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Abstract—The dynamic policy routing model (DPR) was re-
cently introduced to explicitly model the dynamics of policy
routing. DPR extends the formalism of the stable paths problem
with discrete synchronous time to capture the propagation of
path changes in any dynamic network using a structure called
the causation chain.

In this work, we extend DPR by introducing several novel
structures, namely, causation fences and policy digraphs that
provide further insight into how the dynamics of policy routing
manifest in the network. Using our extensions to DPR, we solve
a fundamental problem: policy conflict detection. We show how
the root cause of any cycle of routing update messages, under
any routing policy configuration, can be precisely inferred as
either a transient route flap or a policy conflict. We also develop
SAFETYPULSE, a token-based distributed algorithm to detect
policy conflicts in any dynamic network. SAFETYPULSE has
several novel characteristics, namely, it is privacy preserving,
computationally efficient and provably correct.

I. INTRODUCTION

The Internet consists of thousands of autonomous systems
(ASes). Each AS represents an Internet Service Provider,
company or university, that is managed independently. Today,
BGP is the routing protocol of choice for connecting these
ASes while allowing them to set their routing policies indepen-
dently. Routing policies determine how a path to a particular
destination is chosen out of a candidate set of paths.

This flexibility in configuring routing policies comes at
the cost of stability. BGP has been known to suffer from
slow convergence time, where ASes continually advertise new
routing updates for extended periods of time before reaching a
stable routing configuration. Experimental measurements show
that interdomain routers may take tens of minutes to reach a
consistent view of the network after a fault [1]. In addition,
no guarantees are made by BGP regarding convergence (i.e.,
ASes may adopt and discard paths indefinitely [2]).

There has been some seminal work in terms of deriving con-
ditions that guarantee protocol convergence. Griffin et al. [3]
introduced the stable paths problem (SPP), a formalism to
reason about the steady-state behavior of BGP. Their solution
concept is the stable assignment, where every AS is assigned

its most preferred path out of its available choices. They
also showed that the lack of a dispute wheel (i.e., a cyclic
dependency in path preferences) is a sufficient condition for
convergence. Gao et al. [4] showed that restricting the path
preferences of ASes to be consistent with their commercial /
economic relationships (i.e., prefer customer paths over peer /
provider paths) is also a sufficient condition for guaranteeing
convergence. Feamster et al. [5] showed that the lack of a
dispute ring (i.e., a dispute wheel where nodes have path pref-
erences of a special form) under filtering (i.e., preferentially
advertising routes) is a necessary condition for convergence.
Bounds on BGP’s convergence time, under different link
failure models, have also been studied (e.g., [6]–[8]).

Many distributed algorithms were also developed to mitigate
the effects of harmful policy interactions. This is done by
passing diagnostic information alongside route update mes-
sages (e.g., a cost metric [9], a precedence metric [10], path-
histories [11], as well as event-related tokens [12], [13]).

Other solutions constrain the policy freedom of ASes to a
generalized form of shortest path routing, thus guaranteeing
convergence (e.g., [4], [10], [14]). There are also numerous
offline methods for addressing policy conflicts [15] and ana-
lyzing static policy configurations [16]. Other methods focus
on identifying the root causes of instability [17].

The dynamic policy routing model (DPR) introduced in [18]
extends SPP with discrete synchronous time. DPR captures
the propagation of path changes in any dynamic network irre-
spective of its time-varying topology. Using DPR the authors
established several principles of policy routing dynamics for
routing instances that abide by the commercial / economic
guidelines in [4]. These principles provided insight into which
ASes could directly induce path changes in one another and
how cycles of routing updates could manifest in the network.

In this work, we extend DPR by introducing several novel
structures, namely, causation fences and policy digraphs that
provide further insight into how the dynamics of policy routing
manifest in the network. The novelty in this work is that
we consider any configuration of routing policies that do not
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necessarily abide by the commercial / economic guidelines
in [4] as assumed in [18]. Using our extensions to DPR, we
make the following contributions:

• We introduce policy digraphs that represent the network’s
routing dynamics and prove that any sequence of route
updates propagating across nodes in the network is a path
in the policy digraph, while a dispute wheel is a cycle.

• We prove that the root cause of any cycle of routing
update messages can be inferred as either a transient route
flap or a policy conflict. More specifically, we prove that
any cycle of route updates where a node ends up with a
more preferred path must be due to a policy conflict. To
the best of our knowledge, this is the most generalized
theoretical result for detecting policy conflicts.

• We develop SAFETYPULSE—a token-based distributed
algorithm to detect policy conflicts in any dynamic net-
work. SAFETYPULSE has several novel characteristics,
namely, it is privacy preserving, computationally efficient
and provably correct. In contrast to INTERFERENCEBEAT
introduced in [18], that detects potentially unsafe viola-
tions of the commercial / economic guidelines in [4],
SAFETYPULSE detects policy conflicts in a general set-
ting without restricting the routing policies in any way.

In the following section we provide an overview of these
contributions using a simple example.

II. OVERVIEW OF MAIN RESULTS

Consider the sample SPP instance, commonly referred to as
BAD GADGET, shown in Figure 1 on the left. The destination is
node 0. Each node has a path preference list consisting of two
paths where the most preferred path is at the top. For example,
node 1 prefers path ⟨1430⟩ over the direct path ⟨10⟩.
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Fig. 1. BAD GADGET instance (left) and its policy digraph (right).

Figure 1 on the right outlines the policy digraph of BAD
GADGET. Each node in BAD GADGET is represented by a
“ladder”. Each step in the ladder denotes a path from the
corresponding node’s path preference list. The node’s most
preferred path is at the top of the ladder. Two steps (i.e.,
paths) in different ladders are connected by a directed edge
if the source path is a subpath of the target path. We refer to
such edges as “subpath” edges. A valid “walk” can start from
any step on any ladder and can go down the ladders and across
the subpath edges connecting different ladders. Consider the
following sample walk:

⟨20⟩⟨320⟩⟨30⟩⟨430⟩⟨1430⟩⟨10⟩⟨210⟩⟨20⟩

Walks in this structure capture the routing dynamics of BAD
GADGET. By routing dynamics we mean how path changes
could potentially propagate in the network or more specifically
how paths could potentially be adopted and discarded. For
example, if path ⟨20⟩ is adopted after link (2, 0) becomes
available, then path ⟨320⟩ will also be adopted since it is node
3’s most preferred path. These dependencies are captured by
the subpath edges. Walking down the ladder captures the effect
of adopting or discarding a less preferred path due to a change
in the availability of a path higher up the ladder. For example,
if path ⟨210⟩ gets adopted, moving from path ⟨210⟩ to path
⟨20⟩ captures the effect of discarding path ⟨20⟩ by node 2.
This results in path ⟨320⟩ getting discarded by node 3.

The policy digraph provides valuable insight into the routing
dynamics. For example, a path in the policy digraph captures
how far routing update messages can potentially propagate. In
other words, the longer the paths, the longer it could take for
the transient dynamics to die out following a topology change
(e.g., a link failure). We prove that any valid sequence of route
updates is a path in the policy digraph.

On the other hand, a policy conflict (or dispute wheel) is
a cycle in the policy digraph where a path is repeated. More
generally, given the structure of the policy digraph, if a node
is involved in a cycle of route updates such that it ends up
with a more preferred path, then a policy conflict also exists.
In our sample walk node 2 initially had path ⟨20⟩ but ended
up with path ⟨210⟩. Clearly the cycle can repeat indefinitely
as the walk can go down the ladder at node 2 and follow the
same sequence of nodes again. We prove that any cycle of
route updates where a node ends up with a more preferred
path must be due to a policy conflict. Otherwise, we prove
that the cycle must be due to a transient route flap.

It is important to note that our policy digraphs are easier
to construct, visualize and reason about compared to dispute
digraphs [3]. Dispute digraphs require the relative path rank-
ings across nodes to be considered. Our policy digraphs also
provide intuition into the operation of many existing solutions
that pass diagnostic information alongside route updates. In
particular, they provide insight into how the diagnostic infor-
mation should be encoded. For example, SPVP [11] exchanges
extended path histories to detect policy conflicts. The existence
of a policy conflict is inferred when a node adopts and discards
the same path in a cycle of update messages. To detect the
cycle from our sample walk, SPVP encodes the exchanged
path histories as:

⟨+20⟩⟨+320⟩⟨−430⟩⟨−1430⟩⟨+210⟩⟨−320⟩
⟨+430⟩⟨+1430⟩⟨−210⟩

In SPVP, any node that switches between two paths always
appends the more preferred path. When a switch to a more
preferred path is made, a + is appended. Conversely, when a
switch to a less preferred path is made, a − is appended. To
detect a policy conflict, SPVP needs one cycle of updates to
adopt path ⟨210⟩ and another cycle to discard it.

One could also use policy digraphs to synthetically construct
policy routing instances with more complex dynamics. Con-
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Fig. 2. Sample policy digraph.

sider a walk in Figure 2 that starts when path a1 is adopted.
The adoption of path a1 triggers a cycle of updates that makes
path a2 available. Since nodes A, B and C are involved in
a policy conflict, path a2 will get withdrawn after another
cycle of updates. The more preferred path a3, however, may
be adopted via another cycle of updates through nodes D and
E. If the network stabilizes, no policy conflict will be detected.
This highlights that it could potentially take a long time for
a node to adopt and discard a path. Also, any changes in
the underlying topology could stop the propagation of path
changes causing policy conflicts to go undetected.

SAFETYPULSE, our token-based distributed algorithm,
leverages our theoretical results to construct a more general-
ized detector for policy conflicts. A node does not need to
flap on the same path two (or more) times for a conflict
to be detected. Instead, if a node is triggered twice by a
cycle of route updates, checking if the node ended up with
a more preferred path is sufficient. This is irrespective of how
the underlying topology changes over time. To compare the
rankings of the paths involved in the cycle, SAFETYPULSE
requires each node to know the path that triggered the cycle.
Such is the type of information that must be encoded in
SAFETYPULSE’s token.

The rest of the paper is organized as follows. Section III
provides an overview of the DPR model introduced in [18].
In Section IV we utilize our DPR extensions to derive all our
theoretical results that will serve as the foundation for our
SAFETYPULSE algorithm in Section V. Finally, we conclude
the paper in Section VI.

III. DYNAMIC POLICY ROUTING MODEL

The central notions in DPR, as initially introduced in [18],
are that of action and causation. An action corresponds to
a possible routing decision made upon the reception of a
routing update message. A causing node corresponds to the
node sending that update message. DPR models these two
events to construct a causation chain over time where each
node causes its successor along the chain to take an action.

A. Basic Notation

DPR extends SPP’s notation. Time is represented by a non-
negative, discrete index t = [0,∞). The network is represented
by a time-dependent graph G = (V,E):

• The set V represents the nodes.
• The set E represents the time-dependent edges. If node u

is connected to v at time t, then (u, v)t ∈ E. Conversely,
a lack of connectivity at time t, due to a link failure, is
represented by (u, v)t /∈ E.

A node’s preferential ranking of paths is represented by the
≻ operator. If u prefers P over Q then P ≻ Q. The empty
path is ⟨⟩. If a path P is forbidden then ⟨⟩ ≻ P . All paths
with repeating nodes are forbidden. Paths in G are sequences
of the form P = ⟨u0 u1 . . . un d⟩, where d is a distinguished
destination node. The concatenation of a path P with node
u is ⟨u P ⟩. A DPR instance consists of a graph and a path
preference set, D = (G,≻).

At any time t, each node u has a path P to the destination
d. Path assignments are represented by the function π such
that P = π(u, t). The available path choices via all possible
neighbors v are:

Choices(u, t) = ⟨⟩ ∪ {⟨u, π(v, t)⟩|(u, v)t ∈ E}

The current best path is Best(u, t) = max≻ Choices(u, t).
The state of each node is its best path from the previous round
where π(u, 0) = ⟨⟩ and π(u, t) = Best(u, t − 1). The next-
hop of u0’s assigned path π(u0, t) = ⟨u0 u1 . . . un d⟩ is:
u1 = NextHop(u0, t).

Remark 1. While DPR does not explicitly model BGP at-
tributes, such an extension is possible and would only affect
the preferential ranking of paths by nodes. This may lead to
a different assignment of paths by the function π.

B. Causation Chains and Cycles

Actions represent a change in a node’s chosen path between
two time steps. A node u performs an action at time t if
π(u, t) ̸= π(u, t + 1). Every action of a node is caused by a
neighboring node. The cases of action and causation are par-
titioned by node u’s next-hop node v and the relative ranking
of node u’s new and old paths. The functions Action(u, t)1

and Cause(u, t) are defined in Table I. Consider the first row
where node u performs a StepUp action and switches to a new
path through a more preferred next-hop node v such that:

π(u, t) ≺ π(u, t+ 1)
NextHop(u, t) ̸= NextHop(u, t+ 1)

Sample cases of action and causation using a policy routing
instance commonly known as BAD GADGET are shown in
Figure 3. At time t = 1, node 3 performs a StepDown action
as it is forced to discard path ⟨320⟩ and adopt path ⟨30⟩. This
is due to node 2 adopting path ⟨210⟩ at time t = 0. Such
sequences of action and causation represent a causation chain
that is formally defined next.

Definition 1 (Causation Chains). A causation chain is a
sequence of nodes where each node yi−1 causes the action
of yi. It is represented by Y = ⟨y0 y1 . . . yk⟩t where

1We consider actions that are slightly different from the ones in [18] where
the next-hop node is not part of each action’s condition.
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Action(u, t) Cause(u, t) Condition Explanation
StepUp v = NextHop(u, t + 1) π(u, t) ≺ π(u, t + 1),

NextHop(u, t) ̸= NextHop(u, t + 1)
Node v was not node u’s next hop at time t. However, v
advertised a new path to u at time t, causing u to choose
a more preferred path through v at time t + 1.

StepDown v = NextHop(u, t) π(u, t) ≻ π(u, t + 1),
NextHop(u, t) ̸= NextHop(u, t + 1)

Node v was node u’s next hop at time t. However, node
v changed its path at time t, causing u to choose a less
preferred path at time t + 1.

StepSame v = NextHop(u, t)
= NextHop(u, t + 1)

π(u, t) ̸= π(u, t + 1),
NextHop(u, t) = NextHop(u, t + 1)

Node v was node u’s next hop at time t. Node v changed
its path at time t, which u chooses to use at time t + 1.

TABLE I
CASES FOR ACTION AND CAUSATION.
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Fig. 3. Sample actions and causation for BAD GADGET.

Cause(yi, t + i) = yi−1 for all 0 < i ≤ k. Time t is defined
with respect to y0, and it takes i time steps to build the
causation chain up to node yi.

The causation chain in Figure 3 is ⟨2 3 4 1⟩0.

Definition 2 (Causation Cycles). A causation cycle is a
causation chain Y = ⟨y0 y1 . . . yk⟩t with a repeated node
where y0 = yk.

A causation cycle in Figure 3 is ⟨2 3 4 1 2⟩0.

Remark 2. In terms of the synchronicity of DPR, the authors
in [19] show that this is not a drawback and that DPR
has sufficient expressive power to model asynchronicity. For
completeness, we provide a brief overview of the key ideas in
Appendix A.

IV. OUR EXTENSIONS TO DPR

We extended DPR by introducing several novel time-
invariant structures, namely, causation fences and policy di-
graphs. The main components of our extensions to the DPR
model and the theoretical results we derived are outlined in
Figure 4.

We prove that causation chains manifest in a manner that
can be precisely defined. We prove that any causation chain is
composed of alternating adopting and discarding subchains.
Using this property we introduce the time-invariant structure,
causation fences, that capture the key path changes along a
causation chain. Using causation fences we introduce policy
digraphs and prove that causation chains and dispute wheels
are paths and cycles in the policy digraph, respectively. Finally,
we prove that a causation cycle, representing a cycle of routing
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Fig. 4. Overview of our extensions to DPR.

update messages, is either due to a transient route flap or a
dispute wheel and that the root cause can be inferred.

A. Causation Fences

Next we distill the time-invariant properties of causation
chains using a structure we call the causation fence. We
first show that causation chains are not random sequences
of nodes (and their associated actions) as one would expect.
Instead, the propagation of path changes in the network can
be precisely formalized. More specifically, causation chains
can be decomposed into two alternating types of subchains,
namely, adopting and discarding subchains.

A causation subchain consists of consecutive nodes
⟨yi yi+1 . . . yj⟩t+i where yi and yj are the head and tail
nodes, respectively. The head node introduces a change into
the subchain by changing its current path. Hence, π(yi, t+i) ̸=
π(yi, t+ i+1). The time t is defined with respect to the first
node on the original causation chain and it takes i time steps
to reach node yi in the subchain.

In an adopting subchain the head node yi makes a new
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path available that all subsequent nodes adopt. In Figure 5, for
example, node 1 makes path ⟨10⟩ available that node 2 adopts.
Node 3 in turn adopts path ⟨3210⟩ when node 2 makes path
⟨210⟩ available.

Adopting 

Subchain

0 1 2 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

Time DPR

t=0

t=1

t=2

t=3

10 210 3210

Fig. 5. An example of an adopting subchain. Adopted/discarded paths are
represented by solid/dotted arrows, respectively.

Definition 3 (Adopting Subchain). An adopting subchain of
Y is ⟨yi yi+1 . . . yj⟩t+i from yi to yj for i < j where
Action(yk) ̸= StepDown for all i < k ≤ j. This is irrespective
of yi’s action.

On the other hand, all nodes in a discarding subchain are
initially using a path through the head node yi. However,
yi discards this path, forcing all subsequent nodes to choose
alternate paths.

Definition 4 (Discarding Subchain). A discarding subchain
of Y is ⟨yi yi+1 . . . yj⟩t+i from yi to yj for i < j where
Action(yk) ̸= StepUp for all i < k ≤ j. This is irrespective
of yi’s action.

Lemma 1 (Chain Decomposition). Every causation chain
Y = ⟨y0 y1 . . . yk⟩t can be decomposed into alternating
adopting/discarding subchains, Y = Y 0Y 1 . . . Y n, where the
tail node of subchain Y i is the head node of subchain Y i+1.

Proof. This can be trivially shown with a recursive construc-
tion. Starting with a causation chain Y = ⟨y0 y1 . . . yk⟩t,
we look at the last node yk and add it to the end of a new
subchain Y ′. We construct either an adopting or a discarding
subchain depending on yk’s action. If the action of yk is
StepUp or StepSame, then Y ′ is an adopting subchain. We
continue adding nodes yi to Y ′ starting from i = k − 1 until
we reach a node yj such that j ≤ i and its action is StepDown.
At this point we start constructing a discarding subchain. We
continue recursing until we reach y0 which is added to the
current subchain Y ′ regardless of its action.

This will serve as the basis for constructing our time-
invariant causation fence structure. Figure 6 shows the alter-
nating subchains of BAD GADGET.

The causation fence is a structure that distills the core
elements (i.e., path changes) in a causation chain. In particular,
it only concerns itself with the head and tail nodes of adopt-
ing/discarding subchains. The only paths that the causation
fence concerns itself with are the adopted and discarded paths
in the subchains.

Definition 5 (Causation Fence). A causation fence is formally
defined by F = (N ,R,Q) where:

2 3 4 1 2

Discarding 

Subchain

Adopting 

Subchain

Discarding 

Subchain

1430

20

320

30

430

410 10

210

Fig. 6. Alternating subchains of BAD GADGET. Adopted/discarded paths are
represented by solid/dotted arrows, respectively. Horizontal paths are more
preferred than vertical paths.

• N is the set of, not necessarily unique, n pivot nodes
such that N = {u0, . . . , un−1}.

• R is the set of rim paths, where each Ri ∈ R is a path
from ui to ui−1.

• Q is the set of spoke paths, where each Qi ∈ Q is a path
from ui to destination d.

• Each node ui (except the first and last nodes) prefers a
path through its rim and neighbor’s spoke path over its
own spoke path: RiQi−1 ≻ Qi.

The causation fence can be seen as an open-ended dispute
wheel. A sample causation fence is shown in Figure 7. The
first and last pivot nodes are missing their (potential) rim
and (potential) spoke paths, respectively. The exact manner
in which a causation fence manifests (i.e., the alternating
adopting and discarding subchains property), is what will
allow us to precisely infer the root cause of a causation cycle.u0Q0 R1 u1Q1 R2 u2 un-2Qn-2 un-1Rn-1

Fig. 7. Causation fence.

Lemma 2 (Chain-Fence Relationship). Every causation chain
Y = ⟨y0 . . . yk⟩t is equal to the concatenated rim paths
R1 . . . Rn−1 of a causation fence F = (N ,R,Q).

Proof. Using Lemma 1, we break up the causation chain
Y into n causation subchains Y 0, Y 1, . . . Y n−1, where each
subchain Y r is of the form: Y r = ⟨yr0 . . . yrs⟩t

r

. The first
node y0 in causation chain Y and the end node yrs of each
subchain Y r are added as pivot nodes into the causation fence
F . The rim paths of F are the paths that connect each pair
of pivot nodes, ui to ui−1. There are two cases to consider.
If the pivot nodes are part of an adopting subchain then the
first pivot node ui−1 is the head of the subchain. Pivot node
ui−1 makes a new path available that all subsequent nodes
along the subchain including ui adopt. Thus, during the course
of routing, once an adopting subchain is built, all nodes in
the subchain are on the rim path that is being created. This
rim path connects ui to ui−1. A similar argument follows if
the pivot nodes are part of a discarding subchain where all
nodes in the subchain were on the rim path, connecting ui
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to ui−1, that is being discarded. Note that the causation chain
propagates in the opposite direction of the paths being created.

Figure 8 shows the causation fence induced by the causation
chain in Figure 6.

2 3 1 2

4
20 30 10

32 143 21

Fig. 8. Causation fence example.

B. Dispute Wheels
Griffin et al. introduced dispute wheels in [3], where their

existence is a necessary condition for an SPP instance to
not have a stable assignment. A dispute wheel, as shown
in Figure 9, represents a cyclical set of path preferences. A
dispute wheel W is defined by W = (N ,R,Q), where:

• N is the set of n unique pivot nodes such that N =
{un−1, . . . , u0}.

• R is the set of rim paths, where each Ri ∈ R is a path
from ui to ui−1 (with subscripts modulo n).

• Q is the set of spoke paths, where each Qi ∈ Q is a path
from ui to d.

• The path preference of each node ui is RiQi−1 ≻ Qi.

u1

u2

un-1

d

Q0

Q1

Q2

Qn-1

R0 R1

R2

u0

Fig. 9. Dispute wheel.

Here we introduce proper dispute wheels where the rim
paths form a simple cycle (i.e., no nodes are repeated other
than the starting and ending node) and show that every dispute
wheel must contain a proper wheel inside it.

Theorem 1. Every non-proper dispute wheel W = (N ,R,Q)
contains within it a proper dispute wheel.

Proof: Assume W is not proper, then there exists a non-
pivot node v such that v ∈ Ri and v ∈ Rj , where i < j, as
shown in Figure 10.

From W a smaller dispute wheel W ′ = (N ′,R′,Q′) can
be constructed. There are two cases for this construction,
depending on the path preferences of v:

1) Rj(v)Qj−1 ≻ Ri(v)Qi−1. W ′ is defined as:

N ′ = {v, uj−1, . . . , ui}
R′ = {Rj(v), Rj−1, . . . , Ri+1, Ri(ui, v)}
Q′ = {Ri(v)Qi−1, Qj−1, . . . , Qi+1, Qi}

j i-1

i j-1

j j

j

i

i i

0

Fig. 10. Non-proper dispute wheel. P (a, b) is the subpath of P starting
with a and ending with b. P (a) is the subpath of P starting with a.

This results in the dispute wheel in Figure 11.

v

uj-1ui

d

Qj-1Qi

Ri(ui,v) Rj(v)

ui-1

Qi-1

Ri(v)

Fig. 11. Smaller dispute wheel case 1.

2) Rj(v)Qj−1 ≼ Ri(v)Qi−1. W ′ is defined as:

N ′ = {un−1, . . . , uj , v, ui−1, . . . , u0}
R′ = {Rn−1, . . . , Rj(uj , v), Ri(v), Ri−1, . . . , R0}
Q′ = {Qn−1, . . . , Qj , Rj(v)Qj−1, Qi−1, . . . , Q0}

This results in the dispute wheel in Figure 12.

v

ui-1uj

d

Qi-1Qj

Rj(uj,v) Ri(v)

uj-1

Qj-1

Rj(v)

Fig. 12. Smaller dispute wheel case 2.

Thus, every non-proper dispute wheel W contains a smaller
dispute wheel W ′. Either W ′ is proper or it also contains
a smaller dispute wheel W ′′. Since this reasoning can only
repeat a finite number of iterations, every non-proper dispute
wheel W contains a proper dispute wheel.

In the next section we prove that every cycle in a policy
digraph represents a dispute wheel and vice versa.
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C. Policy Digraphs

Policy digraphs simultaneously represent several DPR struc-
tures. In particular, we prove that causation chains and dispute
wheels are represented as paths and cycles, respectively.

Definition 6 (Policy Digraph). Given a DPR instance D =
(G,≻), the policy digraph is O(≻) = (E, V ) where each node
P ∈ V represents a realizable path in G and is referred to as
a pnode. Between each pair of pnodes P and Q, there can be
one of two edges:

• Subpath Edge. If Q = ⟨u P ⟩ for some node u in G, then
P has a subpath edge to Q.

• Policy Edge. If P ≻ Q, then P has a policy edge to Q.

To simplify the representation of a policy digraph O, all
pnodes in O that are paths originating from a single node
u ∈ G are represented by a single set of stacked boxes—
a stacked pnode. Each pnode within a stacked pnode has an
implicit policy edge to every pnode below it. A sample policy
digraph can be seen in Figure 1 on the right.

Theorem 2 (Chains in Policy Digraphs). Every causation
chain Y = ⟨y0 y1 . . . yk⟩ of a DPR instance D = (G,≻)
is a path in its corresponding policy digraph O(≻).

Proof. From Lemma 2, every causation chain is equal to the
concatenated rim paths of a causation fence represented by:
F = {N ,Q,R}. Each pivot node ui prefers a path through
its rim and neighbor’s spoke path over its own spoke path:
RiQi−1 ≻ Qi. Thus, causation fence F is a path in policy
digraph O as shown in Figure 13. This in turn implies that
every causation chain Y is a path in O.

Q0

u0

R1Q0

Q1

u1

Rn-1Qn-2

un-1

Rn-2Qn-3

Qn-2

un-2

*

*

*
*

Fig. 13. Causation fences are paths in policy digraphs. The ∗ notation implies
a series of subpath edges through pnodes.

Theorem 3 (Cycles in Policy Digraphs). Every dispute wheel
W = {N ,Q,R} of a DPR instance D = (G,≻) is a cycle in
its corresponding policy digraph O(≻). Similarly, every cycle
in O(≻) corresponds to a dispute wheel W .

Proof. This can be seen by drawing the policy and subpath
edges for each pnode (i.e., realizable path) of W in O, as
shown in Figure 14. A sample cycle (and hence dispute
wheel) could start and end at pnode R0Qn−1 as follows:
⟨R0Qn−1 Q0 R1Q0 Q1 . . . Qn−1 R0Qn−1⟩

D. Detecting Dispute Wheels

Once a causation cycle Y = ⟨y0 y1 . . . yk⟩t where y0 = yk
is realized, it implies that the change instigated by y0 caused
a series of actions to propagate along Y until yk (i.e., y0)

R0Qn-1Q0u0Rn-1Qn-2Qn-1un-1 * R1Q0Q1u1R2Q1Q2u2 ****
Fig. 14. Dispute wheels are cycles in policy digraphs and vice versa.

receives another route update. Given any causation cycle Y ,
we answer the following questions:

• Could the cause that induced Y be inferred?
• Could y0 perform that inference locally and indepen-

dently?
To infer the exact cause that induced Y , we show that if yk

has a more preferred path at the end of the causation cycle,
at time t + k, than the path it had at time t, then a dispute
wheel must exist. Otherwise a transient route flap occurred at
time t (i.e., a path was withdrawn or made available). We also
show that y0 can indeed perform that inference locally, but not
independently. This has implications on how policy conflicts
can be detected in practice.

We know that any causation cycle Y , of a DPR instance
D = (G,≻), induces a causation fence F = {N ,R,Q} where
the first and last pivot nodes are the same, u0 = un−1, as
shown in Figure 15. Using F , we show the necessary condition
for F to be a dispute wheel in Lemma 3. That condition is
based on the relative ranking of paths Q0 and Rn−1Qn−2,
irrespective of whether these paths were adopted or discarded.
In Lemma 4 and Lemma 5 we show how these paths can be
determined. This allows us to infer either the existence of a
dispute wheel in Theorem 4, or the occurrence of a transient
route flap in Theorem 5. Finally, we outline how y0 could
theoretically infer the existence (or lack thereof) of dispute
wheels.

u0 = un-1

Q0
R1 Rn-1

u1
un-2

Q1 Qn-2

u0

Q0

R1
u1 un-2

Qn-2

un-1Rn-1

Q1

d

Fig. 15. If u0 = un−1 and Q0 ≺ Rn−1Qn−2 then a causation fence is a
dispute wheel.

Lemma 3 (Fence-Wheel Relationship). A causation fence
F = {N ,R,Q} of a DPR instance D = (G,≻), induced
by a causation cycle of size k, where the first and last
pivot nodes are the same, u0 = un−1, is a dispute wheel
if Q0 ≺ Rn−1Qn−2.

Proof. A sample causation fence is outlined in Figure 15.
Pivot node u0 has a spoke path Q0 but not a rim path while
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pivot node un−1 has a rim path Rn−1 but not a spoke path.
A dispute wheel W can be constructed from F as shown by
removing pivot node u0 and setting Qn−1 = Q0.

Lemma 4. Given a causation fence F = (N ,R,Q) of a DPR
instance D = (G,≻), induced by a causation cycle of size k,
where the first pivot node in F is u0, Q0 = π(u0, t + a)
for some time offset a ∈ {0, 1}. If u0 is part of an adopting
subchain then a = 1. Otherwise, a = 0.

Proof. The offset a simply determines whether the path Q0 of
node u0 is the current path π(u0, t) or the new path π(u0, t+
1). As shown in Figure 15, node u0 only has a spoke path
Q0. If u0 is part of an adopting subchain then subsequent
nodes along the subchain are adopting a new path via u0.
This implies that Q0 must have become available and hence
Q0 = π(u0, t + 1) where a = 1. If, on the other hand, u0 is
part of a discarding subchain then subsequent nodes along the
subchain are discarding the path they were initially using via
u0. This implies that Q0 must have been discarded and hence
Q0 = π(u0, t) where a = 0.

Lemma 5. Given a causation fence F = (N ,R,Q) of a
DPR instance D = (G,≻), induced by a causation cycle of
size k, where the last pivot node in F is un−1, Rn−1Qn−2 =
π(un−1, t + k + b) for some time offset b ∈ {0, 1}. If un−1

performed a StepDown then b = 0. Otherwise, b = 1.

Proof. The offset b simply determines whether the path
Rn−1Qn−2 of node un−1 is the current path π(un−1, t + k)
or the new path π(un−1, t + k + 1). The offset b simply
determines whether un−1 should consider the current path
π(un−1, t+ k) or the new path π(un−1, t+ k+1). As shown
in Figure 15, pivot node un−1 only has path Rn−1Qn−2. If
pivot node un−1 performed a StepDown then it is part of a
discarding subchain where it discards path Rn−1Qn−2. Hence,
Rn−1Qn−2 = π(un−1, t + k) where b = 0. Conversely, if
un−1 performed a StepUp or StepSame then it is part of an
adopting subchain where it adopts path Rn−1Qn−2. Hence,
Rn−1Qn−2 = π(un−1, t+ k + 1) where b = 1.

Theorem 4 (Dispute Wheel Inference). Given a causation
cycle Y , such that Y = ⟨y0 y1 . . . yk⟩t where y0 = yk,
there exists time offsets a ∈ {0, 1} and b ∈ {0, 1} such that
if π(y0, t+ a) ≺ π(yk, t+ k + b) then a dispute wheel exists
around Y .

Proof. Let F be the causation fence induced by Y . Using
Lemma 4 we can determine time offset a and hence path Q0.
Similarly, using lemma 5 we can determine time offset b and
hence path Rn−1Qn−2. From Lemma 3 we know that if the
condition Q0 ≺ Rn−1Qn−2 is satisfied then the causation
fence F is a dispute wheel. Hence, the existence (or lack
thereof) of a dispute wheel can be inferred.

Theorem 5 (Route Flap Inference). Given a causation cycle
Y , such that Y = ⟨y0 y1 . . . yk⟩t where y0 = yk, if no

dispute wheel exists then yk received a transient route flap
during the causation cycle.

Proof. From Theorem 4, there exists time offsets a ∈ {0, 1}
and b ∈ {0, 1} such that the condition π(y0, t+a) ≻ π(yk, t+
k+ b) holds, otherwise a dispute wheel must exist. Thus path
π(y0, t + a) had to be withdrawn by y0’s next-hop neighbor
during the causation cycle to force yk to use the new, less
preferred, path π(yk, t+ k+ b). Otherwise yk would not have
changed its path π(y0, t+a). This would imply that π(y0, t+
a) = π(yk, t+ k + b) which is a contradiction.

Remark 3. A causation cycle Y is triggered by one and only
one event. An event could be a change in a link’s availability
causing a node to adopt or discard a particular path. If
multiple events occur, their effects would be propagated along
separate causation chains.

If node yo observes causation cycle Y , to infer the existence
of a dispute wheel, node y0 must:

• Compute time offset a to determine path Q0

• Compute time offset b to determine path Rn−1Qn−2

The computation of offset b depends only on the action
of yk at time t + k (Lemma 5). The computation of offset
a is dependent on whether y0 is a part of an adopting or a
discarding subchain (Lemma 4). Let yi be the first node in Y
after y0 whose action is not a StepSame. If the action of yi is
a StepUp then y0 is part of an adopting subchain. Otherwise,
y0 is part of a discarding subchain.

Thus, given the type of subchain that y0 belongs to, the
dispute wheel inference problem can be solved. The solution
is indeed local but cannot be performed independently—
it requires the cooperation of the first node along Y that
performed a StepUp or StepDown action.

V. SAFETYPULSE

Dispute wheels may result in protocol divergence. Perma-
nent divergence due to dispute wheels, however, has not been
observed in practice. Nevertheless, the detection of dispute
wheels is of practical value to system administrators. By their
fundamental structure, dispute wheels represent cyclic policy
conflicts, which break from the traditional tiered architecture
of the Internet [4], and could potentially lead to unbounded
dynamics. SAFETYPULSE is a distributed algorithm to detect
dispute wheels. Once dispute wheels are detected, they can be
reported to administrators for further analysis.

A. Overview of Algorithm

SAFETYPULSE piggybacks messages alongside route up-
dates. One possible implementation of SAFETYPULSE on BGP
would be to use message options. Each node places a child
token in this message. As a node receives a route update
with this message, it chooses a new path and broadcasts a
new message alongside its own route update. SAFETYPULSE
essentially sends messages between nodes along causation
chains.
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If a node y receives a message from a neighbor which has
y’s token, then it can be inferred that y has been involved
in a causation cycle. Assume that node y sent out a token at
time tout and received the token back at time tin. A dispute
wheel can be detected by comparing the relative ranking of
y’s realized paths around these times. Using Theorem 4, it can
be inferred that a dispute wheel exists if for two given time
offsets a ∈ {0, 1} and b ∈ {0, 1}:

π(y, tout + a) ≺ π(y, tin + b)

Generally speaking, this means that if node y had a more
preferred route around the time when it received the token (at
time tin + b) than around the time when it sent out the token
(at time tout + a), then a dispute wheel exists.

The time offsets a and b represent whether the paths used are
the ones adopted or discarded at times tout and tin, respectively.
Time offset a is determined by the structure of the causation
cycle. According to Lemma 4, it depends on whether y is part
of an adopting or a discarding subchain. As we will see, time
offset a can be computed by a third party node on the causation
cycle. Time offset b, on the other hand, is determined by node
y’s action at time tin. According to Lemma 5, if y performed
a StepDown then b = 0. Otherwise, b = 1.

The information in the token received by node y is enough
for y to recover paths π(y, tout + a) and π(y, tin + b) for
the comparison. We describe the SAFETYPULSE algorithm in
three sections as shown in Figure 16.

1) Sending out token with ProcessNode()
2) Computing time offset with SetTimeOffset()
3) Receiving token with DetectDisputeWheel()

θy=(k,a)

θy=(k,_)

node y

node v

2. SetTimeOffset()

1. ProcessNode()

3. DetectDisputeWheel()

Fig. 16. Overview of SAFETYPULSE algorithm.

B. Sending the Token

We define M(y, t) to be the SAFETYPULSE message that
node y sends out alongside its route update at time t. In
general, if node y changes its assigned path at time t then
it has performed an action, switching from path π(y, t) to
path π(y, t+1). Every time y performs an action, it stores the
paths associated with its action, π(y, t) and π(y, t + 1), in a
hashtable using a newly generated key k. The token to be sent
out is θy = (k, ), where k is the key identifying the action
performed and is an empty slot in which the time offset a
will be placed by another node. The new message M(y, t+1)
to be sent out alongside a route update at time t+1 following
an action performed by y at time t must contain the following:

1: function PROCESSNODE(y, t)
2: Best(y, t)← max≻ Choices(y, t)
3: π(y, t+ 1)← Best(y, t)
4: θy ← ∅
5: if π(y, t) ̸= π(y, t+ 1) then
6: k ← new key
7: Store(k, (π(y, t), π(y, t+ 1)))
8: θy ← (k, )
9: M(y, t+ 1)←M(Cause(y, t), t) + θy

Fig. 17. SAFETYPULSE token creation and action storage.

• the message received initially from the node that caused
the action

• node y’s new token θy

More formally, if π(y, t) ̸= π(y, t+ 1) then:

M(y, t+ 1)←M(Cause(y, t), t) + θy

Messages are propagated along causation chains where each
node along the chain appends its token to the received message
that triggered an action and sends out a new message. The
algorithm for sending the token is outlined in Figure 17.

C. Receiving the Token

When a node y receives a token θy that it has previously
created in a routing update message, it checks to see if a
dispute wheel has been created. The contents of the token are
θy = (k, a) where k represents the key to lookup the action
and a represents whether to use the discarded or the adopted
path of the action. Note that a will be created by a third party
node as described in the next section. Here, we assume that a
has been set appropriately and π(y, tout+a) can be determined.

Next, using Lemma 5 we determine the second time offset
b to find π(y, tin + b). According to Theorem 4, if:

π(y0, t+ a) ≺ π(yk, t+ k + b)

then a dispute wheel exists around Y . Using this information,
the dispute wheel detection algorithm can be constructed as
shown in Figure 18.

D. Computing time offset

The remaining part is to determine time offset a. In
Lemma 4, we showed that the value of a is dependent on the
type of subchain that y belongs to. This can be determined by
the action of the next node, v, along the causation cycle. If
v performed a StepUp then y is in an adopting subchain. If
v performed a StepDown then y is in a discarding subchain.
If v performed a StepSame, then y’s subchain type is decided
by v’s next node in the causation chain. Thus a node can fill
in the time offsets of the uncategorized nodes based on the
action performed. If a node performs a StepDown or StepUp
action, it can fill the time offsets with 0 or 1, respectively. The
algorithm in Figure 19 shows how third-party nodes can fill
in the time offset a.



10

1: function DETECTDISPUTEWHEEL(y, t)
2: if θy ∈M(Cause(y, t), t) then
3: θy = (k, a)
4: (P1, P2)← Lookup(k)
5: if a = 0 then
6: Ptest ← P1

7: else
8: Ptest ← P2

9: if Action(y, t) = StepDown then
10: b← 0
11: else
12: b← 1
13: if Ptest ≺ π(y, t+ b) then
14: ReportDisputeWheel(Ptest, π(y, t+ b))

Fig. 18. SAFETYPULSE token receival and dispute wheel detection.

1: function SETTIMEOFFSET(y, t)
2: for all unclassified θv = (k, ) ∈M(y, t+ 1) do
3: if Action(y, t) = StepUp then
4: θv ← (k, 1)
5: else if Action(y, t) = StepDown then
6: θv ← (k, 0)

Fig. 19. SAFETYPULSE time offset computation.

E. SAFETYPULSE Algorithm

The overall SAFETYPULSE algorithm is outlined in Fig-
ure 20. Each node y at time t simply executes the three
algorithms described above.

1: function SAFETYPULSE(y, t)
2: ProcessNode(y, t)
3: SetTimeOffset(y, t)
4: DetectDisputeWheel(y, t)

Fig. 20. SAFETYPULSE algorithm.

F. Space Requirements

The token sent by every node y has two parts, the key k
and the time offset a. The key needs to index an action stored
locally at node y. If node y is expected to switch between 2i

paths, then the size of k only needs to be i. The time offset a
can be represented by two bits, b0b1. The first bit b0 is initially
set to 0, indicating that a has not been set. The second bit b1
is set to a random bit. Once a third party node v wants to
set a, it manipulates a = b0b1 as follows: set b0 to 1 and
flip b1 if the action of v is a StepUp. When node y receives
a = b0b1 it checks if b0 is set and if b1 is flipped (compared
to a locally stored version of a). If so, then node y knows that
it should check against the adopted path. Otherwise, node y
checks against the discarded path. Thus the overhead added
by each node is negligible.

G. Characteristics of SAFETYPULSE

SAFETYPULSE distinguishes itself by having a unique set
of characteristics:

• Provably Correct. SAFETYPULSE is provably correct
with any dynamic network since it is based on a compre-
hensive theory of policy routing dynamics.

• Privacy Guarantees. Path preferences are not revealed
between neighbors.

• Efficient Space. Each node only appends a small token
of space complexity O(1) to a route it sees.

• Policy Freedom. Since SAFETYPULSE is a dynamic
detection algorithm, it does not require any restrictions
on routing policies to be imposed. Also, it enables results
even in the case of piecemeal adherence to the protocol—
only ASes along the causation chains / cycles to be
diagnosed need to adopt the protocol.

VI. CONCLUSIONS

In this paper, we extended the DPR model, initially intro-
duced in [18], to further characterize the dynamics of interdo-
main routing in the presence of policy conflicts. We introduced
policy digraphs which allowed us to identify a more efficient
detector for policy conflicts. Leveraging results derived from
our extensions to DPR, we introduced SAFETYPULSE—a
distributed policy conflict detection algorithm that excels in all
criteria parameters: time / space overhead, privacy, soundness,
and ease of adoption.
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APPENDIX A
ASYNCHRONICITY WITH DPR

The key idea is that modeling link delays is sufficient to
capture asynchronicity without adding any new constructs to
a regular DPR instance D = (≽, G). At any time t, each link
(u, v)t ∈ E admits a variable time delay between 1 and a
finite upper limit M . This delay is specified by the function
L(u, v, t) which outputs an integer in [1,M ]. The time delays
are considered ordered such that L(u, v, t)−L(u, v, t+k) < k.
Thus L(u, v, 4) = 100 and L(u, v, 5) = 2 are not allowed
since v would get u’s path at time 5 before receiving u’s path
at time 4. From DPR instance D and delay function L, a new
asynchronous DPR instance D′ = (≽′, G′) can be constructed
to simulate D with time delays.

For every two nodes u, v in D, there are M − 1 transit
nodes added to D′ such that u, v ∈ V ⇒ xuv

i ∈ V ′ for 2 ≤
i ≤ M . These transit nodes represent the “communication
wire” between every two nodes. The dynamic nature of the
links will be used to control the length of this communication
wire. If L(u, v, t) = 5, then a path of length 5 between u and
v through the transit nodes will appear at time t. An example
of a delay 3 between nodes u and v can be seen in Figure21.

u vxuv
M xuv

M-1 xuv
2xuv

3

Fig. 21. Transit nodes simulating a delay of L(u, v, t) = 3.

The path preferences of D′ = (≽′, G′) discount the
presence of transit nodes in paths. Let the operation Re-
moveTransit remove all transit nodes. This operation allows
the asynchronous path preferences to be derived from the
original synchronous path preferences. Thus for all non-
transit nodes u ∈ V ′: Pu

1 ≽′tPu
2 iff RemoveTransit(Pu

1 ) ≽t

RemoveTransit(Pu
2 ). Each transit node xuv

i prefers a path
through its source node u over its transit neighbor toward
the source xuv

i+1. Paths containing sequences in the opposite
direction (from xuv

i to xuv
i−1) are forbidden. Finally, in terms

of causation chains, given delay L(u, v, t) = 3, the causa-
tion chain ⟨u v⟩t in D corresponds to the causation chain
⟨u xuv

3 xuv
2 v⟩t in D′.


