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Skorohod has shown that the convergence of sums of i.i.d. random 
variables to an a-stable Levy motion, with 0 < a < 2, holds in the weak-J 1 

sense. J 1 is the commonly used Skorohod topology. We show that for sums 
of moving averages with at least two nonzero coefficients, weak-J 1 conver­
gence cannot hold because adjacent jumps of the process can coalesce in the 
limit; however, if the moving average coefficients are positive, then the 
adjacent jumps are essentially monotone and one can have weak-M 1 con­
vergence. M1 is weaker than J 1, but it is strong enough for the sup and inf 
functionals to be continuous. 

1. Introduction and statement of the results. The investigation of 
functional limit theorems for processes with paths in D[O, 1] (space of right­
continuous functions on [O, 1] with left limits) was started by Skorohod (1956). 
In that paper, Skorohod introduced four topologies on D[O, 1], called J 1, J 2 , 

M 1 and M 2 • Our results can be best i:inderstood if one visualizes the differ­
ences between the Ji, M 1 and M 2 topologies. These topologies differ in the 
way convergent sequences of deterministic functions f n approach their limit f 
in the neighborhood of a jump of f. 

In the case of the J 1 topology, fn must have a single jump around ajump of 
f close to the jump of f in location and magnitude [Figure l(a)]. In the case of 
the M2 topology, several jumps are allowed but the extended graph of fn 
(graph + vertical segments) must be close to that of f [Figure l(b)]. In the 
case of the M1 topology, several jumps are allowed, but the graph of fn must 
be, within s, a "monotone staircase," which gets "compressed" into a single 
jump of f as n - oo [Figure l(c)]. 

J 1 convergence is thus appropriate when a jump of the limit arises from a 
single jump in fn• Let ~(a) denote the a-stable domain of attraction. As 
shown by Skorohod (1957), normalized and centered sums (1/an)I:~~!(Xi -
b1ntJ) of i.i.d. random variables Xi in ~(a), 0 < a < 2, converge weakly in the 
J 1 sense. The limit is the Levy a-stable motion, whose increments are station­
ary, independent and have a stable distribution with index a. J 1 is the 
commonly used Skorohod topology. 
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Fm. 1. Modes of convergence for the Skorohod topologies J 1, M 2 and M 1• 

We will show, however, that in the case of normalized sums of moving 
averages ofi.i.d. random variables in E9'(a) with summable coefficients, weak-J 1 

convergence does not hold, when at least two of these coefficients are nonzero 
(Theorem 1). The reason roughly is that each jump of the limit arises from a 
"staircase" with at least two steps. 

If the coefficients of the moving average all have the same sign, then the 
steps of the staircase all go essentially in the same direction. We show that in 
this case weak-M 1 convergence holds (Theorem 2). Although M 1 is weaker 
than J 1, it is strong enough for the commonly used functions info:,;;t:,;;l and 
sup 0 :,;;t:,;;l to be continuous [Skorohod (1957), 2.2.10]. 

We now introduce some notation and give a precise statement of results. 
Let X; be an i.i.d. sequence belonging to E9'(a), 0 < a < 2. Assume also that 

EX; = 0 when 1 < a < 2 and that the X; are symmetric when a = 1. 
Let c = {c;, i E Z} be a sequence satisfying · 

00 

(1.1) 
i= -00 

for some O < v <a.Condition (1.1) ensures that the moving averages 
00 00 

(1.2) i E Z, 
j= -00 j= -00 

converge in L,, [and, in fact, also a.s.; cf. Kawata (1972), Theorems 12.11.2 and 
12.10.4]. 

Let an be normalization constants such that 

[nt] 

"x.; ~ z (t) i.., ' an a ' ( li'.3) 
i=l 

where X"'(t) is a Levy a-stable motion and ~ denotes convergence of the 
:finite-dimensional distributions. Astrauskas (1983), Theorem li, and Davis 
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and Resnick (1985), Theorem 4.1, show that the normalized sums of the 
moving average Y; are also attracted to a Levy a-stable process whenever 
I:7= _00 lcil < oo. More precisely, let 

(1.4) 
1 [nt] 

Zn(t) = - E Y;, 
an i=l 

0 st s 1, 

where an is as in (1.3). 

LEMMA 1 [Astrauskas (1983) and Davis and Resnick (1985)]. When 
I:7= _00 lcil < oo, then 

(1.5) 

where X/t) is the same Levy a-stable motion as in (1.3). 

Can the f.d.d. convergence in (1.5) be replaced by weak convergence in 
D[O, 1] with respect to one of the Skorohod topologies? We show that the 
answer is generally negative for J 1, the most commonly used Skorohod 
topology. 

THEOREM 1. Suppose that Y; is a finite-order moving average with at least 
two nonzero coefficients. Then convergence in (1.5) does not hold in the 
weak-J 1 sense. 

Theorem 1 is proved in Section 2. 

REMARK. When only one coefficient ci is nonzero (i.e., when the summands 
are independent), weak J 1 convergence holds by Skorohod (1957). 

Although in Theorem 1, weak-J 1 convergence does not hold, weak-M 1 

convergence holds if one imposes some extra assumptions. The main one is 
that all the coefficients c/s have the same sign. 

THEOREM 2'. Suppose that Y; is a finite-order moving average with all 
nonnegative coefficients. Then convergence in (1.5) holds in the weak-M 1 sense. 

The proof of Theorem 2' could be established through either a nonproba­
bilistic method or a probabilistic one. We choose the probabilistic method 
h~cause it yields bounds (Proposition 3) that can be used to prove the more 
general result concerning the M 1 convergence of moving averages whose order 
is not necessarily finite. This more general result is. stated in Theorem 2 below. 
It requires, when a > 1, the following technical condition, which we refer to as 
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(T.C.). To formulate it, let a' :2: 1 :2: 11 and 

(1.6) s(a',c) = L~oolc;lv)L~oolc;lr'-v 

Observe that s(a', c) = (L'7= _00 lc;l)"'1 when 11 = 1. Now introduce the truncated 
sequences c>n = {c(n, -oo < i < oo} and cs:n = {ctn, -oo < i < oo}, where 

and 

{ 
C· 

c( n = o' iflil>n, 
otherwise, 

C;s; n = C; - c( n. 

THE TECHNICAL CONDITION (T.C.). Let a> 1. The sequence c = {c;, -oo < 
i < oo} satisfies the condition (T.C.) if c satisfies (1.1) and if for some 0 < 
rJ s a - 1, 

(T.C.) lim (lnn)1+"'+ 77s(a -TJ,C>n) = 0. 
n->oo 

The condition (T.C.) is required only when a > 1. It is always satisfied if the 
moving average is of finite order. It is also satisfied in many other cases of 
interest, for example, when s(a - T/, c > n) is dominated by a regularly varying 
sequence with strictly negative exponent. In fact, we obtain the following 
proposition. 

PROPOSITION 1. Suppose a > 1 and Li= _00 lc;lv < oo for some 11 < a. 

(i) If 11 < 1 and {c;, i :2: O} and {c;, i < O} are monotone sequences, then 
(T.C.) holds. 

(ii) If 11 = 1 but Li= _00 lcf = oo for all 111 < 1, then (T.C.) may not hold 
even when {c;} is a monotone sequence. 

This proposition is proved in Section 2. The next theorem extends Theorem 
2' to moving averages whose order is not necessarily finite. 

THEOREM 2. Suppose that Li= _00 c; < oo with C; :2: 0, and that either: 

( i) a s 1 

or 

( ii) a> 1 and (T.C.) holds.· 

Then, as n - oo, 

-~ 

in D[0, 1] endowed with the M 1 topology. 



SUMS OF MOVING AVERAGES 487 

If the X/s are positive, the result is immediate because of Lemma 1 and the 
fact that the c/s have the same sign. The general case O <a< 1 can be 
reduced to this one by expressing the sequence of partial sums as sums of their 
positive and negative parts and by using the fact that if Un • Mi U, Vn • Mi V, 
and the processes U and V have disjoint discontinuities with probability 1, 
then Un + Mn • M1 U + V [see the remarks in Sections 1 and 6 of. Whitt 
(1980)]. 

It is convenient, however, to give a unified proof of Theorem 2 for all 
a E [O, 2]. This can be done without much additional effort because the esti­
mates needed for a = 1 turn out to be typically similar to those for a < 1. 
Theorem 2 is proved in Section 3 using auxiliary results established in 
Section 4. 

As for weak-M2 convergence, we make the following conjecture. 

CONJECTURE. If c; = 0 for i :5: 0, c1, c2 , .. ,• E 1R and if for every K, 

then (1.5) holds in the sense of weak-M2 convergence. 

We will now give a heuristic justification of our results. Let us assume that 
Y; is the finite moving average 

K 

Y; = L cjXi-j· 
j=O 

Heuristically, most of the sequence X; n == XJan::::: 0 (is negligible), except 
for a sequence of "big values" X,. n• X; ~ •... , X,. n• ... , which are spread far o, lt kt 

apart, that is, for which i O « i 1 « · · · « i k « · · · . It follows that most of 
the Y;,n == ¥;/an, which are the increments of Zn(t) = It!.tlY;,n, are also 
asymptotically negligible; however, a big value X; n produces K + 1 succes-o, 
siv.e big values in the sequence ¥;, n: 

Thus, asymptotically, Zn(t) is made out of "staircases," each covering an 
interval on the x axis of length K/n • 0, and thus each staircase degenerates 
in the limit into a single jump. From the heuristics given at the beginning of 
this section, we see that: 

If the staircase has at least two steps, J 1 convergence cannot hold (Theo-
:r;~m 1). . 

If the staircase is monotone (all steps go in the same direction), we have M 1 

convergence (Theorem 2). 
If the vertical size of each staircase in bounded between O and the size of the 

limiting jump, then we might have M2 convergence (Conjecture). 
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The following counterexamples show that some conditions on the C; are 
necessary in order to get at least one of the weak Skorohod convergences. 

COUNTEREXAMPLES. If Y; is a finite-order moving average with coefficients 
of both signs, then the "staircase" is not monotone, and M 1 convergence does 
not hold. The precise proof is similar to that of Theorem 1. · 

Consider now the even simpler example, where 

c0 = 1, c1 = -1, ck = 0 for k -:I:-0, 1, 

so that I:7= -ooc; = O and 

1 lntl X -X _ E y; = [nti o ~ o. 
ani=l an 

But f.d.d. convergence cannot be replaced by weak convergence in any of the 
four topologies, because, as is known, SUPo:,;;t:,;;l X[nti/an converges in distribu­
tion to a nonzero limit, and sup 0 :,;;,:,;; 1 is a continuous functional in all the four 
Skorohod topologies. 

On the other hand, if we make the strong assumptions C;::::: 0, X;::::: 0 
(assumptions that can hold when a < 1), then, since I:~'!!lY;/an has monotone 
paths, weak-M 1 convergence holds automatically. In Theorem 2, X;::::: 0 is not 
assumed. 

The paper is organized as follows. In Section 2, we define the functions J 
and M that characterize the J 1 and M 1 topologies and we establish Theorem 
1 and Proposition 1. In Section 3, we give the main steps leading to Theorem 2 
and prove Theorem 2. The validity of these main steps is established in 
Section 4. 

2. Proof of Theorem 1 and Proposition 1. The following functions 
enter in the definitiQn of the Skorohod topologies: 

(2.1) J(x 1 , x2 , x3 ) = min{lx2 - x 11, lx3 - x2 1}, 

(2.2) 

Let H stand for either J or M, and introduce the H oscillation of a function 
Z(t): 

(2.3) wfl(Z) = sup H(Z(t 1), Z(t); Z(t 2 )). 

t1:,;;t,,;,t2 
0,,;,t?-t1s;ll 

"Refer to Skorohod (1956) for a definition of the Skorohod topologies and 
their properties. Here we will need only the following corollary of his Theo­
rems 3.2.1 and 3.2.2. [For the J 1 version, see also Billingsley (1968), Theorems 
15.3 and 15.4.] 
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PROPOSITION 2 [Skorohod (1956)). Let Zn(t) be processes in D[O, 1) whose 
finite-dimensional distributions converge to those of a process Z(t) which is 
a.s. continuous at t = 0 and at t = 1. Let H stand for either J or M. Then 
weak-H 1 convergence holds if and only if for every e > 0, 

(2.4) lim limsupP{(wf(Zn)) > e} = 0. 
5-+0 n-+oo 

PROOF OF THEOREM 1. We will show that relation (2.4) does not hold for 
H= J 1 when 

[nt] K 

Zn(t) = E ½,n• 
j=l 

½,n = E C;Xj-i,n• 
i=O 

with c0 * 0, C; 1 * 0. Let i 1 ~ K denote the first nonzero coefficient after c0 ; 

hence c1 = · · · = c- 1 = 0 •1- . 
Consider the random variables Y;, n and Y;'+i n where necessarily, 1 ~ i' < 

• lo 

i' + i 1 ~ n, so that 1 ~ i' ~ n - i 1. Choose this i' = i'(n) to be the index at 
which max 15 ;.,,;n-i1 IX;,nl is obtained. 

Fix e > 0 and introduce the events 

and 

Bn,e = {IX;,) > e and 3 l * 0, -K ~ l ~ i 1 , where IX;'+t) > Ae}, 

where A is a constant to be specified later. 
We will show that the four following statements hold: 

(a) 

(b) 

lim P(An 8 ) > 0. 
n-+oo , 

lim P(Bn 8 ) = 0. 
n-+oo , 

(c) On An,e "- Bn,e• the random variables ½.n• j = i' and j = i' + i 1, are 
"large" [specifically, I½) ~ e(lcj-i'I - AE i 0 lc;I)], and the random vari­
ables ½,n• i' <j < i' + i 1, are "small" [specifically, l½,nl ~ AeEiolc;11-

(d) On the events An,e "- Bn,e• the J oscillation wf(Zn) with 8 = (i 1 + 1)/n 
is bounded below. 

Statements (a) and (b) ensure limn ..... 00 P(An,e "- Bn,e) > 0. Statement (c) is 
used to establish statement (d) which contradicts Skorohod's criterion for 
J 1-weak convergence. 

We now verify the statements . 
. •; (a) This is a well-known property of the a-stable domain of attraction, a 
consequence of 

(2.5) lim nP{IX1) > x} == kx-a, 
n-+oo 

X > 0, 
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for k > 0. In fact, one has 

X ~ 0. 

(b) Observe that 

n-i 1 i 1 

Bn,e C u u {IXi,nl > e} n {IX;+z,nl > Ae}. 
i=l l=-K 

l+O 

Thus by (2.5) there is a constant M depending on e such that 

as n • oo. 

P(Bn,e) ~ (n - i1)(i1 + K)P{IX1) > e}P{IX1,nl > Ae} 

(n - i 1) 
~M 2 • O 

n 

(c) For any k E {O, 1, ... , i 1}, 

K 

Y;'+k,n = ckXi',n + E cjXi'+k-j,n· 
j=O 
j+k 

On An,e "Bn,e• one has IXi'+l,nl ~ Ae, V l =I= 0, -K ~ l ~ i1, so that 

K K 

E cjxi'+k-j,n ~ Ae E le). 
j=O j=O 
j+k 

Hence for k = 0 and k = iv 

K 

IY;'+k,nl ~ lckXi,) - L cjXi'+k-j,n 
j=O 
j+k 

while for 0 < k < iv ck = 0 and thus IY;'+k) ~ AeE _f=0lc). 
(d) Consider now the following two consecutive increments of the process 

Zn(i): · 

(2.6) I zn(:) -znC' : 1 ) I = IY;,) > e (lcol - \~o le)) 



and 

(2.7) 
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I 
( 

i' + i ) ( i' ) 
1 

I i1 I 
Zn 7 -Zn n = k~l Y;'+k,n 

i1 -1 

~ IY;'+ii,nl - L IY;'+k,nl 
k=l 

Now choose A so that 

491 

that is, so that the absolute increments in (2.6) and (2. 7) are respectively 
greater than Ce/2)1c0 1 and (.s/2)1cJ Then 

(2.8) 
( ( i' - 1 ) ( i' ) ( i' + i ) ) wf;1+l)/nCZn) ~J Zn -n- ,Zn n ,Zn 7 

on the event An e '-- Bn e• hence verifying statement (d). 
We now co~clude the proof. By statements (a) and (b), we have 

limn ..... oo P(An,e '-- Bn,e) > 0, which implies 

0 < li~i!1f P( wf;1+1>;nCZn) ~ i-min(lcol, lc;1I)) 

(2.9) 

since wf( ·) is nondecreasing in 8. Hence weak-J 1 convergence does not hold 
(Proposition 2). D 

REMARK. If all the C; are nonnegative, then ·the big increments ¥;,, n 

(::::: c0 X;,,n) and Y;'+ii,n (::::: C;1X;',n) have the same sign, and thus produce zero 
lef oscillation. Thus, although they preclude J 1 convergence, they do not 
preclude M1 convergence, which indeed holds, by Theorem 2. 

PROOF OF PROPOSITION 1. (i) Assume w.l.o.g. that I: ;lc;I" < 1 and thus 
I: ilc;I < 1 and lc;I < 1. Choose T'/ satisfying O < T'/ :5;; min(a - 1, 1 - v ), so that 
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v + 77 ~ 1 ~ a - 77. Since {c;, i ~ 0} and {c;, i < 0} are monotone sequences, 

~ [le ±n111 L lcJ- 11]a-T/-v 
lil~n 

~ [ic ± n111 E lc;IJJ] T/ 
lil~n 

2 2 

~ (nlc±nlt n- 11 

= 0( n- 112), 

where c ± n = max(c_n, en). Thus s(a - 77, c ~ n) is bounded by n to a negative 
power and (T.C.) is satisfied. 

(ii) Consider the following counterexample: 

Here 

1 
c-=----
' lil(ln lil)1+13' 

1 
0<P~l+-. 

a 

E c; = o( 1 
13). 

lil~n (Inn) 

Thus I: ;lc;I < oo, but I: ;lcJ- 11 = oo, V 77 > 0. Then, if a - 77 ~ 1, we have 

s(a - 77,c > ~n) = L C;) = 0 J3(a- 11) • ( 
a-11 ( 1 ) 

lil~n (Inn) 

To satisfy (T.C.), we have to find 77 > 0, such that p(a - 77) > 1 + a + 77; that 
is, 77p + 77 < pa - (1 + a). This is possible if and only if pa - (1 + a) > 0, 
that is, if and only if p > l + 1/a. Since p ~ 1 + 1/a, (T.C.) cannot be 
satisfied. • 

3. Proof of Theorem 2. Theorem 2 will be established by showing that 
in the case H = M, relation (2.4) holds for 

[nt] y [nt] +oo X-
Zn(t) = E -' = E E C;-j._!_· 

i=l an i=l j= -oo an 
(3.1) 

Tqis is accomplished by approximating Y;/ a~ by a moving average of order Kn 
for a suitably chosen sequence of constants Kn • oo. 

Let M and wf be defined as in (2.2) and (2.3) and let 

(3.2) 



so that 

(3.3) 

SUMS OF MOVING AVERAGES 

t1-5:.t-5:.t2 
O-:;;.t2 -t 1-5:.ll 

Let 1/ > 0 be a constant satisfying 

(3.4) {
a - 1J > v, a+ 1J < l, 
a - 1J > v, 
a - 1J > l, 

if a < l, 
if a = l, 
if a> l. 

493 

PROPOSITION 3. Let 0 < 1J < 1/2 satisfy (3.4). If C; ~ 0, and C; = 0 when 
Iii > K, for some finite K, then for n satisfying 

(3.5) n(l/2-1'))/(l+a+T)) > K, 

there exists a constant L independent of Kand n such that for O ::,;; t 1 ::5: t::,;; 
t2 ::5: 1 and all s > 0, 

(i) 

(3.6) 

(ii) Furthermore, there exists a constant k independent of K and n such that 

(3.7) P{wf(Zn) > s} ::5: Lks- 2<a+1'1)821'1. 

Part (i) of Proposition 3 is established in Section 4. Part (ii) follows from 
Theorem 1 of Avram and Taqqu (1989). 

By using Lemma 1 of Section 1, Skorohod's Proposition 2 of Section 2 and 
Proposition 3, we will be able to conclude that Theorem 2 holds when the Y;'s 
are finite moving averages. To deal with the general case, we decompose 
Y; n = Y;/ an as follows. 

'Let Kn be a sequence increasing to oo, 

and 

<K {C;, if Iii ::5: Kn, 
c i- n = 0, otherwise, 

( 
0, 

Ci' 

if Iii ::s: Kn, 

if Iii > Kn. 

Let y,;Kn and y>Kn bethemovingaverageswithcoefficients C·"Kn and c,>Kn 
i, n i, n i i 

respectively, and let their sum from i = l to [nt] be denoted Zn"Kn(t) and 
z;; Kn(t) respectively. 

The zn-:;;. Kn are sums of finite moving averages, to which Proposition 3 
,;:tpplies, while the z;; Kn are- sums of moving averages with "small" coeffi­
cients. They will be handled by the use of the following proposition. 

PROPOSITION 4. Let Zn be defined as in (3.1), and let 1J > 0 satisfy (3.4). 
Then thete exist constants L' and k', independent of n, and of the sequence c, 



494 F. AVRAM AND M. S. TAQQU 

such that: 

(i) P{1Zn(t2 ) - Zn(t 1)1 > e} ~ lJe-(a+T/)(t2 - t 1)s(a -1J,C), 

where 

(3.8) 

(ii) 

00 

if a'~ 1, 
i= -oo 

s(a',c) == 
if a'> 1 ~ v; 

P{ sup IZn(t)I > e} 
O:,;t:,; 1 

(
lJk'e-<a+T/)s(a - 1J,c<n>), 

~ L'k'e-<a+T/>(lnn)1+a+T/s(a - '17,c<n>), 

if a~ 1, 

if a> 1. 

Proposition 4 is proved in Section 4. The definition of s(a', c) in (3.8) 
extends the one given in (1.6) to a' ~ 1. 

PROOF OF THEOREM 2. We look for a sequence {Kn}~=l• where Kn is small 
enough [satisfying (3.5)) so that Proposition 3 can be applied to the process 
zn:,;Kn, but large enough so that the estimate for P{SUPo:,;tsl IZit)>Knl > e} 
given in Proposition 4(ii), namely 

if a~ 1, 

if a> 1, 

tends to 0, as N • oo. An adequate sequence is Kn = n116• This Kn satisfies 
(3.5) since for '17 small enough, n116 < n<112 -T/)/(1+a+T/)_ When a ~ 1, en • 0, 
since Kn • oo. On the other hand, if a> 1, by assumption (T.C.) of Theo­
rem 2, 

lim s( a - '1], C ;eKn )(ln Kn)l+a+T/ 
n----.oo 

0 ( 1)l+a+T/ 1. ( >K )(1 )l+a+T/ = = 6 1ms a-7],c- n nn 
n----.oo 

and thus the estimate en • 0. Now it remains only to note that if 
wf(znsKn) ~ e/2, and SUPo<tsl 1z:Kn(t)I ~ e/4, then wf(Zn) ~ B. This is so 
because M involves the process at only three time points. Thus 

~ P{wf(Zn) > e} ~ P{wf(zn:,;Kn) > :_} + p{ sup 1z:Kn(t)I > -48 } 
2 O:,;t:,;1 

< Lk - 82'11 + L' k' - e ( 
8 )-2(a+T/) ( 8 )-(a+T/) 

- 2 4 n 
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(by Propositions 3 and 4). Hence 

Theorem 2 follows by applying Lemma 1 and Proposition 2. o 

495 

4. Proof of the auxiliary results. We establish here Propositions 3(i) 
and 4 of Section 3. We need two lemmas. Recall that Xi is an i.i.d. sequence in 
!»(a), 0 < a < 2, with EXi = 0 if a > land with Xi symmetric if a = l. Also 
Xi,n = Xjan, where an are the normalization constants in the central limit 
theorem (1.3). 

LEMMA 2. Let 1J > 0 be a constant satisfying (3.4) and let lbi nl < 1, 
i, n = l, 2, .... Then there exists a constant M depending only on the distribu­
tion of Xi and 1/, such that for all s > 0, 

( 4.1) 

for all m :<,;; oo. 

PROOF. We treat separately the cases a < l, 1 < a < 2 and a = l. 
(a) If a < l, we let 

Xi:n = Xi,nl{IXi) :<,;; 1}, 

Xi~n = Xi,nl{IXi) > 1}. 

Let 1/ > 0 be such that a - 1/ > 0, a + 1/ < l, and consider 

( 4.2) 

Similarly, 

( 4.3) p( sup It bi,nxi:n I~ i) :<,;; ( i)-(a+T)} EIXi:n1"'+'1 f: lbi)a+T). 
1:s;k:s;m i=l i=l 

Let 

M' = sup{nEIX(,nl"'- 17} _v sup{nEIX 1~n1"'+71}. 

n n 
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Since M' < oo [see also Astrauskas (1983), Lemma 1], we see that (4.2} and 
(4.3) imply (4.1), with M = 21+a+71M', whether m is finite or not. 

(b) When a > 1, let TJ be such that a - TJ > 1, and let 

( 4.4) 

Thus E(X/n) = 0, and also EX/n = EX/n + EX/\ = EXi n = 0. 
We will 0show that (4.2) and 0(4.3) co~tinue t~ hold, ~ith X/n and X/n 

replacing X{n and xi~n. Note first that r.t1bi,nxi~n and r,7=lbi,nxi~n ru-e 
martingales (as k varies). Using the maximal inequality 

P{ sup ISkl ~ ,\} ~ ,\-p _P_EISmlP, 
1,;;k,;;m p - 1 

which holds for p > 1 and Sn a martingale, and the von Bahr-Esseen 
inequality [Chatterji (1969), Lemma 1], Elf, J=iTJf ~ 2'[, J'=1EITJf which holds 
for 1 ~ p ~ 2 and { TJ) a martingale-difference sequence, we have 

( 4.5) 

where K(p) = p/(p - 1). Similarly, 

( 4.6) 
P( sup It bi,nXi~n I~ i) 

1,;;k,;;m i=l 

( 
E )-(a+77) m 

~ 2 2K(a + TJ) i~
1

lbi)"'+ 77EIXi~n1"'+77_ 

Since, by Jensen's inequality, 

( 4.7) 
EIX,,;, -EX.,;, 1°'+7/ < 2"'+ 77-l{EIX,,;, 1°'+77 + IEX.,;, 1°'+77} 

i,n i,n - i,n i,n 

and similarly, 

EIX.> + EX.,,, l"'-77 = EIX.> - Ex.> l"'-77 ~ 2"'- 77EIX.> l"'-77, i,n i,n . i,n i,n i,n 

we see that 

sup {nEIX,,, 1"'+77} V sup {nEI.X > l"'-:-77} < 2a+71M' < oo. 1,n l,n 
n n 
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Hence (4.5) and (4.6) imply (4.1), but this time with 

M = 22+2a+211K( a - TJ)M' < oo. 

The case m = oo follows trivially by letting m • oo in (4.5) and (4.6). 
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(c) When a = 1, we use a "mixed" proof: We define Xln and X(n as in 
(4.4) but these are equal to X/n and X/n respectively, because X; is symmet­
ric. Then_ we majorize, dn one hand, SUP1sksm 11:r=lbi,nX(nl by 
I:f: 1 lb; nl IX/nl, and proceed as in the case a< 1 in (4.2). On the other hand, 
we appiy to .P{SUP1sksm 11:r=lbi,nxi~nl > e/2} the maximal inequality, as in 
the case a > 1, and obtain (4.6) and (4.7). The conclusion (4.1) follows with 
M = (2a-17 + 21+2a+211K(a + TJ))M' < oo. D 

Note that by applying Lemma 2 to Zil), we get the bound 

where 

(4.8) 

P{IZn{l)I > e} = P(I i~l jf oo C;-jXj,n I> 8) 

=P( _£ Xj,n(_Ei_c;) >e) 
J= -oo i=l-J 

oo n-j 
D~a-17>( c) == L L C; 

j=-oo i=l-j 

The following lemma shows that this quantity grows at most linearly in n, 
when v ~ 1. 

LEMMA 3. If v ~ 1, then for every a ;::= v we have 

(4.9) D~a>(c) ~ ns(a,c), 

where s(a, c) is defined in (3.8). 

PROOF. (a) If a ~ 1, 

oo n-j a oo n-j oo 

D~a>(c) = L L C; ~ L L lc;la = n L lc;la. 
j=-oo i=l-j j=-ooi=l-j i=-oo 

If a> 1, 

D\"'(c) ~ i. :tL~• •,; (,(1c,f"(J.(,~(1c.i)") 
~ L~oolc;lr-v n"ifoo1cx ~ ns(a,c). D 
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REMARK. If I: ilcil .:,;; 1, then s(a, c) .:,;; 1 and thus (4.9) becomes 

( 4.10) 

PROOF OF PROPOSITION 3(i). We assume w.l.o.g. that I: ici .:,;; 1. Expression 
(3.6) is obvious if [nt 1] = [nt] or [nt 2] = [nt]. Hence we assume that [ntl -
[nt 1] ~ 1 and [nt 2] - [nt] ~ 1, so that t 2 - t 1 ~ 1/n. 

Consider the increments Z/t) - Z/t 1) and Zn(t 2) - Z/t). Since ck = 0 for 
lkl > K, the first increment 

oo [nt]-i 

Zn(t) - ZnCt1) = L xi,n L ck 
i= -oo k=[nti]-i+l 

involves only Xi n's whose index i satisfies [nt 1] - K + 1 .:,;; i .:,;; [nt] + K (the 
others have zerC: coefficient). Similarly, the second increment 

oo [nt 2 ]-i 

Zn(t2) - Zn(t) = L xi,n L ck 
i= -oo k=[nt]-i+l 

involves only Xi,n's with index i satisfying [nt] - K + 1 .:,;; i.:,;; [nt 2] + K. 
Since 

[ nt 1 ] - K + 1 .:,;; [ nt] - K < [ nt] - K + 1 

< [nt] +K< [nt] +K+ 1.:,;; [nt 2] +K, 

we can write 

[nt]+K [nt]-i 

Zn(t) - Zn(t1) = S1(t1) + L xi,n L ck, 
i=[nt]-K+l k=[nti]-i+l 

where 
[nt]-K K 

S1(t1) = L xi,n L ck 
i=[nti]-K+l k=[nti]-i+l 

and 

[nt]+K [nt 2]-i 

Zn(t2) - Zn(t) = L xi,n L ck+ Sit2), 
i=[nt]-K+l k=[nt]-i+l 

where 
[nt 2 ]+K [nt 2 ]-i 

Sit2) = L xi n L ck. 
i=[nt]+K+l ' k= -K 

The terms Si(t 1) and Sit 2) i:r:i-volve Xi,n's that appear only in one of the two 
increments. 

The Xi n's that appear in both increments are components of the vector 

X = ( x[nt]-K+l,n,; .. ' x[nt]+K,n) 
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and they appear as a scalar product of X with the vector 

b ( ) _ {b(i)( )}[nt]+K 1 t1 - 1 tl i=[nt]-K+l• 

for the first increment, and with the vector 

b ( ) _ {b(i)( )}[nt]+K 
2 t2 - 2 t2 i=[nt]-K+l• 

for the second increment. Therefore, 

[nt)-i 
bf)(t1) = E ck, 

k=[ntiJ-i+l 

[nt 2J-i 

b~)(t2) = L ck, 
k=[nt)-i+l 

(4.11) 

( 4.12) 

Zn(t) - Zn(t 1) = S1(t1) + h1(t1) · X, 

Zn(t 2) - Zn(t) = S 2(t 2) + b 2(t 2 ) • X. 

These decompositions are such that Si(t 1), S2(t2) and X are independent. 
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Since MnCt1, t, t2) is O when the increments Zn(t) - Zn(t1) and Zit 2) - Zn(t) 
have the same sign, 

P{Mn(t 1, t, t2) ~ e} 

= P{S 1(t 1) + h 1(t 1) · X ~ e, S 2(t 2) + bit 2) · X ~ -e} 

+ P{S 1(t 1) + h 1(t 1) · X ~ -e, Sit 2) + bit 2) · X ~ e}. 
We shall estimate each term separately, and since the proofs are similar, we 

consider only the first term. Introduce the events 

Then 

81 = { S1(t1) ~ i}, 
8 2 = { S2( t2) ~ - i}, 
X1 = { h1(t1) · X ~ i}, 
X = {b ( t ) · X < - .: } 2 2 2 - 2 ' 

E = {S1(t 1) + h 1(t 1) · X ~ e, S2(t 2 ) + b(t 2) · X ~ -e}. 

E c ( 81 u x1) n ( 82 u x2 ) 

and hence, by independence and distributivity, 

P( E) ~ P( 81)P( 82) + P( 81)P( X2) 

+ .P( 82)P( X1) + P( X1 n X2)-
( 4.13) 

The idea of the proof is now as follows. We must show that P(E) = O(t2 -

t 1)1+ 211• Each of P(8 1) and P(8 2) ought to be O(t2 - t 1) by Proposition 4(i) 
say, but we must also estimate P(}[ 1), - P(X 2) and PCt 1 n X2). Note that 
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t2 - t 1 and K are related to n because 1/n < t2 - t 1 :;;; 1 and K satisfies (3.5). 
It turns out that it is the term P(X1 n X2) which gives the main contribution. 
To estimate it, we use the fact that since all the components of bi{t 1) and 
hit 2) are nonnegative, we can have at the same time bi{t 1) · X > e /2 and 
b 2(t 2) • X < -e /2 only if at least two components of X are large. 

We start with P(S 1). By Lemmas 2 and 3, 

( 4.14) 

P( 81) :;;; P{S1(ti) ~ e/2} 

n 

[nt]-K [nt]-i 

E Ck 
i=[nt 1]-K+l k=[nt 1]-i+l 

E 

:;;; 2Me-<a+ 71>(t - t 1)s(a - 77,c) 

:;;; 2Me-(a+ 71>( t2 - t1) 

a-71 

since I:7= _00 ci < 1. Observe that P(S 2) satisfies the same inequality. 
To analyze the events X1 and X2 , introduce the events 

A;= {IX;):;;; B~}, i = [nt]-K+ 1, ... ,[nt] +K. 

(Xi,n is "small' on A;.) Note first that n ~':'l:tf-K+iA; c Xf because on this 
intersection 

( 4.15) 
[nt]+K e [nt]+K e e 

lb1( t1) . XI :;;; E Vii)( t1) -BK-:;;; . E -BK- :;;; 4. 
i=[nt]-K+l z=[nt]-K+l 

Therefore, 

(4.16) X1 c LJ A'I, 
(i) 

where, for convenience, we write ( i) to mean the range i = [ nt] - K + 
1, ... , [nt] + K. Thus X; occurs only if X;,n is "large" for i in the range. 
Similarly, 

( 4.17) X2 C U A'I. 
(i) 

Applying Lemma 2 with bi,n = 1, m = 1 yields the estimate 

( 4.lB) { 
e } M ( e )-(a+11) 

P(A'I) = P IX;,nl > BK =,;;-;;: BK , 
so that 

Kl+a+71 
( 4.19) P( X1) :;;; 2KP( A'I) :;;; M'e-(a+ 71)_· __ 

n 

for some constant M'. Observe that P(X 2) satisfies the same inequality. 
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We now estimate P(X1 n X2 ). Note first that 

( 4.20) n Ai nAio nX1 nX2 = 0. 
(i} 

i *io 

Indeed, suppose xio, n > 0. Then n (i), i ¢ ioAi n Aio n X2 = 0 since 
e 

- 2 :2:: hit 2 ) • X 

= b<i0>(t ) X. + ~ b<i>(t ) X. 2 2 ,0 ,n i..J 2 2 ,,n 
(i} 

i *io 

. e e 
> b<•o>(t )- - -

2 2 BK 4 
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by (4.15), contradicting b~ 0>(t2) :2:: 0. A similar argument holds if Xi n :;;; 0. 
A A Q, 

Suppose that the event X 1 n X2 occurs. Then at least one Ai occurs 
because by (4.16) and (4.17), X1 n X2 c U (i)Ai. Relation (4.20), however, 
states that it is impossible that exactly one Ai occurs. Therefore Ai must 
occur for at least two different i's (i.e., at least two Xi,n's must be "large"). 
Hence by (4.lB), 

P(X 1 n X2 ):;;; E P(Aio n AU 
(i} 

for some constant M" > 0. 

io#ai1 

:;;; 2K~{ P( Ai)]2 

2(M( e )-(a+11))2 
<2K - -
- n BK 

Putting together (4.13), (4.14), (4.20) and (4.21) and introducing a new 
constant L, we get 

[ 
Kl+a+11 

P(E) :;;; Le- 2<a+17) (t 2 - t1)2 + 2(t2 - t1) n 

Since 1/n :;;; t 2 - t 1 and n<112- 11>f<1+a+17> > K, we have 

Kl+a+17 
--- < n -c1;2+11> < ( t2 - t~) 1;2+11' 

n 
.and since t 2 - t 1 :;;; 1, we get· 

P(E) =,;; Le-2(a+11>[(t2 - t1}2 + 2(t2 - ti)3/2+11 + (t2 - t1)1+211] 

:;;; 4Le-2<a+11>(t2 - t1)1+211: • 
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REMARK. If instead of the M function in (2.2), we used the J function 
in (2.1), then we would have had to define X 1 = {lbi{t1) · XI ~ e/2}, X2 = 
{1bit) · XI ~ e/2}. Coefficients could be chosen so that X1 ~ X2, making 
P(X 1 n X2) ~ P(X 1) = (t 2 - t 1)112+77, which is not enough to make P(E) = 

O(t2 - tl)l+/3, {3 > 0. 

PROOF OF PROPOSITION 4. 

P{IZn(t2) - Zn(t1)I > e} 

= P( L Xj;n( [n~-j c)n)) > £) 
j i=[nt 1]+1-j 

(i) M 
< - 8 -(ct+77)D(a-77) (c<n)) [by Lemma 2 and (4 8)] - n [nt2]-[nt1] ' 

M -(a+77) ( (n)) [nt2] - [nt1] 
::;; E s a - 77,c ----- (byLemma3) 

n 

::;; 2Me-(a+ 77ls(a - 77,c<nl)(t2 - t1)-

(ii) In the case a ::;; 1, we can take absolute values: 

pc~~~llZ,(t)I > ,) s p( ~ ~j .I ( ,I )ci"'I) s B) 

M 
::;; -£-<a+77lD~a- 77l(lc<nll) (by Lemma 2) 

n 

::;; Me-(a+ 77ls( a - 77, c<nl) (by Lemma 3). 

When a > 1, consider Jit 1, t, t2) = J(Zit 1), Zit), Zit 2)) with J defined in 
(2.1). Let 

Then 

Jn(t1, t2) := sup Jn(t1, t, t2) · 
tE[t1, t2l 

P{ sup IZn(t)I > e} ::;; P{IZn(l)I > ~} + P{Jn(O, 1) > ~} 
O:,;;t:,;;1 2 2 

::;; M( i-r<a+ 77l s( a - 77, c<~l) + P{ J:.(O, 1) > i-} 
by Lemmas 2 and 3. By part (i) and Avram and Taqqu (1989), Theorem 2(a) 
for example, there exists a con,stant k depending only on a + 7J such that 

P{ Jn(tl> t2) > i-} ::;; L' k ( i-)-(a+7J\ t2 - t1) s( a - 7J, c<nl)(ln n) 1+a+77, 

and hence the result follows with L'k' = 2a+77(M + L'k). • 
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