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ABSTRACT 

Transcription factors (TFs) control gene expression by binding to highly specific 

DNA sequences in gene regulatory regions. This TF binding is central to control myriad 

biological processes. Indeed, transcriptional dysregulation has been associated with many 

diseases such as autoimmune diseases and cancer. In this thesis, I studied the transcriptional 

regulation of cytokines and gene transcriptional dysregulation in cancer. Cytokines are 

small proteins produced by immune cells that play a key role in the development of the 

immune system and response to pathogens and inflammation. I mined three decades of 

research and developed a user-friendly database, CytReg, containing 843 human and 647 

mouse interactions between TFs and cytokines. I analyzed CytReg and integrated it with 

phenotypic and functional datasets to provide novel insights into the general principles that 

govern cytokine regulation. I also predicted novel cytokine promoter-TF interactions based 

on cytokine co-expression patterns and motif analysis, and studied the association of 

cytokine transcriptional dysregulation with disease. Transcriptional dysregulation can be 

caused by single nucleotide variants (SNVs) affecting TF binding sites (TFBS). Therefore, 

I created a database of altered TFBS (aTFBS-DB) by calculating the effect (gain/loss) of 
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all possible SNVs across the human genome for 741 TFs. I showed how the probabilities 

to gain or disrupt TFBSs in regulatory regions differ between the major TF families, and 

that cis-eQTL SNVs are more likely to perturb TFBSs than common SNVs in the human 

population. To further study the effect of somatic SNVs in TFBS, I used the aTFBS-DB to 

develop TF-aware burden test (TFABT), a novel algorithm to predict cancer driver SNVs 

in gene promoters. I applied the TFABT to the Pan-Cancer Analysis of Whole Genomes 

(PCAWG) cohort and identified 2,555 candidate driver SNVs across 20 cancer types. 

Further, I characterized these cancer drivers using functional and biophysical assay data 

from three cancer cell lines, demonstrating that most SNVs alter transcriptional activity 

and differentially recruit cofactors. Taken together, these studies can be used as a blueprint 

to study transcriptional mechanisms in specific cellular processes (i.e. cytokine expression) 

and the effect of transcriptional dysregulation in disease (i.e. cancer). 
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Chapter 1. Introduction 

Transcription Factors and Gene Expression 

Transcription Factors (TFs) are a group of approximately 1,600 proteins that 

control gene expression by regulating transcription and their activity ultimately determines 

how cells function and respond to environmental cues (Lambert et al. 2018). The cellular 

processes TFs are involved with range from cell cycle progression to cellular 

differentiation and response to external stimuli. TFs regulate transcription by binding to 

highly specific short DNA sequences (6-12 bp) in regulatory regions such as gene 

promoters and enhancers (Wunderlich and Mirny 2009).  The DNA binding specificity of 

TFs is determined by their DNA binding domain (DBD), which has been used to group 

TFs with similar DBDs into TF families, such as nuclear receptors, C2H2 zinc fingers and 

homeodomains (Johnson and McKnight 1989; Vaquerizas et al. 2009). 

Several experimental methods have been developed to study TF binding 

specificities such as protein-binding microarrays (Berger et al. 2006), high-throughput 

systematic evolution of ligands exponential enrichment (Jolma et al. 2013), bacterial one-

hybrid (Meng, Brodsky, and Wolfe 2005), and chromatin immunoprecipitation sequencing 

(ChIP-seq) (Valouev et al. 2008b). These methods allow us to determine the motif of a TF, 

the nucleotide content in each DNA binding position, which can be used to predict the 

binding of a TF to a new DNA sequence. However, only around 60% of TFs have motifs 

characterized (Lambert et al. 2018) because experimental methods have limitations such 

as the expression, purification and post translational modifications of the TF, availability 

of reagents (i.e. TF antibody for ChIP-seq), and the time and resources needed (i.e these 
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methods can only test one TF at a time). In addition, TFs may act in complexes and require 

interaction with co-factors in order to recruit (activate) or block (repress) RNA polymerase, 

leading to the expression or repression of its target gene (Shlyueva, Stampfel, and Stark 

2014; Spitz and Furlong 2012). Further, other factors influence TF binding to DNA such 

as chromatin accessibility, DNA methylation status, and DNA local and global topology 

(Shlyueva, Stampfel, and Stark 2014; Spitz and Furlong 2012). Even though these assays 

characterize motifs and can be used for binding predictions, they do not provide any 

functional information (i.e. gene activation/repression) and the majority of them are 

performed in-vitro. Therefore, functional assays such as reporter assays and integration of 

sequencing and transcriptomics data are required to determine how the TF binding to a 

gene regulatory affects its target gene expression in-vitro/in-vivo. 

 

Cytokine Dysregulation and Disease 

Cytokines are small proteins predominately produced by macrophages and helper 

T cells, among other immune cell types (J. M. Zhang and An 2007). Known cytokines 

range from 132 to 261 genes, as some lists include growth factors, hormones, or cytokine 

receptors (Wong et al. 2016; Al-Yahya et al. 2015; Kveler et al. 2018). Indeed, 133 have 

been compiled to be involved primarily in the immune system (Carrasco Pro et al. 2018). 

Cytokines may have autocrine, paracrine, or endocrine action in cell communication (J. M. 

Zhang and An 2007) and they play a key role in the development of the immune system as 

well as response to pathogens and inflammation (J. M. Zhang and An 2007; Medzhitov 

and Horng 2009). 
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Cytokine expression dysregulation can be caused by mutations in gene regulatory 

regions (i.e. promoters, enhancers), changes in the TFs that regulate them, or changes in 

genes in related signaling pathways (Turner et al. 2014). This dysregulation has been 

associated with multiple diseases including autoimmune disorders, susceptibility and 

response to pathogens, and cancer (Carrasco Pro et al. 2018). For example, upregulation of 

IL-1 and IL-6 has been observed in chronic inflammatory and autoimmune disorders, 

including type I diabetes, rheumatoid arthritis, lupus nephritis, psoriasis and systemic 

sclerosis (Turner et al. 2014; Rosa et al. 2008; Kawaguchi, Hara, and Wright 1999). In 

addition, TNF" plays a central role in essential cellular functions, such as cell proliferation, 

apoptosis and necrosis (Turner et al. 2014; MacEwan 2002). However, its altered 

expression has been associated with rheumatoid arthritis (Arend and Dayer 1995), 

parkinson’s diasease (Mogi et al. 1994), and alzheimer’s disease (Holmes et al. 2009), 

among others. Further, overexpression of cytokines such as CCL2, CCL5, CCL7, IL-8, and 

CXC10 have been observed in bronchial biopsies of asthmatic patients and murine models 

(Miotto et al. 2001; Medoff et al. 2002). Finally, cytokines have been associated with 

cancer performing as growth factors (i.e. CXCL8 in melanoma, liver and pancreatic tumors) 

(Schadendorf et al. 1994; Miyamoto et al. 1998), angiogenic and angiostatic factors (i.e. 

CXCL8, CXCL10, CCL1, and CCL11) (Belperio et al. 2000; Bernardini et al. 2000; 

Salcedo et al. 2001), and playing a role in metastasis (i.e. CXCR4 and CXCR7 in breast 

cancer) (Müller et al. 2001). These vast implications of cytokines in disease require the 

study of their transcriptional regulation and the development of gene regulatory networks 
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describing their proper regulation as well as their dysregulation mechanisms in disease, 

which will ultimately lead to better disease diagnostics and therapeutics. 

 

 

Transcriptional Regulation and Disease 

Adapted from the following manuscript: 

1.! Kok Ann Gan#, Sebastian Carrasco Pro#, Jared Allan Sewell, Juan Ignacio Fuxman 

Bass. Identification of single nucleotide non-coding driver mutations in cancer. 

Frontiers in genetics. 2018 Feb 2;9. doi: 10.3389/fgene.2018.00016. eCollection 

2018. 

# co-first authors 

Cancer initiation, progression, maintenance, and metastasis originate from somatic 

single nucleotide variants (SNVs), small insertions and deletions, structural variants, and 

epigenetic alterations (Helleday, Eshtad, and Nik-Zainal 2014a). In particular, recent 

whole-genome sequencing studies of tumor samples, through collaborative projects such 

as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC), have identified millions of somatic SNVs associated with different types of 

cancers (McLendon et al. 2008; Weinstein et al. 2013; Nik-Zainal et al. 2016). Although, 

these projects and follow-up studies have been successful at identifying common sets of 

mutated genes and pathways across many cancer types, the functional role of most 

mutations detected remains to be determined. Indeed, the main challenge in analyzing the 

genetics underlying cancer is to distinguish driver mutations (i.e., positively selected 
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mutations that provide growth advantage to tumor cells) from passenger mutations (i.e., 

inert mutations that do not confer any growth advantages) (Khurana et al. 2016). This 

requires the integration of computational analyses that predict functional SNVs with 

experimental pipelines to validate and characterize those SNVs. 

Most studies have focused on characterizing the functional impact of SNVs on 

coding regions given that it is relatively straightforward to computationally predict how a 

protein sequence and/or structure will be affected by a missense, nonsense or frameshift 

mutation. However, the vast majority of SNVs identified in cancer samples reside in 

noncoding regions of the genome (Araya et al. 2016a). These noncoding SNVs can affect 

the binding of transcription factors (TFs), RNA-binding proteins (RBPs), and micro RNAs 

(miRNAs) (Figure 1.1) (Khurana et al. 2016). This in turn affects multiple gene regulatory 

functions including chromatin structure or accessibility, transcription, DNA methylation, 

splicing, as well as 5‘ and 3’ untranslated region (UTR) function, which ultimately 

increases or decreases the production, stability and translation efficiency of mRNA 

transcripts (Khurana et al. 2016).  
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Figure 1.1 Noncoding cancer mutations affecting transcriptional and post-transcriptional 
regulation. Somatic mutations (present in tumor but not in matched normal tissue samples) can 
affect gene regulation by affecting the binding of a transcription factor (TF) to a regulatory region, 
the binding of RNA binding proteins (RBPs) or miRNAs to untranslated regions (UTRs) in the 
mRNAs, or affect normal splicing. TF – purple, RBP – orange, regulatory region – blue, UTR – 
green, coding region – yellow, SNV – red. 

Despite recent advances in the understanding of the downstream consequences of 

noncoding SNVs, it remains a challenge to identify noncoding driver mutations and the 

mechanisms through which they effect biological functions. First, as stated above, 

noncoding SNVs can affect multiple regulatory functions including transcription and post-

transcriptional regulation. Second, noncoding regions present higher mutations rates than 

coding regions, due to weaker selective pressure (Weinhold et al. 2014). As a result, 

parsing through a higher number of passenger mutations to find noncoding driver SNVs 

becomes a difficult statistical and computational task (Vogelstein et al. 2013). Third, it is 

challenging to computationally predict whether a noncoding SNV affects gene expression 

or mRNA stability because the logic involved in regulatory element function has not yet 

been fully elucidated. Thus, computational predictions of altered regulatory function need 

to be confirmed by extensive experimental validation using reporter assays, genome editing, 

measurement of endogenous gene expression, and/or chromatin immunoprecipitation.  

Early studies that identified noncoding driver SNVs compared the sequence of 

regulatory regions of candidate cancer-related genes between tumor and non-tumor 

samples in order to determine whether these mutations disrupt or create TF binding sites. 

For example, SNVs were identified in the GTAAC sequence within the first intron of MYC 

in samples from multiple patients with Burkitt lymphomas (Zajac-Kaye, Gelmann, and 

Levens 1988). These mutations, which lead to increased MYC expression, abrogated the 
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binding of a then unidentified TF. Since this early work, targeted studies have identified 

several mutations in regulatory regions, both in tumor samples and in patients with 

increased cancer incidence (Stenson et al. 2009).  

More recently, whole-genome sequencing of matched tumor and normal samples 

has enabled the identification of millions of SNVs. However, the identity of the SNVs 

responsible for driving cancer and those that constitute passenger mutations remains to be 

determined. Two pioneering studies showed that mutations present in the telomerase 

reverse transcriptase (TERT) promoter in tumor samples of patients with melanoma lead 

to increased TERT mRNA expression (S. Horn et al. 2013; Huang et al. 2013). These 

studies identified two independent C>T transitions, at around -100 bp from the TERT 

transcription starting site (TSS), that create a 11 bp nucleotide stretch containing a 

consensus binding site for E-twenty-six (ETS) TFs. Additionally, other mutations in the 

TERT promoter have been found in melanoma as well as in other cancer types such as 

ovarian, follicular thyroid, and meningiomas (Goutagny et al. 2014; S. Horn et al. 2013; T. 

Liu et al. 2014; R. C. Wu et al. 2014). More recently, mutations in the regulatory regions 

of other cancer-related genes have been identified, including recurrent mutations in the 

promoters of PLEKHS1, WDR74, SDHD, and FOXA1 that alter gene expression levels, 

TF binding and that are associated with poor prognosis (Fredriksson et al. 2014; Nik-Zainal 

et al. 2016; Rheinbay et al. 2017; Weinhold et al. 2014). Here, we present an overview of 

state-of-the-art approaches to computationally predict and functionally validate driver 

somatic noncoding SNVs, as well as recent findings associated with cancer.  
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Computational approaches to identify noncoding SNVs 

 Computational approaches to predict functional SNVs within regulatory regions 

share a common general pipeline, including the identification of somatic SNVs, 

comparison with common germline variants, constraining the analysis to regulatory 

regions (in some cases, close to cancer-related genes), identification of mutational hotspots, 

and determining altered TF binding sites (Figure 1.2).  

 

Figure 1.2 Computational pipeline to prioritize somatic SNVs in regulatory elements. Whole-
genome sequencing (WGS) of matched tumor and normal samples are analyzed to identify somatic 
mutations. Identification of mutations within regulatory regions is performed by restricting 
analyses to promoter regions, generally defined around transcription start sites, and distal elements 
such as enhancers, predicted based on DHSs and/or histone marks. Hotspot analyses are used to 



 

 

9 

identify regions with increased mutational burden compared to background models based on 
mutational frequency in neighboring regions and/or regions with similar functional roles. 
Covariates such as replication timing or gene expression levels can be included to account for 
mutational heterogeneity across the genome. Motif analyses are performed to predict differential 
TF binding between SNV alleles. Prioritized noncoding SNVs are usually validated in functional 
assays. 

The identification of somatic SNVs requires comparing the genome sequences of 

tumor samples with matched normal tissue samples. This is a challenging task because 

somatic SNVs occur at low frequency in the genome (0.1 to 100 SNVs per megabase), 

which needs to be distinguished from errors derived from whole-genome sequencing and 

genome alignment pipelines (Alioto et al. 2015; M. S. Lawrence et al. 2013). Thus, most 

methods used to identify somatic SNVs require high sequencing depths (usually 30-300x) 

and paired-end reads, leading to elevated sequencing costs (Alioto et al. 2015). In addition, 

given that tumors are comprised by heterogeneous populations of cells, many functional 

SNVs may be present at a low frequency in patient samples (Carter et al. 2012; Nik-Zainal, 

Van Loo, et al. 2012). Therefore, while high-frequency SNVs can be identified provided 

that the sequencing depth is sufficient enough and that computational pipelines 

accommodate for sequence heterogeneity, low-frequency SNVs may require single-cell 

genome sequencing approaches (Eirew et al. 2015; Navin et al. 2011; Zong et al. 2012). 

Several computational methods have been developed to identify somatic SNVs, 

including: (1) those that separately call SNVs in tumor and normal samples and then 

identify tumor-specific SNVs by comparison, such as GATK (Depristo et al. 2011), 

GATKcan (Hsu et al. 2017), and EBCall (Shiraishi et al. 2013); and (2) those that 

concurrently analyze tumor-normal samples using heuristic methods or statistical models, 

such as MuTect (Cibulskis et al. 2013), VarScan (Koboldt et al. 2009; 2012), and Strelka 
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(Saunders et al. 2012)  (Table 1). While the first type of methods models sequencing errors 

based on statistical parameters from the sequencing reads or from non-matched normal 

samples, the second type of methods compare matched tumor-normal samples to 

distinguish true mutations from sequencing errors. Even though these algorithms have been 

used as stand-alone methods to call SNVs, some studies have used a combination of 

methods for a “wisdom of the crowd” approach with the goal of increasing the confidence 

in the SNVs detected (Melton et al. 2015; Weinhold et al. 2014).  

 
Table 1.1. List of computational methods and databases to identify somatic SNVs, incorporate 
background models to predict functional noncoding SNVs, predict altered TF binding sites, and 
integrate with functional annotations. This list is not exhaustive, thus, the authors apologize for any 
method/database not referenced in this table. 

Hotspot analysis based on mutation frequency 

Among the millions of noncoding somatic SNVs identified in different cancers, 

only a small number are expected to be drivers. Given that it is not currently possible to 
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experimentally test most of the SNVs identified, methods have been developed to prioritize 

which SNVs are more likely to be functional. A common approach to prioritize somatic 

SNVs is to determine genomic regions with high mutation frequency across different 

cancer samples. Given the billions of bases in the human genome, the thousands of 

mutations per cancer sample, and that we only have sequencing data for a few thousand 

tumors, the chances of detecting a significantly enriched mutation across cancers after 

multiple hypothesis testing correction is almost null.  

Currently, there are two complementary strategies, frequently used together, to 

increase the power to detect noncoding driver mutations. One strategy is to focus on DNA 

elements that are expected to have a regulatory function. For example, promoter regions 

are relatively easy to determine by selecting regions up- and downstream of transcription 

start sites, while distal elements are usually determined based on DNase hypersensitivity 

sites (DHSs) or histone marks such as H3K4me and H4K27ac (Figure 1.2) (Dunham et al. 

2012). Further, some studies constrain the analyses to the regulatory regions of cancer-

related genes such as those compiled in the Cancer Gene Census (Futreal et al. 2004). 

Overall, restricting the analysis to a set of regulatory regions reduces the search space for 

SNVs and, thus increases the power to detect driver mutations. 

 The second strategy is the identification of clusters of SNVs within short DNA 

windows, called hotspots, rather than single mutations (Figure 1.2). This reduces 

dimensionality and increases the frequency of SNVs within each DNA window leading to 

increased statistical power. The identification of these mutational hotspots across cancers 

involves comparing the SNV frequency within a DNA window to a background 
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distribution of SNV frequencies. These methods can be divided into local and global 

models, comparing the SNV frequencies to other windows in neighboring genomic regions 

or to functionally similar regions (e.g., other promoters or enhancers), respectively. The 

window size selection can vary widely between analysis, ranging from 50 bp  up to 500 kb 

(Fujimoto et al. 2016). While short windows provide higher resolution, allowing one to 

identify functional promoter or enhancer regions, they lead to low statistical power and 

thus many functional regions may be missed (Fujimoto et al. 2016). Long windows do not 

have the resolution to detect functional promoters or enhancers but allow for the 

identification of covariates, regional features associated with genomic heterogeneity in 

mutation frequency, such as replication timing and gene expression levels (Fujimoto et al. 

2016). Both types of methods can be integrated with one another to increase the chances 

of detecting driver mutations. For example, a recent study analyzing 863 human tumors 

has identified recurrent mutations in regulatory elements upstream of TERT, PLEKHS1, 

WDR74 and SDHD in different types of cancer by using 50 bp windows to find hotspots 

and regional recurrence approaches that take into account length and replication timing 

(Weinhold et al. 2014). 

  Although studies using low tumor sample numbers may be underpowered to 

identify hotspot regions, large samples sizes can also be challenging to analyze. This is 

because large sample sizes frequently lead to larger lists of potentially significant genes 

which in many cases do not have cancer-related functions, suggestive of a high false 

positive prediction rate (M. S. Lawrence et al. 2013). This stems from using background 

mutation models that do not account for mutational heterogeneity between samples and 
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across genomic regions (M. S. Lawrence et al. 2013). Pipelines such as MutSigNC have 

been developed to correct for variation in mutation frequency by considering patient-

specific mutation rates, patient-specific sequencing coverage, information about regional 

mutation clustering, and using as background the mutation rates of promoters (Table 1) 

(Rheinbay et al. 2017). Other computational frameworks have also been used to also 

include distal elements in the analyses, including LARVA that incorporates background 

models for noncoding regions by integrating SNVs with a comprehensive set of noncoding 

functional elements based on DHSs and histone marks (Table 1) (Lochovsky et al. 2015). 

In addition, LARVA uses regional genomic features like replication timing allowing to 

better estimate local mutation rates and mutational hotspots.  

Further covariates can be included while modelling mutation frequencies. For 

instance, recent studies have shown that some breast tumors have mutations mediated by 

the alipoprotein B messenger RNA-editing enzyme catalytic (APOBEC) which have been 

found to occur in dense hypermutated regions in the genome (kataegis) (Alexandrov et al. 

2013; Nik-Zainal, Alexandrov, et al. 2012). These mutations share a sequence pattern 

(TCW, where W is A/T), which can be used to assign mutations a probability of being 

originated by APOBEC activity (Roberts et al. 2013), leading to a more conservative 

approach to call candidate mutations. This approach identified SNVs in breast cancer 

samples within the regulatory regions of FOXA1, RMRP, and NEAT1 that affect gene 

expression levels (Rheinbay et al. 2017). Alternatively, covariates can be avoided 

altogether by using a non-parametric, permutation-based approach such as MOAT, that 

does not make assumptions about the mutation process except for requiring that the 
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background-mutation rate changes smoothly with genomic features (Table 1) (Lochovsky 

et al. 2015). The variety of co-existing computational approaches, background models, and 

covariates included in those models, highlights the challenges currently faced in identifying 

mutational hotspots associated with cancer. 

Prediction of noncoding SNVs with high functional impact 

Hotspot analyses allow for the prioritization of cancer driver candidate SNVs. 

However, to further narrow down the set of functional SNVs and predict the functional 

impact of these SNVs, location and sequence context of the mutations must be integrated 

with functional models of noncoding regions. One of the most widely used approaches to 

prioritize SNVs in regulatory regions involves the identification of TF binding sites created 

or disrupted by the mutations (Figure 1.2). These TF binding differences between SNV 

alleles can be predicted based on DNA specificities determined by protein-binding 

microarrays, SELEX, bacterial one-hybrid assays, or chromatin immunoprecipitation 

(ChIP) followed by next generation sequencing (ChIP-seq) (Jolma et al. 2013; Noyes et al. 

2008; Weirauch et al. 2014). Currently, DNA binding specificities have been determined 

for nearly half of human TFs, which are available in different repositories such CIS-BP, 

Jaspar, Uniprobe, and Transfac (Table 1) (Hume et al. 2015; Weirauch et al. 2014; Matys 

et al. 2003; Khan et al. 2018). Differences in TF binding between SNV alleles can be 

predicted using position weight matrices (PWMs), probabilistic representations of DNA 

binding specificities, and motif prediction algorithms such as FIMO (Grant, Bailey, and 

Noble 2011), MotifbreakR (Coetzee, Coetzee, and Hazelett 2015), BEEML-PBM (Hume 

et al. 2015), TFM-pvalue (Touzet and Varré 2007), and MotifLocator (Aerts et al. 2005; 
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Claeys et al. 2012) (Table 1). For example, MotifLocator, a tool to score how mutations 

affect wild-type TF binding sites, led to the identification of gain of binding sites for RB1, 

E2F1 and ETS to multiple promoter regions in tumor samples from TCGA (Kalender Atak 

et al. 2017). Similarly, mutations in the promoter of FOXA1, a known gene driver in breast 

cancer, were found to increase E2F binding using TFM-pvalue (Rheinbay et al. 2017). Loss 

of TF binding sites have also been widely associated with cancer. For example, many 

recurrent mutated regions in cancer genomes have been found to overlap with CTCF 

binding sites, showing a possible selection for these mutations (Katainen et al. 2015; 

Lochovsky et al. 2015; Piraino and Furney 2017). In addition, disruption of FOX TF 

binding sites in the BCL6 promoter have been reported in follicular lymphoma using an 

integrative approach that identifies functional regulatory mutation blocks (Batmanov et al. 

2017). Interestingly, both the creation and disruption of binding sites for the same TFs have 

been linked to cancer. For example, by integrating motif analyses with evolutionary 

conservation, creation of ETS binding sites were determined in the ANKRD53 promoter, 

while disruption of ETS binding sites were identified in the TAF11 and SDHD promoters 

(Weinhold et al. 2014). 

In addition, motif analyses can integrate functional annotations of regulatory 

sequences (including DHSs, histone marks, and sequence conservation) and TF expression 

levels such as those provided by the ENCODE, Roadmap Epigenomics, FANTOM, and 

GTEx Projects to constrain the analyses to TFs expressed and regulatory elements active 

in the tissues of interest (Andersson et al. 2014; Dunham et al. 2012; Lonsdale et al. 2013; 

Roadmap Epigenomics Consortium et al. 2015) (Table 1). These approaches include 
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RegulomeDB (Boyle et al. 2012) that considers functional annotations for the regulatory 

regions, and Funseq2 (Fu et al. 2014) that also considers sequence conservation across 

species and recurrence of somatic mutations in cancer (Table 1).  

Although motif analyses have been instrumental to predict altered TF binding, these 

methods are limited by the availability of high-quality PWMs and by the high false positive 

and false negative predictions rates of motif finding algorithms (Sewell and Fuxman Bass 

2017; Weirauch et al. 2014; Zia and Moses 2012). Indeed, motif analyses can rarely 

distinguish between different members of a TF family, and often miss the TF that 

differentially binds to SNV alleles (Weirauch et al. 2014). Thus, SNVs in regulatory 

regions predicted to be functional based on hotspot and motif analyses, need to be 

experimentally tested to determine whether these mutations actually affect TF binding. 

Experimental validation of differential TF binding between SNV alleles 

 Multiple complementary experimental methods can be used to determine TF 

binding including ChIP, electrophoretic mobility shift assays (EMSA), and enhanced yeast 

one-hybrid (eY1H) assays (Figure 1.3). ChIP has been successfully used to study 

differential TF binding between noncoding SNV alleles in vivo (Figure 1.3A). For example, 

several studies have identified mutations in the TERT promoter, such as G228A, that lead 

to the creation of de novo bind site for ETS factors (S. Horn et al. 2013; Huang et al. 2013). 

However, the identity of the specific ETS factor involved remained elusive until a recent 

study analyzing ChIP-seq data from the ENCODE Project (Dunham et al. 2012), identified 

GABPA as the TF that differentially binds and regulates TERT expression. In particular, 

GABPA was found to be bound to the TERT promoter in heterozygote cell lines harboring 
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the G228A mutation, specifically to the mutant allele, while other ETS factors did not show 

significant binding. Although ChIP is the method of choice to validate in vivo differential 

TF binding between alleles, this method requires a priori TF candidates as it can only test 

one TF at a time. Further, given that ChIP tests for in vivo TF binding, experiments need 

to be performed in cell lines harboring the mutations or using patient samples, which are 

frequently challenging to obtain.  

 

Figure 1.3 Overview of assays to measure differential TF binding between noncoding SNV 
alleles. (A) ChIP against a candidate TF can be performed in cells that are heterozygous for the 
SNV. Sequencing of the amplified regions (or allele-specific qPCR) can determine relative TF 
binding between wild-type (wt) and mutant (mut) alleles. Alternatively, ChIP-seq data can be 
analyzed to detect biases in the number of sequencing reads between alleles. The figure shows an 
example of loss of TF binding caused by a mutation. (B) EMSA can be performed to determine 
differential TF binding to oligonucleotides containing wild-type (wt) or mutant (mut) SNV alleles 
by using nuclear extracts (NE) followed by super-shifts using antibodies against the candidate TF 
(!-TF), or by incubating with extracts overexpressing the TF. (C) eY1H assays can test the binding 
of >1,000 TFs to wild-type and mutant allele sequences. In this assay, each DNA sequence is cloned 
upstream the HIS3 and LacZ reporters and integrated into the yeast genome. Interactions are tested 
by mating with yeast strains expressing different TFs in an arrayed format system. Differential TF 
interactions (highlighted in red) can be determined by comparing screening results between alleles. 

 
A recent study using enhanced yeast one-hybrid (eY1H) assays, a method that tests 

protein-DNA interactions in the milieu of the yeast nucleus, has increased the screening 

throughput for TF binding differences between SNV alleles by testing >1,000 TFs in 



 

 

18 

parallel, without the need for antibodies or patient samples (Figure 1.3C) (Fuxman Bass et 

al. 2015). Although this study has focused on germline variants associated with different 

genetic diseases, the experimental eY1H pipeline can also be used to evaluate somatic 

SNVs in cancer. Given that ChIP, EMSA and eY1H assays measure physical DNA binding, 

rather than regulatory activity, interactions identified by these methods need to be tested in 

human cell lines to determine the SNV impact on gene regulation by using transient 

reporter assays, or endogenous gene expression measurements following TF 

knockdown/knockout. 

Experimental validation of altered gene expression by SNVs 

 Driver mutations that affect regulatory regions are expected to affect the expression 

of a target gene. Functional validation assays such as those using luciferase reporters have 

been widely used to determine expression differences between noncoding SNV alleles 

(Figure 1.4A) (Denisova et al. 2015; Fuxman Bass et al. 2015; Huang et al. 2013; Rheinbay 

et al. 2017). In addition, reporter assays can be used to validate differential TF binding 

determined based on physical binding assays, by overexpressing or knocking down TF 

expression and measuring the impact on reporter activity driven by the wild-type or mutant 

regulatory sequences. Although useful for functional validation, reporter assays are 

generally low-throughput and cannot keep pace with the discovery of new mutations.  
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Figure 1.4 Functional assays to measure altered gene expression and phenotypic parameters 
induced by SNVs in regulatory regions. (A) Reporter assays can be used to determine differential 
expression induced by wild-type and mutant regulatory elements in transiently transfected cells. (B) 
In MPRAs wild-type and mutant alleles for hundreds/thousands of noncoding SNVs can be tested 
in parallel for changes in transcriptional activity. ~200 bp sequences containing the SNVs are 
cloned upstream of an inert ORF and associated with random barcodes. Cells are then transfected 
with the pooled library, ORF-specific mRNA is isolated, and barcode tags are counted using next-
generation sequencing (NGS). By comparing the number of reads per allele in the mRNA and the 
plasmid populations, relative expression levels can be determined. (C) Functional validation and 
follow-up studies can be performed by determining differences in endogenous gene expression, 
proliferation, migration, and viability, among other assays, using cells engineered to carry the 
mutation. 

Recent studies using massively parallel reporter assays (MPRAs), a high-

throughput technology based on barcodes and next generation sequencing, have made 

progress in determining whether germline SNVs associated with genetic disorders affect 

transcriptional regulation (Figure 1.4B) (Melnikov et al. 2012; Tewhey et al. 2016; Ulirsch 

et al. 2016; Mogno, Kwasnieski, and Cohen 2013). In particular, differential transcriptional 

activity has been detected for hundreds of expression quantitative trait loci (eQTL) and 

disease-associated variants. While this method remains to be applied to cancer SNVs, it is 
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expected that MPRAs will constitute an essential tool for identifying functional noncoding 

somatic SNVs. Although powerful, MPRAs are not free of caveats. For instance, current 

oligonucleotide synthesis pipelines only allow for a maximum DNA fragment length of 

~230 nucleotides. Thus, noncoding mutations are not usually tested within full length 

regulatory elements (that can be up to several kilobases), which may be hamper the ability 

of MPRAs to detect changes in gene expression. This limitation may be overcomed as 

pooled and arrayed oligonucleotide synthesis technologies are adapted to generate longer 

DNA sequences. Another limitation of MPRAs is that reporter activity is generally tested 

using episomal constructs, or randomly integrated lentiviral constructs, that do not reflect 

the endogenous genomic context where the noncoding mutations reside (Tewhey et al. 

2016; Ulirsch et al. 2016). Thus, the functional effect of many SNVs on target gene 

expression may be over or underestimated. Downstream validation studies in the 

appropriate genomic context can be conducted by introducing the SNV in the endogenous 

locus using genome editing technologies such as the CRISPR/Cas9 system, zinc finger 

nucleases, or transcription activator-like effector nucleases (Figure 1.4C) (Claussnitzer et 

al. 2014; Elkon and Agami 2017).  These studies, ultimately need to be followed-up using 

assays that demonstrate the biological significance of the SNVs in cancer by measuring 

different oncogenic properties such as invasion, proliferation, and viability (Figure 1.4C). 

SNVs affecting distal regulatory elements 

 Compared to promoters, dissecting the functional effects of mutations in distal 

regulatory elements such as enhancers is a more complex task as it is not trivial to 

determine which of these elements are functional in different cells/conditions nor the 
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identity of the target gene involved. This, and the fact that including distal elements in 

hotspot analyses increases the search space and reduces statistical power are the main 

reasons why most studies characterizing germline and somatic noncoding SNVs have 

focused on promoter regions (Rheinbay et al. 2017; Stenson et al. 2014).  

Several technologies have been used to identify promoter-enhancer pairs 

interacting through chromatin loops. These methods, that involve crosslinking and ligation 

of spatially closed genomic regions, such as Hi-C (Lieberman-Aiden et al. 2009) and 

chromatin conformation capture by paired-end tag sequencing (ChIA-Pet) (G. Li et al. 

2012), have been used to capture the potential regulatory effect of enhancer mutations. For 

example, a recent study found that a somatic SNV (C>T) four kilobases upstream of the 

transcriptional start site of the LMO1 oncogene generated a de novo binding site for the 

MYB TF in patients with T-cell acute lymphoblastic leukaemia (Yongsheng Li et al. 2017). 

A combination of ChIP-Seq of MYB, followed by ChIA-PET and luciferase assays 

revealed that this mutation induced the formation of an aberrant transcriptional enhancer 

complex leading to increased expression of the LMO1 oncogene. Thus, integration of 

chromatin interaction data can identify the gene targets of distal regulatory elements and 

determine how mutations in those elements affect looping interactions leading to changes 

in gene expression.  

Noncoding SNVs affecting post-transcriptional regulation 

 Noncoding mutations not only affect transcriptional regulation but can also affect 

other biological processes such as mRNA stability, translation efficiency or splicing. 

Mutations in UTRs can affect mRNA stability and translation efficiency by altering 
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interactions with RNA-binding proteins and miRNAs (Figure 1.1) (Khurana et al. 2016). 

For example, mutations in the 5’UTR of RB1 alter UTR conformation and mRNA stability 

in retinoblastoma (Kutchko et al. 2015), while mutations in the 5’UTR of BRAC1 in breast 

cancer patients reduce translation efficiency (Signori et al. 2001; Wang et al. 2007). In 

addition, mutations in the 3’UTR of BRCA1 were found to introduce a functional miRNA-

103 target site in a breast cancer case leading to reduced BRAC1 levels (Brewster et al. 

2012). As with SNVs in transcriptional regulatory regions, the functional impact of UTR 

mutations need to be tested in experimental assays. Low-throughput reporter assays have 

been used to quantify differences in mRNA levels by cloning the relevant UTR regions 

upstream or downstream of the coding region of GFP or luciferase. More recently, 

massively parallel functional annotation of sequences from 3' UTRs (fast-UTR) has been 

developed, which was used to discover 87 novel cis-regulatory elements and measure the 

effects of known gene variations in 3’UTRs (Zhao et al. 2014).  

Mutations in the exon-intron boundaries, introns, and coding regions can affect 

splicing and lead to the upregulation oncogenic isoforms or the downregulation of tumor 

suppressor isoforms. Various cancer tumor suppressor genes such as TP53, ARID1A, 

PTEN, CHD1, MLL2, and PTCH1 were found to carry mutations in the exon-intron 

boundaries which led to intron retention (Jung et al. 2015; Supek et al. 2014). An intronic 

mutation in BRAF induces the expression of a splice variant that confers resistance to 

vemurafenib treatment in melanoma (Salton et al. 2015). These aberrant or cancer-specific 

isoforms are generally detected using short- and/or long-read mRNA sequencing, and are 

usually validated using mini-gene constructs carrying the different SNV alleles in low- or 
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high-throughput assay formats (Cavelier et al. 2015; Gaildrat et al. 2010; Yongsheng Li et 

al. 2017; Rosenberg et al. 2015). 

Future perspectives 

 Recent studies have identified a handful of somatic SNVs in regulatory regions that 

affect TF binding and target gene expression. However, the number of functional 

noncoding SNVs associated with cancer is expected to be much higher given the low 

overlap between those reported in different studies, and given that noncoding SNVs seem 

to play an important role in disease based on the hundreds of functional noncoding SNVs 

identified in genome-wide association and genetic studies (Stenson et al. 2014). Advances 

in several areas will be needed to increase our ability to identify these driver mutations. 

First, larger numbers of tumor samples with available whole-genome sequence data are 

needed to increase statistical power in prediction algorithms. Second, more refined 

background models in hotspot analyses that take into account multiple covariates will help 

identify functional regulatory regions in cancer. Finally, improvements in motif analyses 

will be needed through the generation of PWMs for uncharacterized TFs and by identifying 

in silico parameters that can accurately predict differential TF binding between alleles.   

Another source of underestimation of noncoding driver SNVs stems from the 

hotspot analysis itself as it assumes that driver mutations in a particular regulatory region 

should be present in multiple patients. Given the hundreds of thousands of regulatory 

elements in the human genome we may be far from having a sample size sufficiently large 

to detect most functional SNVs. An alternative approach would be to lower the stringency 

in the statistical pipelines and directly test thousands of “moderate-confidence” SNVs 
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using MPRAs to identify functional variants. Ultimately, a combination of computational 

and experimental methods along with new technical innovations will increase our ability 

to identify and characterize the mechanisms by which noncoding SNV drive cancer. 
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Dissertation aims  

The aims in this dissertation seek to develop novel algorithms and resources to aid 

in the analysis of transcriptional regulation in the context of cytokine expression and 

dysregulation of TFBS by SNVs. Together, these aims will show that we can predict and 

validate novel regulatory mechanisms for cytokines, determine the probabilities of creating 

and disrupting TFBS, and discover and validate cancer drivers in gene promoters. The three 

aims of the thesis are: 
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Aim 1. Determine the transcriptional regulation landscape of cytokines in mouse and 

human 

Aim 2. Predict genome-wide effects of single nucleotide variants in transcription factor 

binding 

Aim 3. Discover and validate cancer driver single nucleotide variants in gene promoters 
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Chapter 2. Global landscape of mouse and human cytokine transcriptional 

regulation 

Adapted from the following manuscript: 

1.! Sebastian Carrasco Pro#, Alvaro Dafonte Imedio#, Clarissa Stephanie Santoso, 

Kok Ann Gan, Jared Allan Sewell, Melissa Martinez, Rebecca Sereda, Shivani 

Mehta, Juan Ignacio Fuxman Bass. Global landscape of mouse and human cytokine 

transcriptional regulation. Nucleic acid research 46 (18), 9321-9337. 

# co-first authors 

Introduction 

 Cytokines comprise an array of polypeptides that are critical in the development of 

the immune system and in the regulation of immune and autoimmune responses (Griffith, 

Sokol, and Luster 2014). The published lists of human cytokines range from 132 to 261 

genes depending on whether growth factors, hormones, or the receptors of cytokine genes 

are included (Wong et al. 2016; Al-Yahya et al. 2015; Kveler et al. 2018). Here, we focus 

on 133 cytokine genes, with a primary role in the immune system, shared by different 

publications.  

Cytokine dysregulation is associated with myriad diseases including autoimmune 

disorders, susceptibility to infections, and cancer (Griffith, Sokol, and Luster 2014; Homey, 

Müller, and Zlotnik 2002; Netea et al. 2003; Neurath 2014; O’Shea, Ma, and Lipsky 2002). 

The expression of cytokine genes is primarily regulated at the transcriptional level through 

a combination of tissue-specific (TS) transcription factors (TFs) that control cytokine 

expression in different cell lineages, and pathogen- or stress-activated (PSA) TFs that 
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respond to signaling pathways activated by pathogen-derived ligands or endogenous 

inflammatory mediators (Murphy and Reiner 2002; Medzhitov and Horng 2009). Although 

cytokine transcriptional regulation has been studied for more than three decades, including 

hallmark models of transcriptional regulation such as the IFNB1 enhanceosome (Thanos 

and Maniatis 1995), we currently lack a comprehensive view of the gene regulatory 

network (GRN) involved in controlling cytokine gene expression.  

Several databases have been generated that annotate protein-DNA interactions 

(PDIs). InnateDB reports interactions between TFs and immune-related genes retrieved 

from different databases such as PubMed and IntAct, a subset of which have been manually 

curated (Breuer et al. 2013). TRRUST reports interactions involving immune and non-

immune genes (Han et al. 2015), obtained by data mining and curating article abstracts 

from Pubmed. However, the overlap between these databases is generally low (20% 

overlap for cytokine genes), suggesting that they may be incomplete and/or may contain 

misannotated PDIs. This limits our understanding of the combinatorics involved in 

cytokine transcriptional regulation, especially in terms of the balance between TS and PSA 

TFs regulating each cytokine gene, the cooperativity and plasticity in cytokine regulation, 

and the relationship between TF connectivity and immune phenotype/disease.  

Here, we mine through three decades of research to generate a comprehensive and user-

friendly database, CytReg (http://cytreg.bu.edu), comprising 843 human and 647 mouse 

interactions between TF and cytokine genes. We analyze this cytokine GRN and integrate 

it with phenotypic and functional datasets to provide novel insights into the general 

principles governing cytokine regulation. In particular, we find a correlation between TF 
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connectivity in the cytokine GRN and immune phenotype. We observe that the balance 

between PSA and TS TFs is shifted towards PSA TFs for interferons and pro-inflammatory 

cytokines and we provide a model for cooperative and plastic recruitment of cofactors to 

cytokine promoters. Using this cytokine GRN, we also provide a blueprint for further 

studies of cytokine misregulation in disease and identify novel TF-disease associations. 

Finally, we discuss biases and the completeness of the literature-derived cytokine GRN, 

and provide predictions for novel interactions which we validate using enhanced yeast one-

hybrid (eY1H) and reporter assays in human cells. 

Materials and Methods 

Generation of CytReg 
 

To obtain a comprehensive list of physical and regulatory PDIs between TFs and 

cytokine genes we mined the XML files from ~26 million articles available in Medline on 

July 10th 2017, using NBCI’s e-utilities python implementation, for studies mentioning a 

cytokine, a TF, and an experimental assay. Three broad categories of assays (chromatin 

immunoprecipitation, electrophoretic mobility shift assays, and functional assays), 1431 

TFs, and 133 cytokines were considered. Alternative names for TFs and cytokines were 

obtained from the HUGO Gene Nomenclature Committee (www.genenames.org) and 

curated from the literature. Alternative spellings for names that include Greek letters or 

hyphens were also considered in the data mining.  

The resulting 6,878 articles, together with 815 articles annotated in databases such 

as TRRUST (Han et al. 2015) and InnateDB (Breuer et al. 2013), were manually curated 

to determine whether experimental evidence for the PDIs was provided. A spreadsheet was 
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generated containing, for each mined interaction, the TF and cytokine HGNC names, the 

TF and cytokine names used in the paper, the type of assay, and the PubMed ID of the 

paper. Curation was performed based on the entire publication, rather than the abstract 

alone, because in some cases, PDIs reported in the abstract were based on indirect evidence 

and in other cases many PDIs identified were only reported in the body of the publication 

or in the figures. In addition to validating or rejecting mined PDIs, curators annotated the 

species, the functional activity (activating or repressing) if reported, and additional PDIs 

absent in the mined list but present in the body of the paper. Each PDI was curated by two 

independent researchers, and disagreements were resolved by a third senior curator. The 

resulting database contains 1,552 PDIs (843 in human, 647 in mouse, and 62 from other 

species) for which we annotated the assay used and the regulatory activity identified. To 

visualize this complex cytokine GRN we developed CytReg (https://cytreg.bu.edu), a web 

tool where PDIs can be browsed by species, TFs, cytokines, assay types, and TF expression 

patterns across different cell-types. In addition, links are provided to Uniprot entries 

(http://www.uniprot.org) for cytokine and TF genes, and to PubMed articles for the PDIs.!

Determination of the level of evidence for PDIs 
 

We classified PDIs as high or low evidence of being direct regulatory interactions. 

PDIs detected by a functional assay (e.g., reporter assays and TF knockdown) and an assay 

measuring direct binding (e.g., chromatin immunoprecipitation and in vitro binding assays) 

were classified as high evidence. PDIs detected by only one type of assay were classified 

as low evidence. 
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Determination of the relationship between TF connectivity and gene expression 
 

The median transcript per million (TPM) expression levels in 20 immune cell-types 

for TFs with different connectivity in the human cytokine GRN was determined based on 

expression data published by the Blueprint Epigenome Consortium (Stunnenberg et al. 

2016) (http://dcc.blueprint-epigenome.eu). In addition, an expression enrichment score in 

immune tissues compared to non-immune tissues was determined based on data from 32 

tissues from the Expression Atlas (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-

2836). Briefly, a pseudocount of 1 was added to all the expression data to reduce the noise 

from low abundant transcripts. Then, the expression of a TF in a tissue was divided by the 

average expression of the TF across the 32 tissues to obtain an expression enrichment score. 

Finally, the average enrichment score per TF was determined for the five immune tissues 

(lymph node, bone marrow, spleen, tonsils, and appendix) and for the remaining 27 non-

immune tissues in the dataset. 

Associations between TFs and immune phenotypes and diseases 
 

The association between TFs and immune phenotypes was determined based on 

phenotypes in knockout mice reported by the Mouse Genome Informatics database 

(www.informatics.jax.org) as of January 12th 2018. Thirty different terms including 

different immune cells, antibody isotypes, cytokines, inflammation, and immune tissues 

were used to determine whether a reported phenotype should be classified as immune-

associated. 

Association between TFs and immune disorders (including autoimmune diseases 

and susceptibility to infections) was obtained from the Human Gene Mutation Database 
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2013 release and from genome-wide association studies (GWAS) downloaded on July 27th 

2017 from the NHGRI-EBI Catalog (MacArthur et al. 2017; Stenson et al. 2014). 

TF enrichment in PDIs with cytokines expressed in different immune cell types 
 

For each TF, we compared the proportion of cytokine targets corresponding to 

cytokines expressed in a specific immune cell type, to the proportion of the remaining 

cytokine targets. A proportion comparison test was used to determine a p-value and a 

Benjamini- Hochberg adjusted p-value to account for multiple hypothesis testing. 

Pathogen/stress-activated and tissue specific TFs 
 

PSA TFs were determined from the literature based on their ability to be activated 

or responsive to signaling pathways triggered by pathogen-associated molecular patterns 

and/or stress signals (e.g., oxidative stress, heat shock, and danger-associated molecular 

patterns). Tissue specific TFs were determined by calculating a tissue-specificity score 

(TSPS) based on expression data from 34 different tissues and cells as previously described 

(Ravasi et al. 2010): 

!"#" $ % & '() *+,-.
'(

'
/ 

where pi corresponds to the ratio between the expression level in a tissue and the sum of 

the expression levels across all 34 tissues; and p corresponds to the expected ratio under 

the assumption of equal expression across all tissues. TFs were considered tissue-specific 

(TS) if their TSPS " 0.7, a threshold selected based on the bimodal distribution of TSPS 

across all TFs. TFs for which a TSPS could not be calculated because of unavailable 

expression data, were excluded from the analysis. 
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Determination of TF inflammatory scores 
 

For each TF, an inflammatory score (IS) was determined as the difference between 

the percentage of PDIs with canonical pro-inflammatory cytokines (IL1A, IL1B, IL12A, 

IL12B, IL18, TNF, IFNG, CSF2, CXCL8, and IL6), and the percentage of PDIs with anti-

inflammatory cytokines (IL10, IL11, IL13, IL19, IL1RN, IL24, IL37, IL4, IL5, CXCL17, 

TGFB1, TGFB2, and TGFB3). For TFs with IS " 0.5 or IS # -0.5 we determined the 

percentage that have a pro- or anti-inflammatory role, or a role in differentiation based of 

phenotypes in knockout mice (www.informatics.jax.org). 

TF-disease association 
 

For each disease (asthma, systemic lupus erythematosus, inflammatory bowel 

disease, type 2 diabetes, rheumatoid arthritis, tuberculosis infection, and cytomegalovirus 

infection) the Expression Atlas (www.ebi.ac.uk) was searched for cytokines upregulated 

in the disease state, using a cut-off of 2-fold induction. TFs enriched in regulating the 

upregulated cytokines were determined from the human cytokine GRN using the Fisher’s 

exact test. Multiple hypothesis testing was corrected by calculating the Benjamini-

Hochberg adjusted p-value and using an FDR threshold of 0.1. The resulting TF-disease 

associations were plotted using a Circos plot (http://mkweb.bcgsc.ca/tableviewer/).  

TF and cytokine association with autoimmune diseases 
 

TFs and cytokines associated with different autoimmune diseases were obtained 

from the Human Gene Mutation Database 2013 release, and from GWAS downloaded on 

July 27th 2017 from the NHGRI-EBI Catalog (MacArthur et al. 2017; Stenson et al. 2014). 
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The union of gene-disease associations between both databases was considered. Crohn’s 

disease and ulcerative colitis were grouped with inflammatory bowel disease. This list 

includes coding and noncoding variants, and thus variants that affect protein function or 

expression levels. Of note, this list of gene-disease associations is not comprehensive as it 

only includes associations identified in genetic studies (i.e., does not consider 

environmental or epistatic factors that affect cytokine expression). Significance for 

enrichment of shared autoimmune diseases between interacting TFs and cytokines was 

determined by comparing to 1,000 randomized versions of the human cytokine GRN. 

Network randomization was performed by edge switching as previously described 

(Martinez et al. 2008). 

TF-drug associations 
 

TF-drug associations and information regarding drug function were obtained from 

Drugbank (Wishart et al. 2018). Agonists and activators were grouped as agonists, 

antagonist and inhibitors were grouped as antagonists. For each cytokine, the number of 

TFs targetable by agonists or antagonists was determined. 

Prediction of novel PDIs in the human cytokine GRN 
 

To predict novel PDIs in the human cytokine GRN, for each TF, SEEK (Q. Zhu et 

al. 2015) was used to search for the top 100 genes co-expressed with the known cytokine 

targets of the selected TF across more than 5,000 expression profiling datasets. Then, for 

each cytokine within those 100 genes, the presence of binding sites for the selected TF in 

the cytokine promoter (2kb upstream of the transcription start site) was determined using 
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the Scan DNA sequence tool in CIS-BP (http://cisbp.ccbr.utoronto.ca/), the PWM-

Logodds algorithm, and a stringent threshold of ten (Weirauch et al. 2014). Enrichment for 

human PDI predictions reported in mouse was determined by calculating an odds ratio and 

statistical significance was calculated using the Chi-square test. The 1,066 predicted 

interactions were classified according to confidence: high (two or more TF binding sites 

and evidence of interaction in the mouse cytokine GRN), medium (two or more TF binding 

sites but absent from the mouse cytokine GRN, or less than two binding sites but presence 

in the mouse cytokine GRN), and low (one binding site and absent from the mouse cytokine 

GRN).  

Enhanced yeast one-hybrid (eY1H) assays 
 

eY1H assays were used to detect interactions between TFs and cytokine gene 

promoters (Reece-Hoyes, Barutcu, et al. 2011; Reece-Hoyes, Diallo, et al. 2011). This 

method involves two components: a ‘DNA-bait’ such as cytokine gene promoter, and a 

‘TF-prey’. The DNA-bait is cloned upstream of two reporter genes (LacZ and HIS3) and 

both constructs are integrated into the yeast genome (Fuxman Bass, Reece-Hoyes, and 

Walhout 2016a; 2016b). The DNA-bait strains generated are then mated with yeast strains 

expressing TFs fused to the yeast Gal4 activation domain (AD), and if the TF binds the 

regulatory region, the AD moiety activates the reporter genes. Reporter gene activity is 

measured by the conversion of colorless X-gal to a blue compound, and by the ability of 

the yeast to grow on media lacking histidine and to overcome the addition of 3-amino-

triazole (3AT), a competitive inhibitor of the His3 enzyme. Each interaction was tested in 

quadruplicate. Yeast DNA-baits corresponding to promoter regions (2 kb upstream of the 
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transcription start site) of cytokine genes were generated as previously described (Fuxman 

Bass, Reece-Hoyes, and Walhout 2016b; Fuxman Bass et al. 2015). The promoter regions 

of CXCL10, CXCL8, CXCL3, CCL4, and CCL20 were screened for REL binding, while 

promoter regions for IL17A, IL17F, and IL26 were screened for RORC binding. To 

identify TFs that interact with the promoters of CCL27 and CCL4L2, the CCL27 and 

CCL4L2 DNA-bait strains were screened against an array of 1,086 human TFs (Fuxman 

Bass et al. 2015).!

Motif analysis 
 

Binding of REL, RORC, RBPJ, TFAP2A/B, PPARG, ATF3, EBF1, ZIC1/3, 

GCM1, and WT1 were predicted using CIS-BP via the Scan DNA sequence tool, using the 

PWM-LogOdds method and a stringent threshold of ten (Weirauch et al. 2014). Motif 

analyses were performed on the same 2 kb regions upstream of the transcription start sites 

used to perform the eY1H assays. 

Transient transfections and luciferase assays 
 

HEK293T cells were plated in 96-well opaque plates (~1 x 104 cells/well) 24 hours 

prior to transfection in 100 $l DMEM + 10% FBS + 1% Antibiotic-Antimycotic 100X. 

DNA-bait luciferase reporter clones were generated by cloning the cytokine promoter 

regions upstream of the firefly luciferase into a Gateway compatible vector generated from 

pGL4.23[luc2/minP] (Fuxman Bass et al. 2015). TF-prey clones were generated by 

Gateway cloning the TF into a vector derived from pEZY3 (Addgene) to generate fusions 

with ten copies of the VP16 activation domain (TF-pEZY3-VP160).  Cells were transfected 
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with Lipofectamine 3000 (Invitrogen) according to the manufacturer’s protocol using 20 

ng of the DNA-bait luciferase reporter vector, 80 ng of the TF-pEZY3-VP160 vector, and 

10 ng of renilla luciferase control vector. The empty pEZY3-VP160 vector co-transfected 

with the recombinant firefly luciferase plasmid was used as a negative control. 48 hours 

after transfection, firefly and renilla luciferase activities were measured using the Dual-Glo 

Luciferase Assay System (Promega) according to the manufacturer’s protocol. Non-

transfected cells were used to subtract background luciferase activities, and then firefly 

luciferase activity were normalized to renilla luciferase activity. 

Code availability 
 

The code used for the data mining in Medline is available at 

https://github.com/fuxmanlab/cytreg.  

Statistical analyzes 
 

Statistical analyzes were performed using GraphPad Prism Version 7.01, Excel 

2016, or VassarStats (http://vassarstats.net). All tests performed were two-tailed tests.!

Software used to generate the figures 
 

Box, bar, histogram, and correlation plots were generated using GraphPad Prism 

Version 7.01. Heatmaps were generated using matrix2png (https://matrix2png.msl.ubc.ca/). 

Networks were generated using Cytoscape Version 3.2.1 (http://www.cytoscape.org/).  

Results 

Generation of CytReg 
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To obtain a comprehensive cytokine GRN, we systematically mined ~26 million 

articles in Medline for studies mentioning at least one of 133 cytokines, one of 1,431 TFs, 

and an experimental assay (Figure 2.1A). The resulting 6,878 articles, and 815 additional 

articles referenced in TRRUST (Han et al. 2015) and InnateDB (Breuer et al. 2013), were 

then manually curated to determine whether experimental evidence for the physical and 

regulatory PDIs was provided. This resulted in a list of 1,552 PDIs (843 in human, 647 in 

mouse, and 62 in other species), for which we annotated the assay used and the regulatory 

activity identified (Figure 2.1A). To visualize this GRN we developed a database, CytReg 

(https://cytreg.bu.edu), where users can browse PDIs by species, TF, cytokine, assay type, 

and TF expression patterns (Figure 2.1B). Links are provided to Uniprot entries for TFs 

and cytokines, and to PubMed articles reporting the PDIs (Figure 2.1C). Finally, the 

selected PDIs can be visualized as networks showing the TFs, cytokines, and the types of 

interactions (activation, repression, or bifunctional) (Figure 2.1D).   
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Figure 2.1 Differentially Generation of CytReg. (A) Pipeline used for the text mining and article 
curation to determine literature-based PDIs between TFs and cytokine genes. (B) Search page of 
CytReg where PDIs can be browsed by TF, cytokine, species, assay type, and TF expression levels 
(mRNA and protein) in different immune cells. (C) Results page indicating the interacting 
cytokines and TFs, the types of assays used to determine the PDIs, whether the interaction is 
activating or repressing, and the Pubmed IDs of the publications referencing the PDIs. Links are 
provided to UniProt entries for cytokines and TFs, and to Pubmed for the references. The 
interactions can be downloaded as a CSV file or visualized as a network graph. (D) Network 
visualization of the selected PDIs. Nodes represent cytokines and TFs, edges represent the type of 
interaction (activating, repressing, bifunctional, or physical). Nodes can be moved to re-arrange the 
network. (E) Overlap of PDIs in CytReg and those annotated in InnateDB and TRRUST. (F) 
Overlap between mouse and human cytokine GRNs. (G) Fraction of PDIs with high evidence of 
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direct regulatory activity (by a functional assay and an in vitro or in vivo binding assay) or low 
evidence (by one type of assay). 

CytReg contains an additional 371 human and 264 mouse PDIs compared to 

TRRUST and InnateDB (Figure 2.1E). We also removed 243 PDIs annotated in TRRUST 

and InnateDB when: a) the article did not provide direct experimental evidence for the PDI, 

b) the TF interacted with the regulatory region of a cytokine receptor rather than that of a 

cytokine, or c) the cytokine regulated the activation pathway of a TF rather than the TF 

regulating a cytokine. Altogether, CytReg greatly expands the PDIs annotated in other 

databases and removes misannotated PDIs. 

Although multiple PDIs are shared between human and mouse, 69% of human and 

60% of mouse PDIs are species-specific (Figure 2.1F). This low overlap is not likely 

related to a lack of confidence in the interactions because a similar proportion of 

interactions found in one or both species were classified as high confidence based on 

evidence from functional (e.g., reporters assays and TF knockdowns experiments) and in 

vivo or in vitro binding assays (chromatin immunoprecipitation -ChIP- and electrophoretic 

mobility shift assays –EMSAs, respectively) (Figure 2.1G). More likely, this low overlap 

is related to literature bias and incompleteness of the GRN, or to different modes of 

regulation between mouse and human as has been previously reported (Schmidt et al. 

2010). Indeed, we found that PDIs reported early on in one species were more frequently 

detected in the other species than PDIs reported more recently. For example, 71% of mouse 

PDIs reported on or before the year 2000 are also reported in human, while only 21% of 

mouse PDIs reported on or after 2010 are also reported in human. This suggests that 
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literature biases may play an important role in the differences in annotated PDIs between 

species.   

Most interactions were reported by at least two of three types of experimental 

assays: binding assays (e.g., EMSA and pull down assays), ChIP, and functional assays 

(Figure 2.2A and B). Human PDIs detected by all three types of assays were more 

frequently also detected in mouse (and viceversa) compared to PDIs detected by one or 

two types of assays (Figure S1A and B). The types of assays used to determine PDIs has 

changed over time, with papers in the 1990s focusing on binding and functional assays 

while papers in the 2010s focusing on ChIP and functional assays, reflecting the increased 

awareness of the importance of chromatin context in gene regulation (Figure 2.2C and D). 
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Figure 2.2 Distribution of experimental methods used to determine PDIs. (A, B) Number of 
PDIs in the human (A) and mouse (B) cytokine GRNs per assay type and the number of PDIs 
annotated in the mouse and human GRNs, respectively. Filled circles – PDIs involving the assay. 
(C, D) Number of PDIs in the human (C) and mouse (D) cytokine GRNs per assay type over time. 

 

Association between TF connectivity and immune phenotype 
 

As observed in other GRNs, a few TFs and cytokines are responsible for most PDIs 

in the cytokine GRN (Figure 2.3A and B, and Figure 2.4A and B) (Luscombe et al. 2004; 

Deplancke et al. 2006). For example, 12% of the TFs are responsible for more than 50% 

of the PDIs, including different subunits of NF-%B that when combined represent 16% of 
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the PDIs in the human cytokine GRN (Figure 2.3A). Similarly, 8% of the cytokines, 

including the highly studied CXCL8, IL6, and TNF, are involved in more than 50% of the 

PDIs (Figure 2.3B). We obtained similar distributions for the mouse cytokine GRN (Figure 

2.4A and B). These lopsided distributions in the number of PDIs can be explained by a 

more central role of some TFs and cytokines in the GRN, but also by research biases as 

discussed below. 

 

Figure 2.3 Relationship between TF connectivity and phenotype in the human cytokine GRN. 
(A) Number of cytokine targets per TF (TF degree) in the human cytokine GRN ordered by TF 
degree rank. (B) Number of interacting TFs per cytokine (cytokine degree) in the human cytokine 
GRN ordered by cytokine degree rank. (C) Median expression as transcripts per million (TPM) 
across human immune cells obtained from the Blueprint Epigenome Consortium for TFs displaying 
different numbers of cytokine targets. (D) Expression enrichment in human immune tissues versus 
non-immune tissues for TFs with varying numbers of cytokine targets. Each box spans from the 
first to the third quartile, the horizontal lines inside the boxes indicate the median value and the 
whiskers indicate minimum and maximum values. Statistical significance determined using two-
tailed Wilcoxon matched-pair ranked sign test. (E) Fraction of TFs in the human cytokine GRN 
with annotated immune phenotypes when knocked out in mice (MGI), or associated with immune 
disorders in the Human Gene Mutation Database (HGMD) or in genome-wide association studies 
(GWAS) based on the number of cytokine targets. 
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We found that TFs that interact with multiple cytokine genes show higher 

expression levels in immune cells (Figure 2.3C) and higher expression enrichment in 

immune tissues (such as the spleen, bone marrow, and lymph nodes) compared to TFs that 

interact with only a few or no cytokine genes (Figure 2.3D). Further, highly connected TFs 

are frequently PSA TFs (e.g., 71% of TFs with ten or more cytokine targets are PSA 

compared to 9% for TFs with one cytokine target) consistent with their function in immune 

responses. More importantly, highly connected TFs are more frequently associated with 

immune phenotypes in knockout mouse studies, and with immune disorders as reported in 

the human gene mutation database (HGMD) and in GWAS compared to low connected 

TFs (Figure 2.3E and Figure 2.4C) (MacArthur et al. 2017; Stenson et al. 2014; Eppig et 

al. 2017). For example, the highly connected TF IRF5 is associated with multiple 

autoimmune diseases, including multiple sclerosis and systemic lupus erythematosus 

(SLE), and leads to low type-I interferon, TNF and IL6 production in knockout mice 

(MacArthur et al. 2017; Stenson et al. 2014; Eppig et al. 2017). Conversely, the low 

connected TFs HMGA2, NDS2, and HMBOX1, to our knowledge, have not yet been 

associated with immune phenotypes or diseases. Overall, these observations highlight the 

association between TF connectivity and disease, consistent with previous findings in a 

developmental GRN (Fuxman Bass et al. 2015). 
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Figure 2.4 Relationship between TF connectivity and phenotype in the mouse cytokine GRN. 
(A) Number of cytokine targets per TF (TF degree) in the mouse cytokine GRN ordered by TF 
degree rank. (B) Number of interacting TFs per cytokine (cytokine degree) in the mouse cytokine 
GRN ordered by cytokine degree rank. (C) Fraction of TFs in the mouse cytokine GRN with 
annotated immune phenotypes when knocked out in mice (MGI), or associated with immune 
disorders in the Human Gene Mutation Database (HGMD) or in genome-wide association studies 
(GWAS) based on the number of cytokine targets. 

 

Cytokine regulation by different types of TFs 
 

Different cell types express different sets of cytokines in response to pathogen- or 

cell-mediated cues. For each immune cell type, we determined the TFs enriched in 

binding/regulating the cytokines expressed in the given cell type. As expected, several 

master regulator TFs are enriched, including TBX21 (T-bet) in Th1 cells, GATA3 and 

STAT6 in Th2 cells, RORC in Th17 cells, and SPI1 (PU.1) and CEBPA in monocytes. 

Additionally, several PSA TFs, such as RELA/NFKB1, are enriched in Th1 cells, 

monocytes, myeloid dendritic cells, eosinophils, and neutrophils, consistent with these 

cells producing pro-inflammatory cytokines upon activation; while IRF1/3/5/7 are 

enriched in B cells and plasmacytoid dendritic cells, producers of type-I interferons in 

response to viral pathogens.  
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Highly connected TFs in the cytokine GRN usually belong to the Ig-like plexins 

transcription factor (IPT/TIG/p53 - including NF-%B and NF-AT TFs), activator protein 1 

(AP-1), interferon regulatory factor (IRF), and signal transducer and activator of 

transcription (STAT) families, which are known to play prominent roles in immune cell 

differentiation and immune responses (Holloway, Rao, and Shannon 2002; Taniguchi et 

al. 2001; Rao, Luo, and Hogan 1997; Peltz 1997). These TF families are highly enriched 

in the cytokine GRN compared to the GRN reported in TRRUST (Han et al. 2015), a 

literature-derived network not constrained to cytokine genes (Figure 2.5A and Figure 2.6A 

and B). Furthermore, most PSA TFs are enriched in the cytokine GRN compared to the 

GRN reported in TRRUST, consistent with many cytokine genes being upregulated in 

response to pathogens or stress conditions (Figure 2.5B). 

 

Figure 2.5 Cytokine regulation by different types of TFs. (A, B) Correlation between the 
percentage of PDIs involving a TF in the human cytokine GRN versus a global human GRN 
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annotated in TRRUST, for different TF families (A) or for pathogen- or stress-activated (PSA) TFs 
(B). (C) Average fraction of PSA and tissue-specific (TS) TFs for cytokines expressed in different 
cell types. (D) Fraction of PSA and TS TFs for different classes of cytokines. Correlation 
determined by Pearson correlation coefficient. (E) Inflammatory score (IS) for each TF based on 
the fraction of PDIs with pro- and anti-inflammatory cytokines. (F) Percentage of TFs with pro-
inflammatory, anti-inflammatory, and differentiation or other functions based on mouse knockout 
phenotypes. p = 0.009 by Fisher’s exact test. 

Cytokines are expressed in a highly tissue- and condition-specific manner. This is 

achieved by a specific combination of receptors and signaling pathways present in each 

cell type, and through the cooperation between PSA and TS TFs (Holloway, Rao, and 

Shannon 2002). To study the role of PSA and TS TFs in cytokine regulation, for each 

cytokine we determined the fraction of TFs that respond to pathogen/stress signals (e.g., 

NF-%B, AP-1 and IRFs) and the fraction of TS TFs determined based on each TF’s gene 

expression variability across tissues. Our analysis revealed that cytokines expressed in 

plasmacytoid dendritic cells, M1 macrophages, Th1 cells, and myeloid dendritic cells are 

primarily regulated by PSA TFs, whereas cytokines expressed NK cells, basophils, mast 

cells, Th2 cells, Th17 cells, and eosinophils are also regulated by several TS TFs (Figure 

2.5C). This is consistent with reports of the former cell types expressing multiple canonical 

pro-inflammatory cytokines and/or interferons, which are induced by pathogen-associated 

molecular patterns or danger signals from inflammatory microenvironments. Indeed, 

further analysis revealed that interferons and pro-inflammatory cytokines are regulated by 

broadly-expressed PSA TFs, whereas anti-inflammatory cytokines are regulated by both 

PSA and TS TFs (Figure 2.5D).  
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Figure 2.6 TF families present in the mouse and human cytokine GRNs. (A) Correlation 
between the percentage of PDIs involving a TF in the mouse cytokine GRN versus a global mouse 
GRN annotated in TRRUST. (B) Distribution of TF families in the human and mouse cytokine 
GRNs compared to those annotated in the TRRUST database. 

Different TFs have predominantly pro- or anti-inflammatory functions. Thus, for 

each TF, we determined an inflammatory score (IS) based on the preference of binding to 

pro- versus anti-inflammatory cytokine gene targets (Figure 2.5E). TFs with an IS>0.5 

more frequently had a pro-inflammatory function, while TFs with IS<-0.5 more frequently 

had an anti-inflammatory function based on knockout mouse phenotypes (Figure 2.5F, p = 

0.009 by Fisher’s exact test). Although the dysregulation of other targets is likely involved, 

these analyses suggest that the cytokine targets of a TF can be important drivers of immune 

phenotypes. 

GRN integration with TF-cofactor interactions 
 

Different cell types express different sets of cytokines in response to pathogen- or 

cell-mediated cues. For each immune TFs regulate gene expression by recruiting co-

activators and co-repressors that interact with the transcriptional machinery or mediator 

complex, or that covalently modify histones, TFs, or methylate DNA (Thomas and Chiang 
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2006; Rolland et al. 2014). Based on literature-derived protein-protein interactions reported 

in Lit-BM-13 (Rolland et al. 2014), we found that the TFs that bind/regulate cytokine genes 

interact with numerous cofactors, including multiple co-activators such as EP300, 

CREBBP, and nuclear co-activators 1-3 and 6 (Figure 2.7A). This is not surprising given 

that ~80% of the regulatory PDIs in CytReg are activating and involve potent 

transcriptional activators such NF-%B and AP-1. Nevertheless, several activating TFs also 

interact with co-repressors which can inhibit TF function until triggered by signaling 

pathways (T. D. Gilmore and Herscovitch 2006).  
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Figure 2.7 Cooperativity and plasticity in cytokine regulation.  (A) Protein-protein interaction 
network from Lit-BM-13 between cofactors and TFs in the human cytokine GRN. Ellipses – TFs, 
diamonds – cofactors. Node size indicates the number of cytokine targets (for TFs) in the cytokine 
GRN, and the number of protein-protein interactions with TFs (for cofactors). Only cofactors with 
five or more protein-protein interactions are shown. (B, C) Number of TFs (shades of grey) 
interacting with each human cytokine gene that interact with the different cofactors (B) or the 
different domains of EP300/CREBBP (C). (D, E) Fraction of cofactor (D) or EP300/CREBBP 
domain (E) protein-protein interactions (shades of red) involving PSA or TS TFs. Only cytokines 
and cofactors with five or more interactions are shown. Co-activators are shown in red font, co-
repressors in blue font, and bifunctional cofactors in purple font. 

In general, each cofactor interacts with multiple TFs that bind/regulate each 

cytokine gene (Figure 2.7B) (Rolland et al. 2014). This may be associated with TF 
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cooperativity to recruit cofactors to regulatory regions as has been reported for the 

cooperative recruitment of EP300 by RELA, IRFs, JUN, and HMGA1 to the IFNB1 

enhanceosome (Thanos and Maniatis 1995). Alternatively, cofactor binding to multiple 

TFs may also be associated with regulatory plasticity by which cofactors can be recruited 

by different sets of TFs to modulate cytokine gene expression in different cell types or 

conditions. To evaluate these possibilities, we focused on the histone acetyltansferases 

EP300/CREBBP, which play key roles in immune regulation and differentiation, and 

whose protein-protein interactions with TFs have been mapped to their different domains 

(Freedman et al. 2002; Hottiger and Nabel 2000). We found that, for cytokines for which 

multiple PDIs have been determined, the set of TFs that bind/regulate that cytokine gene 

collectively interact with multiple domains of EP300/CREBBP (Figure 2.7C). This may 

lead to a cooperative recruitment of EP300/CREBBP to regulatory regions, as has been 

observed for the IFNB1, TNF, and IL6 genes (Thanos and Maniatis 1995; Berghe et al. 

1999; Tsytsykova and Goldfeld 2002). This is also consistent with the observation that, 

even for cytokines with multiple annotated PDIs, the mutation of a single TF binding site 

or the inhibition of a single TF can lead to a dramatic effect on gene expression (Tsai et al. 

2000; Melnikov et al. 2012). Interestingly, for each cytokine, several TFs can also interact 

with the same domain of EP300/CREBBP (Figure 2.7C). Although this may contribute to 

a cooperative recruitment of EP300/CREBBP, it may also increase regulatory plasticity in 

different cell types and/or under different stimuli by allowing different TF combinations to 

induce cytokine expression. For example, TNF induction by LPS, calcium, or viruses all 
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lead to EP300/CREBBP recruitment to the TNF enhanceosome, however, through different 

sets of TFs (Tsytsykova and Goldfeld 2002).  

Some cofactors such as MAPK8, BRCA1, MDM2 and COPS5 preferentially 

interact with PSA TFs, consistent with their reported function in inflammation and stress 

responses, and associated immune phenotype in knockout mice (Figure 2.7D) (Eppig et al. 

2017). Other cofactors such as NCOR1/2, NCOA1/2/3/6, RB1, NRIP1, SRC and MED1 

interact primarily with TS TFs such as nuclear hormone receptors (Rolland et al. 2014) 

(25416956). Interestingly, different domains of EP300/CREBBP interact preferentially 

with PSA or TS TFs: for example, CH1, KIX and Q/I interact mostly with PSA TFs, 

whereas RID and CH3 interact mostly with TS TFs (Figure 2.7E). Altogether, this suggests 

that PSA and TS TFs cooperate in recruiting EP300/CREBBP through different domains 

to induce cytokine expression under the right stimuli and in the appropriate cell types. In 

addition, functional redundancy between different PSA TFs may allow for the activation 

of cytokine expression under different conditions. For example, the PSA TFs HIF1A and 

NF-%B, both of which interact with the CH1 domain of EP300/CREBBP, can 

independently induce CXCL8 expression (Kim et al. 2006). Overall, these findings are 

consistent with a model that contains aspects of both the enhanceosome (i.e., cooperative 

TF binding is required for regulatory activity) and billboard (i.e., TFs independently 

regulate gene expression) models of gene regulation, where only certain combinations of 

TFs present in particular cells or conditions can induce gene expression (Spitz and Furlong 

2012). Each cytokine, depending on their regulatory flexibility, may be closer to one model 

or the other. 
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The cytokine GRN as a blueprint to study disease 
 

Cytokine expression is widely dysregulated in immune disorders and infection. 

This is driven by the activation of multiple signaling pathways that result in TF activation 

leading to the concomitant regulation of target cytokines. To explore these TF-disease 

relationships, we leveraged the human cytokine GRN to identify TFs enriched in regulating 

the cytokines overexpressed in different autoimmune diseases, Mycobacterium 

tuberculosis infection, and cytomegalovirus infection. We identified 46 TF-disease 

associations between 25 TFs and seven diseases, many of which are known (Figure 2.8A). 

For example, different subunits of NF-%B were associated with all the diseases evaluated, 

consistent with the ubiquitous role of NF-%B in inflammation (T. D. Gilmore and 

Herscovitch 2006). Other TF-disease associations identified were more specific. For 

instance, IRFs and ATF2 (in addition to NF-%B) were associated with cytomegalovirus 

infection which is consistent with these TFs being activated by viral pathogens through 

pattern recognition receptors (Navarro et al. 1998; Browne and Shenk 2003; Le et al. 2008). 

STAT1 and STAT2 were also associated with cytomegalovirus infection, in this case, 

likely through the activation of signaling pathways driven by the autocrine/paracrine 

secretion of type-I and type-II interferons induced by IRF and NF-%B activation. In 

addition, we identified an association between STAT6 and SLE, consistent with STAT6 

deficiency being associated with a better prognosis in mouse models of SLE (Singh et al. 

2003; Jacob et al. 2003), and with STAT6 polymorphisms being associated with SLE in 

humans (Yu et al. 2010). Further, we found known associations between KLF6, NR3C1, 
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XBP1, and HSF1 with inflammatory bowel disease further validating our analyses (Tanaka 

et al. 2007; Kaser et al. 2008; Goodman et al. 2016; Brattsand and Linden 1996). 

 

Figure 2.8 Association of the cytokine GRN with human diseases. (A) Circos plot connecting 
diseases with TFs based on enrichment of the TFs in regulating cytokines upregulated in the 
indicated disease. Ribbon width is proportional to the percentage of cytokines upregulated in the 
indicated disease that are regulated by the indicated TF. (B) GRN connecting interacting TFs and 
human cytokine genes associated with autoimmune disorders. Edges connect interacting cytokine-
TF pairs. Edge color indicates that the interacting cytokine and TF are associated with the same 
disease based on HGMD and GWAS. (C) The human cytokine GRN was randomized 1,000 times 
by edge switching and the number of TF-cytokine-disease sets in each randomized network was 
calculated. The number under the histogram peak indicates the average overlap in the randomized 
networks. The red arrow indicates the observed overlap in the real network. Statistical significance 
determined based on z-score calculation. (D) GRN connecting cytokines with TFs that can be 
targeted by approved drugs. Blue, red, and yellow ovals indicate TFs targetable by agonists, 
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antagonists, or both, respectively. Oval size corresponds to the number of approved drugs targeting 
a TF. Rectangles indicate cytokine genes. Rectangle size is proportional to the number of druggable 
TFs per cytokine. 

More importantly, we found previously uncharacterized TF-disease associations. 

For example, we identified an association BCL6 and SLE (Figure 2.8A). A mouse model 

of SLE (Def6 and SWAP70 double knockout) showed increased BCL6 protein expression 

(Yi et al. 2017). However, the role of BCL6 in cytokine dysregulation in SLE has not been 

established. Our analyses, suggest that the increased BCL6 levels may be associated with 

increased levels of CCL1/2/7/8/13 observed in SLE. We also identified a previously 

uncharacterized association between ETS2 and cytokine upregulation in M. tuberculosis 

infected macrophages (Figure 2.8A). ETS2 is an activator that is upregulated 5.7 fold (p = 

3.6 x 10-7) in macrophages infected with M. tuberculosis for 48 hs (E-MEXP-3521). This 

increased ETS2 expression, together with ETS2 activation through the MAPK pathway 

(McCarthy et al. 1997), may contribute to cytokine upregulation in M. tuberculosis 

infection. Interestingly, the association between ETS2 and M. tuberculosis infection would 

not have been predicted only based on PDIs from InnateDB and TRRUST. Further, using 

PDIs from these previous databases we only predicted 21 TF-disease associations, most of 

them included within the 46 associations predicted based on CytReg, while missing 

multiple known associations such as those between NF-%B subunits and autoimmune 

diseases (Figure 2.9). Overall, our analyses predicted novel TF-disease associations which 

are consistent with known TF functions. Further studies are required to determine the 

mechanisms of action of BCL6 in SLE and ETS2 in M. tuberculosis infections. 
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Figure 2.9 Gene expression of Berry et al. (2010) 86-gene signature in TB and LTBI subjects 
from a South Indian population. Circos plot connecting diseases with TFs based on enrichment 
of the TFs in regulating cytokines upregulated in the indicated disease. Ribbon width is proportional 
to the percentage of cytokines upregulated in the indicated disease that are regulated by the 
indicated TF. The left plot is based on PDIs from the union of TRRUST and InnateDB, the right 
plot is based on PDIs from CytReg (as in Figure 2.8A). 

Mutations in multiple TFs have been associated with immune disorders such as 

autoimmune diseases (MacArthur et al. 2017; Stenson et al. 2014). The role of TFs in 

autoimmunity is likely related to the dysregulation of immune genes, in particular 

cytokines, as they play a central role in immune responses and tolerance (Neurath 2014; 

O’Shea, Ma, and Lipsky 2002). Indeed, mutations in many cytokine genes have been 

associated with autoimmunity (MacArthur et al. 2017; Stenson et al. 2014). We considered 

the cytokines and TFs that have been associated with autoimmune diseases in GWAS and 

HGMD, and found that many TF-cytokine gene pairs that interact in the cytokine GRN 

have been associated with the same autoimmune disease (Figure 2.8B). For example, we 

found multiple TF-cytokine pairs associated with inflammatory bowel disease, rheumatoid 
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arthritis, atopic dermatitis/psoriasis, and SLE (Figure 2.8B). Overall, the number of TF-

cytokine pairs associated with the same autoimmune disease is higher than that determined 

in randomized networks derived from the human cytokine GRN (Figure 2.8C). These TF-

cytokine pairs identified may constitute different regulatory axes by which TFs lead to the 

disease. For example, AHR activation is protective in inflammatory bowel disease, partly 

due to increased IL10 expression (Goettel et al. 2016). Interestingly, the association 

between AHR, IL10, and inflammatory bowel disease, together with 19 other TF-cytokine-

disease associations was absent in predictions based on PDIs from the union of TRRUST 

and InnateDB. Altogether, the network depicted in Figure 5B constitutes a blueprint to 

study other regulatory axes in autoimmunity. 

Targeting cytokine activity is a widely used therapeutic approach for multiple 

autoimmune and inflammatory diseases (Wishart et al. 2018; Chan and Carter 2010). 

However, only ~15% of cytokines can currently be directly targeted with approved small 

molecules or specific antibodies, as reported in Drugbank (Wishart et al. 2018). An 

alternative strategy is to modulate cytokine production by activating or repressing TF 

regulatory pathways or by using TF agonists or antagonists (Wishart et al. 2018; T. D. 

Gilmore and Herscovitch 2006; O’Keefe et al. 1992). Although the use of antibodies is a 

more specific therapeutic approach to inhibit cytokine activity, antibodies cannot be used 

in many cases because: 1) approved antibodies blocking cytokine activity are only 

available for nine cytokines, 2) a therapeutic strategy may require the concomitant 

modulation of multiple cytokines, or 3) a strategy may require the induction of cytokine 

activity (e.g., the induction of anti-inflammatory cytokines such as IL10) rather than 
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inhibition. In these cases, modulation of cytokine expression by targeting TFs may provide 

an effective alternative approach.  

Many cytokines can potentially be targeted using drugs against their interacting TFs 

(or the signaling pathways that activate those TFs). Indeed, multiple TF agonists and 

antagonists have been approved as therapeutics, including 17 TFs with targets in the human 

cytokine GRN (Figure 2.8D). Combined, these TFs, which include nuclear hormone 

receptors, NF-%B, and AP-1, can potentially target 59 cytokine genes, most of which are 

dysregulated in disease.  Targeting these TFs can increase or decrease cytokine expression 

depending on the TF regulatory function and on the drug’s agonist or antagonist activity. 

For example, IL10 expression can be induced using AHR agonists as a protective 

mechanism in inflammatory bowel disease, or repressed by an endogenous VDR agonist 

(calcitriol) during pregnancy to enhance responses to microbial infections (Goettel et al. 

2016; Barrera et al. 2012). Ultimately, multiple factors need to be considered including the 

off-target effect of the drugs, the number of other genes whose expression may be affected 

by targeting a particular TF, and how the modulation of TF activity may propagate to other 

immune and non-immune functions. 

Completeness of the cytokine GRN 
 

Although great progress has been made in the last three decades identifying novel 

PDIs, the cytokine GRN is far from complete. Indeed, we observed that the size of the 

cytokine GRN and the number of TFs involved have increased at a constant rate suggesting 

that novel PDIs remain to be identified (Figure 2.10A and Figure 2.11A).  Importantly, the 

fraction of TFs that have been incorporated into the cytokine GRN that are associated with 
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immune phenotypes or diseases has remained constant suggesting that the GRN continues 

to grow towards immune-relevant interactions (Figure 2.10B and Figure 2.11B).  

 

Figure 2.10 Completeness of the human cytokine GRN. (A) Number of annotated PDIs, TFs, 
and cytokines in the human cytokine GRN over time. (B) Fraction of TFs in the human cytokine 
GRN with annotated immune phenotypes when knocked out in mice (MGI) or associated to 
immune disorders in genome-wide association studies (GWAS) and in the Human Gene Mutation 
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Database (HGMD) over time. (C, D) Number of PDIs per TF (C) or per cytokine (D) in the human 
cytokine GRN over time. (E, F) Correlation between the number of PDIs in the human cytokine 
GRN and the number of publications per TF (E) or per cytokine (F) reported in Medline. (G, I) 
PDIs with the promoters of CCL27 (G) or CCL4L2 (I) were analyzed by eY1H assays. Each 
interaction was tested in quadruplicate. The qualitative strength of PDIs detected by eY1H 
compared to AD-vector control are indicated as –, +, ++, and +++ corresponding to no, weak, 
medium, and strong interaction, respectively. Motif location for the indicated TFs in the promoters 
of CCL27 and CCL4L2 are shown. (H, J) Luciferase assays to validate interactions between the 
promoters of CCL27 (H) or CCL4L2 (J) and the indicated TFs. HEK293T cells were co-transfected 
with reporter plasmids containing the cytokine promoter region (2 kb) cloned upstream of the 
firefly luciferase reporter gene, and expression vectors for the indicated TFs (fused to the activation 
domain 10xVP16). After 48 h, cells were harvested and luciferase assays were performed. Relative 
luciferase activity is plotted as fold change compared to cells co-transfected with the vector control 
(1.0). Experiments were performed 3-4 times in three replicates. Individual data points represent 
the average of the three replicates, the average of all experiments is indicated by the black line. 
*p<0.05 by one-tailed Student’s t-test with Benjamini-Hochberg correction. 

Future growth of the cytokine GRN is not expected to be uniform for all TFs and 

cytokines. Indeed, the number of PDIs seems to have saturated for some TFs such as 

RELA, NFKB1, and FOS, while other TFs such as SPI1 and MAFK do not show signs of 

saturation (Figure 2.10C and Figure 2.11C). The number of PDIs for some well-studied 

cytokines such as CCL5 have also plateaued, while new PDIs are still being identified for 

other cytokines such as human CXCL8 and CCL2 or mouse IL4 (Figure 2.10D and Figure 

2.11D).  
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Figure 2.11 Completeness of the mouse cytokine GRN.  (A) Number of annotated PDIs, TFs, 
and cytokines in the mouse cytokine GRN over time. (B) Fraction of TFs in the mouse cytokine 
GRN with annotated immune phenotypes when knocked out in mice (MGI) or associated to 
immune disorders in genome-wide association studies (GWAS) and in the Human Gene Mutation 
Database (HGMD) over time. (C, D) Number of PDIs per TF (C) or per cytokine (D) in the mouse 
cytokine GRN over time. (E, F) Correlation between the number of PDIs in the mouse cytokine 
GRN and the number of publications per TF (E) or per cytokine (F) reported in Medline. 
Correlation determined by Spearman’s rank correlation coefficient. (G, H) Correlation between the 
number of PDIs per TF (out degree) (G) or per cytokine (in degree) (H) in the human and mouse 
cytokine GRNs. 

We also observed a bias towards highly studied TFs and cytokines as we detected 

a strong correlation between the number of publications in Medline associated with a 

cytokine or TF and the number of PDIs in the cytokine GRN (Figure 2.10E and F; and 

Figure 2.11E and F). An argument can be made that highly connected TFs have more 
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pleiotropic functions and thus, are more frequently studied. However, more than 200 TFs 

absent in the cytokine GRN lead to an immune phenotype when knocked out in mice, many 

of which are associated with alterations in cytokine expression (Eppig et al. 2017). This 

suggests that many TFs are absent from the cytokine GRN and that many PDIs involving 

infrequently studied TFs are missing.  

Similarly, highly studied cytokines are involved in more PDIs (Figure 2.10F and 

Figure 2.11F). Although we cannot rule out the possibility that highly studied cytokines 

have more pleiotropic roles and are regulated by different TFs in different cells and 

conditions, this alone cannot explain that there are no PDIs reported for 30% of the 

cytokines. Further, if there is a strong selective pressure to have multiple modes of 

regulation for certain cytokines, we would expect the mouse and human cytokine orthologs 

to be regulated by a similar number of TFs, but this is frequently not the case 

(Supplementary Figure 2.11G and H). What is more likely is that highly studied cytokines 

such as TNF and CXCL8 have more PDIs because they have been studied in more cell 

types and conditions. To test this hypothesis, we performed eY1H assays to evaluate the 

binding of 1,086 human TFs to the promoters of CCL27 and CCL4L2, two under-studied 

cytokines absent from the GRN (Figure 2.10G and I). We detected seven interactions with 

the CCL27 promoter involving TFAP2A/B/E, KLF7, ZNF18, PPARG, and RBPJ (Figure 

2.10G). Motif analyses for TFs with available position weight matrices (TFAP2A/B, 

PPARG, and RBPJ) identified multiple TF binding sites in the CCL27 promoter. We 

evaluated the seven eY1H interactions by luciferase assays in HEK293T cells, all of which 

were validated (Figure 2.10H). Of note, TF ZNF18, which is widely expressed in immune 
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cells, is also absent from CytReg showing that novel TFs in the cytokine GRN remain to 

be identified. We also detected 13 TF interactions with the promoter of CCL4L2 using 

eY1H assays (Figure 2.10I). Multiple TF binding sites were found in the promoter of 

CCL4L2 for most of the TFs for which a position weight matrix was available. We tested 

the 13 eY1H interactions by luciferase assays in HEK293T cells, nine of which validated 

(Figure 2.10J). Interestingly, ATF3 is known to regulate CCL4, a close paralog of CCL4L2 

(M. Zhu et al. 2014). Further, CCL4L2 is produced by multiple cell types including 

monocytes, B cells, T cells, fibroblasts, endothelial, and epithelial cells, while ATF3, 

EBF3, REL, ZBTB10, ZNF710, WT1, TFAP2A, and TFAP2E are also expressed in one 

or more of these cell types (C. Wu et al. 2016) . Overall, this shows that novel interactions 

can be detected for cytokines and TFs that have been poorly characterized. 

Prediction of novel PDIs in the cytokine GRN 
 

Different cell types express different sets of cytokines in response to pathogen- or 

cell-mediated cues. To predict novel PDIs in the human cytokine GRN, we leveraged the 

observation that co-expressed genes tend to share interactions with similar TFs (Fuxman 

Bass et al. 2015; Marco et al. 2009). Thus, for each TF with at least two PDIs in the human 

cytokine GRN, we searched for other cytokines co-expressed with the known target 

cytokines across more than 5,000 expression profiling datasets using SEEK (Q. Zhu et al. 

2015). Potential targets were then filtered by the presence of the corresponding TF binding 

site in the promoter region (2 kb upstream of the transcription start site) determined using 

CIS-BP (Weirauch et al. 2014). The 1,066 predicted PDIs, were enriched in orthologous 

interactions detected in mouse but absent from the human cytokine GRN (OR = 4.43, p < 
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10-20 by Chi-square test). Predictions were classified as high, medium, or low confidence 

based on the number of TF binding sites for the corresponding TF and the presence of the 

interaction in mouse (Figure 2.12A). As expected, there is a strong correlation between the 

TF degree for known and for known plus predicted interactions, although this correlation 

is not perfect (Figure 2.12B). Importantly, adding the predicted interactions, maintained or 

even improved the correlation between TF degree and expression enrichment in immune 

tissues, presence of immune phenotype in mouse, and association with immune disorders 

in GWAS and HGMD (Figure 2.12C). Overall, this suggests that our predictions are 

enriched in functional PDIs. 
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Figure 2.12 Prediction of novel PDIs in the human cytokine GRN. (A) Novel PDI predictions 
based on co-expression between cytokines and known cytokine targets of each TF (determined 
using the SEEK database), and motifs analysis. Prediction confidence, as defined in the methods 
section, is shown. (B) Correlation between the number of cytokine targets (TF degree) for known 
PDIs and known + predicted PDIs. Correlation determined by Spearman’s rank correlation 
coefficient. (C) Correlation between TF degree for known (K) or known + predicted (K+P) PDIs 
and expression enrichment score (EES) in immune tissues, mouse immune phenotype (MGI), and 
human immune disorders in GWAS and HGMD. Correlation and significance determined by 
Spearman’s rank correlation coefficient. (D, G) Top predicted cytokine targets of RORC (D) and 
REL (G). The co-expression rank among all genes and among cytokines is shown. CXCL8 is a 
known target of REL, while IL17A is a known target of RORC. (E, H) Enhanced yeast one-hybrid 
assays testing PDIs between the indicated human cytokine promoters and RORC (E) and REL (H). 
AD-vector corresponds to empty vector. The qualitative strength of PDIs compared to AD-vector 
control are indicated as –, +, ++, and +++ corresponding to no, weak, medium, and strong 
interaction, respectively. REL and RORC binding sites are indicated in red for each 2 kb promoter 
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region. (F, I) Luciferase assays in HEK293T cells co-transfected with reporter plasmids containing 
the indicated cytokine promoter region (2 kb) cloned upstream of the firefly luciferase reporter 
gene, and expression vectors for RORC (F) or REL (I) (fused to the activation domain 10xVP16). 
After 48 h, cells were harvested and luciferase assays were performed. Relative luciferase activity 
is plotted as fold change compared to cells co-transfected with the vector control (1.0). Experiments 
were performed 3-4 times in three replicates. Individual data points represent the average of the 
three replicates, the average of all experiments is indicated by the black line. *p<0.05 by one-tailed 
Student’s t-test with Benjamini-Hochberg correction. 

Using this platform, we predicted IL26 and IL17F to be novel potential targets of 

RORC, whose ROR&t isoform is a master regulator of Th17 cell differentiation and 

function (Figure 2.12D) (Ivanov et al. 2006). The interaction between RORC and IL17F, a 

paralog of the known RORC target IL17A, was reported in mouse (X. O. Yang et al. 2008) 

but, to our knowledge, not in human. IL26 is a key cytokine involved in immune cell 

priming, antibacterial immunity, and autoimmune diseases produced by ROR&t expressing 

Th17 cells, but not previously shown to be directly regulated by ROR&t (Manel, Unutmaz, 

and Littman 2008; Stephen-Victor, Fickenscher, and Bayry 2016). We validated these two 

novel predicted PDIs using eY1H assays, motif analyses, and luciferase assays in 

HEK293T cells showing even stronger activity than the well-known RORC-IL17A 

interaction (Figure 2.12E and F). Overall, this suggests that RORC directly regulates 

multiple Th17 cytokines. 

Using a similar approach, we found that CCL4, CXCL3, CCL20, and CXCL10 are 

among the most highly correlated cytokines to the known targets of the well-studied TF 

REL, and that their promoters have multiple binding sites for REL (Figure 2.12G and H). 

Interestingly, these cytokines are known to be regulated by other subunits of NF-%B but, 

to our knowledge, not by REL. We validated these predicted interactions using eY1H 

assays and luciferase assays in HEK293T cells (Figure 2.12H and I). Interestingly, these 
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four novel targets of REL, a TF associated with autoimmune disorders, are also associated 

with and/or upregulated in autoimmune disorders (Meagher et al. 2007; Klein et al. 2004; 

Karin and Razon 2018; Hirota et al. 2007; Thomas D. Gilmore and Gerondakis 2011). 

Overall, this shows that by integrating the PDIs annotated in CytReg with co-expression 

data we can expand the current cytokine GRN. Additionally, our predictions provide a 

blueprint for further studies in cytokine regulation. 

Discussion 
 

In the present study, we mined ~26 million articles in Medline, of which we curated 

more than 7,000 articles, to generate comprehensive mouse and human cytokine GRNs 

comprising 843 and 647 PDIs, respectively. We created a user-friendly database 

(https://cytreg.bu.edu) where PDIs can be easily browsed by TF, cytokine, species, assay 

type, and TF expression patterns, and visualized as networks. Overall, CytReg is 2- to 3-

fold more complete than other databases such as InnateDB and TRRUST (Breuer et al. 

2013; Han et al. 2015). Using this comprehensive database, we were able to obtain novel 

insights into the principles involved in cytokine regulation, perform comparative analyses 

between mouse and human GRNs, and make functional predictions which were not 

previously possible with other databases.  

By analyzing the cytokine GRN, we found that highly connected TFs are more 

highly expressed in immune cells and more frequently associated with immune phenotypes 

and diseases compared to low connected TFs. This is consistent with previous reports 

correlating network connectivity and phenotype, both in protein-protein and protein-DNA 

interaction networks (Fuxman Bass et al. 2015; Deplancke et al. 2006; Goh et al. 2007). 
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Interestingly, we found that this correlation is specific to immune diseases as TFs 

associated with non-immune diseases do not display a high connectivity in the cytokine 

GRN (not shown). Overall, this suggests that the link between TF connectivity and 

phenotype may be a local feature of GRNs where connectivity to functionally related 

targets, rather than the entire GRN, dictates the type of phenotypes or diseases a TF is 

associated with. For example, REL which is highly connected in CytReg, but not in 

TRRUST, has been associated with rheumatoid arthritis, psoriasis, and Hodgkin's 

lymphoma but not with diseases unrelated to the immune system (MacArthur et al. 2017). 

Our analysis of the combinatorics of the TFs that regulate each cytokine gene 

illustrates the complexity in cytokine transcriptional regulation. We observed that pro- and 

anti-inflammatory cytokines are regulated by a different balance between PSA and TS TFs, 

but ultimately a combination of both types of TFs may be required for cofactor recruitment 

to induce cytokine expression in the appropriate cells and conditions. This cooperativity 

between PSA and TS TFs, together with cell type specific expression patterns of surface 

receptors and signaling molecules, may ultimately be responsible for the tight control of 

cytokine expression in immune responses. The cooperative relationship between TFs may 

also explain the deleterious effects of several disease-associated single nucleotide variants 

(SNVs) and engineered mutations in the promoters and enhancers of cytokine genes, as 

affecting the binding of a single TF may result in the loss of cooperativity and lead to gene 

misregulation (Melnikov et al. 2012; Wei et al. 2011; Tu et al. 2013). For example, using 

massively parallel reporter assays it was recently shown that ~60% of all possible 

substitutions in the core 44 nt of the IFNB1 enhanceosome altered its activity in virus-
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infected cells (Melnikov et al. 2012). Remarkably, most of the substitutions that did not 

affect activity were located outside of known TF binding sites or led to an alternative 

binding site for the same TF. 

Our analyses also suggest a potential plasticity between TFs in cofactor 

recruitment, given that frequently multiple TFs that regulate a cytokine gene can interact 

with the same domain of EP300/CREBBP. Fine-mapping TF interactions with protein 

domains of other cofactors will indicate whether this is a unique feature of 

EP300/CREBBP. Further, a comprehensive functional characterization of different 

substitutions in cytokine promoters may determine whether the substitutions that affect the 

binding of potentially redundant TFs are generally more benign than those affecting the 

binding of cooperative TFs. However, the converse can also be true as this plasticity may 

be required for proper cytokine expression in different cell types and conditions.  

CytReg is the most comprehensive cytokine GRN to-date, significantly increasing 

the number of annotated PDIs compared to previous databases, yet CytReg is not fully 

complete. First, articles that do not mention interactions within the information available 

in Medline will be missed and will not have been curated. Second, CytReg is incomplete 

because multiple PDIs remain to be evaluated and characterized. Indeed, by performing 

eY1H and luciferase reporter assays, we found interactions involving cytokines (CCL27 

and CCL4L2) and TFs (e.g., ZNF18, ZBTB10, KLF17, EBF3, and ZNF710) that are absent 

from CytReg. Further, by leveraging CytReg, co-expression data, and motif analyses we 

predicted 1,066 PDIs in the human cytokine GRN, a subset of which we validated by eY1H 

and luciferase assays. Third, in addition to missing PDIs in the cytokine GRN, individuals 
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may carry genomic variants in noncoding regulatory regions of cytokine genes or in TF 

coding sequences that lead to different TF-cytokine interactions. Indeed, several disease-

associated SNVs have been identified in the promoters of cytokine genes that result in the 

gain or loss of PDIs that may be absent in CytReg (Fuxman Bass et al. 2015; Nickel et al. 

2000; Sánchez et al. 2009; Knight et al. 1999). For example, a SNV in the proximal 

promoter of CCL5 that is associated with atopic dermatitis leads to a gain of PDI with 

GATA2 (Fuxman Bass et al. 2015; Nickel et al. 2000). Finally, CytReg catalogues PDIs 

as binary interactions between TFs and cytokine genes. However, the number of binding 

sites for each TF, their strength, spacing, and orientation are key for appropriate gene 

expression (Spitz and Furlong 2012; Smith et al. 2013). With a few exceptions (e.g., the 

IFNB1 and the TNF enhanceosomes), this regulatory logic is currently unknown, and thus 

cannot be annotated (Thanos and Maniatis 1995; Tsytsykova and Goldfeld 2002). 

Ultimately, the integration of different high-throughput and unbiased approaches, 

population-wide studies of regulatory variation, and in-depth functional characterizations 

of the regulatory logic will lead to a more comprehensive picture of cytokine regulation in 

different cell types, conditions, and individuals. 
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Chapter 3. Prediction of genome-wide effects of single nucleotide variants on 

transcription factor binding 

Adapted from the following manuscript: 

1.! Sebastian Carrasco Pro, Katia Bulekova, Brian Gregor, Adam Labadorf, Juan 

Ignacio Fuxman Bass. 2020. Prediction of genome-wide effects of single 

nucleotide variants on transcription factor binding. In preparation. 

Introduction 

 Changes in gene expression caused by single nucleotide variants (SNVs) residing 

in transcriptional control regions have been shown to cause phenotypic changes which may 

be adaptive or lead to disease (Maurano et al. 2012; 2015; Hindorff et al. 2009). The 

mechanisms of action of these SNVs include alterations in the binding of transcription 

factors (TFs), in the recruitment of RNA Polymerase II, in nucleosome positioning, and in 

DNA modifications. Among these, the creation and disruption of TF binding sites (TFBSs) 

is likely the main mechanism by which SNVs affect gene expression (Maurano et al. 2015). 

Experimental methods to determine changes in TFBSs driven by SNVs include 

electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation followed by 

sequencing (ChIP-seq), and enhanced-yeast one-hybrid (eY1H) assays (Gan et al. 2018). 

EMSA is a very low-throughput assay that tests one or few TFs and DNA sequences at a 

time, and requires TF purification or anti-TF-specific antibodies. ChIP can be used to study 

differential TF recruitment by SNVs, but can only be tested one TF at time, is limited by 

the availability of high-quality anti-TF antibodies, and more importantly, requires cells 

heterozygote for the SNV of interest. eY1H instead can determine altered TF binding to a 
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SNV by testing the full repertoire of TFs, but can only test one SNV per experiment. Thus, 

current experimental methods are limited by the amount of SNVs and TFs they are able to 

test in a single experiment. Due to these limitations, prediction algorithms based on 

experimentally determined motifs have been developed for high-throughput prediction of 

altered TF binding by SNVs. 

TFs binding preferences to DNA sequences, represented by position weight 

matrices (PWMs), have been used to predict the likelihood that a TF binds a DNA sequence 

of interest. These computational methods, that scan DNA regions to predict TFBSs, include 

FIMO (Grant, Bailey, and Noble 2011), RSAT (Thomas-Chollier et al. 2011), Clover (Frith 

et al. 2004), and ENCODE DREAM Challenge derived methods (Quang and Xie 2019; 

Keilwagen, Posch, and Grau 2019), among others. In addition, methods have been 

developed to predict the impact of SNVs in TF binding, where scores of the mutated and 

reference DNA sequences are compared (Coetzee, Coetzee, and Hazelett 2015; Fu et al. 

2014; Weirauch et al. 2014; Boyle et al. 2012; Rentzsch et al. 2019; Movva et al. 2019). 

These methods have been used to predict the effect on TF binding of disease-associated 

SNVs such as those identified in genome-wide association and genetic studies (Xu and 

Taylor 2009; Tak and Farnham 2015; Schaub et al. 2012), and somatic mutations observed 

in tumor samples (Rheinbay et al. 2017; Yiu Chan et al. 2019; Rheinbay et al. 2020; Law 

et al. 2019). Furthermore, databases assessing the effect of known SNVs in the human 

population in gain/loss of TFBSs have been used to obtain insights into the effect of human 

variation on TF binding (Boyle et al. 2012; Shin et al. 2019; Kumar, Ambrosini, and Bucher 

2017). However, the effect of novel or unseen SNVs, such as rare variants and somatic 
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mutations, on TF binding has not yet been determined. In this regard, a recent study 

evaluated the impact of tri-nucleotide cancer mutational signatures on TFBSs (Yiu Chan 

et al. 2019). This study calculated the differential probabilities of gain and loss of TFBSs 

corresponding to each TF for each mutational signature based on calculating the effect of 

SNVs across DNA k-mers found in the human genome. However, this method precludes 

identifying the sets of TFBSs that are poised to be gained and lost by SNVs as it assumes 

a uniform distribution of k-mers across the human genome. 

Here, we generated a database of genome-wide altered TFBSs by in silico mutating 

all possible SNVs in every position in the human genome and determining gain and loss of 

TFBSs for 1898 PWMs corresponding to 741 human TFs. Using this resource, we show 

that the probability to gain (gainability) or disrupt (disruptability) a TFBS in gene 

regulatory regions widely differ between different TFs and TF families. We also show that 

functional cis-eQTL SNVs are more likely to perturb TFBSs than common SNVs in the 

human population. Interestingly, the difference in disruptability is driven both by a higher 

probability of SNVs residing within TFBSs and a lower probability of retaining existing 

TFBSs by cis-eQTL versus population-wide SNVs. Finally, we show that somatic 

mutations in different cancer-types have differential effects on TFBSs between TF families 

and discuss how these profiles are related to distinct cancer mechanisms. Altogether, this 

database provides blueprint to study the impact of SNVs associated with genetic variation 

and cancer on TF binding. 

Materials and Methods 

Generation of the altered TF binding site database 
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To predict the effect of all possible SNVs in the human genome on TF binding, for 

each possible SNV and each TF with available PWMs, we calculated the binding score for 

the reference and alternate SNV alleles. We downloaded 1898 PWMs corresponding to 

741 human TFs from CIS-BP (Weirauch et al. 2014) on April 3 2018 and their respective 

TF family. Given a PWM of length n and a genomic position (hs37d5 from the 1000 

Genome Project), for each of the 2n-1 DNA sequences on each strand of length n that 

overlap with the genomic position, we calculated a TF binding score using the function:  

 

where s is a genomic sequence of length n, M is the PWM with n columns and each column 

in M contains the frequency of each nucleotide in each position i = 1,…,n, and bsi is the 

background frequency of nucleotide si (assuming a uniform distribution). The highest score 

obtained for the 4n-2 sequences was assigned as the binding score corresponding to the 

PWM for the reference or alternate SNV alleles. Significant scores were selected and 

reported based on TFM-p-value (Touzet and Varré 2007) score thresholds determined 

using a significance level of " = 10-4. This method was applied for each reference position 

and the three possible alternate SNVs for the complete genome (hs37d5) to create the 

altered TFBS database, a genome-wide catalogue of predicted SNV-PWM effects. A 

custom program was written in C and CUDA to generate the dataset 

(https://github.com/fuxmanlab/altered_TFBS). The program was executed on Nvidia 

GPUs that are available on the Boston University Shared Computing Cluster (SCC). The 

6.1Tb dataset was stored in a compressed Parquet format on a 320-core Hadoop cluster 
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that is also part of the SCC. In addition, a query system was developed using Python and 

PySpark that was run on the BU Hadoop cluster.  The query system was used to search 

either a set of SNVs from a variant calling format (VCF) file (e.g., population-wide SNVs 

or somatic mutations), or all possible SNVs from genomic regions in BED files (e.g., 

promoter or DNase hypersitive site (DHS) regions). In both cases, the query reports the 

PWM scores for each reference/alternate genomic position pair where at least one of the 

alleles has a significant score for the given PWM. As an example, a query consisting of the 

human promoter coordinates from a BED file took about 60 minutes to complete on the 

Hadoop cluster. 

Genomic region definitions 
 

The hs37d5 human genome, downloaded from the Sanger Institute (November 2, 

2018), was used as reference. Promoters were defined as regions from -2000 bp to +250 

bp from all transcription start sites (TSSs) from protein coding genes available at 

GENCODE 19 version (June 14, 2018) (Harrow et al. 2012). We used the R package 

IRanges (M. Lawrence et al. 2013) and BEDTools (Quinlan and Hall 2010) to extract 

promoter coordinates and DNA sequences. DHS genomic coordinates were obtained by 

taking the union of DHS regions from all samples of the Roadmap Epigenomics Mapping 

Consortium (July 31, 2019) (Chadwick 2012). 

Generation of reference parameters for altered TF binding in genomic regions 
 

SNVs may affect TF binding by either creating or disrupting TFBSs. Therefore, we 

defined two parameters to estimate these effects for each given TF-PWM: gainability and 
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disruptability. Gainability was defined as the ratio between the number of SNVs that lead 

to gain of TFBSs and the total number of SNVs that are not located within existing TFBS 

for the given PWM. This corresponds to the probability of creating a TFBS for a given 

PWM for the set of SNVs analyzed assuming equal likelihood of nucleotide changes. 

Disruptability was defined as the ratio between the number of SNVs that disrupt a TFBS 

and the total number of possible SNVs. This corresponds to the probability of a SNV 

disrupting an existing TFBS for a given PWM assuming equal likelihood of nucleotide 

changes. Disruptability can be divided into two components: hitability, which is the 

probability of a random SNV residing within a TFBS corresponding to the PWM; and 

robustness, which is the probability of a SNV that resides within a TFBS to retain the TFBS. 

Thus, disruptability corresponds to the hitability multiplied by 1 – robustness of a PWM. 

In the case of TFs with multiple PWMs, we used the median score across PWMs as the 

representative one for each parameter. The four parameters (gainability, disruptability, 

hitability, and robustness) was calculated for each TF for the human genome, promoters, 

and DHS regions. 

Analysis of parameter scores for population-wide and cis-eQTL SNVs 
 

To predict the effect Population-wide SNVs were downloaded from the 1000 

Genomes Project (Auton et al. 2015) in vcf format (October 1, 2019). BEDTools intersect 

function was used to select SNVs in promoters or DHS regions. Gainability, disruptability, 

hitability, and robustness scores were calculated as described above. For DHS regions, we 

calculated the correlation of each population-wide TF score against their population-wide 

specific reference set derived from a random sampling of mutations based on the 
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mutational frequency of each of the twelve types of SNV changes in the 1000 Genomes 

Project set (see below). In addition, we downloaded finely mapped cis-eQTL SNVs from 

GTEx (Aguet et al. 2017) (October 10 2020) reported by CaVEMaN (Brown et al. 2017) 

and DAPG (Wen, Pique-Regi, and Luca 2017) methods. BEDTools intersect function and 

a custom R script were used to obtain unique cis-eQTL SNVs located in promoter and DHS 

regions that were identified by both cis-eQTL prediction algorithms. Then, gainability, 

disruptability, hitability, and robustness scores were calculated for the cis-eQTL SNVs. To 

determine whether the altered TF binding parameters were different than expected by 

chance between population-wide and cis-eQTL SNVs, we subtracted the individual scores 

for each TF to the reference set generated from a random sampling model (see below) to 

calculate !scores for gainability, disruptability, hitability, and robustness. 

Estimation of a population-wide SNV-specific reference set of TFBS parameters 
 

A reference set of scores for gainability, disruptability, hitability, and robustness 

was generated for the population-wide and cis-eQTL analysis. One million randomly 

selected SNVs were selected matching the frequency of the twelve possible mutations from 

the population-wide SNVs located in DHS regions. One hundred random samples were 

generated and the four parameters per sample were calculated for each PWM as previously 

discussed. Finally, the population-wide derived reference set for each parameter 

correspond to the average values for each PWM across the one hundred random samples. 

Calculation of parameters for cancer somatic and carcinogen SNVs 
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Somatic SNVs were obtained from 2,658 whole genome sequenced samples from 

the PCAWG cohort across 20 cancer types (Rheinbay et al. 2020). For each cancer type, 

we combined the SNVs across its associated samples and generated a unique set of SNVs 

per cancer type. BEDTools intersect function was used to extract SNVs in DHS regions 

for each cancer type. The observed gainability, disruptability, hitability, and robustness 

scores were calculated for each TF and were subtracted by their corresponding score from 

the reference set of all possible SNVs in DHS regions. This resulted in !scores for each 

PWM-cancer type combination. We also calculated the median !score for each TF family 

and generated heatmaps in Prism version 8.3.1. Furthermore, we calculated the observed 

!scores for gainability and disruptability for the 741 TFs for individual samples having 

more than 5,000 SNVs located in DHSs. Heatmaps comparing !scores for individual 

samples and TFs were generated using the R package ComplexHeatmap (Gu, Eils, and 

Schlesner 2016). Finally, we downloaded SNVs caused by UV-light (Kucab et al. 2019) 

and these SNVs were filtered to obtain !scores for each parameter in DHS regions as 

described for the PCAWG analysis. We calculated the correlation of the UV-light derived 

!scores for gainability and disruptability to the corresponding !scores from skin cancer 

PCAWG samples. 

Statistical analysis 
 

Custom R scripts and Prism were used for statistical analysis. Correlation tests were 

performed using the Pearson correlation coefficient and group comparisons were 

performed using Kruskal-Wallis rank-sum test. 
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Results 

Estimating the effects of SNVs in creating and disrupting TFBS 
 

To predict the effect of each possible SNV in transcriptional control regions on TF 

binding, we focused DHS regions, which are generally associated with transcriptionally 

active or poised genomic regions. We calculated binding scores for 1,898 PWMs available 

in CIS-BP (Weirauch et al. 2014) corresponding to 741 human TFs, for each reference and 

alternative allele. For each PWM-SNV combination, we determined whether the 

alternative allele created or disrupted a TFBS. Then, we defined two parameters: 

‘gainability’ as the probability of a random SNV creating a binding site for a given TF, and 

‘disruptability’ as the probability of a random SNV disrupting an existing binding site for 

a given TF (Figures 3.1A-B). We also determined the gainability and disruptability scores 

genome-wide, and contrasted to that of DHS and gene promoter regions. We detected a 

wide range of distributions of gainability and disruptability scores for different TFs 

spanning five orders of magnitude which highly anti-correlated with the information 

content of the PWMs. We found a strong correlation for both scores between the different 

genomic regions suggesting that there is no clear a priori preference for random mutations 

to lead to gain or disrupt TFBSs both for regulatory regions and the whole genome. 

Interestingly, we found a higher disruptability for AP-1 TFs (e.g., FOS, FOSL1, FOSL2, 

JUN, JUNB, JUND), TAL1, and NFE2 in DHSs than in promoter regions, consistent with 

previous findings that these TFs are enriched in enhancer regions (Gerstein et al. 2012; 

Dunham et al. 2012). Conversely, SP1-9 TFs display a higher disruptability in promoter 
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regions, consistent with known roles of SP factors in regulating RNA Pol II recruitment to 

core promoters and regulating transcriptional activity. 

 

Figure 3.1 Prediction of the effect of SNVs on TF binding in DHSs. (A-D) The distribution of 
gainability (A), disruptability (B), hitability (C), and robustness (D) in DHSs were calculated for 
all TFs with available motifs in CIS-BP and binned by TF family. Significant differences for each 
parameter between a TF family and all TFs were calculated using a Mann-Whitney U test. * p < 
0.05. (E) The correlation between each of the four parameters was estimated using the Pearson 
correlation coefficient. 

TFs from the same DNA binding domain (DBD) family often have similar DNA 

binding preferences, in particular for certain families such as homeodomains, ETS factors, 

bHLH factors, and nuclear receptors, and are frequently different between TFs from 

different families (Weirauch et al. 2014). Thus, we expected different TF families to differ 

in gainability and disruptability scores. Indeed, we observed that homeodomain and 

forkhead TFs have a higher gainability than other TFs whereas bZIP, ZF-C2H2, nuclear 

receptors, and T-box have a lower gainability (Figure 3.1A). A similar trend was observed 
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for disruptability of these TF families (Figure 3.1B), suggesting that homeodomains and 

forkhead TFs are more likely to be rewired by SNVs than other TF families. This is likely 

due to the short homeodomain and forkhead TF motifs, as we observed that gainability and 

disruptability are overall anti-correlated with motif length and information content. 

The likelihood of SNVs disrupting TFBSs for a TF is influenced by two parameters: 

1) hitability (i.e., the probability of a SNV residing within an existing TFBS), and 2) 

robustness (i.e., the chance that a SNV in a TFBS for such TF would not affect TF binding). 

In this way, disruptability is equal to the product of hitability and 1 – robustness. Of these 

two parameters, hitability has a larger impact on the difference in disruptability between 

TFs as it spans five orders of magnitude compared to robustness which spans only one 

order of magnitude (Figure 3.1C-D). Interestingly, although hitability, gainability, and 

disruptability are all highly correlated with each other (Figure 3.1E), in part driven by the 

information content of the PWMs, robustness is lowly correlated with these parameters 

(Figure 3.1E). Further, contrary to the other parameters, robustness is correlated to the 

information content per base in the PWM which has low variantion between TFs, rather 

than the total information content. 

Evidence of noncoding selection in population-wide SNVs 
 

The human population displays high variability in genome sequence with close to 

100 million SNVs being reported (Auton et al. 2015). Most of these SNVs reside in 

noncoding regions of the genome potentially creating or disrupting TFBSs (Maurano et al. 

2012; 2015; Hindorff et al. 2009). The vast majority of these SNVs are expected to be 

neutral and be depleted of SNVs under negative selection. Thus, we hypothesized that 
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SNVs present in the population would be depleted in those that alter TF binding, as changes 

in gene expression are expected to be evolutionarily constrained. To study the effect of 

population-wide genetic variation on TF binding, we analyzed SNVs from the 1000 

Genomes Project (Auton et al. 2015) located in DHS regions and determined gainability, 

disruptability, hitability, and robustness scores for each TF. We compared these parameters 

to a reference set derived from a random sampling of mutations based on the mutational 

frequency of each of the twelve types of SNV changes in the 1000 Genomes Project set. 

Interestingly, 89.2% of the TFs show a significantly higher gainability score than the 

reference (Figure 3.2A). In contrast, 66.8% of the TFs show a significantly lower 

disruptability for the population-wide SNVs (Figure 3.2B). These results suggest a 

selection of population-wide SNVs against disrupting existing TFBSs and a positive 

selection towards creating TFBSs.  
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Figure 3.2 Differential parameter scores for population-wide and cis-eQTL SNVs. (A-D) 
Correlation between scores derived from SNVs from the 1000 Genomes Project (1000 genomes) 
and the average of 100 random sets of 1,000,000 SNVs (reference) for gainability (A), 
disruptability (B), hitability (C), and robustness (D). Correlation was determined by the Pearson 
correlation coefficient. Significantly enriched (red) and depleted (blue) TFs are highlighted. (E-H) 
!scores (observed in set – reference) for each parameter for all TFs and specific TF families for 
population-wide and cis-eQTL SNVs. Significant differences between the population-wide and cis-
eQTL scores were determined by a Mann-Whitney U test. * p < 0.05. 

We further calculated the hitability and robustness scores for population-wide 

SNVs to explore the mechanisms of the negative selection observed for disruptability. 
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Strikingly, we found that even though hitability is similar between population-wide SNVs 

and the reference (Figure 3.2C), population-wide SNVs show higher values for robustness 

for 81.6% of TFs (Figure 3.2D). These results suggest that the negative selection towards 

TFBS disruption in population-wide SNVs is mainly driven by the selection for SNVs that, 

even though they may reside within existing TFBSs, they do not perturb TF binding. 

cis-eQTL SNVs display a high likelihood to create and disrupt TFBSs 
 

Previous studies on cis expression quantitative trait loci (cis-eQTLs) have identified 

functional sets of SNVs in transcriptional control regions associated with changes in target 

gene expression (Aguet et al. 2017). We compared the scores of cis-eQTL and population-

wide SNVs for each parameter in this study to the reference score obtained from a random 

sampling to generate !scores (SNV group - reference). We found high !gainability and 

!disruptability scores for all TF families in the cis-eQTL SNV set compared to the !scores 

for the population-wide set (Figure 3.2E-F). This suggests that cis-eQTLs are enriched in 

SNVs that create or disrupt TFBSs which likely contributes to their effect in differential 

gene expression. We further investigated the effects on cis-eQTLs disruptability and found 

that cis-eQTL SNVs lead to higher !hitability and lower !robustness scores than 

population-wide SNVs (Figure 3.2G-H). These findings suggest that the increased 

disruptability by cis-eQTLs SNVs is due to both an increase in SNVs being located in 

existing TFBSs and by affecting bases with higher information content within those 

TFBSs. 

Cancer somatic mutations display cancer-and TF family-specific effects on TFBS 
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Cancer is characterized by the presence of somatic SNVs in tumors, more than 90% 

of which reside in noncoding regions of the genome (Araya et al. 2016b). It has been shown 

that different cancer-types display different mutational signatures driven by different 

mutation and DNA repair mechanisms (Alexandrov et al. 2013; 2020). Given the DNA 

binding specificity differences between TFs, we hypothesized that mutational signatures 

specific to different cancer-types may affect TFBSs differentially across TF families. To 

investigate this hypothesis, we selected SNVs located in DHS regions from 20 cancer types 

from 2,658 tumor samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

Consortium (Campbell et al. 2020) and calculated, for each TF, its !gainability, 

!disruptability, !hitability and !robustness scores relative to the reference scores in DHSs.  

 We found higher !gainability scores for forkhead and Sox families across many 

cancer-types (Figure 3.3A), with the highest enrichment in colon/rectum cancer. This is 

consistent with studies showing that the forkhead TFs FOXO3 and FOXA1, which have a 

2 and 2.4-fold increase in gainability in colon/rectum cancer respectively, promote colon 

cancer proliferation (Gao et al. 2019). Similarly, overexpression of FOXJ1 has been linked 

to progression of colorectal cancer by promoting translocation of #-catenin (K. Liu, Fan, 

and Wu 2017). Sox TFs are also associated with cancer, including SOX11 that shows a 

1.5-fold increase in gainability in breast cancer and that has been correlated with breast 

cancer growth and invasion (Shepherd et al. 2016). Overall, these results support a positive 

selection to gaining and maintaining forkhead and sox TFBSs in multiple cancers.  
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Figure 3.3 Effect of cancer somatic mutations on TFBSs. (A-D) Median !scores for each TF 
family and cancer-type combination for gainability (A), disruptability (B), hitability (C), and 
robustness (D). (E-F) Motifs logos for NFATC4 (E) and ELF4 (F) and impact of melanoma 
mutational signatures on the gain and disruption of the corresponding motifs. 

Other associations for !gainability scores between TF families and cancer-types 

are more specific. For example, we found gain of homeodomain TFBSs to be highly 

enriched in colon cancer (Figure 3.3A). Indeed, HOXA3, a homeodomain TF that shows a 

1.5-fold increase in gainability, has been shown to promote colon/rectum cancer (X. Zhang 

et al. 2018). Other TFs from the homeodomain subfamilies HOXB and HOXD have also 

been found to be up-regulated in cancer (S. Yang et al. 2018; de Bessa Garcia et al. 2020), 

displaying an average 2.8 and 2.4-fold increase in gainability across the subfamily, 
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respectively. Furthermore, skin cancer shows an enrichment in gain of rel TFBSs, which 

is mainly driven by the NFAT subfamily. In particular, NFATC3 (3.8-fold increase in 

gainability) is highly expressed in skin cancer and is associated with cell transformation 

and tumor growth in this cancer type (Xiao et al. 2017). Conversely, we found a depletion 

to gain TFBSs from the bHLH, bZIP, and ZF-C2H2 families in skin cancer. In particular, 

we found that all of CREB TFs from the bZIP family show a negative !gainability in skin 

cancer, where these TFs have been reported to inhibit tumor growth and metastasis (Xie et 

al. 1997). In addition, ZBTB7A, a ZF-C2H2 TF with a 2.3-fold decrease in gainability in 

skin cancer, suppresses melanoma metastasis (X. S. Liu et al. 2015).  

In contrast to !gainability, we found negative !disruptability scores for forkhead, 

homeodomain, nuclear receptor, rel, sox and T-box families across most of the 20 cancer 

types analyzed (Figure 3.3B). These results suggest a negative selection towards disrupting 

TFBSs for these families. Contrary to what we observed for population-wide SNVs where 

the reduced !disruptability was associated to an increase in !robustness, the reduced 

disruption for cancer mutations is associated with both an increase !robustness and a 

reduced !hitability, suggesting negative selection (Figure 3.3C-D). The only exceptions 

having a higher !disruptability score correspond to rel and ETS TFs in skin cancer, many 

of which have been associated with melanoma. This is consistent with the frequency of 

triplets matching the mutational signatures of melanomas (TCN!TTN and CCN!CTN) 

(Alexandrov et al. 2020) within motifs of rel factors such as NFATC4 (Figure 3.3E) and 

ETS factors such as ELF4 (Figure 3.3F). Altogether, our results suggest that cancer 
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mutations lead to a net increase in TF binding sites for forkhead, homeodomain, nuclear 

receptor, rel, sox and T-box families.  

Different tumors, even from the same cancer-type, can have different mutational 

signatures. Thus, we determined the !gainability and !disruptability profile for 162 highly 

mutated tumors (>5,000 SNVs in DHSs) across 741 TFs. We observed a similar overall 

clustering pattern across tumors (Figure 3.4A-B). Interestingly, all highly mutated skin 

cancer samples clustered together showing a similar pattern of gain and loss of TFBSs. 

This pattern is highly correlated to that of SNVs introduced by treating cell lines with UV 

light (!gainability, r=0.75, p-value<2x10-16 and !disruptability, r=0.78, p-value<2x10-

16) (Figure 3.4C-D), consistent with UV light being a major mutational driver of skin 

cancer SNVs. Surprisingly, colon/rectum tumor show two subtypes, where one subtype 

shows depletion of bZIP, bHLH and C2H2 zinc finger TFs and an enrichment of 

homeodomain TFs and the other subtype shows the opposite profile for both !gainability 

and !disruptability (Figure 4A-B). The origin of these subtypes remains to be determined. 
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Figure 3.4 Effect of cancer somatic mutations in individual cancers on !gainability and 
!disruptability. (A-B) For cancer samples with at least 5,000 SNVs in DHS regions, we 
determined for each TF the !gainability (A) and !disruptability (B) scores. Samples were 
clustered using hierarchical clustering, and TF were clustered by TF families. Cancer-types are 
indicated at the top and TF families are indicated at the right of each heatmap, respectively. (C-D) 
Correlation between UV-light-derived !gainability (C) and !disruptability (D) scores for each TF 
to those observed in skin cancer. Correlation calculated by the Pearson correlation coefficient. 

 

Discussion 
 

In this study, we generated a comprehensive database of altered TFBSs by mutating 

all possible SNVs across the genome. Using this resource, we determined the gainability, 
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disruptability, hitability, and robustness scores for 741 TFs across the genome, promoters, 

and DHS regions. We found differences in gainability and disruptability scores between 

TF families. Interestingly, we found lower gainability and disruptability values for bZIP, 

C2H2 ZF, nuclear receptors, and T-box, showing that binding sites for these TF families 

are less likely to be affected by SNVs. In contrast, forkhead and homeodomain display 

higher scores for both gainability and disruptability, suggesting a higher rewiring potential 

of the gene regulatory networks controlled by these TFs. Whether in vivo binding site 

occupancy for these TFs is actually rewired across evolution or between individuals in the 

human population, remains to be determined. 

We showed that functional cis-eQTL SNVs are more likely to perturb TFBSs than 

common SNVs in the human population. In addition, we observed that somatic mutations 

in cancer have differential effects on TFBSs for multiple TF families and discuss how these 

profiles are related to distinct cancer mechanisms. Altogether, this database provides 

blueprint to study the impact of SNVs on genetic variation and cancer. In addition, our 

results can be implemented further in methods to identify functional SNVs in sequencing 

data, as our estimated probabilities can be used as background probabilities to compare 

germline or somatic mutations associated with disease in a given cohort. 

By comparing the genome-wide gainability and disruptability to the respective gene 

regulatory regions, we found that score for different genomic regions are highly correlated. 

This suggests that SNVs are likely to affect TFBSs across the genome in a similar manner, 

independent of the genomic function. We hypothesize that the difference between genome-

wide and gene regulatory regions is determined by the complex gene regulatory logic that 
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govern TF binding to transcriptional control region rather than the TFBSs themselves. 

These include factors such as the proximity, co-occurrence, and orientation of TFBSs, as 

well as cooperative or competitive binding/regulation between TFs (Spitz and Furlong 

2012; Claussnitzer et al. 2014).  

By analyzing the parameter patterns of population-wide SNVs we showed that 89% 

of TFs showed increased gainability. However, this increase is significantly lower to the 

higher gainability values found in cis-eQTLs SNVs that correspond to expression 

perturbing SNVs. In contrast, 67% of TFs showed a decrease in disruptability by the 

population-wide SNVs, whereas the cis-eQTL SNVs displayed an increase in disruptability 

scores. Interestingly, this difference is driven by two factors: a higher likelihood of cis-

eQTL SNVs to reside within a TFBS and a higher likelihood of population-wide SNVs that 

land in a TFBS to retain it. These results can be explained by most population-wide SNVs 

being neutral, not affecting gene expression; however, there is a tendency for positive 

selection of gain of TFBSs and negative selection for loss of TFBSs. This suggests a higher 

selective pressure to maintain existing TFBSs which function together with other TFs 

within specific cis regulatory logics, while gain of TFBSs can provide evolutionary 

plasticity.  

To our knowledge, this is the first database that predicts the effect of all possible 

SNVs on TF binding. The database of genome-wide altered TFBSs generated in this study 

and the gainability, disruptability, hitability and robustness parameters calculated for each 

TF provide a powerful resource to predict the effect of SNVs on TF binding and provide a 

background for further studies in specific transcriptional control regions or produced by 



 

 

92 

SNVs present in specific patient cohorts. Other applications of this resource include 

studying the potential of repetitive elements as latent reservoirs of TFBSs and uncovering 

the role of other disease associated SNV sets and carcinogen signatures. Ultimately, the 

integration of other datasets such as i TF dimer motif specificities, TF motifs in the context 

of nucleosomal DNA (F. Zhu et al. 2018), and the inclusion of new TF motifs as they 

become available, will lead to a more comprehensive model of the effect of SNVs on 

TFBSs. 
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Chapter 4. Discovery and characterization of cancer driver mutations in gene 

promoters 

Adapted from the following manuscripts: 

1.! Carrasco Pro S, Bray D, Hook HJ, Yin M, Bulekova K, Gregor B, Labadorf A, 

Tewhey R, Siggers T, Fuxman Bass JI, 2020. Discovery and characterization of 

cancer driver mutations in gene promoters. In preparation. 

Introduction 

Cancer initiation and progression often originates from environmentally induced or 

spontaneous mutations, and/or inherited genomic variants that increase cancer risk 

(Alexandrov et al. 2013; Helleday, Eshtad, and Nik-Zainal 2014b; Ding et al. 2018). Large 

scale projects such as the Cancer Genome Atlas (TCGA) and the International Genome 

Consortium (ICGC) have identified millions of somatic SNVs in tumors(Weinstein et al. 

2013; Hudson et al. 2010). However, in most cases, it is not known whether these mutations 

affect any cellular function, confer growth advantage, and are causally implicated in cancer 

development (Pon and Marra 2015). This is because only a few cancer driver mutations are 

needed to drive tumor initiation and growth and these mutations have to be distinguished 

from thousands of passenger mutations (Pon and Marra 2015). The vast majority of these 

cancer drivers have been identified in coding regions. Even though more than 90% of 

somatic SNVs are located in noncoding regions, only a handful of noncoding cancer drivers 

have been identified (Khurana et al. 2016).  

Noncoding variants (NCVs) may affect the binding of transcription factors (TFs) 

and cofactors (CoF) leading to changes in gene expression (Khurana et al. 2016). For 
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example, TERT overexpression is a major contributor to cancer and has been shown to be 

caused by NCVs in its promoter that create Ets factors binding sites (Susanne Horn et al. 

2013; Huang et al. 2013; Shrestha et al. 2019). Other examples of characterized noncoding 

cancer drivers include NCVs in the promoters of FOXA1, HES1, SDHD, PLEKSH, among 

others (Weinhold et al. 2014; Rheinbay et al. 2017; Piraino and Furney 2017). Further, the 

analysis of 2,568 cancer whole genome samples from the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) predicted driver NCVs in the promoters of 9 genes and estimated 96 

potential driver NCVs gene promoters within this cohort (Rheinbay et al. 2020). Whether 

this is due to a limited contribution of NCVs to cancer or to limitations of current 

approaches to predict NCV drivers remains to be determined. 

Computational methods to predict driver NCVs, collectively called mutational 

burden tests, are based on determining an increased mutational rate (MR) in cis-regulatory 

elements (CREs) compared to a background mutational rate (BMR) (H. Li 2011; 

Martincorena et al. 2017; Shuai et al. 2020; Lanzós et al. 2017; Lochovsky et al. 2015; M. 

S. Lawrence et al. 2014; Nik-Zainal et al. 2016; Juul et al. 2017; Hornshøj et al. 2018). 

These methods consider different parameters to estimate the BMR such as cancer-specific 

mutational signatures, sequence conservation, functional annotations, and mutational rates 

in neighboring regions or other “similar” genomic regions. In addition, other covariates 

may be used such as replication timing, expression levels, and motif analysis. These 

mutational burden tests have only identified a handful of drivers NCVs given that most 

NCVs are passenger and that the BMR is locus specific (Rheinbay et al. 2020). Thus, 

studies have focused on cancer-associated genes or proximal promoters to increase the 
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predictive power of these methods. Given the reduced number of predicted driver NCVs, 

studies have used low-throughput methods for experimental validation such as report 

assays, EMSAs, and allelic imbalance in gene expression or TF binding.  

Here, we developed a novel TF-aware burden test (TFABT) based on the 

hypothesis that creating (or disrupting) a TFBS at different positions within a gene 

promoter is likely to lead to similar effects on target gene expression. It has been reported 

that TF binding sites in promoters and enhancers frequently occur in homotypic clusters 

and regulate gene expression through cooperative and non-cooperative mechanisms. This 

TFABT identifies promoters containing a higher than expected number of mutations across 

patients that create/disrupt a specific TFBS in a CRE using a binomial test. We predicted 

2,555 cancer driver NCVs in the promoters of 813 genes across 20 cancer types. These 

genes are enriched in cancer-related genes, essential genes, and their expression levels are 

associated with cancer prognosis. More importantly, we validated 765 NCVs using 

massively parallel reporter assays (MPRAs) and observed a similar validation rate to 

known drivers. Finally, we found that 604 NCVs show differential cofactor recruitment by 

comprehensive assessment of complex assembly at DNA elements (CASCADE).  

Materials and Methods 

Altered transcription factor binding predictions 
 

To predict the effect of all possible SNVs in the human genome on TF binding, for 

each possible SNV and each TF with available PWMs, we determined the binding score 

corresponding to the reference and SNV sequences. We downloaded 1898 position weight 

matrices (PWMs) corresponding to human TFs from CIS-BP on April 3 2018 (Weirauch 
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et al. 2014) and their corresponding TF family. Given a PWM of length n and a genomic 

position (hs37d5 from the 1000 Genome Project), for each of the 2n-1 DNA sequences on 

each strand of length n that overlap with the genomic position, we determined a TF binding 

score using the function:  

 

where s is a genomic sequence of length n, M is the PWM with n columns and each 

column in M contains the frequency of each nucleotide in each position i=1,…,n, and bsi 

is the background frequency of nucleotide si (we assume a uniform distribution). The 

highest score obtained for the 4n-2 sequences was assigned as the binding score 

corresponding to the PWM for the reference or alternate SNV alleles. Significant scores 

were selected and reported based on TFM-p-value (Touzet and Varré 2007) score 

thresholds determined using a significance level "=10-4. This method was applied for each 

reference position and the three possible SNVs for the complete genome (hs37d5) to create 

the altered TFBS database, a genome-wide catalogue of SNV-TF effects. Custom C scripts 

were developed to generate this dataset using GPUs and the data was stored in the Hadoop 

servers at Boston University (www.github.com/fuxmanlab/altered_TFBS). 

ChIP-seq allelic imbalance analysis 
 

To estimate optimal threshold(s) of motif scores differences for a given PWM 

between a reference allele and SNV allele to predict allelic imbalance in TF binding, we 

used available ChIP-seq experimental data. ChIP-seq experiment FASTQ files were 

downloaded from the ENCODE Project (Davis et al. 2018) for 14 datasets (55 experiments) 
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performed in cell lines with normal karyotype (Table 4.1). The files were aligned using 

BWA (H. Li and Durbin 2009) and pre-processed using standard GATK methodology 

(Depristo et al. 2011). Variant calling was performed on the aligned BAM files using 

GATK Variant Discovery pipeline (Depristo et al. 2011) and BCF Tools (H. Li 2011). The 

intersection of variants from both tools was used to extract the allele read counts for each 

variant. Allelic imbalance analysis was performed for heterozygous positions in promoters 

for each experiment. A binomial test was used to identify SNV located in positions were 

reads were not evenly distributed (0.5 for each allele). 
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Table 4.1 ChIP-seq experiments downloaded from ENCODE. 

Differential binding events were calculated by comparing the motif score of each 

SNV to its reference allele. Thresholds of two types were generated for gain/disruption of 

TFBSs to determine their ability to predict ChIP-seq allelic imbalance: 1) when only the 

reference or alternate allele pass the binding threshold for the motif determined by TFMp-

value (Touzet and Varré 2007), or 2) when at least one allele passed the motif binding 

threshold and the difference in score between alleles (!allele score) is above a certain value 

ranging from 0 to 7. To benchmark our predictions, for each TF, we used SNVs in allelic 

imbalance in ChIP-seq as true positives and those not in allelic imbalance as true negatives, 

and compared to predicted gain/loss of TFBSs in the same direction as the allelic imbalance. 

F-values and relative accuracies were calculated for all thresholds (Figure 4.1). We further 

selected the first threshold, and motif score differences of two and three from the second 

type of threshold. 
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Figure 4.1. ChIP-seq allelic imbalance F-scores versus !allele score threshold. Arrows show 
selected thresholds. 

Processing of PCAWG mutational data 
 

We identified coding regions by filtering “coding_regions” of the GENCODE v19 

(Harrow et al. 2012) (Jun 14 2018) annotation. Promoters were defined as regions between 

-2 kb to +250 bp from the transcription start site (TSS) from any protein coding region. In 

the case of overlapping alternative promoters, we merged the regions to prevent over 

counting. We used the R package IRanges (M. Lawrence et al. 2013) to determine the 

promoter coordinates and BEDTools (Quinlan and Hall 2010) was used to remove 

promoter coordinates overlapping with coding regions (e.g., in cases with genes with 

alternative promoters). We downloaded VCF files of 2,654 samples of the PCAWG cohort 

(Campbell et al. 2020) from the ICGC portal (Hudson et al. 2010) (Jan 23 2019) and 

BEDTools intersection command (Quinlan and Hall 2010) was used to identify SNVs in 

promoter regions. 

Generation and use of the TF-aware burden test 
 

We designed the TF-aware burden test to determine whether the number of 

observed SNVs in promoter B that lead to gain (or loss) of a binding site for PWM A is 

more than expected by chance given the total number of mutations observed in promoter 

B across samples within a certain cancer type. The number of promoter SNVs that create 

(or disrupt) a binding site for PWM A in promoter B follows a binomial distribution P(n, 

p), where n is number of SNVs in promoter B across patients, and p is the probability that 

an SNV in B creates (or disrupts) a binding site for PWM A. 

The probability (p) was estimated as equation 1, where F(Bi, Mj) is the probability of  
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changing the reference base at position i in promoter B to the mutated base Mj, C(PWM 

A, Bi, Mj) is 1 if mutating Bi to Mj leads the creation (or distruption) of a binding site for 

PWM A and 0 otherwise, and L is the nucleotide length of promoter B. F(Bi, Mj) was 

calculated based on the genome-wide mutational frequencies in a cancer type, whereas 

C(PWM A, Bi, Mj) was determined by calculating the motif score difference between the 

sequence surrounding position i for the reference and alternate alleles. These motif scores 

were obtained by querying the altered TFBS database. We used thresholds obtained from 

TFMp-value algorithm (Touzet and Varré 2007) to determine whether a motif score is 

significant, and the three different thresholds selected from the ChIP-seq allelic imbalance 

analysis. For a given set of SNV samples, we calculated P(n, p) for each PWM- promoter 

pair and each of these three thresholds independently and corrected for multiple hypothesis 

testing using FDR. To increase the confidence in our predictions, only PWM-promoter 

associations that are significant with an FDR < 0.01 using all three !score thresholds were 

considered. Then we selected SNVs from the PCAWG samples (Campbell et al. 2020) 

located in the significant promoters that were associated with differential score of the 

corresponding PWM. For predicted driver SNVs, we used the union of significant 

associated PWM from any of the three thresholds. We used the TFABT for each of the 20 

cancer types sample set and a pan-cancer analysis to identify predict driver SNVs. 

Computational validation of cancer driver candidates 
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To determine the pathways associated with the 813 genes with predicted driver 

NCVs, we used Metascape “Express Analysis” (Zhou et al. 2019) function on this gene set 

to identify its significantly enriched pathways. In addition, to determine if the 813 genes 

are enriched in known cancer associated genes, we downloaded the Cancer Gene Census 

(CGC) list of genes from the COSMIC database (Sondka et al. 2018) (Aug 2 2018) and 

calculated the odds ratio (OR) for enrichment of the 813 genes in CGC. We also filtered 

the CGC gene list by the 741 TFs used in this study, to obtain a list of known cancer 

associated TFs. We determined the enrichment of known cancer associated TF in the 404 

TF predicted to be associated with altered binding site (creation/disruption) by the TFABT 

predicted driver NCVs.  

To determine whether our list of predicted driver genes in enriched in essential 

genes, we used the list essential genes from cancer cell lines from DepMap (Meyers et al. 

2017) (May 5 2020) and fitness associated genes from Project Score (fitness genes for three 

or more cell lines) (Behan et al. 2019) (May 5 2020). We determined the proportion of the 

813 predicted driver genes, and CGC genes, which are essential or are fitness related and 

compared to that of other protein coding genes using a proportion comparison test.  

Gene expression levels have been associated with cancer prognostics 

(favorably/unfavorably) (The Human Protein Atlas, downloaded April 29 2019) (Uhlen et 

al. 2017). Genes were classified as being associated exclusively with favorable or 

unfavorable prognostics, or a mix (either) of the two. We determined the enrichment of 

prognostic associated (favorable, unfavorable, and either) genes in the 813 driver gene set 

and CGC gene set using a proportion comparison test.  
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Structural variation has been associated with changes in gene expression. We 

obtained genes associated with changes in gene expression caused by structural variation 

across 21 TCGA cohorts (A. Li et al. 2019) (May 25 2020). We filtered this gene set for 

genes with altered gene expression in more than five cancer types. Similarly, we calculated 

an enrichment of these genes in the 813 driver gene set and in the CGC genes using a 

proportional comparison test. 

MPRA library construction 
 

The MPRA library was constructed as previously described in Tewhey et al. 

(Tewhey et al. 2016). Briefly, oligos were synthesized (Agilent Technologies) as 230 bp 

sequences containing 200 bp of genomic sequences and 15 bp of adaptor sequence on either 

end. Unique 20 bp barcodes were added by PCR along with additional constant sequence 

for subsequent incorporation into a backbone vector by Gibson assembly. The oligo library 

was expanded by electroporation into NEB 10-beta E. coli, and the resulting plasmid 

library was sequenced by Illumina 2 ' 150 bp chemistry to acquire oligo-barcode pairings. 

[DB2] The library underwent restriction digestion, and GFP with a minimal TATA 

promoter was inserted by Gibson assembly resulting in the 200 bp oligo.] sequence 

positioned directly upstream of the promoter and the 20 bp barcode falling in the 3’ UTR 

of GFP. After expansion within E. coli the final MPRA plasmid library was sequenced by 

Illumina 1 ' 31 bp chemistry to acquire a baseline representation of each oligo-barcode 

pair within the library. 

MPRA library transfection into cell lines 
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Jurkat cells were grown in RPMI with 10% FBS to a density 1M cells per mL prior 

to transfection. HT-29 cells were cultured in Mocoy’s 5a media with 10% FBS and SK-

MEL-28 in EMEM supplemented with 10% FBS. Six transfection replicates were 

performed on separate days by collecting 90M cells and splitting across nine 100 uL 

transfections each containing 10 µg of MPRA plasmid. Cells were electroporated with the 

Neon Transfection System (100 µl kit) using 3 pulses at 1550v for 10ms. After transfection 

each replicate was split between two T-175 flasks with 150 mL of culture media for 

recovery. After 48 hours, the cells were pelleted, washed three times with PBS and stored 

at -80 C for later extraction. 

RNA isolation and MPRA RNA-seq library generation 
 

RNA for all cell lines was extracted from frozen cell pellets using the Qiagen 

RNeasy Maxi kit. Half of the isolated total RNA underwent DNase treatment and a mixture 

of 3 GFP-specific biotinylated primers (#120, #123 and #126) were used to capture GFP 

transcripts with Streptavidin C1 Dynabeads (Life Technologies). An additional DNase 

treatment was performed, cDNA synthesized from GFP mRNA using SuperScript III and 

purified with AMPure XP beads. Quantitative PCR using primers specific for the GFP 

transcript (#781 and #782) was used to measure GFP transcript abundance in each sample. 

Replicates within each cell type were diluted to approximately the same concentration 

based on the qPCR results. Illumina sequencing libraries were constructed using a two-step 

amplification process to add sequencing adapters and indices. An initial PCR amplification 

with NEBNext Ultra II Q5 Master Mix and primers 781 and 782 were used to extend 

adapters. To minimize overamplification during library construction the number of PCR 
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cycles used in the first amplification was selected based on where linear amplification 

began for each cell type (Jurkat: 10 cycles, SK-MEL-28 & HT-29: 13 cycles).  A second 6 

cycle PCR using NEBNext Ultra II Q5 Master Mix added P7 and P5 indices and flow cell 

adapters. For SK-MEL-28 samples we failed to recover enough product during the first 

amplification and processed the second total RNA aliquot using the same protocol, pooling 

the two preparations prior to sequencing. The resulting MPRA RNA-tag libraries were 

sequenced using Illumina single-end 31 bp chemistry (with 8 bp index read), clustered at 

80-90% maximum density on a NextSeq High Output flow cell. 

 

Table 4.2 (A) Primers used in MPRA experiments and (B) Illumina Adaptor/Index Primers 
for Second PCR. 

MPRA data analysis 
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Data from the MPRA was analyzed as previously described (Tewhey et al. 2016). 

Briefly, the sum of the barcode counts for each oligo were provided to DESeq2 (Love, 

Huber, and Anders 2014) and replicates were median normalized followed by an additional 

normalization of the RNA samples to center the average RNA/DNA activity distribution 

of the 506 negative control sequences over a log2 fold change of zero. This normalization 

was performed independently for each cell type. Dispersion-mean relationships were 

modeled for each cell type independently and used by DESeq2 in a negative binomial 

distribution to identify oligos showing differential expression relative to the plasmid input. 

Oligos passing a false discovery rate (FDR) threshold of 1% were considered to be active. 

For sequences that displayed significant MPRA activity, a paired t-test was applied on the 

log-transformed RNA/plasmid ratios for each experimental replicate to test whether the 

reference and alternate allele had similar activity. An FDR threshold of 5% was used to 

identify SNPs with a significant skew in MPRA activity between alleles (allelic skew). 

Mutational signatures for MPRA validated drivers 
 

SNVs can be caused by multiple mutational processes such as UV-light or 

APOBEC activities. We used ICGC probabilities for each SNV-donor combination to 

assign them a given mutational process if its probability is greater than 0.5 as described 

(Rheinbay et al. 2020). These processes were used to compare the MPRA validation rate 

difference between SNVs derived and not derived from a given mutational process. We 

used UV-light associated signatures (Rheinbay et al. 2020) 

BI_COMPOSITE_SNV_SBS7a_S, BI_COMPOSITE_SNV_SBS7b_S, 

BI_COMPOSITE_SNV_SBS7c_S, BI_COMPOSITE_SNV_SBS3_P, 
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BI_COMPOSITE_SNV_SBS55_S, BI_COMPOSITE_SNV_SBS67_S, 

BI_COMPOSITE_SNV_SBS75_S and APOBEC related signatures 

BI_COMPOSITE_SNV_SBS2_P, BI_COMPOSITE_SNV_SBS13_P, 

BI_COMPOSITE_SNV_SBS69_P. 

Normalized gene expression analysis 
 

We downloaded aligned BAM files corresponding to 1,366 samples from ICGC. 

BAM files were converted to FASTQ files using the SAMtools fastq (H. Li et al. 2009) 

function. Then, we used Salmon (Patro et al. 2017) to quantify the expression of the human 

transcriptome (Esembl, May 30 2019) in transcripts per million (TPM). We summed the 

expression of each gene transcript to obtain the gene TPM expression. 

We calculated a reference expression value for each gene-cancer type combination 

based on the median TPM expression across donors who do not have any mutation in the 

gene promoter. For each donor and gene with a predicted driver NCV in its promoter, we 

calculated the normalized TPM expression as log10( DE:EFGHI:I%JKL
FIMIFI:NI%HI:IGNO:NIF%PQRI%JKL

/%, where 

values greater than 0 are associated with overexpression and values less than 0 with 

underexpression of genes with predicted driver SNVs. This analysis resulted in a dataset 

of normalized expression values for gene-donor pairs associated with predicted drivers. 

Association of creation and disruption of TFBS with target gene expression 
 

To estimate optimal threshold(s) of motif scores differences for a given PWM 

between a reference al Predicted driver NCVs in gene promoters may alter binding of 

multiple TFs. For each cell line, we determined the transcriptional effect (from MPRA) of 
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NCVs associated with the creation and disruption of a given TF and calculated the 

activation ratio of TF activation/TF repression: 

STUV7%NFIOPI%JWXT%O:D%PFO:7NF(RP%EYIFIZRFI77(E:[%STUV7%D(7F\RP%JWXT%O:D%PFO:7NF(RP%\:DIFIZRFI77(E:[<
STUV7%NFIOPI%JWXT%O:D%PFO:7NF(RP%\:DIFIZRFI77(E:[%STUV7%D(7F\RP%JWXT%O:D%PFO:7NF(RP%EYIFIZRFI77(E:[<

  

We selected TFs that had a log10(ratio) greater than 0.5 in at least two of the three 

cell lines, which will suggest these TFs may act as activators. We determined the 

transcriptional effect of activator TFs by comparing the normalized expression of genes 

with associated driver SNVs leading to a TFBS creation and compared its distribution to a 

µ=0 (no effect) using a Kruskal Wallis test. This determined changes in gene expression 

associated with the presence of SNVs affecting activator TFs. A similar approach was used 

for genes with associated driver NCVs leading to a given TFBS disruption. This analysis 

associated the effect of creation or disruption of a TFBS with the over or underexpression 

of its gene targets respectively. 

Cell culture for CASCADE experiments 
 

The cell lines used for CASCADE experiments were obtained from ATCC. Three 

cell lines were used for the CASCADE experiments: Jurkat (ATCC TIB-152), an acute T 

cell leukemia cell line, SK-MEL28 (ATCC HTB-72), a malignant melanoma cell line, and 

HT-29 (ATCC HTB-38), a colorectal adenocarcinoma cell line.  

Jurkat cells were grown in suspension in RPMI 1640 Glutamax media 

(Thermofisher Scientific, Catalog #72400120) with 10% heat-inactivated fetal bovine 

serum (Thermofisher Scientific, Catalog #11360070) and 1mM sodium pyruvate 

(Thermofisher Scientific, Catalog #16140071). T175 (Thermofisher Scientific, Catalog 
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#132903) non-treated flasks were used when culturing JURKAT cells for experiments. 

Cells were grown in 50mL of media when being cultured in T175 flasks. 3 T175 flasks, or 

100 million Jurkat cells, were used for each nuclear extraction.  

SK-MEL28 cells were grown in Eagle’s Minimum Essential Medium (EMEM) 

(ATCC, Catalog #ATCC-30-2003) with 10% heat-inactivated fetal bovine serum. T225 

treated flasks for adherent cells (Corning, Catalog #353138) were used when culturing SK-

MEL28 cells for experiments. Cells were grown in 40mL of media when being cultured in 

T225 flasks. 3 T225 flasks, or 60 million SK-MEL28 cells, were used for each nuclear 

extraction.  

HT-29 cells were grown McCoy’s 5A Medium (EMEM) (ATCC, Catalog #ATCC-

30-2007) with 10% heat-inactivated fetal bovine serum. T225 treated flasks for adherent 

cells (Corning, Catalog #353138) were used when culturing HT-29 cells for experiments. 

Cells were grown in 40mL of media when being cultured in T225 flasks. 3 T225 flasks, or 

60 million HT-29 cells, were used for each nuclear extraction. 

CASCADE protein binding microarray experiments 
 

The nuclear extract protocols are as previously described (P. Zhang et al. 2018). 

Changes to the previously published protocols are detailed. To harvest nuclear extracts 

from Jurkat cells, the cells were collected in falcon tubes. The cells were pelleted by 

centrifugation at 500xg for 5 min at 4°C. The media was aspirated off, taking care to not 

disturb the pellet. The cell pellet was washed once with 1X PBS and 0.1mM Protease 

Inhibitor (Sigma-Aldrich, Catalogue #P8340) and centrifuged again at 500xg for 5 min at 
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4°C. The 1X PBS and 0.1mM Protease Inhibitor was aspirated off. The cell pellet was 

placed on ice.  

To harvest nuclear extracts from SK-MEL28 and HT-29 cells, the media was 

aspirated off and the cells were washed once with 1X PBS. Once the 1X PBS used to wash 

the cells was aspirated off, enough 1X PBS was mixed with 0.1mM Protease to cover the 

cells was added to each flask. A cell scraper was then used to dislodge the cells from the 

flask. The cells were collected in a falcon tube and placed on ice. To pellet the cells, the 

cell volume was centrifuged at 500xg for 5 min at 4°C. The cell pellet was placed on ice.  

Once the cells were pelleted, the supernatant was aspirated off. The pellet was 

resuspended in Buffer A and incubated for 10 min on ice (10mM HEPES, pH 7.9, 1.5mM 

MgCl, 10mM KCl, 0.1mM Protease Inhibitor, Phosphatase Inhibitor (Santa-Cruz 

Biotechnology, Catalogue #sc-45044), 0.5mM DTT (Sigma-Aldrich, Catalogue #4315)) to 

lyse the plasma membrane. After the 10 min incubation, a final concentration of 0.1% 

Igepal detergent was added to the cell and Buffer A mixture and vortexed for 10 sec. To 

separate the cytosolic fraction from the isolated nuclei, the sample was centrifuged at 

500xg for 5 min at 4°C. The cytosolic fraction was collected into a separate microcentrifuge 

tube. The pelleted nuclei were then resuspended in Buffer C (20mM HEPES, pH 7.9, 

1.5mM MgCl, 0.2mM EDTA, 0.1mM Protease Inhibitor, Phosphatase Inhibitor, 0.5mM 

DTT, and 420mM NaCl) and then vortexed for 30 sec. The nuclei were incubated in Buffer 

C for 1 h while mixing at 4°C. To separate the nuclear extract from the nuclear debris, the 

mixture was centrifuged at 21,000xg for 20 min at 4°C. The nuclear extract was collected 

in a separate microcentrifuge tube. To remove the salt from the nuclear extracts, they were 
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desalted using Zeba Spin Desalting Columns (ThermoFisher Scientific, Catalog #89882). 

Prior to flash freezing the nuclear extracts, glycerol was added to the nuclear extracts to 

reach a final concentration of 5%. Nuclear extracts were stored at -80°C until used for 

experiments. 

Microarray DNA double stranding and PBM protocols are as previously described 

(Shi et al. 2016; Valouev et al. 2008a; P. Zhang et al. 2018). Any changes to the previously 

published protocols are detailed. Double-stranded microarrays were pre-wetted in HBS 

(20mM HEPES, 150mM NaCl) containing 0.01% Triton X-100 for 5 min and then de-

wetted in an HBS bath. Next the array was incubated with nuclear extract for 1 h in the 

dark in a binding reaction buffer (20mM HEPES, pH 7.9, 100mM NaCl, 1mM DTT, 

0.2mg/mL BSA, 0.02% Triton X-100, 0.4mg/mL salmon testes DNA (Sigma-Aldrich, 

Catalogue #D7656)). The array was then rinsed in an HBS bath containing 0.1% Tween-

20 and subsequently de-wetted in an HBS bath. After the protein incubation, the array was 

incubated for 20 min in the dark with 20$g/mL primary antibody for the TF or COF of 

interest (Supplementary Table 1). The primary antibody was diluted in 2% milk in HBS. 

After the primary antibody incubation, the array was first rinsed in an HBS bath containing 

0.1% Tween-20 and then de-wetted in an HBS bath. Microarrays were then incubated with 

10$g/mL of either alexa488 or alexa647 conjugated secondary antibody (see 

Supplementary Table 1) for 20 min in the dark. The secondary antibody was diluted in 2% 

milk in HBS. Excess antibody was removed by washing the array twice for 3 min in 0.05% 

Tween-20 in HBS and once for 2 min in HBS in coplin jars as described above. After the 

washes, the array was de-wetted in an HBS bath. Microarrays were scanned with a GenePix 
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4400A scanner and fluorescence was quantified using GenePix Pro 7.2. Exported 

fluorescence data were normalized with MicroArray LINEar Regression (Shi et al. 2016). 

CASCADE-based differential COF recruitment microarray design 
 

We obtained matching survival A high-throughput array-based screen was 

designed to profile differential COF recruitment to the 2,555 predicter driver NCVs, and 

500 no predicted binding NCVs in 26-base DNA probe target regions centered at the SNP 

position (relative to + strand: 13 bases + SNV location + 12 bases) were obtained for each 

reference (REF) allele using BEDTools (Quinlan and Hall, 2010). For each REF allele 

probe, a probe with the corresponding SNV allele was also included in the design such that 

each of the comparisons above is represented by a pair of REF and SNV probes. For 1,523 

of the predicted driver NCVs and 767 no predicted binding SNVs (sampled randomly from 

each full category above), additional REF/SNV probes were included by shifting the 

variant position -5 and +5 bases within the target region of the probe such that each of these 

comparisons were represented in three total registers. The 26-base target regions were 

embedded in larger 60-base PBM DNA probes as follows: 

“GCCTAG” 5’ flank – 26-base target region – “CTAG” 3’ flank – 

“GTCTTGATTCGCTTGACGCTGCTG” double-stranding primer  

5 replicates of each probe in both the reference (+) orientation and reverse (-) orientation 

were included in the final design. The microarrays were purchased from Agilent 

Technologies Inc. (AMAID: 085920, format: 8'60K). 

Analysis of differential COF recruitment 
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Each REF/SNV pair was screened for differential COF recruitment and 

experimental results were preprocessed as above. Z-scores were obtained for each probe 

as previously described (Bray et al., 2020) against the distribution of fluorescence 

intensities obtained at the set of variant-centered no_predicted_binding probes for a given 

experiment. Differential COF recruitment statistics were computed as previously described 

(Bray et al., 2020). Briefly for each REF and SNV allele pair in the design, a t-test was 

used to compare the fluorescence intensity distributions between the 5 REF probes and 5 

SNP probes for a given COF assayed. To mitigate the influence of probe orientation-

specific effects, t-tests were performed independently for each probe orientation with the 

p-values combined using Fisher’s method. For the select sites included in three registers 

(see above), these t-tests were performed across each orientation and each register shift 

independently with the p-values combined using Fisher’s method as above The Benjamini-

Hochberg method was used to adjust the individual p-values for each REF/SNV pair across 

the total number of to account for multiple hypothesis testing. Differential COF recruitment 

was deemed statistically significant if the adjusted p-value (q-value) was below 0.05. The 

fluorescence intensity z-score difference for a given REF and SNV allele probe pair 

(termed (z-score) was computed as previously described (Bray et al., 2020). Briefly, (z-

scores were computed by subtracting the mean REF z-score from the mean SNV z-score 

such that a positive (z-score represents a gain-of-recruitment introduced by the SNV allele 

and a negative (z-score represents a loss. 

Results 

Prediction of noncoding cancer driver SNVs 
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We developed a novel TF-aware burden test (TFABT) that identifies gene 

promoters containing higher than expected number of SNVs across patients that create (or 

disrupt) a TFBS for a particular TF (741 TFs were tested). For each TF-promoter (A,B) 

pair, the method uses a binomial distribution P(x, n, p) to calculate the FDR for the 

observed number of SNVs in promoter B creating (or disrupting) interactions with TF A 

(x) given the total number of observed SNVs in promoter B (n) all patient samples from a 

cancer type and the probability that a random SNV in B creates (or disrupts) a binding site 

for TF A (p).  

We applied the TFABT to predict cancer driver NCVs in gene promoters using 

2,654 tumor samples from the PCAWG cohort corresponding to 20 cancer types  

(Campbell et al. 2020). Driver predictions were performed per cancer type and in a pan-

cancer analysis. In total, we predicted 2,555 candidate driver NCVs in the promoters of 

813 genes, which create/disrupt binding sites of 404 TFs. The majority of predicted driver 

NCVs were obtained from skin cancer (Figure 4.2A). This is not only related to skin cancer 

samples having the largest number of NCVs but also to a higher percentage of those NCVs 

being predicted drivers (Figure 4.3). The majority of predicted driver NCVs (76%) are 

associated with the disruption of existing TFBSs. This is likely related to a higher 

probability of disrupting a TFBS over its creation in cis-regulatory regions or to the 

disruption of a TFBS having a higher likelihood of being functional.  
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Figure 4.2 Driver NCVs prediction and their association with cancer genes and pathways. (A) 
Number of significant NCVs with predicted gain and/or loss of TF binding per cancer type. (B) 
Genes with the most predicted cancer driver NCVs and the percent of patients affected per cancer 
type. (C) Metascape network showing the intra-cluster and inter-cluster similarities of enriched 
gene ontology terms for genes with significant NCVs. (D) Fraction of essential and fitness related 
genes for genes with predicted NCVs, in CGC, or all protein-coding genes. (E) Fraction of genes 
whose expression has favorable, unfavorable (or either) prognosis in cancer for genes with 
predicted NCVs, in CGC, or all protein-coding genes. 

We identified driver NCVs in multiple genes with reported driver NCVs. For 

example, we identified 16 candidate driver NCVs in the promoter of TERT, which included 

the two frequently mutated NCVs in chr5:1295228 C>T and chr5:1295250 C>T (Susanne 
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Horn et al. 2013; Huang et al. 2013). A large fraction of bladder (65%), skin (47%), and 

head/neck (17%) cancer samples contain at least one of TERT candidate driver NCV 

(Figure 4.2B). In addition, we predicted eight candidate driver SNVs in the promoter of 

PLEKHS1, including two previously reported mutations in chr10:15511590 C>T and 

chr10:115511593 C>T (Rheinbay et al. 2017). These candidate driver NCVs were found 

in 39% of bladder cancer samples, with no other cancer type having more than a 5% 

frequency (Figure 4.2B). Furthermore, the TFABT identified previously known drivers in 

ALDOA, DPH3, CCDC107, LEPRROTL1, and TBC1D12 (Rheinbay et al. 2017; 

Denisova et al. 2015). Novel driver candidate SNVs in lymphoid cancers were predicted 

in the BCL6 and BCL2 promoters, which were found in 23% and 21% of lymphoid cancer 

samples, respectively. Finally, predicted driver SNVs in RPL13A, C16orf59, CDC20, 

OXNAD1, PES1, and TRMT10C were found in skin cancer samples with frequencies 

between 21-33% (Figure 4.2B). 
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Figure 4.3. Number of predicted cancer driver NCVs and number of SNVs by cancer type. 

We found multiple lines of evidence showing our predicted driver gene set is 

associated with known cancer related genes, pathways, and functions. First, our predicted 

driver gene set is enriched in gene ontologies associated with general and cancer related 

cellular processes such as cell cycle, TP53 regulation, Wnt signaling, epithelial-

mesenchymal transition, and mitochondrial apoptosis (Figure 4.2C). Second, we found a 

significant enrichment of genes from the Cancer Gene Census (CGC) (Sondka et al. 2018) 

genes in the 813 promoter genes (OR=1.54, p=0.008) and their 404 associated TFs 

(OR=2.3, p=2x10-4). Third, we found a significant enrichment of our predicted driver 

genes in cellular fitness genes (Figure 4.2D) (Meyers et al. 2017), essential genes (Figure 
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4.2D) (Behan et al. 2019), and genes whose expression has been associated with favorable 

or unfavorable cancer prognosis (Uhlen et al. 2017), comparable to those of CGC genes 

(Figure 4.2E). Finally, we identified a significant overlap of predicted driver genes and a 

set of genes whose somatic copy number variation are associated with changes in their 

expression in multiple cancer types (OR=1.42, p=0.007) (A. Li et al. 2019). These results 

suggest that our predicted drivers are likely to be functional. 

TF-aware driver candidate NCVs lead to altered transcriptional activity 
 

To investigate the effect of the predicted driver NCVs on transcriptional activity, 

we used MPRAs (Tewhey et al. 2016) to systematically test the 2,555 predicted driver 

NCVs and control NCV sets in HT-29 (colorectal), Jurkat (lymphoma) and SK-MEL-28 

(melanoma) cell lines. Since only a subset of DNA regions show MPRA activity for either 

NCV allele, we calculated the validation rate as the ratio of NCVs displaying allelic skew 

over the total number of active DNA regions for each NCV category. For the TF-aware 

predicted driver NCVs, we obtained validation rates of 33%, 53% and 27% for HT-29, 

Jurkat, and SK-MEL-28, respectively, higher than the percentage of NCVs with no 

predicted differential TF binding or no predicted TF binding that display allelic skew 

(Figure 4.4A, Supplementary Figure 4.5A-B). Further, 235 predicted drivers were 

validated across the three cell lines, and 21, 320 and 12 predicted drivers were validated 

exclusively in HT-29, Jurkat and SK-MEL-28 cell lines (Supplementary Figure 4.6). The 

high validation rates from the predicted driver NCVs are similar to experimentally 

characterized driver NCVs in promoters (literature), NCVs leading to allelic imbalance in 

ChIP-seq experiments, and disease-associated germline NCVs that lead to altered target 
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gene expression and cause differential TF binding (germline) (Figure 4.4A). This shows 

that the TFABT can prioritize functional NCVs.  

 

Figure 4.4 Predicted driver NCVs can alter transcriptional acitvity. (A) Validation rate versus 
q-value threshold in SK-MEL-28 for predicted driver NCVs, ChIP-seq allelic imbalance, known 
drivers, MPRA positive controls, germline NCVs, literature genes, no significant differential 
binding, no differential binding. (B) Validation rate vs q-value in SK-MEL-28 for predicted NCVs 
based on whether NCV caused gain, loss of TFBS or both. (C) Fraction of NCVs per frequency in 
patient samples. (D) Fraction of MPRA validated NCVs for genes with at least four 
transcriptionally active NCVs by NCV effect (up/downregulation) in each of the three cell lines. 
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We validated NCVs associated with both gain and loss of TFBSs. However, we 

observed a higher validation rate for NCVs that loose TFBSs than for NCVs that gain 

TFBSs or bifunctional NCVs (Figure 4.4B). This difference may be related to a higher 

likelihood of affecting expression by disrupting an existing TFBS in a regulatory region 

than by creating a TFBS that may not be in the appropriate regulatory region context or 

distance/orientation to other TFBSs to affect transcriptional activity. Importantly, we found 

that the validation rate for predicted driver NCVs is similar regardless of the NCV 

frequency across cancer samples (Figure 4.4C). This suggests that NCVs with low 

mutation frequency, such as those private to particular tumor samples, can also lead to 

altered transcriptional activity.  

 

Figure 4.5 MPRA validation rate. Validation rates versus q-value for (A) Jurkat and (B) HT-29 
cell lines for the categories referenced in figure 4.3A. 
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Multiple NCVs in a gene promoter often lead to the same transcriptional effect 

(over or underexpression). For example, all validated NCVs in the TERT promoter lead to 

increased transcriptional activity, consistent previously characterized TERT promoter 

drivers associated with TERT overexpression (Susanne Horn et al. 2013; Huang et al. 

2013). Conversely, two MPRA validated predicted driver NCVs in the RNF20 promoter 

(chr9:104296044 C>T and chr9:104296134 G>A) display reduced transcriptional activity 

(Figure 4.4D). RNF20 underexpression due to promoter hypermethylation has been 

previously associated with genome instability in multiple cancer types (Guppy and 

McManus 2017; Nakamura et al. 2011; Shema et al. 2008). Our results suggest that reduced 

RNF20 promoter activity resulting from NCVs constitutes another potential cancer 

mechanism (Figure 4.4D). Other examples include skin cancer associated genes PARS2, 

GOSR2, and MBD3L1 whose promoter SNVs lead to reduced transcriptional activity 

(Figure 4.4D); however, they have not been previously associated with skin cancer. 
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Figure 4.6. Three-way Venn diagram displaying the number of MPRA validated NCVs for HT-
29, Jurkat and SK-MEL-28 cell lines 

Diver NCVs outside core promoter may affect transcriptional activity  
 

Most driver NCVs have been identified and characterized in core promoter regions 

(-250bp to +250bp from the TSS) (Rheinbay et al. 2017; 2020). Here, we used extended 

promoter regions of -2kb to +250bp from the TSS, expanding the current landscape of 

analysis. Although the fraction of NCVs in PCAWG is mostly homogenous throughout the 

extended promoter region, we observed an enrichment of predicted driver NCVs in the 

core promoter, even though our model did not incorporate any additional information 

beyond TF specificities and promoter sequence (Figure 4.7A). This suggests, that 

considering core promoter regions likely identifies most driver NCVs in gene promoters. 

Nevertheless, we detected MPRA-validated NCVs beyond the core promoter (upstream of 

-250 from TSS) accounting for 25.8% of validated driver NCVs. For example, the 
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lymphoid cancer associated NCV chr18:60988772 A>G in the BCL2 promoter is located 

at -1441bp from the TSS and leads increase transcriptional activity in Jurkat cells. In 

addition, we identified the chr5:137799888 G>C NCV located at position -1291 from the 

EGR1 TSS that causes reduced transcriptional activity. Underexpression of the tumor 

suppressor gene EGR1 has been previously reported in multiple cancer types (Baron et al. 

2006; Ferraro et al. 2005). Further, overexpression of USP37 has been previously 

associated with higher mortality rate in breast cancer (Qin et al. 2018) , the chr2:219365001 

located at position -1865 from its TSS was shown to cause increased transcriptional activity 

in Jurkat cells. These results suggest that NCVs located further from the commonly studied 

core promoter can also alter target gene expression. 
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Figure 4.7 NCV validation rate by TSS distance and mutational signature type. (A) Validation 
rate of predicted driver NCVs in SK-MEL-28 by genomic distance to TSS, and fraction of NCVs 
per 100 bp for predicted driver NCVs, MPRA active NCVs and SNVs in the PCAWG cohort. (B) 
Validation rate for NCVs associated or not with APOBEC mutational processes for the three cell 
lines. (C) Validation rate of predicted driver NCVs associated or not with UV-light mutational 
signature in SK-MEL-28. 

NCVs derived from mutational processes can affect transcriptional activity 
 

Somatic mutations in cancer are caused by endogenous and exogenous mutational 

processes, that differ between patients and cancer types leading to different mutational 

signatures (Alexandrov et al. 2013; 2020). We analyzed the transcriptional activity of 

predicted driver NCVs derived from two mutational signatures frequently excluded from 
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mutational burden tests: 1) defective apolipoprotein B messenger RNA-editing enzyme 

catalytic (APOBEC) cytidine deaminases that share a common mutational context of C>G 

or C>T at TCT and TCA (Alexandrov et al. 2020), and 2) UV-light associated mutational 

signatures consisting mainly of C>T at TCN and C>T at CCN (Alexandrov et al. 2020). 

We found no significant difference between the validation rate in MPRAs between 

APOBEC+ and APOBEC- NCVs (Figure 4.7B). Importantly, UV-light+ predicted driver 

NCVs validate in MPRAs in SK-MEL-28 cells at a higher rate than UV-light- NCVs (29% 

versus 17%, p=0.003) (Figure 4.7C). This is particularly important given that 86% of the 

predicted driver NCVs in MPRA-active regions in SK-MEL-28 cells are derived from the 

UV-light+ signature. Even though previous studies have filtered out NCVs derived from 

cancer associated mutational processes such as APOBEC and UV-light to increase 

statistical power of their analysis (Rheinbay et al. 2017; 2020), the similar or higher MPRA 

validation rate of predicted driver NCVs suggest that a significant fraction of these NCVs 

have functional activity. 

Transcription factors and their effect in transcriptional activity 
 

We further analyzed the 404 TFs involved in the predicted altered TF binding 

caused by the 2,555 candidate driver NCVs. We found that in the majority of cancer types 

four TF families are mainly involved (Figure 4.8A). Predicted driver NCVs in skin, 

head/neck, kidney, bone/soft tissue and pancreas cancers affect the binding sites of Ets 

factors, a TF family that has been largely associated with multiple cancer types (Bell et al. 

2016; 2015; Yinghui Li et al. 2015). In contrast, predicted driver NCVs in cervix, uterus, 

lymphoid, and stomach cancer affect mostly Forkead binding sites; whereas breast, liver, 
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lung, and prostate cancer NCVs affect Homeodomain binding sites. These differences are 

likely related to the different mutational signatures between cancer types that result in 

altered binding of different TF families. Interestingly, we observed a higher validation rate 

in MPRAs for predicted driver SNVs altering binding sites of TF from the nuclear receptors 

(NR), Ets, and BHLH families (Figure 4.8B). Whether this reflects what occurs in the 

endogenous loci remains to be determined.   
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Figure 4.8 Transcription factor effect on transcriptional activity. (A) Fraction of TF families 
with altered TFBS caused by predicted driver NCVs by cancer type. (B) MPRA validation rate in 
SK-MEL-28 versus q-value for TF families. (C) Normalized TPM of genes with predicted driver 
NCVs by TFs associated with gain/overexpression and loss/underexpression. 

TFs can activate or repress target gene expression, with some TFs acting mainly as 

activators and others mainly as repressors. To investigate the effect of predicted driver 

NCVs on their target gene expression, we normalized the expression levels of genes from 

donors with a predicted driver NCV to the median expression of those without any NCV 

in the corresponding gene promoter. This analysis identified 20 TFs whose gain of binding 

sites are associated with increased transcriptional activity and whose disruption of binding 

site is associated with reduced transcriptional activity (Figure 4.8C). Interestingly, we 

identified ten Ets, one nuclear receptor, and one STAT TFs whose creation of binding sites 

is associated with a significant increase of their target genes expression in patient samples. 

In contrast, we did not find any significant association of TFBS disruption and 

underexpression of target genes. This lack of significance may result from a lack of 

sensitivity due to gene expression for the wild type allele or due to compensatory 

mechanisms. In total, we identified 319 genes containing predicted driver NCVs that create 

or disrupt Ets binding sites. Changes in expression, alternative isoforms, or gene fusions 

involving multiple Ets factors have been associated with cancer. The creation or disrution 

of Ets TFBSs likely constitutes another widespread cancer mechanism that can also be 

modulated by the previously reported changes in Ets activities. 

Predicted driver NCVs lead to differential cofactor recruitment 
 

To determine the effect of our predicted driver NCVs on differential cofactor (COF) 

recruitment, we used the CASCADE platform (Bray et al. 2020), a protein binding 
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microarray-based method that allows for high-throughput profiling of COF recruitment on 

reference and mutant NCV pairs using nuclear extracts. We used CASCADE to study the 

effect of NCVs in two specifications: 1) single register, where the reference/mutant NCV 

alleles are located in the middle of the probe, and 2) triple register, where the 

reference/mutant NCV alleles are tested in the top, center and bottom of the probe. We 

tested the predicted drivers and controls in a single register array in SK-MEL-28 cells for 

differential recruitment of p300, P300 + peptides, SMARCA4 TBL1XR1, HDAC1, 

HDAC3, RBBP5, SKP2, and GCN5. Overall, we observed a similar or higher validation 

rate for predicted driver NCVs compared to other positive controls such as known driver 

NCVs and ChIP-seq allelic imbalance, and we found a low validation rate for negative 

controls such as NCVs with no predicted or no differential TF binding.  These results show 

that the predicted driver NCVs are associated with differential cofactor recruitment.  

After filtering for reference or mutant NCV alleles above background fluorescent 

intensity (z-score > 2), we observed a high validation rate of 49% of predicted driver NCVs 

for differential recruitment of TBL1XR1 in SK-MEL-28 (Fig 4.9A). These validated NCVs 

show a trend to disrupt TBL1XR1 recruitment. However, the handful of driver NCVs 

showing a gain of TBL1XR1 recruitment are associated with fifteen cancer types may serve 

as therapeutics candidates. Interestingly, vorinostat has been shown to inhibit TBL1XR1, 

it has been approved to treat cutaneous T-cell lymphoma , and clinical trial are active for 

breast and skin cancer types (Munster et al. 2011; Haas et al. 2014). This raises the 

possibility of using vorinostat as a therapeutic opportunity to treat patients carrying these 

mutations. In addition, we found a 7.5% validation rate of predicted drivers on 
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P300+peptides in SK-MEL-28 (Fig 4.9B). Similarly, P300 inhibitor, A-485, has been 

shown to inhibit tumor growth in multiple lineage-specific tumors including hematological 

malignancies and androgen receptor-positive prostate cancer (Lasko et al. 2017), and 

upregulates apoptosis in non-small-cell lung carcinoma cells in combination with TRAIL 

(B. Zhang et al. 2020). 

 

Figure 4.9 Predicted drivers cause differential COF recruitment. Differential COF recruitment 
for predicted driver NCVs and no predicted binding NCVs (validation rate) showed as !z-score 
versus -log10(q-value) in SK-MEL-28 for (A) TBL1XR1 and (B) P300 + peptides, where dotted 
line on y-axis represents significance threshold and on x-axis no differential COF recruitment (0 
!z-score). Significance values, -log10(q-value), for 3 register versus 1 register array for predicted 
driver NCVs and no predicted binding (validation rate) for (C) TBL1XR1, (D) P300 + peptides, 
(E) SKP2, and (F) P300. Dotted lines represent significance thresholds. 
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Furthermore, we used 3-register probes for 768 randomly selected predicted drivers 

and 384 NCVs with no predicted TFBS. Interestingly, we observed an increase in 

validation rate of 3X and 4X for TBL1XR1 and p300 + peptides recruitment (Figures 4.9C-

D), respectively. Moreover, the 3-register probes were able to validate 5.2% and 2.9% of 

predicted drivers for SKP2 and p300, COFs that show less than 0.5% or no validation rate 

in the 1-register probes (Figures 4.9E-F). This is because NCVs location and orientation in 

the array probes may have distinct effects of TF and COF binding, and using three registers 

increase the likelihood of detecting altered COF recruitment. Importantly, NCVs with no 

predicted TFBS showed validation rates no greater than 1% in the 3-register probes. These 

results support the use of 3-register probes to boost the validation rate for predicted driver 

NCVs without leading to high false positives for negative controls. 

Discussion 
 

In this study, we developed a novel TFABT based on the hypothesis that creating 

(or disrupting) a TFBS at different positions within a gene promoter is likely to lead to 

similar effects on target gene expression. The TFABT identifies gene promoters containing 

higher than expected number of NCVs across patients that create (or disrupt) a TFBS for a 

particular TF based on a binomial test. We applied the TFABT to predict cancer driver 

SNVs in gene promoters using 2,654 tumor samples from the PCAWG cohort 

corresponding to 20 cancer types. Driver predictions were performed per cancer type and 

in a pan-cancer analysis. In total, we predicted 2,555 driver candidates in the promoters of 

813 genes, which create/disrupt binding sites for 404 TFs. These genes included known 

drivers with NCVs such as TERT, ALDOA, CCDC107, LEPRROLT1, and TBC1D1. 
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Further, we showed multiple lines of evidence suggesting that the predicted genes and 

associated with known cancer related genes/TF, pathways and gene functions. 

By testing the predicted driver NCVs in MPRAs in three cell lines, we found a 

validation rate similar or greater that known cancer driver NCVs in promoters, ChIP-seq 

allelic imbalance NCVs and germline NCVs associated with altered gene expression and 

TF binding. These results show that the TFABT can prioritize transcription perturbing 

NCVs. Moreover, we show that NCVs private to one sample, which constitute the majority 

of NCVs in the PCAWG cohort, are similarly likely to alter transcriptional activity as 

recurrent NCVs. These MPRA validated cancer driver NCVs greatly expand the current 

known drivers in literature. However, the effect of multiple NCVs located in the same 

regulatory region (i.e promoters, enhancers) remains to be studied. We showed that most 

predicted driver NCVs are located in the core promoter of a gene, which suggests that 

considering the core promoter regions as most other studies have done, likely identifies 

most drivers NCVs in promoters. Conversely, predicted driver NCVs derived from 

APOBEC and UV-light mutational processes show transcriptional perturbing activity, even 

though multiple studies filter out these types of NCVs. Further, UV-light predicted driver 

NCVs validate at a higher rate in MPRAs compared to non UV-light predicted driver 

NCVs. This suggests that excluding NCVs from burden tests based on mutational 

signatures may not be warranted.  

Our validation using MPRAs shows that many of the potential driver NCVs 

identified alter transcriptional activity in an episomal construct. Whether, these NCVs alter 

gene expression in the endogenous locus and whether this leads to cellular change 
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associated with cancer phenotypes (e.g., increase proliferation, reduced apoptosis, etc.) 

remains to be determined. As NCV drivers have low mutational frequency, available 

cohorts, in most cases, lack statistical power to determine the link between NCVs and its 

target gene expression. Therefore, larger studies cohorts integrating WGS and RNA-seq 

will allow in-vivo validation of NCV drivers. 

We observed a higher validation rate for NCVs associated with differential binding 

of nuclear receptors and Ets factors. These is consistent with the known role of Ets factors 

in cancer initiation and progression (Bell et al. 2016; 2015; Yinghui Li et al. 2015). Even 

though only a small fraction of predicted driver NCVs affect nuclear receptor binding sites, 

we validated driver NCVs associated with NR1I3 and VDR in lymphoma, and NR2C2 in 

skin cancer, which have known antagonists and agonists. These druggable TFs as well as 

the cofactors found to be differentially recruited to the NCVs using CASCADE provide a 

therapeutic opportunity to restore normal target gene expression in cells carrying the 

corresponding NCVs. 
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Chapter 5. Conclusions 

 

In this dissertation, I have discussed the application of literature curation and novel 

bioinformatics algorithms to study transcriptional regulation in health and disease. 

Specifically, in chapter 2 I demonstrated how mining three decades of knowledge can be 

used to generate a comprehensive mouse and human cytokine GRN, CytReg, with 2-3-fold 

more TF-cytokine gene interactions than other available databases. CytReg was 

implemented as a user-friendly database (https://cytreg.bu.edu) where PDIs can be easily 

browsed by TF, cytokine, species, assay type, and TF expression pattern, then visualized 

as a table or an interactive network. The integrative analysis of the cytokine GRN and other 

functional datasets provided insight into the general principles governing cytokine 

regulation, such as a correlation between TF connectivity in the cytokine GRN and immune 

phenotype. By characterizing the TFs and cytokines studied in the last three decades, we 

found biases towards specific TFs/cytokines in the literature and highlight the 

incompleteness of the cytokine GRN. Further, by using cytokine co-expression data and 

TF motif analysis, we predicted novel TF-cytokine promoter interactions that were 

validated with eY1H assays. This exemplifies how the integrative analysis of CytReg can 

be used to prioritize interaction candidates to validate experimentally. Ultimately, the 

integration of different high-throughput and unbiased approaches, population-wide studies 

of regulatory variation, and in-depth functional characterizations of the regulatory logic 
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will lead to a more comprehensive picture of cytokine regulation in different cell types, 

conditions, and individuals. 

In chapter 3, I discussed the predicted genome-wide effects of SNVs on TFBS.  We 

created a database of altered TFBS (aTFBS-DB) by calculating the effect (gain/loss) of all 

possible SNVs across the human genome for 741 TFs. The aTFBS-DB was used to 

determine “gainability” and “disruptability” scores for each TF in gene regulatory regions. 

We established that TFBS for bZIP, C2H2 ZF, nuclear receptors and T-box families are 

less likely to be altered by SNVs, whereas forkhead and homeodomain families show 

higher rewiring potential by their higher gainability and disruptability scores. However, 

whether in vivo binding site occupancy for these TFs is actually rewired across evolution 

or between individuals in the human population remains to be determined. By calculating 

gainability and disruptability scores for functional cis-eQTL SNVs and common SNVs in 

the human population, we determined that cis-eQTL are more likely to perturb TFBS. 

Altogether, this database provides a blueprint to study the impact of SNVs on genetic 

variation. 

In chapter 4, I described how we used the aTFBS-DB to develop the TFABT, a 

novel algorithm to predict cancer driver NCVs in promoters. We applied the TFABT to a 

the PCAWG cohort of 2,654 samples across 20 cancer types and predicted 2,555 driver 

NCV candidates located in 813 genes that alter the binding of 404 TFs. Importantly, we 

identified known drivers in TERT, ALDOA, CCDC107, LEPRROLT1, and TBC1D1 and 

presented multiple lines of evidence suggesting the predicted genes are associated with 

known cancer related genes/TFs, pathways, and gene functions. By testing the predicted 
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drivers using MPRAs in three cell lines, we achieved a validation rate of transcriptional 

activity similar to or greater than known cancer driver NCVs in promoters, ChIP-seq allelic 

imbalance NCVs, and germline NCVs associated with altered gene expression and TF 

binding, showing that the TFABT can prioritize transcription perturbing NCVs. Moreover, 

we establish that NCVs unique to one sample, which constitute the majority of NCVs in 

the PCAWG cohort, are similarly likely to alter transcriptional activity as recurrent NCVs. 

We further identified differential COF recruitment caused by the predicted drivers using 

CASCADE. The study in this chapter demonstrates the functional and biophysical impact 

of driver NCVs and can be used as the foundation to develop novel methodologies to 

predict the functional impact of NCVs in distal regulatory elements. 

Taken together, this thesis provides a framework to study transcriptional 

mechanisms in cellular processes, such as cytokine expression, and the effects of their 

dysregulation in diseases such as cancer. 
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