IL-21 (131). IL-21 is necessary for the 

development of T1D in NOD mice, and treatment of NOD mice with IL-21R-Fc fusion 

protein led to reduction of immune infiltrates into the pancreas in early disease stages, but 

not once diabetes had developed (131,237). The role of IL-21 in T1D has yet to be fully 

understood, but there are promising developments in the understanding of how IL-21 can 

influence T cell subsets involved in pathogenesis and in therapeutic strategies that 

involve targeting IL-21 to prevent autoimmunity.  

 

Interleukin-7 

The cytokine interleukin-7 is vital for B and T cell development along with lymphoid 

homeostasis and the differentiation, survival, and generation of memory T cells (238–

240). IL-7 is primarily produced by non-lymphoid cells like keratinocytes, epithelial, and 

stromal cells found in lymphoid organs (240). IL-7 is a globular protein that binds to its 

receptor IL-7R, a heterodimeric complex which includes IL-7Rα and the common γ chain 

(239,240). IL-7 binding its receptor promotes IL-7Rα and common γ heterodimerization, 

leading to JAK1 and JAK3 activation and downstream signaling with STAT1, STAT3, 

STAT5, PI3K-Akt-mTOR, and MEK-ERK pathways (239,240). IL-7 signaling promotes 
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lipolysis in memory CD8+ T cells, supporting long-term survival and maintenance 

(176,196). The cytokine can promote cell survival by modulating apoptosis pathways 

(240). Susceptibility to autoimmune diseases like T1D are linked to several SNPs in the 

IL-7R gene loci (241,242). Mechanisms of how IL-7 regulation leads to increased 

autoimmune susceptibility are unclear. It is thought to promote autoreactive T cells' 

increased proliferation when responding to self-antigen, and reduced expression of co-

inhibitory receptors such as PD-1 (15,243). Therapeutics involving the IL-7R pathway 

include the IL-7R blocking antibody have been shown to prevent and reverse T1D in 

NOD mice (15,16). In human T1D trials, IL-7Rα blockade increased Treg frequencies 

(20). In phase I clinical trials testing anti-IL-7Rα monoclonal antibodies (mAbs) in T1D, 

it was found that the  anti-IL-7Rα mAb inhibit the activity of memory T cells and 

preserves Tregs and naïve T cells (20). These are promising results for therapeutics 

involving the IL-7R pathway in T1D, but there is still much to explore of when and from 

which cells IL-7 is produced to promote pathogenesis in T1D. 
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Specific Aims and Hypothesis 

As described, T1D is a complex autoimmune disorder in which multiple T cell subsets 

organize an attack against pancreatic β-cells (1). The ensuing loss of endogenous insulin 

production over time leads to hyperglycemia and complications in multiple organ 

systems due to improper glucose management (1). It is clear that T1D has a genetic 

component where many risk genes have been defined, and in the last 30 years, the 

incidence of T1D has been increasing globally (2,4,5). The increased incidence points to 

environmental factors contributing to enhanced disease development in genetically 

susceptible individuals that do not necessarily have high-risk T1D genes (13,36). Several 

environmental factors have been studied and proposed to influence T1D pathogenesis, 

including viral agents, the microbiome, and dietary changes that alter the metabolome 

(13,77,92).  

 One of the main environmental factors we chose to focus on is polyunsaturated 

fatty acids (PUFA) and their effects on pro- and anti-inflammatory T cell subset 

phenotype, function, and cytokine production in the context of T1D. Consumption of 

PUFAs has been suggested to affect disease risk (61,62), and PUFAs have many cellular 

roles. Some of these include incorporation into the cell membrane, signaling mediators, 

impacting gene transcription, and affecting mitochondrial function and energy status 

(244–246). Clarifying the crosstalk between altered exposure of T cells to PUFAs and 

altered responsiveness to these PUFAs in autoimmune-prone mice will further our 

understanding of the role PUFAs may play in the etiology of T1D.  
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 We hypothesized that altered lipid environments affect T cell differentiation 

and function in T1D pathogenesis. To explore how different PUFAs impact 

autoreactive T cells, we developed a PUFA treatment assay to test the individual effects 

of PUFAs on T cells from the T1D mouse model non-obese diabetic (NOD) mice. This 

assay helped us to acquire information on how changing the lipid environment influenced 

the phenotype and function of T cells from pre-diabetic NOD mice. This dissertation is 

organized into two main research aims with a related side-project discussed in Chapter 5 

that looks into how IL-7Rα blockade, a potential therapeutic for T1D (20), influences 

lipid metabolism in T cells from anti-IL-7Rα treated NOD mice. In the first aim, we 

investigated the changes to T cell phenotype and function after changing the fatty acid 

environment at relevant physiological concentrations. In the second aim, we examined 

the changes to metabolic and lipid gene expression in T cells after altering the 

environment with the PUFA LA to understand how specific genes could contribute to T 

cell functional changes. 
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CHAPTER TWO: MATERIALS AND METHODS 

 

Common Buffers and Reagents 

Phosphate Buffered Saline (PBS 1X) 

pH 7.4, Sodium Chloride (NaCl)155.17 mM, Potassium Phosphate monobasic 

(KH2PO4)1.06 mM Sodium Phosphate dibasic (Na2HPO4-7H2O) 2.97 mM (Gibco® Life 

Technologies)  

 

Fatty Acid-Free Complete Media (C10) 

RMPI 1640x Cell Culture Media with L-glutamine and phenol red, without HEPES 

(Gibco®), supplemented with 10% heat-inactivated Charcoal-Dextran stripped Fetal 

Bovine Serum (Omega), 10mM HEPES (Gibco) 1 x MEM Non-essential amino acids 

(Gibco) 1mM Sodium Pyruvate (Gibco), 55nM 2-Mercaptoethanol (Gibco), and 1% 

Penicillin-Streptomycin 

 

Complete Media (C10) 

RMPI 1640x Cell Culture Media with L-glutamine and phenol red, without HEPES 

Gibco®, supplemented with 10% heat-inactivated Fetal Bovine Serum (N), 10mM 

HEPES (Gibco®) 1 x MEM Non-essential amino acids (Gibco®) 1mM Sodium Pyruvate 

(Gibco®), 55nM 2-Mercaptoethanol (Gibco®), and 1% Penicillin-Streptomycin 
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Glucose-free Complete Media (C10) 

Glucose-free RMPI 1640x Cell Culture Media with L-glutamine and phenol red, without 

HEPES Gibco®, supplemented with 10% heat-inactivated Fetal Bovine Serum (Omega), 

10mM HEPES (Gibco®) 1 x MEM Non-essential amino acids (Gibco®) 1mM Sodium 

Pyruvate (Gibco®), 55nM 2-Mercaptoethanol (Gibco®), and 1% Penicillin-Streptomycin 

 

FACs Staining Buffer 

1x PBS (Gibco®) with 2% FBS (Omega) 

 

Intracellular Fixation and Permeabilization Buffer Set (Cell Signaling)  

1X PBS (10% 10X PBS, 90% Purified Water) 

Fixation Buffer 

Permeabilization Buffer 

Antibody Dilution Buffer 

 

FoxP3 staining Buffer Set (Invitrogen) 

Fix/Perm Buffer (75% Fix/Perm Diluent, 25% Fix/Perm Concentrate)10x 

Permeabilization Buffer (1x Perm buffer, 10% 10x Permeabilization Buffer 90% Purified 

Water) 

 

2-4% Paraformaldehyde  
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2% Paraformaldehyde Diluted FACs Buffer 

 

FA Conjugation to BSA 

LA, Oleic Acid, and α-Linolenic Acid (Sigma/Millipore) were individually dissolved 

with DMSO (0.1%DMSO final concentration in culture) and separately conjugated in 

Fatty Acid-Free Complete Media (FA free C10) at a 2:1 molar ratio (2 FA: 1 BSA) with 

fatty acid-free BSA (Sigma) using methods previously described (247,248). Fatty acid-

free BSA was dissolved into FA-free C10 media to create 1 13.6% solution, fatty acid 

dissolved in DMSO was dripped into the BSA/C10 solution, and solutions were placed at 

37°C until fully dissolved and stored at 4°C until use. BSA vehicle control is created in 

the same manner using DMSO only.  

 

Mice and In Vivo Methods 

NOD/ShiLtJ (NOD) mouse breeding pairs were purchased from The Jackson Laboratory 

(#001976) and bred homozygous in a specific pathogen-free facility at Boston University 

School of Medicine. To compare the role of polyunsaturated fatty acids on T cells from 

diabetes-sensitive NOD mice were compared with a non-autoimmune mouse strain 

C57BL/6J mice. C57BL/6J mice were purchased from The Jackson Laboratory 

(#000664) and housed in a specific pathogen-free facility at Boston University School of 

Medicine. 
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Tissue Collection 

Spleen and Lymph Nodes 

Spleens and lymph nodes were collected from mice and placed in 2% FBS PBS in a 6-well 

plate (Corning) on top of a 40μm filter (ThermoFisher). Spleens and lymph nodes were 

crushed through a 40μm filter and washed (1500rpm, 4°C, 5mins, decant supernatant) with 

10ml of 2% FBS PBS. Splenocytes were re-suspended with Ack (Ammonium-Chloride-

Potassium) lysis buffer (Gibco®) and incubated 3 minutes at room temperature afterward 

washing twice with 10mls of C10 media. Lymph node cells were washed twice (1500rpm, 

4°C, 5mins, supernatants decanted) with 5mLs of C10 media. Splenocytes are resuspended 

in 5mls of C10 media for counting in Trypan blue (Gibco®) (1:100 dilution). Lymph node 

cells are resuspended in 1ml of C10 media for counting in Trypan blue (1:20 dilution). 

 

Bone Marrow 

Femurs and tibias were harvested from NOD mice. Ends of bones were cut, and bone 

marrow was flushed out of the core into C10 media in a small cell culture dish (Corning) 

using a small gauge needle (#26 or #30, BD Biosciences). The bone marrow was 

homogenized with a needle (#18 gauge, BD Biosciences) and filtered through a 40μm 

filter to remove clumps. Cells are washed with 10-15 ml C10 media (spin at 1000 RPM 

for 5 minutes) and resuspended in ACK lysis buffer for 3 minutes at room temperature. 

Cells were washed twice (spin 1500RPM, 5 minutes, 4°C) with C10 media and 
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resuspended in 10mL C10 media for counting with Trypan blue (1:100 dilution, Gibco®) 

and plated on non-TC treated Petri dishes (Corning).  

Tissue Culture 

Splenocyte Culture with FAs 

Harvested spleens were crushed into single-cell suspensions using 40u cell strainers (USA 

Scientific). Splenocyte suspensions were treated with ACK lysis buffer to remove red 

blood cells. (Gibco®) LA (or other FA) conjugated to BSA or BSA only (control) was 

added to splenocyte cultures at low and high concentrations (100μM to 1mM). T cells 

underwent TCR activation in culture with 1µg/mL of αCD3 (clone) and 2µg/mL of αCD28 

(clone) antibodies (Invitrogen) in a 96-well round-bottom plate (Corning). Splenocyte 

cultures were incubated for 48 hours at 37°C. Supernatants were collected and frozen at -

80°C, and cells were harvested for flow cytometric staining using the panel in Table 3 and 

Table 6. 

 

Treatment of NOD mice with anti-IL-7Rα antibodies and splenocyte culture with FAs 

Pre-diabetic NOD mice were injected intravenously in the tail vein with 200μl of anti-IL-

7Rα antibodies (BioXcell) or control rat IgG (Company). Three days after injection, mice 

were euthanized, and spleens were harvested. Harvested spleens were crushed into 

single-cell suspensions using 40μm cell strainers (USA Scientific). Splenocyte 

suspensions were treated with ACK lysis buffer to remove red blood cells. (Gibco®) LA 

(or other PUFA) conjugated to BSA or BSA only (control) was added to splenocyte 

cultures at low and high concentrations (100μM to 1mM). T cells underwent TCR 
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activation in culture with 1 µg/mL of αCD3 (clone-:145-2C11) and 2 µg/mL of αCD28 

(clone:37.51) antibodies (Invitrogen) in a 96-well round-bottom plate (Corning). 

Splenocyte cultures were incubated for 48 hours at 37°C. After T cells were re-stimulated 

with PMA and Ionomycin for 4 hours total with BFA added after an hour.  Supernatants 

were collected and frozen at -80°C for ELISA. Cells were harvested for flow cytometric 

staining using the flow panels in Table 3 and Table 8. 

 

Th17 Polarization of NOD mouse T cells 

Using methods described previously (249), naïve CD4+ T cells were isolated using the 

naïve CD4+ STEMCELL negative selection kit following the kit instructions. Cells were  

counted, washed, and re-suspended in C10 media at 1x106cells/500ul. A 24 well plate 

(Corning) was coated with αCD3 antibody (Invitrogen) at 2ug/mL in 500uL of 1X PBS. 

The plate was incubated at 37°C for 1 hour. After 1 hour, the antibody/PBS solution was 

discarded, and wells were rinsed with 1mL of 1X PBS. Cells were added to the αCD3 

coated plate at 1x106cells in 500uL C10 media. ΑCD28 and TH17 polarizing cytokines 

and blocking antibodies were added to the wells in 500uL C10 for a final volume of 1mL, 

including an “αCD28” only no polarization control. Th17 Polarizing cytokines and 

blocking Abs include 2ug/mL αCD3 (coated on 24 well plate), 5ug/mL αCD28, 80ng/mL 

IL-6 , 20ng/mL IL-23 , 10ng/mL human TGF-beta, 10ug/mL αIL-4, and 10ug/mL αIFN-γ 

antibodies. Cells were incubated for 4 days at 37°C, and T cells were re-stimulated with 

PMA and Ionomycin for 4 hours with BFA added an hour in and immunostained using 

the panel in Table 9. 
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Proliferation and Survival Assay 

Splenocytes from NOD mice were plated with fatty acid or BSA, activated, and 

incubated for 48 hours at 37° C in a 96-well flat-bottom plate (Corning). After 48 hours, 

T cells were isolated using the STEMCELL negative selection T cell isolation kit and re-

plated only with media. T cell samples were taken at 24, 48, and 72 hours to stain for 

surface markers and proliferation markers using the panel in Table 7.  

 

Purified T cell culture with FAs 

NOD mouse T cells were purified using a magnetic T cell isolation kit (STEMCELL) and 

plated at 1x106 cells/500μl in C10 media, activated with 1μg/ml of αCD3 and 2μg/ml of 

αCD28 antibodies (Invitrogen) in 50μL and treated with LA conjugated to BSA or 

controls (media only and BSA only). Cells were incubated for 48 hours at 37°C.  

 

Generation of Bone-marrow derived Macrophages and Dendritic Cells  

Using methods described previously (250,251), starting from bone marrow harvest, for 

Bone marrow-derived macrophages (BMDM) generation bone marrow cells were plated 

with C10 media containing 20% L-929 media, while Bone marrow-derived dendritic cells 

(BMDC) generation required 20ng/ml of Granulocyte-macrophage colony-stimulating 

factor (GM-CSF) added to C10 media. On day three, BMDMs were fed by adding 5mls 

of C10 media with 20% L-929 media, BMDCs were fed 5mls of C10 with 20ng/ml of 
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GM-CSF, and cultures were incubated at 37°C. On day five, the APCs were matured by 

BMDMs re-plating with 1ug/ml LPS, and BMDCs received 1ug/ml. On day seven, 

BMDCs were isolated and enriched using a mouse DC enrichment kit (Dynabeads®), 

and BMDMs were isolated by scraping cells adhered to plates. Cells were washed by 

spinning at 1500RPM for 5 minutes at 4°C and were counted with Trypan blue for 

plating in APC/T cell co-culture. The purity of cell types (BMDMs, BMDCs, and 

magnet-purified T cells) was established using the following markers in Table 2.  

 

APC and T cell Co-culture 

 Purified NOD mouse T cells were plated at 1x105/100μl in C10 media, activated with 

1ug/ml of αCD3 and 2ug/ml of αCD28 antibodies and co-cultured with LA pre-treated 

APCs, 100μM and 500μM of LA conjugated to BSA or controls (media only and BSA 

only). To pre-treat the APCs, APCs were sorted by flow cytometry (CD3- cells) were 

added to the fatty acid assay culture system for pre-treatment, then, after 48 hours, were 

re-plated at a 3:1 ratio (APC:T cell) with purified T cells. A sample of cells was 

immunostained for flow cytometry analysis for cell purity using the antibody-staining 

panels Table 2. Cells were incubated for 48 hours at 37°C, and afterward, T cells were 

stimulated with PMA and Ionomycin for 4 hours along with Brefeldin A (BFA) for 

intracellular cytokine capture. A sample of cells was immunostained for flow cytometry 

analysis using combined flow panels with markers found in Table 2 and in Table 3. 
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For co-culture with BMDMs and BMDCs, NOD mouse purified T cells were plated at 

1x105/100μl in C10 media, activated with 1ug/ml of αCD3 and 2ug/ml αCD28 antibodies 

in 25μl and treated with 100μM and 500μM of LA conjugated to BSA or controls (media 

only and BSA only) in 25μl and plated at a 2:1 ratio (T cell: APC) with BMDMs or 

BMDCs in 50ul. Cells were incubated for 48 hours at 37°C. 

 

Enzyme-Linked Immunosorbent Assay  

Cytokine detection with ELISA 

ELISAs were all run using Invitrogen Cytokine ELISA kits. 96-well plates were coated 

with capture antibody in 1X coating buffer (100μl/well) and incubated overnight at 4°C. 

Using a 96-well plate washer, wells were washed three times with wash buffer made of 

0.025% Tween in 1X PBS. After discarding the remaining wash buffer, wells were 

blocked with ELISA diluent and incubated at room temperature for 1 hour. Lyophilized 

cytokine standards were resuspended with DI water and incubated for 15 minutes at room 

temperature before use. Wells were washed three times with wash buffer, and after 

discarding the remaining wash buffer, a cytokine standard curve was created (100μl/well) 

using a two-fold serial dilution. Samples of 100μl were added to the remaining wells, and 

the plates were covered and stored at 4°C overnight. The following day plate wells were 

washed three times with wash buffer made of 0.025% Tween in 1X PBS. Afterward, 

100μl of detection antibody in 1X ELISA diluent was added to all wells, and samples 

incubated at room temperature for 1 hour. Wells were washed six times with 0.025% 

Tween in 1X PBS, and 100μl of Avidin-HRP diluted in ELISA diluent was added to the 
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wells and incubated for 45 minutes at room temperature. Wells were washed six times 

with wash buffer made of 0.025% Tween in 1X PBS, making sure to soak wells for 1-2 

minutes between each wash. After discarding the remaining wash buffer, 100μl of room 

temperature 1X TMB solution was added to all wells. When the color developed to blue, 

the reaction was stopped with 50μl of 0.16M H2SO4. ELISA plate was read at 450nm 

using a 96-well plate reader (Company). 

 

Cytokine detection with Multiplex ELISA 

Supernatants were obtained from re-plated magnet isolated T cells (100k cells/well) from 

48 hours splenocyte cultured with fatty acids (LA, ALA, OL, control) that were re- 

stimulated for 4 hours with PMA and Ionomycin. Supernatants from enriched 

(STEMCELL) T cells were analyzed using a mouse Th17 magnetic bead panel kit 

(MTH17MAG-47K),(MilliplexTM MAP Kit, Millipore Corp, USA) on the BIORAD, Bio-

Plex ® 3D Suspension Array System to detect and quantify Th17 cytokines, which 

include IL-17A, IL-17F, GM-CSF, IFN-γ, Macrophage Inflammatory Protein-3α (MIP-

3α), IL-1β, IL-2, IL-4, IL-6, IL-21, IL-22, IL-10, IL-23, IL-12, IL-27, IL-13, IL-15, IL-

33, IL-31, TNFβ, TNFα, CD40L, and other cytokines. Samples were run by the 

Nikolajczyk Lab at the University of Kentucky. The data were analyzed using the Bio-

Plex Manager 6.1 Software. Standard curves were determined using corresponding 

standards, and there were no cytokine exclusions from the analysis.  
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Gene Expression Analysis 

Q-PCR of NOD Mouse T cells 

T cells were isolated from culture using a magnetic negative selection T cell isolation kit 

(STEMCELL) following kit instructions. After isolating and pelleting T cells, the cells 

were lysed with buffer RLT containing 2% 2-mercaptoethanol, and RNA was isolated 

using the Qiagen mini spin-kit following kit instructions. RNA was quantified with a 

nanodrop machine. RNA was reverse transcribed to cDNA. For quantitation of lipid 

metabolism-related gene expression, the following primers in Table 1 were used. Q-PCR 

was performed using SYBR green master mix and a StepOnePlusTM Real-Time PCR 

machine (Applied Biosystems; Thermo Fisher Scientific, Inc). Relative expression of 

target genes was normalized to 18S using the ΔΔCT method. 
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Table 1: Primers for Q-PCR. 

Target Sequence Source 

CD36 Forward TCCTCTGACATTTGCAGGTCTATC 

Reverse AAAGGCATTGGCTGGAAGAA 
 

(252) 

PPARα Forward AGAGCCCCATCTGTCCTCTC    

Reverse ACTGGTAGTCTGCAAAACCAAA    
 

(253) 

PPARγ Forward CCACCAACTTCGGAATCAGCT 

Reverse TTTGTGGATCCGGCAGTTAAGA 
 

(252) 

CPT1a Forward CTCCGCCTGAGCCATGAAG   

Reverse CACCAGTGATGATGCCATTCT   
 

(254) 

ACC1 Forward TGACAGACTGATCGCAGAGAAAG    

Reverse TGGAGAGCCCCACACACA    
 

(255) 

Aquaporin 9 Forward TTGTGATGGCTCTTTATGCG 

Reverse CAGAGTTGAGTCCGAGAGAA 
 

(256) 

 

Flow Cytometry 

Intracellular Cytokine and Transcription Factor Staining 

Before cytokine staining to determine the level of cytokine production, cells were re-

stimulated with phorbol 12-myristate 13-acetate (PMA) (Sigma/Millipore) and 

ionomycin (Sigma/Millipore) to induce cytokine production for 1 hour at 37°C followed 



45 

by the addition of Brefeldin A (BFA) (Invitrogen) to trap intracellular cytokines. Cells 

were incubated for an additional 3 hours at 37°C. Cells (106) were harvested and stained 

with cell viability dye (Invitrogen) for 15 min at 4°C. Cells are washed with 1X PBS by 

centrifuging for 5 minutes, 1500 RPM at 4°C. 50μl of Fc receptor block was added to 

cells, and cells were incubated at room temperature for 5 minutes. Afterward, antibodies 

for T cell surface markers were added to cells in 50μl of 2%FBS-PBS, and cells were 

incubated in the dark for 25 minutes at 4°C. Cells were washed with 1X PBS by 

centrifuging for 5 minutes, 1500 RPM at 4°C. After viability staining and surface marker 

labeling, cells were fixed and permeabilized overnight at 4°C using the 

FoxP3/Transcription Factor Staining Buffer Set (Invitrogen). Cells were washed twice 

with permeabilization buffer, and cells were labeled for intracellular cytokines and 

transcription factors with the indicated antibodies for 30 minutes at 4°C. Cells were 

washed once with 2% FBS-PBS by centrifuging for 5 minutes, 1500 RPM,4°C, and 

before analysis on the BD LSR-II, cells were resuspended in 200μl FACS buffer, and 

10μl of 123count beads (Invitrogen) were added to samples to obtain absolute cell counts. 

 

Bodipy Staining of Neutral/Nonpolar Lipids 

To measure lipid droplet accumulation, splenocytes were harvested and resuspended in 

1X PBS containing 0.5ug/mL of Bodipy 493/503 (Invitrogen). Cells were incubated at 

RT for 15 mins and washed with 1X PBS (1500rpm, 37°C, 5mins, decant supernatant) 

followed by viability and surface marker staining with fluorophore-labeled antibodies. 

The flow panel in Table 4 was used to immunostain and dye cells. Live cells were 
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washed and resuspended in 200μl 1X PBS. Samples were analyzed by flow cytometry the 

same day.  

 

Mitotracker Staining 

To measure mitochondrial mass, splenocytes were harvested and resuspended in warm 

1X PBS containing 100nM of Mitotracker Green FM (Invitrogen). Cells were incubated 

for 15 mins at 37°C. After Mitotracker staining, cells were washed twice with 1X PBS 

(Gibco®) (1500rpm, 37°C, 5mins, decant supernatant) followed by viability and surface 

marker staining with fluorophore-labeled antibodies. The flow panel in Table 5 was used 

to immunostain and dye cells. Live cells were resuspended in 200μl 1X PBS and were 

analyzed by flow cytometry the same day. 

 

 

Analysis of Samples and Data 

All flow cytometry samples were analyzed on the BD LSR-II or sorted using the BD 

FACS Aria, part of the Boston University School of Medicine Flow Cytometry Core. 

Data was analyzed using FlowJo™ v10 Software.  
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Panels for Flow Cytometry 

Table 2: Flow cytometric panel for T cell purity. 

Specificity Fluorophore Clone 

CD4 APCe780 RM4-5 

CD8a PerCP 53-6.7 

CD3 BV510 145-2C11 

CD11b PE-Cy7 M1/70 

CD11c APC N418 

Viability Dye UV - 

 

Table 3: Flow cytometric panel for T cell cytokines and phenotype.  

Specificity Fluorophore Clone 

CD4 APCe780 RM4-5 

CD8a PerCP 53-6.7 

IFN-γ  PE-Cy7 XMG1.2 

IL-10 PE JES5-16E3 

IL-21 APC FFA21 

FoxP3 FITC FJK-16s 

Viability Dye Aqua - 
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Table 4: Flow cytometric panel for neutral lipid staining. 

Specificity Fluorophore Clone 

CD4 APCe780 RM4-5 

CD8a PerCP 53-6.7 

Bodipy (neutral lipid dye) 493/503 - 

Viability Dye Aqua - 

 

Table 5: Flow cytometric panel for mitochondrial mass staining. 

Specificity Fluorophore Clone 

CD4 BV421 RM4-5 

CD8a PerCP 53-6.7 

Mitotracker Green FM - 

CD62L APCe780 MEL-14 

KLRG-1 APC 2F1 

Tim3  PE RMT3-23 

Viability Dye Aqua - 
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Table 6: Flow cytometric panel for Tfh and Th17 cells.  

Specificity Fluorophore Clone 

CD4 APCe780 RM4-5 

CD8a PerCP 53-6.7 

CXCR5 FITC SPRCL5 

Bcl-6 APC K122-91 

PD-1 PE-Cy7 J43 

RORγt PE Q31-378 

Viability Dye Aqua - 

 

Table 7: Flow cytometric panel for survival and proliferation assay. 

Specificity Fluorophore Clone 

CD4 APCe780 RM4-5 

CD8a PerCP 53-6.7 

Ki-67 PE-Cy7 SolA15 

Annexin V PE - 

Viability Dye Aqua - 
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Table 8: Flow cytometric panel for co-inhibitory receptors.  

Specificity Fluorophore Clone 

CD4 APC RM4-5 

CD8a FITC 53-6.7 

Tim-3 PE RMT3-23 

TIGIT PE-Cy7 GIGD7 

PD-1 APC-Cy7 J43 

Lag-3 PerCPe710 C9B7W 

Viability Dye Aqua - 

 

Table 9: Flow cytometric panel for Th17 polarization.  

Specificity Fluorophore Clone 

CD4 APCe780 RM4-5 

CD8a PerCP 53-6.7 

IL-17A eF450 eBio17B7 

IL-10 PE JES5-16E3 

IL-21 APC FFA21 

RORγt PE Q31-378 

FoxP3 FITC FJK-16s 

Viability Dye Aqua - 
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Statistical Analysis 

Statistical analysis was completed using Graphpad Prism 9 Software. See figure legends 

for specific statistical tests completed.  
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CHAPTER THREE: LINOLEIC ACID ENHANCES VIABILITY AND 

PROLIFERATION, AND ALTERS CYTOKINE PRODUCTION, IN T CELLS 

FROM NOD MICE 

Rationale 

 T1D occurs due to a loss of T cell tolerance, enabling βcell-specific autoreactive 

T cells to activate and lead an inflammatory response that destroys the insulin-producing 

pancreatic β-cells (1). While there is an association between disease susceptibility and 

high-risk genes (9,11), genetics alone cannot explain why there is an increased incidence 

of disease in individuals with low or moderate risk genes. These facts point to 

environmental factors influencing disease status (2,4,5,13). One specific environmental 

factor that has changed globally in recent decades is the adoption of the Western diet, 

which contains high levels of the n-6 PUFA (257,258), linoleic acid (LA). LA (C18:2) is 

an essential fatty acid that can only be obtained through dietary plant and animal sources 

(259). Like other PUFAs, LA can impact cells in various manners, such as promoting the 

synthesis of signaling lipids, incorporating it into the membrane, and entering the 

mitochondria to undergo beta-oxidation (246,258,260,261).  

 T1D patient cohort studies have observed an altered lipid metabolic profile before 

autoantibody production in children who eventually develop T1D (91). Some of these 

altered lipids and pathways include triacylglycerols, multiple phospholipids containing 

PUFAs, and LA metabolism (64,77,92). These lipid metabolism pathways are altered 

between non-diabetic patient controls and T1D progressors at three months of age 

(64,77,92).  Moreover, feeding studies have demonstrated that the introduction of n-3 
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PUFA dietary sources into the diets of pregnant women with a family history of T1D 

reduces the risk of disease development in their offspring (61,262). Also, feeding studies 

involving the supplementation of NOD mice with n-3 PUFAs demonstrated delayed T1D 

development and decreased pro-inflammatory T cell subsets (94).  

 Although there is an abundance of evidence demonstrating in vivo effects of 

PUFA supplementation on autoimmunity and inflammation (258,263,264), very few 

studies characterize the direct effects of PUFAs on T cells from autoimmune mice. Also 

unknown are the mechanisms by which metabolites and factors can influence 

autoreactive T cells in their local environments. These local fatty acid-based environment 

changes can promote changes to T cells' differentiation state and functions since T cell 

differentiation and functions are linked to specific metabolic pathways (208,265). Hence, 

diet-derived metabolites present in tissue environments likely impact survival, 

proliferation and contribute to skewing cytokine production profiles of antigen-stimulated 

autoreactive T cells. Determining how dietary components can affect autoimmune 

disease states by regulating T cell subsets helps increase the understanding of the diet-

based sources of triggers and inflammation in T1D. Studies looking into these factors 

could reveal novel strategies to use dietary interventions and immunotherapies for the 

prevention and reversal of T1D.  
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Results 

3.1 LA enhances T cell viability and proliferation. 

To determine the impact of LA on activated T cells, splenocytes from pre-diabetic NOD 

mice were cultured in vitro with αCD3 and αCD28 mAbs in the presence of high and low 

physiological concentrations of LA conjugated to BSA or with BSA alone as a control. T 

cells were incubated with LA for 48 hours. To measure LA’s effects on T cell viability 

after re-stimulation, cells were stained with viability dye. Viability dye labels dead cells by 

binding to amine groups within dead cells, which are more permeable. Cells were also 

labeled with antibodies for CD4 and CD8, counting beads were added to obtain absolute 

cell counts, and samples were analyzed by flow cytometry. The gating strategy used to gate 

viable cells and CD4+ and CD8+ T cells are shown in Figures 1C and 1D. 

 Culturing NOD mouse splenocytes in the presence of LA allowed greater T cell 

viability. This observation is demonstrated by the increase in the number of live CD4+ T 

cells (Figure 2A) at both high and low LA concentrations. The same trends can be seen 

for CD8+ T cells (Figure 2B), but in both scenarios, the higher concentration of LA 

promotes a more significant number of viable CD4+ and CD8+ T cells. However, while 

there are greater numbers of viable T cells, there are no differences in the frequency of live 

CD4+ and CD8+ T cells in the LA-exposed group compared to controls. Data suggest that 

increased cell numbers could be due to enhanced viability or increased T cell proliferation. 

 To distinguish between the possibilities of LA promoting proliferation and 

enhancing survival in T cells, a proliferation/survival assay was designed to address the 

enhanced viability seen in LA-treated T cells. NOD mouse splenocytes were exposed to 
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LA  bound to BSA or BSA at high and low concentrations, T cells were activated with 

αCD3 and αCD28 mAbs, and after 48 hours, T cells were isolated from splenocytes using 

a magnetic T cell enrichment kit. T cells were replated in FA-free C10 media and incubated 

at 37°C. Samples were taken at 24- and 48-hours post-replating for flow cytometry 

staining, including staining for T cell surface markers, the cellular proliferation marker Ki-

67, Annexin V, and viability dye. Annexin V can detect apoptotic cells by binding to 

phosphatidylserine when located on the outer plasma membrane. After gating, non-

apoptotic cells are designated as Annexin V and viability dye negative cells. T cells were 

gated using surface markers CD4+ and CD8+ T cells. Figure 3  demonstrates 

representative plots of the gating strategy used to determine proliferative and non-apoptotic 

cells. The results of the proliferation/survival assay demonstrate that 24 hours after T cells 

are removed from LA conditions and re-plated in FA-free C10 media, there is still 

enhanced proliferation displayed by the increased frequency of Ki-67+ non-apoptotic 

(Annexin V-) CD4+ T cells in the LA groups (Figure 3B and 3D), compared to controls 

(Figure 3A and 3C). Also seen after 24 hours, post-re-plating is a greater frequency of 

non-apoptotic CD4+ T cells in both high and low LA concentrations compared to controls 

(Figure 4A). At 24 hours post-re-plating, there is an increase in proliferation at the higher 

concentration of LA (Figure 4C). At 48 hours post-re-plating, CD4+ T cells in the 100μM 

LA group also demonstrated enhanced survival (Figure 4B) but not proliferation (Figure 

4D) as compared to BSA controls. The increase in CD4+ T cell proliferation 24 hours after 

re-plating may be advantageous for autoreactive T cells to increase the number and skew 

T cell subset ratios, promoting pathogenicity in T1D (266). 
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Figure 1. Gating strategy for T cell surface markers and viability.  

Flow plots represent the gating strategy utilized to gate A) lymphocytes and counting 

beads (for absolute cell counts), B) single cells, C) live cells gated by gating viability 

dye- population, and D) CD4+ and CD8+ T cells. CD4+ T cells in (D) were selected by 

gating CD4+, CD8- population, and CD8+ T cells in (D) were selected by gating the 

CD8+, CD4- population.  
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Figure 2. Live T cell counts and frequencies after LA splenocyte culture.  

The number of viable (A) CD4+ and (C) CD8+ T cells after culturing with LA or BSA 

control. Cell counts were obtained using 123ecount beads and flow cytometric analysis. 

Graphs show the frequency of live (B) CD4+ and (D) CD8+ T cells after LA splenocyte 

culture. Live cells were gated as viability dye negative and T cell marker (CD4 or CD8) 

positive. Each symbol represents one mouse, n=14, graphs displayed as mean ± SD, 

paired t-tests were used for statistics ***p<0.001 *p<0.05.  
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Figure 3. Representative plots showing CD4+ T cell proliferation and survival are 

enhanced by LA.  

Representative flow cytometry plots displaying an increased frequency of proliferation and 

survival in (B) 100μM and (D) 500μM LA treated CD4+ T cells 24 hours after re-plating. 

There is increased cell death and reduced proliferation in BSA-treated CD4+ T cells (A 

and C). Live and proliferating cells were gated as Ki-67 positive, Viability dye negative, 

marked in the red quadrant. 
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Figure 4. Frequencies of viable and proliferative, non-apoptotic T cells after LA 

splenocyte culture. 

Graphs display an increased frequency of proliferation and survival in CD4+ T cells. T 

cells were exposed to LA or BSA control for 48 hours, followed by re-plating in fresh 

media, and samples were taken 24 hours and 48 hours post-re-plating for staining with 

Annexin V to measure apoptosis and viability dye to measure Live/Dead cells. A) 

Demonstrates that at 24 hours post-re-plating, there are more non-apoptotic CD4+ T cells 

in the LA-exposed group (high and low concentrations) than BSA controls. B) At 48 hours 
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post-re-plating, the trend stays the same where there are more non-apoptotic CD4+ T cells 

in the LA exposed group (high and low concentrations) compared to BSA controls. The 

graph in (C) demonstrates that 24 hours post-re-plating LA exposed cells at the high 

concentration are more proliferative than BSA control, while at 48 hours (D), there are no 

differences between the groups, and cells are not proliferating. Each symbol represents one 

mouse, n=3, and paired t-tests were used for statistics, graphs displayed as mean ± SD, 

**p<0.002 *p<0.05. 
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3.2 LA treatment of NOD mouse splenocytes expands IL-21-producing-CD4+ T cells and 

decreases IL-10-producing CD4+ T cells. 

 To characterize the phenotype and cytokine production of NOD T cells exposed to 

LA, NOD mouse splenocytes were cultured with LA at high and low concentrations for 48 

hours. After 48 hours, splenocytes were re-stimulated with PMA and ionomycin and 

intracellular cytokine staining for flow cytometry performed. General gating for viability 

and surface markers was completed as described in (Figure 1). After cytokine gating 

demonstrated by the representative plots in (Figure 5A), results show an increase in the 

frequency of CD4+/IL-21+ T cells at both high and low concentrations of LA (Figure 5B). 

Also seen is a decrease in the frequency of CD4+/IL-10+ T cells (Figure 5C) at the higher 

LA concentration and no differences between groups for CD8+/IL-10+ T cells (Figure 

5E). There were no IFN-γ production changes by CD4+ or CD8+ T cells (Figure 5D and 

5F). Increases in IL-21 production by CD4+ T cells are of interest due to the role IL-21 

has in T1D, where it is found elevated in T1D patient serum and is a requirement for 

pathogenesis in NOD mice (100,104,131,223). The exposure to LA may be promoting T 

cells to become more like a Th17 or T follicular helper (Tfh) phenotype which is 

characterized by the production of IL-21 (126). Both Th17 and Tfh T cell subsets have 

involvement in T1D disease development (99,128,129). Decreases in IL-10-producing 

CD4+ T cells by LA are of interest due to the ability of IL-10 to dampen effector T cell 

responses (132), which is needed to prevent autoimmunity in T1D (119,166). Thus, LA 

may promote the pathogenicity of CD4+ T cells by expanding IL-21 producers and 
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reducing IL-10 producers. These changes to anti-inflammatory and inflammatory cytokine 

ratios can significantly influence the development of diabetes. 
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Figure 5. LA exposure expands IL-21-producing CD4+ T cells and decreases IL-10- 

producing CD4+ T cells. 

Graphs demonstrate the frequency of cytokine production by CD4+ and CD8+ T cells. 

Splenocyte cultures exposed to LA or BSA controls were re-stimulated after 48 hours of 

incubation with PMA and Ionomycin for 4 hours for cytokine production. T cells and 

cytokines were gated according to the gating strategy described and shown in Figure 1. 

After gating for viability and surface markers CD4 and CD8, the representative flow plots 

in (A) display how cytokine gating was completed for each surface marker. Graphs 

display an increase in IL-21 production by CD4+ T cells (B) at both LA concentrations. 

Also, within the CD4+ T cell population, there is a decrease in IL-10 production (C) at 

the highest LA concentration. There are no differences in IFN-γ production in either 

condition or concentration (D). There are no differences in CD8+ cytokine production 

between LA and controls seen in (E) for IL-10 production and (F) for IFN-γ production. 

Table 10 demonstrates T cell cytokine production descriptive statistics  for the media 

control. Each symbol represents one mouse, n=8, paired t-tests were used for statistics 

(comparing LA and BSA) **p<0.002 *p<0.05. 
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Table 10: Descriptive Statistics for Media Control T cell Cytokine Frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Media Control T cell Cytokine Production Frequencies (%) 

 % CD4+: 
IFNγ+ 

% CD4+: 
IL-10+ 

%CD4+: 
IL-21+ 

%CD8+: 
IFNγ+ 

%CD8+: 
IL-10+ 

Minimum 6.190 1.910 0.1600 26.80 1.360 

Maximum 23.20 16.60 2.110 64.00 30.80 

Range 17.01 14.69 1.950 37.20 29.44 

Mean 11.80 8.884 1.091 46.91 11.84 

Standard 
Deviation 

5.797 6.250 0.5851 11.18 11.12 

Standard 
Error of 

Mean 

2.050 2.210 0.1623 3.953 3.933 
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3.3 The ratio of inflammatory to anti-inflammatory cytokine-producing T cells is altered 

by LA. 

To determine how LA alters the balance of pro- and anti-inflammatory cell types in T1D,  

frequencies, and counts of cytokine-producing T cell subsets were obtained by flow 

cytometry from cultures of NOD mouse splenocytes exposed to LA during activation with 

αCD3 and αCD28 mAbs as described above. The ratios of cell counts were obtained using 

counting beads, and the ratio of IL-21:IL-10 was calculated for CD4+ T cells and IFN-γ: 

IL-10 for CD8+ T cells. Since LA promoted the expansion of CD4+ IL-21-producing T 

cells, we proposed that the ratio of inflammatory to anti-inflammatory cells would be 

skewed towards a ratio consistent with pathogenicity. LA's low and high doses altered the 

ratio of IL-21 and IL-10 for CD4+ T cells (Figure 6A); the same trend was seen for the 

cell counts ratio in (Figure 6B). The data of altered cell ratios suggests that survival and 

proliferation of IL-21-producing cells are preferentially promoted by LA relative to IL-10-

producing T cells. Graphs display that  LA exposed CD8+ T cell percentage ratios (Figure 

6C) for IFN-γ and IL-10 are only increased at the higher dose of LA . The CD8+ T cell 

count ratios for IFN-γ and IL-10  (Figure 6D) are trending towards the same skewed 

composition at the higher dose of LA which is considered pathogenic. The increased ratios 

of pathogenic CD4+ and CD8+ T cells demonstrate LA's ability to influence the 

composition of T cells within an environment. In the context of T1D, these specific changes 

to T cell ratios are considered pathogenic mainly due to the changes in IL-10, which are 

vital for maintaining tolerance (119,166). 
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Figure 6. LA exposure alters the ratio of pro- and anti-inflammatory cytokines in 

CD4+ and CD8+ T cells.  

Graphs display the ratios of cell frequencies and cell counts of cytokine-producing CD4+ 

and CD8+ T cells. Splenocyte cultures exposed to LA or BSA control were re-stimulated 

after 48 hours of incubation with PMA and Ionomycin for 4 hours for cytokine 

production. T cells expressing cytokines were gated according to the gating strategy 

describes in Figure 1. The ratios of cell counts were obtained using counting beads. The 

ratio of IL-21 and IL-10 producing CD4+ T cells was calculated, and IFN-γ and IL-10 for 

CD8+ T cells. The ratios were also calculated for the percentages of cytokine positive 

CD4+ and CD8+ T cells. Graphs demonstrate low and high LA doses altered the ratio of 

percentages of IL-21 and IL-10 for CD4+ T cells (A) and cell counts as seen in (B). For 
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LA-exposed CD8+ T cells, percentage (C) and cell count ratios (D) show that cells are 

trending towards pathogenic cytokine production at only the higher dose of LA. Each 

symbol represents one mouse, n=8, and paired t-tests were used for statistics. *p<0.05. 

 

3.4 Glucose-free conditions have no impact on pathogenic cytokine production by LA-

treated T cells.  

 T cell activation involves a metabolic switch to glycolysis, followed by glycolysis 

coupled with OXPHOS (189,267,268). The requirement for glucose is necessary if LA is 

being stored in lipid droplets as triacylglycerol, which requires a glycerol backbone 

produced from glucose (269,270). The glycolytic pathway is essential in T cell processes 

since this pathway is important early on in T cells' activation through CD3 and CD28 

(185).  

 To understand the influence of glycolysis on IL-21 production by LA-treated T 

cells, splenocytes were cultured 48 hours with LA or BSA conjugated in glucose-free 

C10 media at high and low concentrations for 48 hours. After 48 hours, splenocytes were 

re-stimulated and stained for phenotype and cytokines and analyzed by flow cytometry. 

Results demonstrate that glycolysis is required for survival and production of IL-21 in 

LA-treated CD4+ T cells and controls. In glucose-free conditions, there were no changes 

in the number of live CD4+ T cells (Figure 7A) when compared to media and BSA 

controls. These data suggest that the enhanced survival seen in LA treatment requires the 

presence of glucose. There were also no changes in the number of IL-21-producing 

CD4+T cells (Figure 7B) in glucose-free conditions compared to controls. In glucose-
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free and LA conditions, there are no changes in the number of IL-10 producing T cells 

(Figure 7C), which is the opposite in conditions with normal glucose levels and where 

LA treatment reduces the number of IL-10 producing T cells (Figure 5B).  

 

 

 

Figure 7. In glucose-free conditions, LA exposure does not alter CD4+ T cell cytokine 

production or viability.  

Cell counts of viability and cytokine production by CD4+. Splenocyte cultures exposed 

to LA or controls in glucose-free conditions were re-stimulated after 48 hours of 

incubation with PMA and Ionomycin for 4 hours for cytokine production. Viable T cells 
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and cytokines were gated according to the gating strategy describes in Figure 1 and 

Figure 5A. Graphs display no differences in CD4+ T cell viability (A) between LA and 

BSA control-treated T cells. Also, there are no differences in CD4+ T cell production of 

IL-21 (B) and IL-10 (C) between LA-treated T cells and controls. Each symbol 

represents one mouse, n=4, graphs displayed as mean ± SD, Friedman test (non-

parametric ANOVA) combined with Dunn’s Multiple Comparisons Test were used for 

statistics. 

 

3.5 Pathogenic cytokine production and viability of T cells in LA conditions require the 

presence of antigen-presenting cells. 

 

3.5.1 Co-culture of BMDMs and BMDCs with T cells in LA conditions. 

 To determine if specific LA-treated APCs influence survival and cytokine 

production in T cells, BMDMs and BMDCs were generated using methods previously 

described (250,251). BMDMs and BMDCs were matured with LPS, and after incubation, 

adhered BMDMs were isolated from the cell culture dish. BMDCs were enriched using a 

dendritic cell enrichment kit as described in Chapter 2 methods. BMDMs or BMDCs 

were co-cultured with isolated T cells at a 2:1 cell ratio (T cell: APC) in LA and control 

conditions. Results reveal that DCs co-cultured with T cells in LA conditions have a 

greater number of viable CD8+ T cells at high and low concentrations (Figure 8E) and 

viable CD4+ at high LA concentrations (Figure 8A) Co-cultures in LA conditions with 

macrophages did not display the same trend as DCs. Macrophages did not contribute to 
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more viable CD4+ (Figure 8B) or CD8+ T cells (Figure 8E) or differences in cytokine 

production between the LA and control groups (data not shown). Also, culturing T cells 

alone with LA does not promote viability (Figures 8C and 8G). These results 

demonstrate the requirement of DC contact with T cells or DC cytokine production in LA 

conditions that promotes viable T cells but does not impact T cell cytokine ratios. These 

data suggest that the altering of IL-10 and IL-21 cytokine levels in T cells in LA 

conditions could be a contribution to the influence of multiple APCs.  

 

3.5.2 Co-culture of LA pre-treated APCs with T cells.  

 To determine whether changes in APCs caused by LA were sufficient to promote 

T cell survival and altered cytokine subset composition or whether both T cells and APCs 

required LA exposure, freshly isolated splenocytes were immunostained with an αCD3 

fluorophore-conjugated antibody, and splenocytes were sorted via FACS keeping only 

cells that were CD3 negative (APCs) and disposing of CD3 positive cells (T cells). The 

FACS isolated APCs were cultured in fatty acid-free C10 media, BSA, and LA 

conditions at high and low doses (100μM and 500μM) for 24 hours. After 24 hours of 

APC pre-treatment with fatty acids, APCs were re-plated at a 3:1 ratio (APC: T cell) with 

enriched T cells from NOD mice, and the cells were co-cultured for 48 hours. The second 

set of APCs not exposed to LA were cultured with enriched T cells at a 3:1 ratio (APC: T 

cell), and LA (100μM and 500μM) added in at the time of co-culture. After 48 hours, 

cells were immunostained for viability, T cell phenotype, and cytokines. Results 

demonstrate no differences in viability (Figure 9A and 9E) and cytokine production in T 
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cells co-cultured along with APCs that were pre-treated with LA when compared to the 

media control. LA pre-treated APCs did not lead to differences in cytokine production by 

CD4+ (Figures 9B-9D) and CD8+ T cells (Figures 9F and 9G). These results suggest 

that LA directly affects T cells to influence T cells' viability and the altering of cytokines. 

A caveat in experimental design is that there could have been early cytokine production 

by LA pre-treated APCs that may have a role in the survival or cytokine production of T 

cells.  
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Figure 8. DCs exposed to LA enhance CD4+ and CD8+ T cell viability.  

BMDMs and BMDCs were generated using methods previously described (250,251). 

BMDMs and BMDCs were matured with LPS, and after incubation, adhered BMDMs 

were isolated from the cell culture dish. BMDC populations were enriched using a 

dendritic cell enrichment kit as described in Chapter 2 methods. BMDMs or BMDCs 

were co-cultured with T cells isolated by magnetic sorting at a 2:1 cell ratio (T cell: APC) 
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in LA and control conditions. Graphs reveal that DCs increase cell survival of CD4+ T 

cells but only at the high LA concentration (A). In the macrophage and T cell co-culture, 

there are no differences in viability between LA and BSA control (B). Also, LA does not 

enhance the survival of T cells plated alone in culture (C). At both high and low 

concentrations of LA, DCs enhanced the viability of CD8+ T cells (D). In macrophage 

and DC co-cultures, no differences were demonstrated in the viability of CD8+ T cells 

(E). The same trend is seen in CD8+ T cell-only cultures (F), where LA alone does not 

enhance viability. Each symbol represents one mouse, n=3, graphs displayed as mean ± 

SD, t-tests were used for statistics. *p<0.05. 
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Figure 9. Pre-treatment of APCs with LA does not impact T cell cytokine production 

and T cell viability.  
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Isolated splenocytes were immunostained with an αCD3 fluorophore-conjugated 

antibody, and splenocytes were sorted via FACS keeping only cells that were CD3 

negative (APCs) and disposing of CD3 positive cells (T cells). The FACS isolated APCs 

were cultured in fatty acid-free C10 media, BSA, and LA conditions at high and low 

doses (100μM and 500μM) for 24 hours. After 24 hours of APC pre-treatment with fatty 

acids, APCs were re-plated at a 3:1 ratio (APC: T cell) with enriched T cells from NOD 

mice, and the APCs were co-cultured for 48 hours with αCD3 and αCD28. After 48 

hours, cells were immunostained for viability, T cell phenotype, and cytokines. Graphs 

display no differences in the number of CD4+ (A) and CD8+ (E) viable T cells. For 

CD4+ T cells co-cultured with LA pre-treated APCs, there are no differences in the 

production of IL-21 (B), IL-10 (C), and IFN-γ (D). Within CD8+ T cells co-cultured with 

LA pre-treated APCs, there are no differences in IFN-γ  (F) production and IL-10 (G). 

Each symbol represents one mouse, n=3, graphs displayed as mean ± SD, Friedman test 

(non-parametric ANOVA) with Dunn’s Multiple Comparisons Test were used for 

statistics,  
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3.6 LA-treated T cells do not have a Tfh or Th17 phenotype. 

 To verify that LA can skew T cells to a Tfh or Th17 phenotype, which typically 

produce IL-21 (126), splenocytes cultured 48 hours with LA or BSA were stained with T 

cell markers and transcription factors for these specific T cell subsets (Bcl-6, RORγt) 

(126) based on the panel in Table 6. Results demonstrate no significant changes to the 

mean fluorescence intensity of Bcl-6 or RORγt in LA-treated CD4+ T cells compared to 

controls (media and BSA). These data demonstrate that LA does not skew T cells to 

specific subsets known for IL-21 production (Tfh, Th17) (Figures 10A and 10B). In a 

separate experiment where CD4+ T cells were polarized to Th17 with and without LA, 

there was a reduction of RORγt expression in T cells treated with 1mM LA (Figure 11), 

indicating that LA conditions skew cells away from Th17 phenotype in TH17 polarizing 

conditions. These data again confirm that Tfh and Th17 cell lineages are not involved in 

the production of IL-21 in LA conditions.  
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Figure 10. LA does not skew CD4+ T cell differentiation to Tfh or Th17 subsets. 

Splenocyte cultures exposed to LA or controls were re-stimulated after 48 hours of 

incubation with PMA and Ionomycin for 4 hours for cytokine production, cells were 

immunostained using the panel in Table 6 using Tfh and Th17 lineage markers including 

transcription factors RORγt and Bcl-6 (126). Graphs display that LA has no influence on 

CD4+ T cell differentiation into Th17 cell subsets (A) as displayed by the MFI of RORγt, 

and LA did not promote differentiation of CD4+ T cells to a Tfh cell phenotype as 

displayed by the MFI of Bcl-6 (B). Each symbol represents one mouse, n=3, graphs 

displayed as mean ± SD, one-way ANOVA with Tukey’s Multiple Comparisons Test was 

used for statistics. 
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Figure 11. Th17 polarized cells exposed to LA have a reduction in the expression of 

lineage transcription factor RORγt.  

Naïve CD4+ T cells were isolated and plated with αCD28, Th17-polarizing cytokines, 

and blocking antibodies using methods previously described (249). Th17-polarizing 

cytokines and blocking antibodies include αCD3, αCD28, IL-6 cytokine, IL-23 cytokine, 

human TGF-β, αIL-4, and anti-IFN-γ.  CD4+ T cells in polarized conditions were 

incubated with LA or controls for 4 days, and afterward, T cells were re-stimulated with 

PMA and Ionomycin for 4 hours with BFA added an hour in and immunostained using 

the panel in Table 9. The graph above reveals that Th17-polarized cells cultured in LA 

have reduced expression of the Th17 lineage transcription RORγt indicating that LA does 

not skew cells to the Th17 subset but skews them away. Each symbol represents one 

mouse, n=3, graphs displayed as mean ± SD, t-test was used for statistics. **p<0.002  
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3.7 Accumulation of lipid droplets and changes to mitochondrial mass in T cells is 

promoted by LA exposure. 

 FAs can be used in many ways by the cell. Therefore, to understand if T cells are 

storing LA as TAGs for use in energy production, later on, the accumulation of lipids in 

T cells was measured by staining lipid droplets. Splenocytes cultured 48 hours with LA 

or controls were stained with Bodipy 493/503 and conjugated antibodies for T cell 

surface markers (CD4, CD8) and analyzed by flow cytometry. In CD4+ T cells (Figure 

12A), there is an accumulation of lipids only at the higher concentration of LA (500μM). 

Results (Figure 12B) reveal an accumulation of lipids seen at 100μM and 500μM doses 

of LA in CD8+ T cells. These results suggest that CD8+ T cells store LA as neutral/non-

polar lipids in lipid droplets (269), which is known to benefit memory CD8+ T cells that 

depend on fatty acid oxidation (271).  

 To measure if T cell mitochondria are undergoing biogenesis after LA treatment, 

which indicates FAO and OXPHOS, T cells were stained with Mitotracker dye which 

accumulates in active mitochondria and allows the quantification of mitochondrial mass, 

which is an indicator of mitochondrial biogenesis and mitochondrial content (173). Cells 

were also immunostained for surface markers CD4 and CD8. There are no differences in 

mitochondrial mass between LA and controls in CD4+ cells (Figure 12C). In contrast,   

CD8+ T cells (Figure 12D) exhibited an increase in mitochondrial mass at the high 

concentration of LA. There were no changes to mitochondrial mass in CD4+ T cells as 

measured by Mitotracker MFI. This data indicates that CD4+ T cells are not undergoing 
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mitochondrial biogenesis due to LA exposure. These results could indicate that LA is not 

being used as an energy source for FAO. 

 

 

Figure 12. T cells exposed to LA have increased neutral lipid accumulation.  

To understand how LA exposure affects lipid droplet accumulation and mitochondrial 

biogenesis, splenocytes cultured 48 hours with LA or controls were stained with Bodipy 

493/503 and Mitotracker Green FM dye along with conjugated antibodies for T cell 

surface markers (CD4, CD8) and analyzed by flow cytometry using the panels in Tables 
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4 and 5. Graphs display that increased lipid accumulation is only seen in CD4+ T cells at 

the high concentration of LA (A) while there is increased neutral lipid accumulation in 

CD8+ T cells at both concentrations of LA (B), indicating that there are T cell-specific 

differences in how LA is handled by CD4+ and CD8+ T cells. When looking at 

mitochondrial mass as indicated by Mitotracker staining, it is revealed that CD4+ T cells 

in LA conditions do not increase the mitochondrial mass (C), while CD8+ T cells display 

an increase in mitochondrial mass at the high concentration of LA (D). CD8+ T cells are 

undergoing mitochondrial biogenesis in response to higher concentrations of LA and 

could be utilizing LA differently than CD4+ T cells. Each symbol represents one mouse, 

n=3, graphs displayed as mean ± SD, one-way ANOVA with Tukey’s Multiple 

Comparisons Test was used for statistics, ***p<0.001 **p<0.002 *p<0.05. 

 

3.8 LA shows specific and unique effects on T cell cytokine production compared to other 

FAs.  

To quantify and determine cytokines exclusively produced by T cells in LA conditions, 

splenocytes were plated with 500μM of FAs, including LA, oleic acid, and α-linolenic 

acid, for 48 hours. After 48 hours, T cells were isolated from the splenocytes using a 

magnetic T cell isolation kit, and 1 x 105 cells re-plated in fresh media and re-stimulated 

using PMA and Ionomycin for 4 hours. After 4 hours, T cell supernatants were harvested 

and analyzed by multiplex ELISA for cytokines. It was revealed that LA treatment 

compared to controls and other FAs specifically led to increased levels of several 

cytokines and chemokines, including GM-CSF, IFN-γ, MIP-3α, IL-2, and IL-28B 
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(Figure 13). The increase in GM-CSF by LA (Figure 13A)  is of interest since GM-CSF 

specifically plays a role in the pathogenesis of several autoimmune and chronic 

inflammatory diseases (272). GM-CSF-producing autoreactive CD4+ T cells have been 

found in T1D and are thought to be important in response to β-cell antigens (273). IFN-γ 

and IL-2 are critical cytokines in the pathogenesis of T1D and are shown to be increased 

by LA (Figure 13B and 13E). MIP-3α, also increased by LA (Figure 13C), is an 

important chemokine for attracting monocytes and memory lymphocytes to inflammation 

in autoimmune disorders like rheumatoid arthritis and other chronic inflammatory 

diseases (274). There are also increased levels of IL-28B in T cells treated with LA 

compared to other PUFAs (Figure 13H), IL-28B is a type III interferon that has a role in 

inflammatory processes and has been implicated in autoimmunity and cancer (275). 

There is a trend of decreased IL-10 production induced by oleic acid, linoleic acid, and α-

linolenic acid (Figure 13F). When looking at IL-21 production (Figure 13G), the trend 

of increased IL-21 by LA seen in intracellular cytokine staining was not seen in the 

supernatants analyzed by multiplex ELISA. This could be due to the normalization of the 

number of T cells per condition for re-stimulation in the multiplex ELISA. Also, the IL-

21 measured is below the stated limit of detection, which could give rise to unreliable 

results (Figure 13), whereas flow cytometry data revealed more significant numbers of 

IL-21-producing T cells compared to other FAs and controls (data not shown). There 

were no differences in the production of these specific cytokines in LA conditions 

compared to controls: IL-1β, IL-4, IL-6, IL-12, IL-13, IL-15, IL-17A, IL-17F, IL-23, IL-

17, IL-31, IL-33, CD40L, and TNFβ (data not shown). The multiplex ELISA data 
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suggests that LA impacts T cell cytokine production and promotes cytokine-based 

interactions with APCs. 

  



85 

 

Figure 13. T cells in the cultured presence of LA have increased production of 

specific cytokines compared to other FAs and controls. 
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To understand how LA impacts cytokine production compared to other FAs, splenocytes 

were plated and activated in the presence of 500uM of FAs, including LA, oleic acid, α-

linolenic acid, and controls for 48 hours. After 48 hours, T cells were isolated from 

splenocytes, re-plated in media, and re-stimulated using PMA and Ionomycin for 4 hours. 

After 4 hours, T cell supernatants were harvested and analyzed by multiplex ELISA for 

cytokines. Graphs reveal that LA led to significantly increased levels of GM-CSF (A), 

IFN-γ  (B), and MIP-3α (C). While not significant, there is a suggested increase in levels 

of TNFα by LA (D). The presence of LA increased the levels of IL-2 (E), which is 

essential for T cell proliferation (224). There is a trend that LA, oleic acid, and α-

linolenic acid can suppress the production of IL-10 (F).  The production of IL-21 (G) is 

not enhanced by LA, but there is evidence that cell numbers may come into play since T 

cells were normalized to the same cell number before re-plating for PMA and ionomycin 

stimulation. Also seen is an increase in IL-28B (H) by LA compared to controls and other 

FAs. Each symbol represents pooled replicates of one mouse, n=3, graphs displayed as 

mean ± SD, Kruskal-Wallis test (non-parametric ANOVA) with Dunn’s Multiple 

Comparisons Test were used for statistics, *p<0.05. 
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3.9 LA does not enhance IL-21 production in CD4+ T cells from a non-autoimmune 

mouse model. 

To verify that the survival and IL-21 production influenced by LA treatment on NOD 

mouse T cells is specific to NOD mice, and therefore, T1D, C57BL/6J, and NOD mouse 

splenocytes were cultured with LA for 48 hours. After 48 hours, cells were re-stimulated 

and immunostained for viability, phenotype, and cytokine production. Results reveal an 

increase in IL-21 specific to NOD mouse CD4+ T cells at high and low LA 

concentrations compared to C57BL/6J mouse media only control (Figure 14B). Also 

revealed was that there are differences in the survival of splenocytes at lower 

concentrations of LA between NOD and C57BL/6J mice (Figure 14A), where NOD 

mouse cells have a greater percentage of viable CD4+ T cells. At concentrations greater 

than 100μM (Figure 14A), the differences in survival between T cells from the two 

mouse strains disappear, with higher concentrations of LA promoting comparable 

survival in C57BL/6J and NOD CD4+ T cells. These results indicate that while the LA 

promotion of viability in CD4+ T cells is not exclusive to NOD mice, the production of 

IL-21 in LA conditions is specific to NOD mouse CD4+ T cells. 
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Figure 14. LA-induced IL-21 production by CD4+ T cells is limited to NOD mouse T 

cells.  

 C57BL/6J and NOD mouse splenocytes were cultured with LA  or media control for 48 

hours. After 48 hours, T cells were re-stimulated and immunostained for viability, 

phenotype, and cytokine production using the flow panel in Table 3. Graphs show that 

LA exposure enhances viability in CD4+ NOD mouse T cells at high and low 

concentrations while only enhancing viability in C57BL/6J mice at the higher 

concentration (A). LAs' effects on viability are not specific to NOD mouse CD4+ T cells. 

There is increased IL-21 production induced by both LA concentrations in NOD CD4+ T 

cells but not in C57BL/6J mouse CD4+ T cells (B). LA's effects on IL-21 production are 
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specific to NOD mice, and LA cannot increase IL-21 production in a non-autoimmune 

mouse model. Each symbol represents splenocytes from one mouse, n=3, graphs 

displayed as mean ± SD, one-way ANOVA test with Tukey’s Multiple Comparisons Test 

were used for statistics, **p<0.002 *p<0.05. 
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CHAPTER FOUR: LINOLEIC ACID REDUCES THE EXPRESSION OF LIPID 

METABOLISM-REGULATING GENES IN T CELLS 

 

Rationale 

LA, an n-6 PUFA, can have one of many fates once inside of the cell. The fatty acid can 

be used for energetic processes, create lipid signaling molecules, be stored as 

triacylglycerols (TAGs), or influence gene expression through fatty acid-binding proteins 

or directly as ligands of specific transcriptional regulators (244,246,260). Adding more 

complexity, PUFAs such as LA can directly bind transcriptional regulators such as 

peroxisome proliferator-activated receptors (PPARs), which regulate a vast assortment of 

lipid metabolic and general metabolic processes (244–246). The PPARs are ligand-

activated and also serve as sensors for lipids (276,277). PPARs specifically bind to 

certain response elements within promoters (PPREs) (245,246,276). 

 T cell subsets that depend on lipid metabolism include Tregs and memory T cells 

(110,254,271). How these T cell subsets use these pathways is vastly different from 

Tregs, which use lipids for FAO, and memory T cells are more prone to lipolysis and 

storing lipids as TAGs for long-term energy needs (110,176,254,271). It is not precisely 

known how in general, T cells use the lipids within their environments and which 

pathways specific lipids can influence. It has also not been established if there are genetic 

differences in T cells from autoimmunity-prone mouse strains or individuals that 

contribute to how they handle lipids from their environment since there is evidence that 

human and NOD mouse T1D progressors have altered bioenergetic needs before diabetes 
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development (64,77,91,92). This aim seeks to identify changes in gene expression 

underlying responses to LA in NOD mouse T cells. We hope to reveal how a LA 

environment influences the gene expression of NOD T cells. 

 

Results 

4.1 LA exposure alters the gene expression of NOD mouse T cells. 

LA can bind and influence transcription factors, signaling proteins, or be used as an 

energy source (244,246). To determine how LA impacts T cells' gene expression, we 

measured differences in gene expression between LA- and BSA-treated T cells from 

NOD mice. Splenocytes were activated as described above and activated T cells were 

isolated after 48 hours using isolation with magnetic beads. RNA was extracted and 

converted to cDNA for Q-PCR analysis of genes related to the processing of lipids or 

metabolism found in Table 1.  The data show reduced expression of PPARα in NOD 

mouse T cells (Figure 15A), along with a reduction in expression of SIRT4 (Figure 

15E), a regulator of fatty acid oxidation and metabolism (278) at higher doses of LA 

treatment. There are no differences seen in the gene expression of CD36 and CPT1a 

(Figure 15C and 15D) between LA and the control group, indicating that the presence of 

LA does not affect the translocation of fatty acids into the cell via CD36 (279) or into the 

mitochondria since CPT1a is an important enzyme involved in FAO metabolism and 

shuttles fatty acids from the cytosol into the mitochondrial matrix, the site of FAO 

(181,254,270).  The results also show a decrease in expression of PPARγ at low and high 

doses of LA (Figure 15B). These data suggest that there is gene repression by LA, 
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particularly in pathways involved in the regulation of lipid metabolism. A caveat of this 

specific aim is that it is unknown when after activation and exposure to LA, T cells 

reduce the expression of PPARα and PPARγ and how LA impacts these transcription 

factors' activation status and mechanisms. PPARγ functions as a nutrient sensor and 

regulates gene transcription to promote the storage of lipids like non-esterified LCFA 

(276,280,281). PPARα also functions as a nutrient sensor (282). It is the main regulator 

of lipid catabolism and increases the transcription of lipid catabolism genes (276,283). 

There is evidence that PPARα -/- male mice but not female mice with induced EAE 

developed more severe clinical signs of EAE due to enhanced Th1 autoimmunity (284). 

Since lipid metabolism is extensive and complex, broader gene expression studies must 

be completed to get a better idea of pathways and potential mechanisms where LA leads 

to the suppression of important lipid regulating transcription factor genes in T cells from 

an autoimmune mouse model. 
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Figure 15. LA decreases T cell gene expression of lipid-regulating transcription 

factors PPARα and PPARγ. 

T cells were isolated from LA and control splenocyte cultures using magnetic isolation, 

and RNA was extracted and converted to cDNA for Q-PCR analysis of genes related to 

the processing of lipids or regulation of lipid metabolism found in Table 1. Graphs reveal 

a decrease in gene expression of lipid-regulating transcription factors PPARα (A) and 

PPARγ (B), suggesting that LA regulates major transcription factors that further regulate 

cellular metabolic pathways mainly involved with lipid metabolism (276). There are no 

differences induced by LA in CD36 (C) expression or CPT1a (D) expression. 
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Mitochondria are not affected (173,254,279). Also seen is a reduction in SIRT4 (E) 

expression, a mitochondrial NAD+-dependent enzyme involved in regulating key 

metabolic processes, including mitochondrial energy transfer, cell survival, and FAO 

(285,286). Each symbol represents T cells from one mouse, n=10, graphs displayed as 

mean ± SD, Wilcoxon matched-pairs signed-rank test was used for statistics (non-

parametric), **p<0.002 *p<0.05. 
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CHAPTER FIVE: THE IMPACT OF IL-7Rα BLOCKADE ON T CELL LIPID 

METABOLISM  

Rationale  

 Elevated IL-7 levels or IL-7 signaling have been correlated with T1D and play a 

role in the expansion and function of autoreactive CD4+ and CD8+ T cells 

(168,241,287). Blocking the IL-7 pathway with anti-IL-7Rɑ mAbs has been shown to 

push memory CD4+ T cells into an inhibited state with reduced cytokine secretion and 

proliferation leading to prevention and reversal of T1D in NOD mice (15,16). T cell 

inhibition after anti-IL-7Ra treatment was mediated by enhanced expression of the co-

inhibitory receptors (Co-IRs) PD-1, LAG-3, and TIM-3 (15,243). The role of co-

inhibitory receptors, in general, is to regulate and inhibit effector T cell responses, 

especially in instances of inflammation and promoting self-tolerance (288). Co-IR 

expression on Tregs ensures their ability to control and suppress effector T cell responses 

(288). Expression of co-IRs also contributes to T cell exhaustion (289). T cell exhaustion 

is a differentiation state of T cells that develops due to persistent exposure to 

inflammatory signals or antigen and is characterized by T cells having loss of effector 

functions, up-regulation and sustained expression of co-IRs, and metabolic abnormalities 

(289). Evidence demonstrates anti-IL-7Ra treatment pushes T cells into an exhausted or 

inhibited state, which reduces the effector functions of autoreactive T cells (15,16,290). 
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It is known that IL-7 signaling is involved in promoting T cell homeostasis and 

TAG synthesis in memory T cells, giving the IL-7R signaling pathway a role in cell lipid 

metabolism (176,271,291). The synthesis of TAGs, which can subsequently be used for 

lipolysis and FAO, is necessary as a long-term energy source for memory T cell survival 

(176,196). Little is understood about how treatment with anti-IL-7Rɑ mAbs induces 

changes in metabolic pathways, including FAO, and how it impacts lipid metabolism in 

autoreactive T cells. Some changes noticed in Gene Set Enrichment Analysis (GSEA) 

analysis of CD4+ memory T cells isolated from NOD mice treated with anti-IL-7Ra 

mAbs versus rat IgG control Ab include downregulation of TCA cycle and oxidative 

phosphorylation pathways, and there is upregulation of the hypoxic response pathway, 

which may indicate metabolic dysregulation (data not shown). These changes, however, 

do not fully describe the effects of IL-7R blockade on T cell lipid metabolism. Here, we 

hypothesized that IL-7Rα blockade compromises lipid metabolic processes in 

autoreactive T cells and that in turn inhibits their function through co-IR 

expression and exhaustion to reduce the pathogenic functions of NOD mouse T cells. 

Thus, we sought to determine whether IL-7 signaling plays a role in activated T cells' 

response to LA by measuring viability, cytokine production, and expression of the co-IRs 

PD-1, LAG-3, TIM-3, and TIGIT.  

  

 PD-1 expressed on T cells promotes negative regulation of signaling through the 

TCR and CD28 after binding with its ligands PD-L1 or PD-L2. This signaling inhibition 

can impede T cell activation, inhibit T cells from self-reactivity, and promote Treg 
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development and proliferation (288,292,293). It has been shown that PD-1 ligation results 

in metabolic changes to T cells where they transition from glycolysis during the effector 

response to FAO and OXPHOS, which is associated with cell survival and longevity 

(294).  

 LAG-3 is expressed on CD4+ T cells, CD8+ T cells, Tregs, Tr1 cells, and specific 

NK cell subsets (288). The primary role of LAG-3 is to inhibit T cell expansion after 

antigen exposure (288,295), but the exact signaling mechanisms for inhibition of T cell 

function and specific alterations to metabolism by LAG-3 engagement are still unknown.  

 Tim-3 is expressed on IFN-γ -producing Th1 cells and CD8+ T cells (296). 

Binding with its ligand galectin-9 can induce cell death in Tim3-expressing Th1 cells 

(297). The cytoplasmic tail of the Tim-3 receptor complex interacts with the TCR 

complex components to negatively regulate immune responses (298,299).  

 TIGIT is expressed on NK cells, T cells, Tregs, and Tfh cells. TIGIT works by 

blocking cell activation, proliferation, and effector functions by regulating components of 

the TCR complex (288,300,301). The ligands for TIGIT are CD155 and CD112, and 

these ligands can be expressed on APCs and T cells (288,300,302).  

 The Dooms lab previously showed that PD-1, TIM-3, and LAG-3 expression is 

increased after IL-7Ra blockade (15,243). Here, we wish to know if specific nutrient 

environments such as LA conditions influence cytokine production and the expression of 

co-IRs in T cells after anti-IL-7Rα treatment. 
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Results 

5.1 IL-7Rα blockade does not promote differences in cytokines or exhaustion markers in 

an LA environment.  

 NOD mice were treated with anti-IL-7Rα or Rat IgG antibodies (0.5 mg IP). After 

three days, splenocytes were isolated and stimulated in vitro with αCD3 and αCD28 

mAbs in the absence or presence of high and low doses of LA conjugated to FA-free 

bovine serum albumin at a 2:1 molar ratio. After culturing for 48 hours with and without 

LA, T cells were re-stimulated with PMA and ionomycin to induce cytokine production. 

Cytokines were analyzed by intracellular cytokine staining. Antibodies staining 

phenotypic and exhaustion markers (PD-1, LAG-3, TIM-3, TIGIT) were added to detect 

inhibited T cells, and a cell viability dye was added to assess live cell numbers (flow 

panel found in Table 8). First, there were no differences in viability in CD4+ and CD8+ 

T cells in any treatment groups with and without LA (Figure 16A and 16E). While this 

result does not recapitulate our data showing LA induces a survival benefit in activated T 

cells isolated from unmanipulated NOD mice, it is feasible that the in vivo treatment with 

a large dose of rat IgG or anti-IL-7Ra antibodies altered the T cell activation state in a 

way that muted their response to LA. Moreover, results demonstrate that IL-7R blockade 

did not alter cytokine production in response to LA (Figure 16B-16D, 16F-16G). Results 

are comparable between IgG control also those exposed to LA (Figure 16). There were 

no differences in cytokine production between the T cells from mice treated with IgG and 

anti-IL-7Rα. Results also reveal no differences in co-inhibitory receptor expression 

(LAG3, TIGIT, PD-1, and Tim3), indicating that cells are not exhausted, and LA does 
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not influence the inhibition of cells by IL-7R blockade (Figure 17). It is possible that the 

three-day treatment time of mice with anti-IL-7Rα was not enough to inhibit the cells to 

assess the expression of exhaustion markers and cytokine production. A more extended 

treatment regimen or extra dosage of anti-IL-7Rα needs to be explored. There is a trend 

of Tim-3 expression increased in CD8+ T cells regardless of IgG or anti-IL-7Rα 

treatment group (Figure 17H); this is an interesting observation considering Tim-3 has a 

role in suppressing Th1 cells and CD8+ T cells (288,296).  
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Figure 16. LA does not affect viability or cytokine production in T cells from anti-

IL-7Rα treated mice. 
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Splenocytes from NOD mice treated with anti-IL-7Rα or Rat IgG antibodies were 

isolated and activated in vitro in the absence or presence of high and low doses of LA. 

After culturing for 48 hours with and without LA, T cells were re-stimulated. T cells 

were analyzed for markers of T cells and cytokines using the flow panel in Table 3. 

Graphs demonstrate no differences in cytokine production between anti-IL-7Rα and IgG-

treated T cells cultured with and without LA. Within the CD4+ population, there were no 

differences in cell viability (A) and the production of cytokines IFN-γ  (B), IL-10 (C), 

and IL-21 (D). In the CD8+ T cell population, there were also no differences in viability 

(E), and there were no differences in the production of cytokines, including IFN-γ  (F) 

and IL-10 (G). This data indicates that LA does not impact viability or cytokine 

production in cells from anti-IL-7Rα treated NOD mice. Each symbol represents one 

mouse, n=3, graphs displayed as mean ± SD, Kruskal-Wallis test (non-parametric 

ANOVA) with Dunn’s Multiple Comparisons Test were used for statistics. 
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Figure 17 LA does not affect co-inhibitory receptor expression in T cells from anti-

IL-7Rα treated mice. 

Splenocytes from NOD mice treated with anti-IL-7Rα or Rat IgG antibodies were 

isolated and activated in vitro in the absence or presence of high and low doses of LA. 

After culturing for 48 hours with and without LA, T cells were re-stimulated. T cells 

were analyzed for markers of T cells and exhaustion (TIGIT, PD-1, LAG-3, TIM-3) 
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using the flow panel in Table 8. Graphs demonstrate no differences in co-inhibitory 

receptor expression between anti-IL-7Rα and IgG-treated T cells cultured with and 

without LA. Within the CD4+ population, there were no differences in the expression of 

Lag-3 (A), PD-1 (B), TIGIT (C), and Tim-3 (D). In the CD8+ T cell population, there 

were no differences in the expression of Lag-3 (E), PD-1 (F), TIGIT (G), and Tim-3 (H). 

However, there is a trend of Tim-3 expression being increased in CD8+ T cells regardless 

of IgG or anti-IL-7Rα treatment group (H). These data indicate that LA does not impact 

co-inhibitory receptor expression in CD4+ T cells from anti-IL-7Rα treated mice, which 

were expected to have changes in their metabolic state. Each symbol represents one 

mouse, n=3, graphs displayed as mean ± SD, Kruskal-Wallis test (non-parametric 

ANOVA) with Dunn’s Multiple Comparisons Test were used for statistics. 
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5.2 IL-7Rα blockade of NOD T cells alters Aquaporin 9 expression but not other lipid 

metabolism-regulating genes. 

 To understand the role of the IL-7/IL-7Ra pathway on the expression of lipid 

metabolism-regulating genes, NOD mice were treated with anti-IL-7Rα or Rat IgG 

antibodies. After three days, CD4+ T cells were isolated from mouse splenocytes, and 

RNA was extracted for conversion to cDNA. Q-PCR analysis was completed to look at 

the expression of lipid metabolism-related genes found in Table 1. Although evidence 

exists that the IL-7 signaling pathway can regulate TAG formation (170,176), blocking 

the IL-7 signaling pathway did not change the expression of any genes that would 

regulate the processes of lipid metabolism, which include PPARα, PPARγ, and ACC1 

(276,303) (Figure 18A-18E). Anti-IL-7Rα treatment reduced the expression of 

Aquaporin 9 (Figure 18E), a channel protein used for importing glycerol into the cell 

(176). It is known that IL-7 signaling induces expression of Aquaporin 9 to import 

glycerol for TAG synthesis in CD8+ memory T cells; hence we expected blocking the IL-

7R pathway may reduce Aquaporin 9 gene expression in CD4+ T cells (176). CPT1a is 

an important enzyme for FAO (173,254), and there are no differences in the expression of 

this gene between IgG and anti-IL-7Rα (Figure 18D). The findings in (Figure 18E) need 

to be further characterized through studies of TAG accumulation after anti-IL-7Rα 

treatment, which could demonstrate that TAG synthesis is altered by anti-IL-7Rα and its 

implication on T cell survival. Once again, the dosing of anti-IL-7Rα could have 

implications on the results, and a more extended treatment regimen combined with 
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multiple dosing could allow for anti-IL-7Rα to exert its effects on T cell inhibition and 

lipid metabolic processes.  

 

Figure 18. CD4+ T cells from anti-IL-7Rα treated mice have reduced Aquaporin 9 

gene expression. 

NOD mice were treated with anti-IL-7Rα or Rat IgG antibodies. After three days, 

splenocytes were isolated, and T cells were purified using a CD4+ magnetic negative 

selection kit. CD4+ T cell RNA was extracted and converted to cDNA for Q-PCR 

analysis of genes related to lipids' processing or lipid metabolism regulation found in 

Table 1. Graphs reveal no differences in the expression of lipid metabolism-related genes 

in CD4+ T cells from anti-IL-7Rα treated mice. There are no differences in the gene 

expression of lipid regulating transcription factors PPARα (A) and PPARγ (B) between 
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treatment groups. Also, there are no changes to expression seen in genes related to lipid 

handling, such as ACC1 (C), which is essential for fatty acid synthesis (303), and no 

changes in expression to CPT1a (D), which plays a role in translocating fatty acids into 

the mitochondrial matrix which is the site of FAO (173,254). Anti-IL-7Rα treatment 

reduces the expression of Aquaporin 9 (E), a channel protein used for importing glycerol 

into the cell for TAG formation (176). Each symbol represents one mouse, n=5 or 3, 

graphs displayed as mean ± SD, unpaired t-tests were used for statistics. *p<0.05 
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CHAPTER SIX: DISCUSSION 

6.1 Overall Summary of Results  

In the studies described, we explored how exposure to LA influences the phenotype and 

cytokine production of TCR-activated T cells from the NOD mouse model of T1D. LA is 

a significant component of the Western diet and is known to contribute to inflammation 

and autoimmunity (257–259,263,304). Our studies revealed that in LA's presence, 48 

hours after activation, there are a greater number of viable CD4+ and CD8+ T cells 

compared to controls (Figure 2). To understand if LA enhanced viability due to cells 

being more proliferative or having enhanced survival, a proliferation/survival assay was 

completed and revealed that CD4+ T cells cultured in LA conditions had enhanced 

survival, indicated by the viability dye-/Annexin V- population, up to 48 hours after 

initial activation and re-plating compared to controls ( Figure 4A and 4B ). CD4+ T cells 

exposed to higher concentrations of LA expressed higher levels of the proliferation 

marker Ki-67 compared to controls up to 24 hours after initial activation and re-plating 

(Figure 3 and Figure 4C). These results suggest that high levels of LA promote T cell 

proliferation while low and higher levels can contribute to enhanced survival of T cells. 

This augmentation of T cell functions can be considered pathogenic in the context of T1D 

since it is unknown what supports initial autoreactive T cell activation, survival, and 

attack on pancreatic islets.  

 Our studies also demonstrate that LA directly alters cytokine subset composition 

in CD4+ T cells by promoting IL-21 production, a pathogenic cytokine involved in T1D, 

while reducing IL-10 (Figure 5), which is necessary for tolerance against autoimmunity 
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(119,166). In Figure 6, we revealed that the ratio of cytokines produced by CD4+ and 

CD8+ T cells is altered. The ratios of frequencies and cell counts of IL-21:IL-10 in CD4+ 

T cells (Figure 6A and 6B) are increased in LA conditions, indicating more IL-21-

producing T cells than IL-10 producers. In CD8+ T cells, ratios of frequencies and cell 

counts of IFN-γ:IL-10 are trending towards altered subset composition at high 

concentrations of LA (Figure 6C and 6D). These data suggest that LA conditions can 

alter the composition of cytokine-producing CD4+ and CD8+ T cells to be more 

pathogenic.  

 Furthermore, we have evidence that DCs contribute to enhanced survival (Figure 

8A and 8E) either by cytokine production or cell contact with T cells, which we could 

not distinguish between in these studies. Also revealed was that LA does not change the 

differentiation state of CD4+ T cells into Tfh or Th17 as measured by expression of 

transcription factors for these subsets (Figure 10A and 10B). However, long-term 

studies have to be considered to understand the long-term outcomes of T cells exposed to 

LA.   

 LA in this study did not promote mitochondrial biogenesis in CD4+ T cells and 

increases in mitochondrial mass were only seen in CD8+ T cells, indicating that there is a 

difference in how LA is handled in CD4+ and CD8+ T cells (Figure 12C and 12D) and 

suggesting that CD8+ T cells could be utilizing LA as a fuel source which would promote 

the increase in mitochondrial mass. There were increases in lipid accumulation in LA-

exposed CD8+ T cells (Figure 12B) and, at high LA concentrations, in CD4+ T cells 

(Figure 12A). Surprisingly, LA exposure reduced expression of the lipid metabolism-
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regulating transcription factors PPARα and PPARγ. However, there were no changes 

seen in the gene expression of CPT1a, an essential enzyme in the FAO pathway 

(173,254,270), or CD36, a fatty acid translocase (279) (Figure 15). The gene expression 

analysis suggests a potential mechanism through which LA regulates cytokine production 

by reducing PPARα and PPARγ expression where evidence exists that reduction of the 

expression of these transcription factors can promote autoimmunity through many 

processes (246,260,276). Finally, we began to investigate the role of the IL-7 pathway in 

regulating the response to LA in NOD T cells. IL-7Ra blockade did not significantly alter 

co-IR expression (Figure 17) and the production of cytokines like IL-10, IL-21, and IFN-

γ  (Figure 16) in response to LA exposure. However, there are interesting data in (Figure 

17H) that could suggest LA conditions increase Tim-3 expression on CD8+ T cells from 

both IgG and anti-IL-7Rα treated mice, but more studies must be completed to make a 

proper conclusion about this trend. We report that blocking the IL-7R signaling pathway 

did not change the expression of the lipid metabolism-regulating transcription factors 

PPARα and PPARγ in T cells (Figure 18A and 18B). Interestingly, my data show that 

anti-IL-7Rα treatment reduces Aquaporin 9 gene expression on CD4+ T cells 

(Figure18E). This could suggest that blocking the IL-7R pathway reduces TAG 

formation since Aquaporin 9 is involved in transporting glycerol into the cell for TAG 

formation (176). TAG formation is an essential mechanism for the long-term survival of 

T cells (176). 
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6.2 Significance of how an LA environment can modulate T cells and influence T1D 

autoimmunity.  

 In this study, LA was found to enhance NOD T cell survival and induce the 

production of IL-21 in CD4+ T cells. IL-21 has various effects on T cells, including 

proliferation and inhibiting the production of other cytokines (126). IL-21 plays a role in 

T1D development and is elevated in T1D patients (104,131). This cytokine is also vital 

for the differentiation of Th17 cells and is produced by Tfh cells important in the 

germinal center formation and have also been found elevated in T1D patients (104,126). 

This study also revealed that, along with increases in IL-21 production, there is a 

decrease in IL-10-producing T cells in both CD4+ and CD8+ T cells. This is significant 

since IL-10 is an anti-inflammatory cytokine important for regulating Th1 effector 

responses and IFN-γ secretion (132,305). IL-10 can be produced by most immune cells, 

but Tregs and Tr1 cells are responsible for secreting IL-10 to regulate effector responses, 

and Tr1 cells can be induced by IL-10 (132,305). It has been shown that a lack of IL-10 

leads to autoimmune pathology in many experimental animal models of autoimmunity 

such as RA (306), SLE (307), and EAE (307,308). T1D Tregs are less functional and fail 

to induce tolerance and suppress autoreactive effector T cells (135) via cell to cell contact 

and production of cytokines such as IL-10 (132,135). The decrease in IL-10 induced by 

LA is critical to characterize in T1D since the standard mechanisms of tolerance induced 

by Tregs are unstable, and LA could promote pathogenicity by altering the composition 

of T cells producing pro-inflammatory and anti-inflammatory cytokines. In this study, it 

is still not clear if the promotion of IL-21 producers and decrease in IL-10 producing T 
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cells is due to the expansion of the pathogenic population via proliferation or if LA 

induces apoptosis of IL-10-producing T cells, or if LA prevents apoptosis in T cells 

producing pathogenic cytokines. 

 It is still unknown if chronic exposure to LA could promote plasticity in NOD 

mouse T cells long-term, a possibility that is not addressed in this study. This study 

specifically observed the short-term effects within 48 hours of activation. More research 

needs to be done to understand the long-term effects of chronic exposure to fatty acids 

like LA to understand its impact on T cells' differentiation state fully. Using the NOD 

mouse model, mice fed with diets supplemented with n-3 fatty acids EPA and DHA led 

to a reduction in the percentages of pro-inflammatory T cell subsets and reduced the 

incidence of diabetes (94). In the described study by Bi et al. (94), EPA and DHA were 

able to inhibit the activation of mTORC1 by arachidonic acid and had similar effects on 

mTORC1 as treatment with rapamycin which has been demonstrated to prevent diabetes 

in humans (94,309). This signifies that it is still worthwhile to investigate whether long-

term consumption of an n-6 fatty acid or an LA-rich diet could influence individuals' risk 

of autoimmunity. This study characterizes how LA can influence the pathogenicity of 

autoreactive-prone T cells from NOD mice. Since high LA intake is a component of the 

Western diet (257,258,261,310),  understanding the mechanisms by which dietary factors 

such as PUFA’s impact on T cell differentiation states and cytokine production can help 

to gain an understanding of how T cells are modulated by diet-derived factors present in 

tissue environments. There have been many observations that the Western diet rich in the 

n-6 fatty acid LA has increased inflammation and autoimmunity in humans and animal 
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models (257,263,304,310,311). In the NZBWF1 mouse model of SLE, feeding NZBWF1 

mice a corn oil-based Western-type diet rich in LA raised plasma autoantibodies, and 

mice had a higher incidence of glomerulonephritis compared to mice fed a diet rich in n-3 

fatty acids (263). It is still unknown what the direct impact on immunity is or by which 

mechanisms fatty acids exert their effects on cells since nutrition-based research is very 

contradictory depending on what is being studied (259,312,313). This describes a need 

for more specific research to support studying how dietary factors impact specific cell 

types in inflammatory and autoimmune conditions.  

 The observation that LA induces CD4+ IL-21-producing T cells with a survival 

advantage and decreases IL-10-producing CD4+ T cells may point to how changes in the 

lipid environment in tissues and the periphery could influence the pathogenicity of cells 

in T1D. IL-21 is a crucial cytokine in the development of autoimmunity (99,121), 

including T1D, where autoreactive CD4+ T cells produce IL-21 to help activate 

autoreactive CD8+ T cells (223). IL-21 has also been shown to skew T cells towards 

FAO (236), which was not seen in my study through gene expression analysis of FAO-

related genes like CPT1a and measures of mitochondrial mass by flow cytometry. Once 

again, this could be an issue of acute compared to chronic T cell exposure to LA. It is 

unlikely that these changes happened at earlier time points since IL-21 was not produced 

before 48 hours and IL-10 production was not reduced before 48 hours. Results 

demonstrate that the mitochondria are not undergoing biogenesis due to LA treatment in 

CD4+ T cells, as shown by no changes in mitochondrial mass, but increased 

mitochondrial mass is seen in CD8+ T cells at higher LA concentrations. These data give 
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evidence that CD4+ and CD8+ T cells may have different responses to LA. Also, the 

increase in lipid droplet formation in both CD4+ and CD8+ T cells indicates that cells are 

not using LA as a fuel source in FAO but may be converting LA into other lipid 

mediators such as Arachidonic acid, converting it for storage as TAGs, or LA can be 

incorporated into the membrane (257,258,261,310,314).   

 The data suggesting LA not being used as a fuel source is also confirmed by the 

decrease in expression of PPARα since PPARα is a positive regulator of FAO and 

promotes the expression of genes involved in the FAO pathway (276,315,316). The 

reduction in gene expression of the transcription factor PPARα may point to a possible 

mechanism of the decrease in expression of lipid metabolism pathway genes since many 

are regulated by PPARα (276,316). The abundance of lipid metabolic pathways regulated 

by PPARα and PPARγ adds to these studies' complexity and requires a broader analysis 

of gene expression to look for changes in other genes regulated by these transcription 

factors. Also, a decrease in expression could be regulated directly by overexposure to the 

ligand, which in this study is LA (282,316). Since PPARs have roles as nutrition sensors 

(276,316,317), it would be interesting to explore how chronic exposure to LA influences 

the activation state of the transcription factors PPARα and PPARγ. The decrease in 

PPARα specifically has connections to autoimmunity, where PPARα -/- male mice have 

a more severe clinical expression of EAE via Th1 responses when EAE is induced with 

MOG (284). Also, it was demonstrated that there is sexual dimorphism present in terms 

of how much PPARα is expressed between male and female mice where male mice have 

higher levels of PPARα expression, and this expression is sensitive to androgen levels 
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(284). This indicates that lower expression levels of PPARα influence autoimmunity and 

requires further investigation of how LA can decrease expression of PPARα and if that is 

connected to IL-21 production and reductions in IL-10 seen in NOD mouse T cells.  

 In this study, it was demonstrated that LA reduced the gene expression of PPARγ. 

When specifically looking at the role of PPARγ in autoimmunity, it has been shown that 

PPARγ activation negatively regulates Th17 differentiation but has no impact on Th1, 

Th2, or Treg subsets (318,319). Th17 cells have been implicated in the pathogenesis of 

many autoimmune diseases, including MS and T1D (126,281). Using T cells from both 

MS patients and the EAE mouse model, it has been demonstrated that activation of 

PPARγ using pharmacological agonist pioglitazone selectively suppresses Th17 

differentiation (319). Also, 13s-HODE, an LA derivative serving as an agonist of PPARγ, 

has been demonstrated to have similar effects on Th17 suppression like pioglitazone 

(319,320). Further research is needed to specify how diet and fatty acids like LA are used 

by the cells to produce lipid mediators such as 13s-HODE compared to other lipid 

mediators that could have antagonistic effects on PPARγ. It is known that Δ-5-desaturase, 

Δ-6-desaturase, and elongase, along with specific LOX and COX enzymes further down 

the conversion pathways mediate the conversion of LA into inflammatory and anti-

inflammatory lipid mediators (314,321,322). Exactly how cells like T cells choose to 

convert LA into either inflammatory or anti-inflammatory mediators has yet to be 

addressed and is a topic not covered in these studies. The data demonstrating reduced 

PPARγ gene expression points to another potentially complex mechanism by which IL-

21 could have been induced in LA conditions and have contributions to autoimmune 
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pathogenesis. Further studies into the pathways that convert LA must be addressed in the 

future, especially since studies demonstrated that arachidonic acid consumption by NOD 

mice influenced T1D pathogenesis by elevating the percentages of Th17 cells (94). In Bi 

et al., mice were fed chow supplemented with arachidonic acid, a derivative of the 

essential fatty acid LA(94).  

 While the enhanced survival of T cells in LA conditions is not exclusive to NOD 

mouse T cells, it is still a significant finding since enhanced survival can promote greater 

numbers of pathogenic T cells and may be a factor that needs to be considered in 

autoimmunity. There have been findings supporting the roles of specific fatty acids 

influencing T cells and therefore inducing inflammation or autoimmunity (94,124,311).  

For example, in non-alcoholic fatty liver disease, LA induces selective loss of CD4+ T 

cells but not CD8+ T cells (304). In our studies, the opposite is seen where LA conditions 

enhanced CD4+ T cells survival and pathogenic cytokine production. The differences 

between our studies and previously published data on the effects of LA in CD4+ T cells 

in NAFLD are that the disease context is different; namely, T1D is autoimmune vs. 

NAFLD is inflammatory (304,311). The T cells studied are different, splenocytes 

compared to T cells from the liver (304). This highlights the importance of studying 

individual FA effects on T cells from different disease states since each FA has distinct 

effects on different cell types from the body dependent on the cell type-specific needs, 

environment, and genetic factors. This study presents data that suggest a constant high 

level of LA exposure in tissues could allow enhanced proliferation and survival of T cells 
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producing pathogenic cytokines. Decreasing the number of T cells producing anti-

inflammatory cytokines which may influence the development of T1D.  

 

6.3 Future Directions 

 This study demonstrated that the essential fatty acid LA, which is obtained 

through the diet, can modulate T cell survival, proliferation, and cytokine production in 

the NOD mouse model. This cytokine modulation involved increasing cytokines that are 

considered pathogenic in T1D and other autoimmune diseases while decreasing anti-

inflammatory cytokines essential for establishing immune tolerance.  

 Future directions for this type of study involving dietary environmental factors 

and their impact on immune cells would need to involve methods for a broader analysis 

of cytokines and genes to get a complete picture of how altering nutritional status 

influences metabolic pathways that modulate immune status. Experiments in this study 

focused on specific cytokines involved in the pathogenesis of T1D and looking at specific 

genes involved in lipid metabolic processes. While we were able to obtain data 

supporting increases of IL-21, decreases in IL-10, and reduction of lipid metabolism-

regulating genes PPARα and PPARγ, we could not obtain any information into the 

mechanisms or pathways that could have been involved in cytokine modulation. Using 

multiplex ELISA analysis of T cell cytokines, we were able to obtain information about 

more cytokines impacted by LA but do not fully understand how or why these cytokines 

increase in the presence of this fatty acid.  
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 We did gain some knowledge of how APCs can impact this T cell cytokine 

modulation by LA, but broader studies of more specific DC and macrophage subsets need 

to be completed as there are studies supporting specific subsets that could be influenced 

by dietary fatty acids. There is also much literature supporting the direct effects of 

specific fatty acids on T cells (94,124,311), and the differences between direct effects on 

T cells and contributions by APCs also exposed to fatty acids have to be distinguished to 

fully understand the impact of fatty acids on specific cell types. Studies of lipid 

metabolism are complicated due to the many impacts of different fatty acids on many 

different cell types. Adding more complexity is that lipids can affect gene transcription, 

cell metabolism, have effects via specific pathways mediated by enzymes, or influence 

pathways via membrane and lipid raft changes affecting GPCRs or tyrosine kinase 

receptor signaling (246,260,261,276,323). The effects of fatty acids on each of these roles 

in each specific immune cell type need to be fully characterized to understand how fatty 

acids within specific diets can influence immune cell function and promote or reduce 

autoimmunity and inflammatory disorders.  

Some future directions specific to this study would be to complete in vivo 

experiments through a feeding study in NOD mice with read-outs being kinetics of 

diabetes incidence, a more comprehensive analysis of multiple genes through microarray 

or RNAseq, large scale multicolor flow cytometry, and proteomic approaches like mass 

spectrometry. Utilizing these methods would allow more detailed knowledge of how 

specific dietary lipids alter different immune cells involved in autoimmunity. Also, by 

defining specific pathways fatty acids regulate in NOD mice, we can better 
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mechanistically understand how lipid metabolism regulates T cell cytokine production in 

T1D and other autoimmune diseases.  
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