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Abstract

We study the e ect of normalization on the layers of deep neural networks of feed-forward type. A
given layer i with N; hidden units is allowed to be normalized by 1=N; ' with ; 2 [1=2;1] and we study
the e ect of the choice of the ; on the statistical behavior of the neural network’s output (such as
variance) as well as on the test accuracy on the MNIST data set. We nd that in terms of variance of
the neural network’s output and test accuracy the best choice is to choose the i’s to be equal to one,
which is the mean- eld scaling. We also nd that this is particularly true for the outer layer, in that the
neural network’s behavior is more sensitive in the scaling of the outer layer as opposed to the scaling of
the inner layers. The mechanism for the mathematical analysis is an asymptotic expansion for the neural
network’s output. An important practical consequence of the analysis is that it provides a systematic
and mathematically informed way to choose the learning rate hyperparameters. Such a choice guarantees
that the neural network behaves in a statistically robust way as the N; grow to in nity.

Keywords. machine learning, neural networks, normalization e ect, asymptotic expansions, out-of-
sample performance.
Subject classi cations. 60F05, 68T01, 60G99

1 Introduction

The last few years have experienced an explosion in the study of neural networks. Neural networks are
parametric models and their coe cients are estimated from data using gradient descent methods. Early
classical results regarding the approximation power of neural networks [4) [18] [19] set the stage and then
advances in technology led to great successes in text, speech and image recognition, see for example [24,
12, 6], [44), [3, [26, 46] to name a few. Later on, neural networks showed a lot of promise in other elds such
as robotics, medicine, nance, and applied mathematics, see for example [27, 28], [15] (34} [11], [Z} (36, [37, [38].
Their success in applications has made clearer the need for a better understanding of their mathematical
properties.
The goal of this paper is to investigate the performance of multilayer neural networks as a function of
normalization features. In particular, let us consider the following neural network with two hidden layers:
D4 © b ¢ o
gN:L;Nz(X) — 1 Ci @ 1 W2;j;i (Wl;jX)A; (1)

N,* i=1 N, *

j=1
where CH; W2 2 R, x; W 2 RY, and 1; » 2[1=2;1) are xed scaling parameters. For convenience, we

write Whix = W1I;x |, as the standard 12 inner product for the vectors. The neural network model has
parameters

which are to be estimated from data (X;Y) (dx; dy).
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Our goal is to understand the e ect of the choice of the values of the scaling parameters 1; » 2 [1=2;1]
on the behavior of the neural network. The choice ; = , = 1 corresponds to the mean eld scaling that
has been studied in the literature in recent years, see for example [8, 31, [35] [39} [40, 41]. On the other side
of the spectrum, i.e, when ; = , = 1=2, then we have the so-called Xavier normalization [14], giving
rise to the so-called neural tangent kernel, that has been analyzed in a number of works, see for example
[16] 10, [20] @, [42]. Even though, most of the discussion of this paper is focused on the two-layer neural
network, in Section[3.2] see also Section 4] we discuss the three-layer neural network case demonstrating that
our conclusions extend to general feed-frward multilayer neural networks.

In the case of shallow neural networks (SNN), i.e, when gN(x) = = L C' (W'x), the question on
the e ect of 2 [1=2;1] on the performance of the neural network has been recently studied in [43]. In
[43] we developed an asymptotic expansion for the neural network’s statistical output gN after training with
stochastic gradient descent (SGD) pointwise with respect to the scaling parameter 2 (1=2;1) as the number
of hidden units N grows to in nity. Based on this expansion [43] demonstrates mathematically that to leading
order in N, there is no bias-variance trade o , in that both bias and variance (both explicitly characterized)
decrease as the number of hidden units increases and time grows. In addition, it is shown there that to
leading order in N, the variance of the neural network’s statistical output g™ is monotonically decreasing in

and thus the lowest variance is attained at = 1. Numerical studies on the MNIST and CIFAR10 datasets
showed that test and train accuracy monotonically improve as the neural network’s normalization gets closer
to the mean eld normalization = 1. An additional useful conclusion of the mathematical analysis in [43]
is that in order for the asymptotic results to be true (without trivial limits) one needs to choose the learning
rate in SGD in a very speci ¢ way with respect to N and

The content of this paper is the corresponding analysis in the case of deep neural networks (DNN). As
we will see the analysis in the case of DNNs is considerably more complicated than in the case of SNN.
However, the end conclusions are of similar nature with the additional interesting observation that the outer
layer plays a more special role. In addition, the analysis of this paper o ers a mathematically principled
way to appropriately choose the learning rates. We base our analysis on a typical two-layer neural network,
however as we shall see in Section [3] this is done without loss of generality.

In particular, we derive an asymptotic expansion of the neural network’s output as N, ¥ 71 with
N; xed. This expansion shows mathematically that to leading order in N, the variance of the neural
network’s statistical output is monotonically decreasing with respect to , 2 [1=2;1]. At the same time, the
same expression (after appropriately choosing the learning rates) shows that the e ect of ; is perhaps less
prominent in the sense that it appears through terms that are averages and are also bounded (for bounded
activated functions). The mathematical conclusion is that, at least under our assumptions (as presented in
Section [2) one would optimally choose the outer layer normalization to be , = 1 and subsequently choosing

1 = 1 would be optimal. This conclusion is also validated numerically. Indeed, in Section [3 we study the
test accuracy of two and three layer neural networks for di erent parametrizations in terms of 1; » 2 [1=2; 1]
(and 3 2 [1=2;1] in the three-layer neural network case) when trained with standard SGD on the MNIST
dataset [25]. As we shall see there, the test accuracy is sensitive to the choice of the normalization of the
outer layer , with the optimal choice being , = 1, but having done that, the e ect of the choice of the
normalization of the inner layer, i.e., of 1 is less profound. The end optimal choice is to choose , = ;1 =1,
i.e., the mean- eld normalization in all layers.

An additional important conclusion of this work is that it provides a systematic and mathematically
informed way to choose the learning rates hyperparameters, see for the model , Section for the
three-layer case and Section [4] for the general case. Without choosing the learning rates to be of the indicated
order with respect to the Nj’s and ;’s the neural network as a statistical object will have trivial limits, i.e.,
it will either converge to zero or to in nity. If however, they are chosen in the indicated way then the neural
network will behave nicely as a statistical quantity in the sense of not being trivial and having nite variance
at least.

Our analysis is based upon the quadratic error loss function

1 . 2
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and the model parameters are trained by the stochastic gradient descent algorithm, for k 2 N

i i A Ni:N 2:i
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where
HI0 = Wz =5 WETHI 000 HE0 = (@& )):
1 j=1
For xed N, we de ne the empirical measure
N1;N2 1 X i o .
- |\T2 ChLwZ i nw BN hw b N
and the time-scaled empirical measure
N1;N2 — _Ni;N2. (3)
t bNotc *
The neural network output can be rewritten as
=~ O 1 +
_ D S . _ D E
N = ¢ O wH WHHOAING PN = e 22NN et
1 j=1
and the time-scaled neural network output is
he ™2 (x) = g2 (): )
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For a xed data set (x®;y®™)M_  let gp'*™> and h{*"™? denote the M-dimensional vectors whose i-th
entries are gyt 2 (x®) and h{'N2(x(™), respectively. In order to emphasize the dependence on ~» = ( 1; 2)

and on Kl = (N1; N2) we will instead write sometimes h'tQ;A.

As it will be demonstrated below, it turns out that in order to understand the main e ects of 1; » 2
(1=2;1) on the behavior of h,'[Q;A it is enough to look at its asymptotic behavior as N, ¥ 1 with the N3
being thought of as large but xed.

In addition, the learning rates need to be chosen to be of the right order with respect to the number of
hidden units N; and network normalization ; in order for the neural network to behave in a statistically
robust way. In particular, for reasons that will become clearer later on, we shall choose the learning rates to
be

Ni;N2 _ C . N1i;N2 W;1 . N1;N2 W;2 . (5)

C _N2222' Wil NJ:!'ZIN;ZZ' W;2 N%21N2222,
where the coe cients ¢; w:1; w2 2 (0; 1) are chosen to be of order one with respect to Np; Na.
Loosely speaking our main mathematical result is that for each xed , 2 (1=2;1) one has that as

N, ¥ 1,andwhen 2 2-%;2=1 for xed 2f1;2;3; gand xed ;and Ni:

.A oo _ i} _
AT NSRS NI € DQE T+ N, (2 e A ItGNL 4 Jower order terms in Np:  (6)
Jj=1

In (@) hp'' * is the limit of ht'Q;A asN, ¥ 1, Qj'\;'tl; 1 are deterministic quantities, AN 1 is a positive

de nite matrix ano_l GN1 js a Gaussian vector of mean zero and known variance-covariance structure. No-
ticeably, all of hi\'l’ 5 Q}\;'tl' 1 ANz 1 and GN1 are not only independent of N, < 1 and 5, > 0, but the
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dependence on N is through explicit averages of the form Nil :\':11 ), and the dependence on 1 is only

through the terms  (Z2'(x)); (ZZ'(x)) which for bounded 2 C(R) will be bounded.

Even though we do not show this here, as in [42] [43], one gets that for all ;; » 2 (1=2;1) and for all
N; < 4, the limit of the network output recovers the global minimumast ¥ 14, i.e. hl\'l; t 0 ¥, where
¢ = yD;::;yM | For xed j 2 N, one can also show exactly as in [43] that Q}\;'tl‘ 1 1 0 exponentially
fast ast ¥ 1. The Gaussian vector GN: is related to the variance of the network at initialization which
then propagates forward, see .

These conclusions immediately suggest that the variance of ht'Q;A to leading order in N is monotonically
decreasing in , 2 [1=2; 1], with the smallest possible variance when N is large, but xed, when , =1. In
addition, the fact that the dependence ofI{.he leading order terms in the right hand side of (6) on N; and

on 1 is through averages of the form Nil 'i\l:ll ) for N; and through bounded terms for ; (given that

the activation function 2 Cl(R)), demonstrates that h{Q;A is less sensitive on the value of ;. The latter
observation is also con rmed numerically in Section 3
To further validate and demonstrate these conclusions we perform in Section [3 extensive numerical studies
tting two and three layer feed-forward neural networks on the MNIST dataset [25]. In all of the examples,
the pattern is the same and corroborates the theoretical conclusions. Namely, the test accuracy is sensitive
in the choice of the normalization of the outer layer , with the optimal choice being , = 1, but having done
that, the choice of the normalization of the inner layer, i.e., of 1 has less of an impact on the performance.
The end optimal choice is to choose , = 1 =1, i.e., the mean- eld normalization in all layers.

At this point we want to emphasize that the goal of this paper is not to study the limit as No; N, ¥ 1.
We refer the interested reader to [16} [10, [41} [2, [33] for related results. Our goal here is to disentangle the e ect
of di erent scalings in di erent layers. With this goal in mind, it turns out that it is enough to x N, look at
N, ¥ 71 and then observe that at least to leading order in N, the e ect of N7 is only through averages that
converge to well de ned limtis. In addition, in the process of doing so, we obtain that the e ect of , is to
scale the variance in a very simple and intuitive way as demonstrated by (6). On the other hand, the e ect of

1 is through bounded terms when at least the activation function and its derivatives are bounded. Also, we
note that in order to obtain expansions like @ one needs not only to characterize the asymptotic behavior of

hLQ;A, but also needs to understand the uctuations (central limit theorem) corrections, corrections to those
corrections, etc. Lastly, our numerical studies indicate, see Figures [3 and [4, that test accuracy is better
when N, > Nj, which also motivates looking at N, ¥ 1.

The rest of the paper is organized as follows. In Section [2] we lay down our main assumptions and
present the main mathematical results of the paper. In Section [3] we discuss the theoretical results further
and we present our numerical studies. In Section [4] we present for completeness and without proof the
mathematically motivated choice of the learning rates for a deep feedforward neural network of arbitrary
depth. Conclusions are in Section 5} The proof of the main results presented in Section [2 are presented in
the appendix of this paper. In Appendix [A] we establish apriori bounds on the learning parameters as they
evolve in time. In Appendix [B] we prove Theorem 2.1} In Appendix [C|we prove Theorem [2.3] In Appendix
@We prove Theorem Then in Appendixwe complete the proof of the asymptotic expansion for h{\'“NZ
for 5 2 (1=2;1) through an inductive argument.

2 Assumptions and main results

In this section, we describe our main assumptions under which the results of this paper hold and we present
our main results. We also establish necessary notation. We work on a Itered probability space ( ;F;P)
where all the random variables are de ned. The probability space is equipped with a Itration F; that is
right continuous and Fq contains all P-negligible sets.

Assumption 2.1. (i) The activation function 2 C;L(R), i.e. isin nitely di erentiable and bounded.
.- - H D\M 1 PM
(i) Thereis a xed dataset X Y = (x®;y®M, and we set (dx;dy) = & L (xwyay(dx;dy).

(iii) The initialized parameters fC(i)gi;fVVOZ;j;igi;j ; fwol?j gj) are i.i.d.,generated from mean-zero random vari-
ables and take values in compact sets C; W!, and W?2.
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We recall that we shall choose the learning rates to be

Ni;N2 C . N1;N2 _ W;1 . N1;N2> W;2

C 2 25 w;1 1 2103 22 W;2 1 21pg2 227
NZ Nl N2 Nl N2

where the coe cients ¢; w1, w2 2 (0; 1) are chosen to be of order one with respect to Ni;N,. For
notational convenience and without loss of generality we shall set themtobe ¢ = wi1i= w2=1.

Note that the weights in di erent layers are trained with di erent rates. This choice of learning rates is
necessary for convergence to a non-trivial limit as N, ¥ 1. If the parameters in all the layers are trained
with the same learning rate, it can be mathematically shown that the network will not train as Ni; N,
become large in the sense of having convergence to trivial limits.

Before presenting our main mathematical results let us rst discuss what happens at time t = 0. By law
of large numbers, as N2 ¥ 1, we have that ~'*™> §  N:(dw?; dw?; dc), where

0 (dwh; dw?;de) = 2 (dw™) Wi (dwbN1) 2 (dw?h) wz(@dw?N1) < (dc): (7)
By the central limit theorem, we have in distribution

o D p_ _E
NS 2 PhiNepg = ¢ (ZZNx) Nap ™o B 6Ni(x); asN, 1 1 ®)

D E

where GN: is a Gaussian random variable and variance 2, (x) = jc (ZZN(x))j?; ¢ . From now on, we

will use the notation GN1 to refer to this speci ¢ Gaussian random variable.
Hence, when , = 1=2, one has that h)*™N2(x) § GNi(x), and when , > 1=2, h)+Nz(x) i 0,

Remark 2.1. Notice now that due to the independence assumption from , the sequence of random
variables fZ2N1(x)gn,, which is the input to the assumed bounded activation function , will also converge
to a Gaussian with mean zero and nite variance in the limit No ¥ 1 if ; = 1=2 and to the trivial limit
Z2Ni(x) B 0if 12 (1=2;1).

Certain quantities will appear many times, so let’s de ne them here.
Biw()= Z¥Mx)  ZFM(0)

Bido()=(© * Z°M(x) ° 2N (whix) (whi);

Bi:j( ) = cw?i O(Wl;jX) 0 ZZ;NI(X) ; )
and set
N, D LT S L E D LED LEi
Ax;i(0 = B>1<;x°( ); 0 b+ th Bx;':(O( ); 0 * +XX0 B)3<’J( ); 0 * Bxéj( ); 0 * (10)
j=1

In addition, for a given f 2 C2(R1*N:1+d) Jet us de ne

CoT () =0cF() (zZ:Nl(x°)>+ﬁc "(ZEM () (WX) Buwef()
1
1 D :

+ ¢ (ZEN () WKW B I f( )X (1)

1
1
Even though we do ngs explore this further here, we note that the dependence of ANz on Nj is through
averages of the form N% [\'zll( ) and thus by Assumption and law of large numbers convergence as
N; ¥ 1 is expected to hold. A fully rigorous justi cation of the latter claim is beyond the scope and
purposes of this article and is left for future work.

Remark 2.2. In a snapshot the theorems that follow essentially establish that for large N, the neural network
output behaves as



. . pN1:N N N H H H
2 52:htN ot + N%ifKt ‘where K satis es either of equations or and has a

Gaussian distribution.

22 35Nz e oK+ - - N1: where KM satis es equation with K (x) =

0, " satis es either equations or and has a Gaussian distribution.
where, under the appropriate assumptions, hM recovers the global minimum as t ¥ 1. We note that, as

expected this is in parallel to what one observes in the one layer case of [43]. However, what is potentially
interesting here is that the outer layer dominates the behavior.

Our rst result is related to the convergence of the pair ( tNl;Nz;htNl;Nz) as de ned by and as
N, ¥ 1. We study the convergence in the Skorokhod space Dg([0; T]), where E = M(R1*N2(+d)y  RM
and N1 2 N is xed. Here M(RY*N1(+d) s the space of probability measures in R1+N1(1+d),

Theorem 2.1. Let T < 1 be given. Under Assumption , for xed 1; » 2 (1=2;1) and learning rates

chosen via , we get that as N, ¥ 1, the process ( {\'1;2;h't\'1;N2) converges in probability in the space
De([0; T]) to ( N+;hMN), which for t 2 [0; T], satis es the evolution equation
zZ .7z
hN2(x) = hi (x) + y hi ) AR, (dx';dy)ds; (12)
0 X Y
D E

\I/Dvhere htg'l(x) = 0. In addition, we have that for any f 2 CZ(R*™N:+®) and t 2 [0;T], f; M =
LA
For some of our results we would need to further assume the following.
Assumption 2.2. (i) The activation function is smooth, non-polynomial and slowly increasingﬂ

(ii) The xed dataset (x(;yM)M  from part (ii) of Assumption has data points that are in distinct
directions (per de nition on page 192 of [7]).

In a similar manner now to [43] and to [42] we get that under Assumption and for any N1 2 N the
matrix AN+ 2 RM M “\whose elements are A)':‘;;O with x;x’ 2 X, is positive de nite. The latter immediately
says that we have convergence to the global minimum

hN: 1 ¢ as tU¥ A: (13)

We note that with these choices of learning rates, the aforementioned convergence is true for any N1 2 N.
Since for , 2 (1=2;1) the rst order limit is deterministic it makes sense to investigate the second order
convergence. In particular, consider

KoM =Ny (he ™ hp);

where * depends on the scaling parameters 1; > and will be chosen appropriately momempgarily. W also

denote ¢*MN2 =N, ( fUN2 ). For £ 2 CZ(RYN1(+D) Jet us also de ne Ip N2 (F) = f; PNz
Then, we have the following results.

Proposition 2.2. Let Assumption hold and choose the learnjpg rates via @ Thengfor xed 4 22

(1=2;1) and xed f 2 CZ(RV*N:(+d) jf = 1, the process Ip=™N(F)= f N2 ;121[0;T]

converges in probabilityDin the spﬁe Dr([0;T]) as N, ¥ 1, and

Case 1. If <1 ,, f N2 wmp

N22N

1A function (x) is called slowly increasing if limy s 1. % =0 for every a > 0.



D E
Case 2. If 7 =1, 1NNy = £ NoN2 o w Ni(f) where INY(F) is given by
2.2 D E
Ip(F) = y hiod) CRHT() ot (dxX;dy)ds (14)
0 XY

Theorem 2.3. Let Assumption hold and choose the learning rates via . Let GN1(x) be the Gaussian
random variable de ned in . Then, as N, ¥ 1, the sequence of processes fKtNl;NZ;t 2 [0; T]gn,2N
converges in distribution in the space Dgrm ([0; T]) to K{\'l, such that, depending on the values of and
we shall have

Case 1. When 2 1;% and - 2 3.orwhen ;2 31 and”<1 , , 3,
Z.Z
KN (x) = K (x) K& (AL, (dx"; dy)ds (15)
0 X Y
where KM(x) =0if > < , 1, and K'(x)=GMN(x)if > = » 1.
Case 2. When ,2 2;1 and " =1 ,,
2 3
Z.Z 1 B )
K™ () = Ko™ 09 + y () At Brw() 5 I Bll() S (dXidy)ds
0 X Y 1j=1
1 XZ tZ N g D 3;j N E
+ NG y  hi(d) xxXIET BII() BE(); ot (dx’;dy)ds
1j:1 0 XY (16)
1 MLl D E B
+ y hi0e) ¢ BFI(); ot It BE()  (dx’;dy)ds

KN ()ARL, (dx’; dy)ds
Y

where KM(x) =0if 22 3;1, K§'"(x) =GN (x) if » =2, and I} (F) is given by equation for any
f2 Cg(Rl-'_Nl(l_'_d)).

Notice that when , > 3=4, Theorem shows that the limit of K{\'l;NZ is deterministic. This motivates
us to consider the next order correction. Namely, let us de ne the second order uctuations [*N2 =
N, (K{MEN2 KNy for 5 2 (3=4;1) and for some > * to be determined.

Proposition 2.4. Let Assumption hold and choose the learning rates via . Fix .2 (3241, * =
1, and f 2 C3(RI*N:(+D) [ etting 27, the process FLYUN2(F) = N, T[INTN2(F) N1t 2
[0; T]gn,2n converges in probability in the space Dg([0; T]) as N ¥ 1., and

Case 1. If <27 =2 2, LY"N(f) 10,

Case 2. If =27 =2 2, LYN2(F) ¥ LN (F), where LN (F) is given by

Z.2
Lo (f) = y hiod) 12 0cf() (2N()  (dx’;dy)ds
° ’I V7.2
NN y hix) 10 ¢ Y(ZFMN () WX Bwef()  (dx’;dy)ds
]_1 ZOtZX Y b E
T y  hNed) 1Nt ¢ 0zZNad)) "wixhw? Yt e F(O)XY (X0 dy)ds
11 zOtzx Y b E
N y hied) 18 ¢ (@zENd) CwhwW? i FOXG gt (dxdy)ds
7 12 0 XY 5 E

KNi(x®) CcR¥T(ew); o' (dx%dy)ds
0 XY

n



Theorem 2.5. Let Assumption hold and choose the learning rates via . Let also GN1(x) be the
Gaussian random variable de ned in (8). Then, for xed , 2 (3=4;1) and > =1 5, the sequence of
processes T tNl;NZ;t 2 [0; Tlgn,2n converges in distribution in the space Dgm ([0; T]) to {\'1, which satis es
the following evolution equations, depending on the values of 5 and

Case 1. When 2 2;% and 2 3,0rwhen ;2 21 and <2 2, , 3,
Z.Z
0= 0 S ODARL, (dx’; dy)ds; (18)
0 X Y
where ¢'(x)=0if < , 3,and {*(x)=GNi(x)if = , 1.
Case 2. When ;2 2;1 and =2 2,
Z.Z
)= 5 S ONARL: (dx'; dy)ds
0 XY 2 3
Z.Z L X N
+ y  hr () ALY (B ))+W LY ((Bgdo( )2 (dx;dy)ds
0 X Y 11
1 XZ tZ N 0 N 3;j D 0p3:] N E 0
NG y hd*(x) LEBI()) xx'By'( ), ¢t  (dx’;dy)ds
lj=1 0 X Y
1 XZ tZ D j N E 3;j
+71 D ox v y hir() xxXBFI(); o LE(BRI()) (dX';dy)ds (19)
, ;1 2 3
! N1/ 0y 4N1 Rl 1 2 N1 p2i 5 0
Kt (X) 4l By ) +N— Ig Byise( ) (dx’; dy)ds
0 X Y S
1 Ml il D E

[\ 0 X YKgl(xo)XXol?l BI() BI() o (dx%dy)ds
i=1

1 XZ +Z Nes 0D . NEN ., 0

il oy Ko OO)xx! BI(); N N BXE)J( ) (A dy)ds:

i=1

where §'(x)=0if .2 2,1, §(x)=G6N(x)if , =2, K satis es equation (I6), and LY+ satis es
[17). 5

These results suggest that there is an expansion of f; N*N2 and hi'*™M2 as N, ¥ 1 forall , 2

21,241 with 2 N. The aforementioned results obtain the leading order of such expansions when
=1land = 2. In Appendix [E] we obtain the leading order of such asymptotic expansions for all 2 N

and as a consequence for all 2 2 (1=2; 1) using an inductive argument.
In particular, when 2 2-1;2=>1 e obtain that for any xed f 2 C;H(R?™N:(+D) as N, ¥ 1,

D Na1;N E X 1 N i
L ————1,3(F) + lower order terms in Ny; (20)
n@ 2™
n=0 N2
D E
where we have identi ed I0f(F) = F; o' , INE(F) = IY(F), I3'5(F) = L (F). When 3, the inductive

expressions for I,':';lt(f) are given in . i

AsN, ¥ 1 and when ,2 2Z-1;Z*1 we have the asymptotic expansion

1
NE(x) +

N1;N2
ht (X) N;(l 2) Q :

2 %Q'\gﬁ(x) + lower order terms in Ny; (21)
2

8
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where Q0 = h{'t, Q¥ = KM, Q) = M. Forn=1;:::; 1, Q)i satisfy the deterministic evolution
equations (66), and (68). We do not show this here, but for xed j 2 N, one can also show exactly as
in [43] that, under Assumptions and Q}\;‘;L ¥ 0 exponentially fastast ¥ 1.

For the sake of presentation and due to the length of the formulas we present the associated formulas on
the right hand side of these expansions (and their derivation) in Appendix

3 Numerical studies

The goal of this section is to compare the numerical performance of two and three-layer neural networks of
the form for di erent values of ; 2 [1=2;1]. In Section |2} we demonstrated the neural network’s output
statistical properties can be approximated via the limit to 1 of the hidden layers of the outer layer. This
analysis showed that the variance of the neural network’s output is minimized when the outer layer is in the
mean- eld scaling ( > = 1 in the case of (1)) while the scaling of the inner layer i.e. the value of 1, plays a
less prominent role.

In this section we demonstrate a number of numerical studies to compare test accuracy for two and three
layer neural networks for di erent values of the normalization parameters. Our numerical studies involve the
well known MNIST [25] data sets. The MNIST dataset [25], which includes 70,000 images of handwritten
integers from 0 to 9. For the two layer network case, the learning rats satisfy (5), as suggested by our
theoretical analysis. The neural networks are trained to identify the handwritten numbers using the image
pixels as an input. In the MNIST dataset, each image has 784 pixels, 60,000 images are used as train images
and 10,000 images are test images.

We nd numerically that test accuracy of the tted neural networks increases monotonically in 5 2
[1=2;1], suggesting that the mean- eld normalization 1=N, for the outer layer that corresponds to , =1,
has certain advantages over scalings 1=N,? for , 2 [1=2;1) when it comes to test accuracy. The numerical
studies in both the two and the three layer neural networks demonstrate that as long as the outer layer is
scaled in the mean- eld scaling, the scalings of the inner layers plays a less prominent role. With that being
said, the optimal choice, as seen by these numerical studies, is to scale all layers in the mean- eld scaling.

3.1 Numerical results for the two layer case

In this subsection we t the model to the MNIST dataset and we compare the e ect of di erent values
of 1; 2.
In Figure[I} we x in each sub- gure the value of , and plot test accuracy curves with respect to values
of ;. We nd that for each », after an initial phase, the behavior is monotonic with respect to ;. We also
nd that the best behavior is when 1 = , =1 with the neural network’s behavior being more sensitive on
the choice of the value for ».
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Figure 1: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, N; = N, = 100,
batch size = 20, Number of Epoch = 1000. Each sub gure plots various i fora xed ».

In Figure[2 we x in each sub- gure the value of 1 and plot test accuracy curves with respect to values
of 5. We nd that for each ; the test accuracy is clearly monotonic with respect to . Independently of
the value of 1, the best test accuracy is obtained when , =1.
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Figure 2: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, N; = N, = 100,
batch size = 20, Number of Epoch = 1000. Each sub gure plots various , fora xed ;.

In Figures [3] and [4] we illustrate the e ect of unequal choices for N; and N,. We nd that the best test
accuracy is always when N, > Ng, which also motivates taking rst N, ¥ 1 and then N; ¥ 1. Also
overall, best test accuracy is also when 1 = , =1
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Figure 3: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, batch size = 20,
Number of Epoch = 1000. For each xed sets of 1; », each sub gure compares the performances of models
with di erent Ni; N.
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Figure 4: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, , = 1:0, batch
size = 20, Number of Epoch = 1000. Each sub gure plots for di erent sets of hidden units.

3.2 The three layer neural network case

The purpose of this section is to demonstrate that the same qualitative conclusions that hold for the two-
layer case also hold for neural networks with more layers. For this purpose, let us consider the following
three-layer scaled neural networks:
(@) 1l
1 :
w2k (wh x) A; (22)

1
j=1 N.& oy

gNl;Nz;N3(X) — Nl3 Ch @ 1 \WELH]
3 -




where CT; W3- W2 2 R x;W% 2 RY and 1; » 2 [1=2;1) are xed scaling parameters. For conve-
nience, we write Wt x = W1 ;x 2 as the standard 1% inner product for the vectors. The neural network
model has parameters

which are to be estimated from data (X;Y) (dx; dy). We consider the loss function

1 N 2
LO)=5Exy Y g0

N1;N2;N3

Cli(+1 = CII( + CN73 Yk gL\ll;Nz;NS(Xk) Hs;i(Xk);
N3 N2;N o o 11
: : e Na: 1 X, i 1 XL
Wiy =W+ 20— yie g™ ™0 @S i@ O W @ Wit AA
i=1 j=1

"W X)Xk
2:i; 2i; wiz N1;N2;N3 1 X s i 0752 1; .
W =W + —— Yk O (xx) INEE) Ck (Zk (Xk))Wk (Zk (Xk))Hk (Xk);
N; "N, N3 .,
N1;N2;N3
Wlf-:lj :WE;I;J W3 Vi gL\ll;Nz;Ns(Xk) CII< O(ZE;I(XK))HE;J (X);
2 3

(23)
He ()= (W' %);

ZP00 =g Wt HE
1 =

H 0 = (2! (0);

ZZ00 =g W THA (0);
2 j=l

HI'x) = (Z2'X);

1

gll(\ll;Nz;Na(X) — g'\:(l;Nz;Ns(X) — N
3

CEHY' (0):
i=1
We investigate the numerical performance of the neural network trained by the SGD algorithm (23)
with various 1; 2; 3;N1;N2 and N3z. Even though we do not show this here, following the mathematical

analysis that led to the choice of the learning rates , we get that in the three layer case the learning rates
should be given as follows

Ni1;N2;Ns _ 1 . Ni1;N2;Ns _ 1 .
C - 2 2 3? w;1 - 1 2 31p12 22713 2 3!
N3 Nl N2 N3 (24)
N1;N2;N3 _ 1 . N1;N2;N3 _ 1
W;2 =T 23l 2203 2 3¢ w3 =T 2202 23
Nl N2 N3 N2 N3

Let us now investigate numerically the performance of neural networks scaled by 1=N;*, 1=N,? and
1=N5*® with 1; 2; 32 [1=2;1]. The numerical studies are again on the MNIST data set.

In Figure[5lwe x in each sub- gure the value of 3 and vary the values of 1; ,. We nd that the best
results in terms of test accuracy are when ; =1 for all i. Importantly, we also nd that the neural network’s
test accuracy is more sensitive on the choice of the outer layer normalization, i.e., on 3.
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Figure 5: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, N; = N, =
N3 = 100, batch size = 20, Number of Epoch = 1500. Each sub gure plots various ;; , fora xed s.

In Figure[g|we x in each sub- gure the value of , and vary the values of 1; 3. We nd that the best
results in terms of test accuracy are when ; = 1 for all i. Again, we nd that the neural network is more

sensitive on the choice for 3.
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Figure 6: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, Ny = N, =
N3 = 100, batch size = 20, Number of Epoch = 1500. Each sub gure plots various ;; 3 fora xed ».

In Figure [7]]we x in each sub- gure the value of ; and vary the values of ,; 3. The conclusions are
the same as before. Namely, the best results in terms of test accuracy are when ; = 1 for all i. Again, we
nd that if 3 = 1, then the neural network behavior is less sensitive on the choice of 1; 5.
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Figure 7: Performance of scaled neural networks on MNIST test dataset: cross entropy loss, N; = N, =
N3 = 100, batch size = 20, Number of Epoch = 1500. Each sub gure plots various ,; 3 fora xed ;.
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4 Learning rates de nitions for deep neural networks of arbitrary
depth

Let us consider a typical deep feed-forward neural network that has depth m 2 Nwith *=( 1; ; m) 2
[1=2; 1] ™ scalings that is de ned inductively as follows

gN:L,N2. 'Nm(X): _ WNmylm i gva iNm 1,|m(X)
M in=1
gNl’ N 3ilm - a 1)(X): N_™J WRm iitm iiim a2 im j gNL N Ganyitm J(X) =1 m
m J im j=1
gNl’IZ(X): e W Nasiziiz i gNo.ll(X)
1 ij_:l
gNo;;il(X): io W Nosizy -

Even though Ng = 1 is redundant, we write it for notational consistency purposes.

The goal of this section is to provide the formulas for the choices of the learning rates as functions of N;
and jfori=1 m so that in the end the neural network will be expected to converge to a well de ned
limitas N; ¥ 1.

We do not repeat the lengthy calculations here, but rather we only provide the formulas for the appropriate
choice of the learning rate and leave the rest of the details to the interested reader. In the end, following the
exact same procedure as in the two-layer and three-layer case, we obtain that the learning rates should be
chosen according to the rules:

aywNm — Nr2n m 2
8yNm 1 = ernm 2ernml s

— 2 3§ 2 1 152 2 1
g » = N2 ™ 3NZm 0 INZ ™

m 2
j— 2 3 2 m 1 2 2 m 2 1 2 m 3 1
ayNm 3 = Nm™ "Ny ™ Nm ™ Nm "3

2 2012 2012 102 1
3Nmm11Nm2Nm3Nm4

_ N2
ayNm 4 = Np ™ m 2 m 3 m 4

2 2,2 2512 2 2 2612 1n 2 1
awny =NZ™ SNS™ Y NS ™S 2 TN NS 2 °N5 2 'Nf*®

m 2 m 3
— 2 3pnj2 m 1 2pg2m 2 2p\j2m 3 2 23 2N12 2 2712 1 1.
awno = Np™ "N ™% "Ny 57 "Ny 73 N3 ® "Ny * °Np * =

Such a choice directly generalizes the formulas for the learning rates in the two and three layer case
presented before and one can show that lead to formulas of the same type as those obtained in Section 2

5 Conclusions

In this work, we have investigated the e ect of layer normalization on the statistical behavior and test
accuracy of deep neural networks. We have looked at all the scaling regimes between the square root
normalization, i.e., the so-called Xavier normalization, see [14], all the way up to the mean- eld normalization
[8 131}, 35, 39, 40| 41]). Our two key ndings are that (a): the mean eld normalization leads to lower variance
of the neural’s network statistical output and better test accuracy, and (b): given that the outer layer’s
normalization is the mean- eld regime, the subsequent choice for the normalization of the inner layers does
not a ect test accuracy as much (mean eld normalization remains the optimal choice, but there is less
sensitivity in the inner layers). An important by-product of the mathematical analysis of this paper is a
mathematically motivated way to de ne the learning rates. This is an important conclusion of our work
since it gives a principled way to choose the related hyperparameters.
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A A-priori Bound for the Parameters

By specifying the learning rates g*"2; (LN2: TUN2 5 jn (5), we can establish an important uniform

bound for the parameters.

such that ) ) N
CL + Wt + Wi <k

Furthermore, as Ni; N, grow ) )
Chwr Ch =O(N, "),

Wlil—;tj—-l Wkl;j =O0(N, « l)Nz ;
WEE WE =0, @ ON,

Proof. In this proof, we use K;K; to represent unimportant constants that may change from line to line.
We rst establish a bound on C}!. For k = 0;1;:::;bTNyc, since () is bounded, Hlf” < K, and by ,

we have " #
i i N1;N2 1 )4
Cia1 Cp +-S —K Ki+ — iICK
N2 N2 —
" m=1 #
('\:llyNz gl;NZ 4
CII( +K 2 2 Jclinj
N2 N2 ? m=1
Since also
X i . 2‘1 N2 gh;Nz X M
Ck = C) + Cj' Cj'1 C) +K i KN22 ijl,
j=1 2 2 j=1m=1
we have
N N ('\:ll Nz X N N gl;Nz N N
m:> b2 +K 551 mj21=b2+KN221 mJZ;
where e e
1 orNzN 1
sz - Cl +K C : Nz — = ci
N2 0 N22 k N2 Kk

By the discrete Gronwall lemma and k  bT Nyc,

NNz~
mp?  bNzexp KiN% —
2
Thus, since C§ has compact support,
" '
N1;N2 N1;N2 N1;N2 1#
i i c c N
Cx C(')+Kszl+KN2222 b™2 exp KN2222

is bounded if XYN2 1=(NZ %2), for 2 [1=2;1).
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Next, let’s address the parameters W24, By equation and the boundedness of (); °();HEJ; Cl;mRz,

we have !
N1;N2 -
W2 o o . L
Wil Wt e RS nd s IG0 Gk Y@EH?
1 N2 2 m=1 .
N1;N2 )4 -
. 1
W2_]I + K W;2 icm
k N11N22 1Ykl sz m_lj k]
= 1
Nl N2 1 2 =
- N D4
W2;J;| +K W;2 2 P Cm
K N,'N,? NE! VT m:11 k]
N1;N2
2;j;i W;2
Wk + KN11N22 2 1
Since k  bTN,c and W2 has compact support, we have
WE:J;I WOZ;J;I + Wr%q;” Wr’izj;ll
m=1
N1;N2
W2;j;i + W;2
0 m=1 N11N22 2 !
N1;N2
2Ny
W;2
K; + KN 1N2 S 1
1 2
which is bounded if ("2 Nj*=NZ 22
Lastly, for W, we have
N1;N2 )4
welli oWl e o CEHET) Gk @MW Wi xigx
1 2 j=1 2 i=1 '
NuNzp 2 2 2 b4 ) B4 )
i SN 1 1 1 i
Wi WL 2 iyij+ —  jCj —  Ci
K N_‘j_l Nzl > Yk N2 izlj k) N2 - k

N1;N2N2 2 2
Wl;j +K W;1 2 .

k Nll
Hence, for k  bT Ny,

1;j 1) x 1;j 1;j
B ) ] P
W Wy + W Wy
m=1
N1;N2N2 2 2

1;j w;1 2
WO ! + K N, *
m=1 1
N1:N2N3 22
1;j W;1 2 .
Wyt + K—N11 ;
which is bounded since W,_-,l;j has compact support and if \')'VllNz N,*=NJ 22,
Collecting our results, for all kK bTNyc and i = 1;:::; N>, we have the desired uniform bound for the
parameters. O
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B Proof of Theorem 2.1

B.1 Evolution of the Pre-limit Process

We rst analyze the evolution of the network output gL\'l;NZ(X). Using Taylor expansion, we have

o 1 o 1
. 1 X 1 X 1 M 1 > i
gll(\l—il—lNz(X) gll(\Il’Nz(X) = N, 2 CII(+1 @ 1 Wlfill (Wk+1X)A N, 2 C|I< @N 1 Wlfdyl (WQ,JX)A
2 =1 1 j 2 =1 1 j=1
3”0 13
— 1 X i 1 X 2;j;i A5
- 2 Ck+1 Ck 1 Wk+1 (Wk+1x)
2 j=1 1 j=1
2 0 1 @] 13
1 b ¢ e S i
t N Wl WildpoA @ Wt (W T)AS
2 =1 N, * i=1 1 j=1
o 1
_ 1 C C @ 1 WZ_]I le A
T N2 k+1 k N2 K ( X)
2 =1 1 j=1
2 0 1
1 ; 1 X . 1 X .
+ - Cl4 P W we oA S weho wil o we
2 j=1 1 j=1 1 j=1
@] 1 3
1 X 1 X .- .
+ O@N . 21: (W“X)A W2J| o(leX) Wk+1 Wéd x5 + RN1iN2
=1 Ni® o
where RN1iNz2 = RlNl N2 RNl N2 , and
O 1
RV =5 G Gk 'O W (WTOA TS (Wit wigl o we
2 =1 1 j=1 1 j=1
@] 1
1 X : 1 X . 1 X . y .
iz Cka Gk '@ W (wehoA e Wt iweh) wily Wit x
2 i=1 1 j=1 1 j=1
s g o) 12 » 3,
. 1 .1 1 .- 1 i,
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o 12 3,
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for some (W24 Wy, (w2, w1y in the line segments connecting (W23 WX ) and (W2 wrl). By
Lemma- RN1 N2 = O(N, @ ). Using equation (23) and de nition of the empirical measure, we have

N N1;N Nl Nz N1;N D ; N N E
G200 gt (%) = N2 —1 Yk O o(Xk) Z7MNi(x)  ZEN() et
ClvléNz B _ D E
NTizTT Ve B0 @F 2o T ZEN00 i) (wihi
1 j=1
N1;N2 B D ED E
NE: l/;/\llz — Vi gNl NZ(Xk) XXk cw?2id o(leX) 0 72 Nl(X) Nl Nz 20 o(leX) 0(22 Nl(x )); ~ N1 N2
1 j=1

+O(N, “* 2,
(25)

where Z2N1(x) = ML w21 (wlix). We can then write the evolution of hy'*'™?(x) for t 2 [0; T] as

N1;N N1;N ° th Ni;N N1;N i
he "2 (X)) hg 2 (x) = ka1 (0 92 (X)
k=0
Ni;Nz BNy 1 D E
ST Yoo GePOuw)  ZENMI0)  ZEN0g T
N k=0
NiNe N 13 D . : NoE
L Vo NG (©F 0 ZEM0a) 0 ZEMG0  (whx) (i) -pe
N1 *N; k=0 j=1
N1;N2 bNe 1 dic D E
NE :/\If\llz — Vi gNl NZ(Xk) XXk cw?2i O(lex) 0 72 Nl(X) N1 N2
1 k=0 j=1D
CWZJ O(lexk) O(ZZ Nl(X )) N1 N>
+O(N; ?);

and, using now the de nitions of the learning rates from we continue the last display as

1 PN 1Z D E
N y gt ZEN) ZENg 5N (dxddy)
2 k=0 XY
1 PN 13 NLN D : : NoiNz©
+ y o) (02 T ZENd) 0z (W) (wih); N (dx;dy)
NiNz 5 jog x v
DNy 13 Z D E
+ 1 y gNl Nz(XO) XX CWZJ O(lex) 0 ZZ Nl(x) N1 N2
NiNz o o X Y
D

CWZJ O(WlJXO) O(ZZ Nl(XO)) _N1;N2 (dXO; dy)
+ M+ O(N, 2);
where M{HN2 = MPYEN2 + MJEN2 + MBEN? s a martingale term given by

bNX tn N1;N D ; N N E
- Yoo oNIOw)  ZENx) ZEN(x) e

N1;N2 _
Ivll;t -
N2 oo

Z

(26)

D E
. y gL\ll;Nz(XO) ZZ;Nl(XO) ZZ Nl(x) N1 N2 (dXO,dy) :
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N1;N 1 ol NN D : : i i N1;N
Mot ™ =N, Vo Gerr0w) (@2 2B ) T ZENeg (W) (whX); -
k=0 j=1
z _ D E
y gt (@7 0 ZENM) 0 ZENg i) wihx) -t (dxidy)
XY
(27)
N 1 M N D E
1
MNl N2 — NG Vi gkl Nz(xk) XXk CWZJ O(lex) 0 ZZ Nl(X) N1 N2
k=0 j=1 D E
CWZJ O(lexk) 0(22 Nl(x )) N1 N2
Z D E
y gNl Nz(XO) XX CWZJ O(lex) 0 ZZ Nl(X) Nl N2
Y D E o
w1 S SZEN ) m N (dxdy)
(28)
Recall that learning rates are as given in . AsN, ¥ 1, hi\'l;Nz can further be re-written in terms of
Riemann integrals and the scaled empirical measure N2,
Z.Z
hi\ll;Nz(X) hlo\ll:Nz(X): y hls\ll;Nz(XO) ZZ;Nl(XO) ZZ;Nl(X) : é\ll;Nz (dXO;dy)dS
0 XY
L ZZ
+ y hiNed) (o) ' zENd) T zEN g (whIX) (whix); N2 (dxdy)ds
Ni,o; 0o x v
| 3 ZZ
+ y h's\ll;Nz(XO) XXO CWZ;j O(Wl;jX) 0 ZZ;Nl(X) : ;\ll;N2
Nlj=1 0 X Y
ow?? O (ZZN(xY); §Ne (dx; dy)ds
+ M+ O(N, ):
(29)

Finally, we analyze the evolution of the empirical measure ~|'(\‘1'N2 in terms of test functions f 2
rst order Taylor expansion gives

CS(R1+N1(l+d)) Denote |i( (Ck, WZ 1;i. W2 Noq;i. Wl 1..... Wl Nl)

D E D E

. 1 : -
f 2 e = N, (k) TCW)
i=1
1 X iy Qi i 1 i 2;j;i 2;j;i
= %f( G G+ OwasF( k) Wiy Wi
2 i=1 2 i=1j=1
1 XK Lj 1
+ = s F( k) Wk+l W' +0 N2
2i=1j=1 2
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Using (23), we have

D NN E D NN E N1;N2 NN D _ NLN E
Foel? B = e ) 6F() @M ()it
2
w2 : D .
N Yoo G e fZEN ) (W) Bwef ()=t
1 2
\I)lvll;lNz _ DD E E
e VR CO B cA CO I (U W R (8 (G FE
1
1
+0
NZ

In order to write the evolution in terms of the scaled measure {\'1;'\'2, for t 2 [0; 1], we have

D E D E oNye 1D E D E
£ e = > LED A
k=0
N1;No bNxe 1 ) D ) E
=N Yoo G0 Bef() (ZEM )
2 k=0
\l;lvl.éNz bNxe 1 _ D E
NN Yoo g e fZEN () (W) Bwaf( )=
1 2 =
k=0
\'>IV1';1'\I2 bN;T{ ' )N DD ; 1 Ni;N E Ni;N E
+ Ve GerTP0w)c M@EN)) Wxiowt NG 2= g (O et
1 k=0
1
-+ _
°
NNz £ tZ
== y hM) 8cF() (25M00); N (dxdy)ds

ﬁzzl 0 x v y h's\ll;Nz(x) C O(ZZ;Nl(X)) (W1X) @sz( ); é\ll;Nz (dx;dy)ds
1 2

N1:N, Z.Z
+ Lz y h's\ll;NZ(X) I U(ZZ:Nl(X)) 0(W1X)W2; é\ll;Nz I"Wlf( )X; é\ll;NZ (dX; dy)ds
N; *N,? 0 X Y
. 1
Ni;N .
_'_Mf;t1 *+0 ’\TZ !
(30)
where M3z = MPEN2 + M3 + MY is a martingale term, and
NN NaiNz PN 4N NN D ) NN E
Mt = S Ve o™ BF() (2N (xi); R
i =0z D E
Y et @cF() (ZPN00)~ N (dxidy)
X Y
N1;N \'>\I/]'.éN2 ° n N1;N D N1;N E
Mf;%;’t °= N l’N 2 Yk o G P(Xk) c© O(ZZ'NI(XK)) (Wlxk) O ( )i~ e
1 2 —
k=0 5 .

Y g2 © "@EN1(x)) (WX) Bwef( ) ~ptN? (dxidy)
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E

. NuN2 - BNz 1N _ DD _ |
M::\;lé;,th — N 1'\-1 — Vi gll(\ll,Nz(Xk) c O(ZZ,Nl(Xk)) O(Wle)Wz;"’kNl’Nz rwlf( )Xk;'”kNl’Nz
172 k=0
z . DD E E
L Y BT e @) Twhowt 5T e fOx 5T (dxdy)
Using learning rates as speci ed in (5)), we have
D E D E
f; L\ll;Nz : (')\ll;NZ
1 Z.Z
== y he*M00  @:F() (2509 SN2 (dx;dy)ds
Ny 2 0o x v
1 Z.Z
T y hguN2() ¢ UZEN1()) (Wix) @wef( ) SN2 (dx;dy)ds
N; *N, 0 _X Y
1 Z.Z
TN : y hYNzog ¢ (ZPM0) Cwhgw? DN e f(O)x DN (dxdy)ds
N]_ NZ 0 XY
FMEEN O
(31)
In the following lemma, we prove a uniform bound for E g} (x) ‘.
Lemma B.1. For any Kk N,T and any x 2 X,
N1;N2 4
sup E g, ?(x) <C;
Ni1;N22N;k bN,Tc
for some nite constant C < 1..
Proof. By equation (25), we have the following bound
. . NaiN2 : c yuN2 B :
G0 N0 e Ve N et Yk Ot (x)
NE N7 *Ng 2 5
N1;N
_Zwi > Vi Ot (i) TR
NP ING 2 2 " N> (32)

. C . C 1
N1;N2 + N1;N2 + +
MO0 + T N0 o 1+

Nl'Nz C Nl'Nz C
’ + ’ + N
Ok (x) N, Ok (Xk) N’

where the last inequality holds because N, > 0 is large. Squaring both sides of the gives

C c 2

. 2 ) 2 ) C .
N1;N2 N1;N> N1;N> N1;N>
) Ok xX) +2 g, ) —Nz Ok (xx) +—Nz + 7N2

i 2
Ok+1 g|'(\ll’N2 (X)) +1

. 2 C . 2 C . 2 C
Ni1;N2 Ni1;N2 N1;N2 .
Ok x) + 7N2 Ok x) + 7N2 Ok (x) 7N2’

where the last inequality follows from the Young’s inequality (ab 2—2 + %2 for = N%)- Similarly, squaring

both sides one more time gives

. 4 . 4 C ) 4 C _
gll(\l—il—;l.Nz(X) gL\ll,Nz (X) + = gL\ll,Nz(X) + = gll(\ll,Nz (Xk) + =
I\|2 N2 NZ
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Therefore, for k  N,T,

) 4 ) s XK _ 4
RNy = g0 T g e
j=1
C

4
;N2
Xi + —
(Xj 1) N,

. 4 C
%)+ AON v o

j=1

) 4 c X s c X 4
A I s O B vl Y
i=1 i=1

We then take expectation on both sides and get

_ 4 : 4 c X 4 c X 4
E gy E g)™N(x) *C+ E 912 (%) + E g 204 1)

=1 2 j=1
_ 4 x 4 X X 4
E g™ +C+ N% E g0+ N% E g2
j=1 j=1x2Xx

(33)
where the last term in the last inequality holds because x; are sampled from a xed data set X of size M.
Therefore, summing both side of with respect to x gives

_ 4 > ] 4 c XX 4
E g™ (%) E go (X)) +CM+ E g (x)
x2X x2X 2 j=1x2x
cm X X 4
w2 E o) (34)
Ny .
j=1x2X
) 4 C X XX 4
E g0  +C+ T E g7
x2X 2 Jj=1x2X

Since (CJ; WEi; W2y are i.i.d. mean zero random variables, we have
2 o) 1 43
—e§ = LTz wriga £ S cit
: . N, 2
2 =1 1 j=1 2

E o))"

i=1
Then, by applying the discrete Gronwall lemma to equation (34), for any 0 k bN,Tc and N, 2N

. 4
E gl'(\'l’NZ(x) C:
x2X

The result in the lemma follows.
O
Next, using conditional independence of the terms in the series for M{"*2 and M{+™2 as well as the

bounds from Lemmasand | we can establish the following L2 bounds for the martingale terms M/ N>
and Mthl Nz "\which implies that they converge to zero as N, ¥ 1. The proof is similar to that for Lemma
3.1in [4]] and thus it is omitted.

Lemma B.2. For large N1; N2 2 N and some nite constant C > 0, we have

C

N 2 C 2
A L

N2’
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B.2 Relative Compactness

In this section, we prove the relative compactness of the family £ Ni:Nz; hNuiN2gy 5 in Dg([0; T]), where
E = MR N:(3+d))  RM "and N; 2 N is  xed. Using Lemmas and Markov’s inequality, we get
the following lemma which shows compact containment for f( {\'1;2 htl; 2);t 2 [0; Tlgn,2n- The proof is
analogous to that for Lemma 3.3 in [42] and thus omitted.

Lemma B.3. For each >0, there is a compact subset K of E such that
s !

1
sup P prlNzppliNe 2 <
N12N;t2[0;T]

We now show the regularity of the process NtN2 in Dyygienyarany([0; T1). For z1;2, 2R, de ne the
function q(z1;z2) = minfjzy  z,j;1g. Let F{""N? be the -algebra generated by (Cj; WZ1; Wg7);; and
b
053 Yidimg
Lemma B.4. For any f 2 C2(R1*N:@+d) and 2 (0; 1), there is a constant C < 1 such thatfor0 u
0 v Nt,and t2[0;T],
h D N-NED N_NE D N_NED N_NE N_Ni C C
Eq £ &0 0 o7 q f o gy JReT NI 2 TNZ 7

v tov

Proof. For0 s<t T, using a Taylor expansion, we have
D

Dt Ni;N NN Do NenoT
f; t1’ 2 f; sl’ 2= f;Nbl\}z’tc2 1:;~bl\12'sc2
1 X i
I\Tz . f( sztc) f( szsc)
1 ) . . 1 . oot i (35)
N, OcF( bnste) Conate  Conose + N> Cuzs T onote) Wortiee  Wonse
2 =1 2 j=1j=1
1 oDl i 1j 1j
+ N, Fwii FCongte) Wokee  Woriose
i=1j=1
someh batc I the line segments between f .. and ... With0<t s <1, by Lemmas[A.]
B-1] we have
_ _ _ N 1 ) ) _
E CI;Nztc Ct;stc F_l,\ll’Nz E Cis1 Ck Fle'Nz
k=bNjsc
| PN
NZ 2 ¢
2 k=bNzsc
C C

1 o 2 27
N2 N2

Similar analysis shows

2;§;i 2;3;0 N1;N C C .
E W WRLE - ENaNe + :
bN2tc bN2sc N]:!. 1Ng- 2 Nll 1N22 2
1;j 1§ N1;N c c .
E W W FaiN: + :
bNxtc bN2sc S le_- 1N21 2 N:f- 1N22 2

By Lemma|A.1l ! .. is bounded in expectation for 0 <s <t T. Taking conditional expectation on
both sides of (35]) and using bounds we derived above yields

ho  E oc C
S S S N SR N
N2 N2

26



for0O<s<t TwithO<t s

< 1, and some unimportant positive constant C < 1. Therefore, the
statement of the lemma follows.

O

We next establish the regularity of the process hN+:Nz in Dgm ([0; T]) in the following lemma. For the
purpose of this lemma, we denote q(z1;z2) = minfkz,  zk;: ;19 for z;;z, 2 RM.

Lemma B.5. For any 2 (0;1), there is a constant C < 1 such that for 0 u ,0 v ~t, and
t2][0;T], .
h N1;N N1;N N1;N N1;N -:—N1;N ! C
SR BT I G o

Proof. For 0<s<t T, by the Taylor expansion of the network output g,'*""?(x), we have

N1;N2 N1;N2 bNX ' N1;N2 Ni1;N2
he 72 (X)) hg 72 (X) Oker 00 g2 (%)
k=bNjsc 1
1 bNye 1 Mg i : @ 1 X 2 i A
INIE Cr+1 Ck Nt Wi (Wi x)
2 Kk=bNjpsc i=1 o 1 j=1 1
1 ol aSa i 0@ 1 2;j;i Liy\A 1;j 2;3ii 2;J;i
N NNGE C N WS W hoA (Welx) Wl wi (36)
1 772 p=pNpsc i=1 j=1 o 1 j=1 1
1 bNXlXX iO@ 1 2_]I 1_] A 2_]I0 11 1;j
*NINZ C "OJ7 W™ Wh)AW e (W x) Wil wel x
1772 p=pNpsc i=1 j=1 1 j=1
C bNxe 1 B¢ : : C bNxe 1 B B -~ 2if: : :
N.2 Cks1 Cx + N.IN.Z Wiy W + Wi, Wy
2 k=bNjsc i=1 1 772 k=pNpsci=1j=1

By taking conditional expectation on both sides of and using the bounds we derived in the proof of

Lemma [B.4]

h _ i C bNxE 1 B . .
E hptMe(x)  hislNz(x) jENEN: 5 E Clyy Cf jFY=N:
2 K=bNjpsc i=1
c N3 I3 B h . , i
INIESNIED E Wlf—tj—ll WE’“ + Wi, W jRINe
Nl N,* k=bNsc i=1 j=1

C

C +—:
N

1,1N2 ; H ;
E h h 1 2 | JF 1 2 C + N

The statement of the lemma then follows. O

Combining Lemmas[B.3|to[B.5] we have the following lemma for the relative compactness of the processes
f NuNz; hNuN2g o for  xed Nj. The proof is similar to that of Lemma 3.6 in [39], which is omitted here.

Lemma B.6. The sequence of processes f Ni:Nz: hNuNzgy 5\ is relatively compact in Dg([0; T]), where
E = M(R1+N1(1+d)) RM .
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B.3 Identi cation of the Limit

In this section, we show that for xed N; and as N, ¥ 1, the process ( {"2; hp't'™N2) converges in
distribution in the space Dg([0; T]) to ( {\‘1; h{\‘l), which satis es the evolution equation
i
he () = hg* (x) + y hi*(xX) AlL (dx’;dy)ds; (37)
0 XY

where M is given by (7), and if , = 1=2, hy"*(x) = GN*(x), where GN: is Gaussian, and if , > 1=2,
hy'*(x) = 0.

Let NuNz2 2 NM(Dg([0; T]) be the probability measure corresponding to ( Ni:Nz; h\NuN2) - Relative
compactness implies that there is a subsequence N1:N2« that converges weakly. We must show that any limit
point N1 of a convergent subsequence NNz« is a Dirac measure concentrated on ( N1;hN1) 2 D ([0; T)),

D E D E D E
F(;hy= £ f " g & Op; &
> .2
* ht* () hg*(x) y h(<)  zZENM)  ZEN) &t (dx'dy)ds
x2X 0 XY
1 XZ tZ - .
No y h(x) (@ ° zFN() Tz X)) (whTx); §t o (dxdy)ds
lj=1 0 X Y
1 PR

= y hls\ll(XO) xx! cw2i O(lejx) 0 Zz;Nl(X) : é\ll
Nlj=l 0 X Y

cw? dwhix%) 4zZNi(xT)); & (dxdy)ds  may(hgt) mp(h{?)
(38)
By equations (31), (29), Lemma|[B.2 and the Cauchy-Schwarz inequality, we have

E nony F( N RN =B F( NoN2y pNel2)

#
=E O N2 @ 2 + M]L\;léL;Nz +0 N2 1 gi; ‘L‘\:l;Nz
" i=1 #
28 N1;N A N1;N
+ B MMMz O(N, ?) mi(h+N2)
x2X i=1
1
2 3 2 3
C E M'::\;ltl;NZ +E MtN1$N2 +0 N2 @ 2
Ll
1
C 1
N, 2

Therefore, limy, s 1 E ~nyinve F( N2 hN1) =0, Since F () is continuous and F ( N2:Nz; hN1iN2) js yniformly
bounded, we have E n; F( N1;hN1) = 0. Hence, ( N2;hN1) satis es the evolution equation and
hf; i =nhf; Qi for any test function f 2 CZ(RI*N:(1+D),

Since equation is a nite-dimensional, linear equation, it has a unique solution. By Prokhorov’s
theorem, NNz converges weakly to N, which is the distribution of ( N1;hN1), the unique solution of
(B7). Hence, for xed Ny, ( N1iNz; hN2iN2) converges in distribution to ( Nt;hNt) as N, ¥ 1.
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C Proof of Theorem

In this section, we look at the convergence of the rst order uctuation process of the network output for
xed Nj and study its limiting behavior as N, ¥ 1. In particular, consider

KtNl;Nz — NZ, (htNliNz hL\ll);

where * is dependent on the scaling parameters 1; . We also denote N2 =N, ( N2 ),
For t 2 [0;T] and x 2 X, by equations and (37), the evolution of K{"*"?(x) can be written as

1
N1;N2 — N N1;N2 N1;N2 N1;N2 N
Kt (x) =N, hy ho +hg het

Z.2
=Ny oy RN Ble(): SN (axdy)ds
1 MLl _ D _E
+ y hisNe()  BRlo(); SN (dx;dy)ds
lj=1 0 X Y
o
1 Ll _ ) WD E =
+- y  hgENed) xd BEI(); N BRI(); §Ne (dx'dy)ds
1.4 0 XY >
EA7A D E
N2 y hls\ll(xo) B)JZ;XO( )r (')\ll (dXO,dy)dS
0o XY
1 MLl D E
+ y hi") BRL()i 0" (dx’idy)ds
lj=p 0 XY 5
1 MLl D ED E =

+5 y RO x< BRI() ot BF()i o (@Xidy)ds_
l1j=1 0 X Y >
+K(|)\11;N2+N2’MtN1;N2+O(N2 2+')

By rearranging terms, we obtain

KNl;Nz(X)z
‘z.z Z.,z D E
= y hY(x<) Blo() NeNz o (dx';dy)ds KNsNz(0) BL (), 0 (dx';dy)ds
0 XY XY
1 M 21l D . _E
+ y hYx) BZL(); NeNe (dx;dy)ds
lj=1 0 XY
242 D . E
KNz BZE,(); o (dx";dy)ds
(0] XY
Z .7 D E
s . . -
+ y hYrd) xx! BII(); NN BEI(); 0 (dx';dy)ds
Ni,., o xv
Z.Z D ED E
+ y hiieh) xx? BII() 0 BE( ) N2 (X dy)ds
0 X Y
Z+Z D ED __ E
KNz (! BRI(): o™ BRM()i o (dX;dy)ds
0 XY

+ |t\11:N2(X)+K(!)\11:N2+N2’MtN12N2+O(N2 2+’)

(39)
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where prNz(x) = [ENz(x)+ DENz(x) 4+ HN2(x), and
NLN g Lt . :
1;%' Z(X): W Ké\ll’Nz(Xo) B)l<;x0( ); ;\ILNZ (dXO;dY)dS;
2 0 XY
2 0= o KN N2(¢) BZL(); 2Ne (axdy)ds
NiN; j=1 0 XY
zZ . Z D E
. D S . , . , .
MM = KEN oy BRI ) SNz BEI(); {2 (a; dy)ds
N1N2 j=1 0 XY
Z.2 D ED E
+ KN Opod BRI ) o BR(); SN2 (dx;dy)ds
0o _X 'Y
ZZ D E

y hNe(x®) xx! BFI(); NuNa BHI(); NuN2 (g dy)ds

Recall that when , > 1=2, h{’*(x) = 0. Therefore,
E

D
. - . 1 - . P .
KN3N2 () = Ny NNz () = N, €2 2 7 ¢ (22MN(x)); T Np—heile2

which, by the central limit theorem, converges to the Gaussian random variable GN:(x) if = = , (1=2)
andto0if > < , (1=2). E

We also need to consider the evolution of IN"N2(F) = £, N> fora xed function f 2 CZ(RI+N:1(1+d))y,
By (30), for N large enough, we have

pb ED E D ED _ E
f; L\ILNZ f: cl)\ll,Nz =N, f: tNl,Nz f: ([)\]LNZ
bNxg 1 D E
= W Yk g"(\|1,N2(Xk) 0.F( ) (ZZ,Nl(Xk));__kNl,Nz
2 k=0
PN 1 D £
1 i N .
NI ONZ 2 Ve 0N e MZEM ) (Wix) Baef ()N
Ni *N; o
1 PR -~ DD _ L E E
TNE INZ 2 T Yo Ger0) e M2 a)) Cwhkidw? S N na (O et
Ni *N; o
'
+0 i
I\|2

(40)
The evolution equations and suggest that we consider the convergence of K{**™N2 and IN'+N2(f)
for 7 minfl  , , (1=2)g. If ;<32 wecantake = , 1<1 , in order to obtain a limiting
Gaussian process for K{™2. If , 2, the limiting process for K{'*""? is Gaussian only if » = 2 and

 Jp— — 1
—1 2 — 2 2-

D E
C.1 Convergence of Ip"N2(f) = f; Nt

In this section, we establish the convergence of the process I¢*?(f) as N, ¥ 1 in Dr([0; T]) for a xed
function f 2 Cg(R1+N1(1+d))_

Following the same idea as in Section [B} we rst show that relative compactness holds. The following
lemma implies compact containment of the process fli\'l’Nz(f)g.
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Lemma C.1. For any xed f 2 CZ(R1*N:(A+d) when = 1  ,, there exist a constant C < 1, such that

o Ea
sup E f; Nl <C:
N22N;0 t T

Furthermore, for any > 0, there exist a compact subset U R such that

D _E
sup P f; NN 2y <
N22N;0 t T
Proof. By equation (40), we have
D E D E bNye 1
. . C . C
LI LT s Yoo OetE() + ——
. C . C
. Ni3;N N1;N .
LI +F O 0%) "'F'

Raising to the forth power on both sides, by Holder’s inequality, we have

£, o I NAE 2 ) g0+ NE 2 ) (41)

2 2

D _E D . E
Since f; )N =N, f; N2 N and by independence,
D E 2 D E s
D4
Eof e o =E4 T R(D RS
2 =1
1 X L N o
=_— E f( f, M <
N; - ( 0) 0 Ng
D  E, .
we have E f; [t C(N;~ ®). Taking expectation on both sides of equation (#I), by Lemma
and 4> 3 <0, we have
D N1;N Ea
sup E f 7 <G,
N22N;0 t T
D E
for some C < 1.. By Markov’s inequality, the compact containment condition of f; {\'1"\'2 follows. O
D E

Next, we establish the regularity of f; {\‘1;'\'2 . For the following lemma, we de ne the function
q(z1;z2) = minfjz;  z,j;1g, where z;;7, 2 R.
Lemma C.2. For f 2 CZ(R¥*N1(1*+d) 2 (0; 1), there exist a constant C < 1 such that forany0 u
0 v Nt,and t 2 [0;T],

h D ED E D ED E i C C
E q f: {\l_'_l;Nz - fe L\ll;Nz q f: L\ll;Nz < fe ::\ll;NZ jI:tN1§N2
) u ) ) ) 1 1 \"

T - z
N3 N3
where > 1 7.
D E D E

Proof. Recall that f; Mt = f; [\* foranyt2[0;T]and f 2 CZ(R™*M@+D) Forany0 s<t T,
by the regularity result for {\'1;'\'2 proved in Lemma we have

h D E i . hD E i C c
E f L\llsz f; IS\I:L:Nz jFSNl:Nz =N, E {\‘LNZ f; é\ll;NZ FSN:L:Nz o

+
1 2 > 2 2
N2 N2

for0<s<t Twith0O<t s <1l If” 1 5, bothterms in the last inequality above are bounded
as N, grows. The statement of the lemma follows. O
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Using Lemmas and , we are now ready to present the proof of the convergence of I{\'“Nz(f). We
rst show the case when > <1  ,. For xed f 2 CZ(R¥*N1(+dD) ‘when = 1 ,, the family of processes
fht; {\'1;N2i;t 2 [0; Tlgn,2n is relatively compact in Dr([0; T]) due to Lemmas and Theorem 8.6
of Chapter 3 of [17]. For simplicity, we denote I'*'N2 = hf; NuN2j et NuN2 2 M (Dg([0;T]) be the
probability measure corresponding to I't\'l;NZ. Relative compactness implies that there is a subsequence
NNz that converges weakly to a limit point N1, We show that N1 is a Dirac measure concentrated on
zero when ” <1 2.
Fort2[0;T], 01;:::;9p 2Cp(R),and 0 s; < <s, t,de neamap F(I): Dr([0;T]) ¥ R4+ as

FO= (e 0 a91(ls,) gp(ls,) :

D _E . .0 p_ _ E -
By equation and the fact that f; )'*™> =N, 2 £ N, =N M =0,(N, 2), we have
E non [F(D] = E FQNEN2) 4
E D _ _E D E W
=E f; {\llyNZ f; (’)\|1,N2 + T (’)\11,N2 gi(|;\i|1;N2)
" i=1 .
D  ED E W # D E ¥ #
E ; L\ll,Nz f; (’)\ILNZ gi(ISNil;NZ) +E i ONl,Nz gi(|2:1:N2)
g i=1 i=1
C T 12 -+ 11 -+ 3 =
N, N3 N7

Since F () is continuous and F (IN+:N2) is uniformly bounded, we have

i E e [FO] = E wa [FO)] =0

where N1 is the Dirac measure concentrated on 0. We have shown that the limit point  of any convergence
subsequence, which exists due to relative compactness, is the Dirac measure concentrated on 0. Therefore,
by Prokhorov’s theorem, NNz weakly converges to 0. As N, ¥ 1, INuN2(fF) ¥ 0 and thus the limit is in
probability. This concludes the proof forcase 1: > <1 5.

The proof for case 2. > =1  , is more subtle and is given in di erent steps below. We see that the
evolution of 12'*N2(f) becomes

Db E D _ E
f: 1I:\Il,Nz f; (’)\|1,N2
bNyg 17 D E
1 . . .
= WZ -y y g:(\ll.Nz(XO) @Cf( ) (ZZ,Nl(XO)); __kNl.Nz (dXO,dy)
k=0
bNx& 1Z D E
1 . . .
NN, LY O e @) ) Buef(in T (@xidy)
1 k=0
1 N 12 N1;N2 0 bb 0/ 2:N1 10Ny 0parlo0yn2. _N1;N2 0 Nl'NzE 0
t y g (X)) ¢ (277 (X)) T(whxwS S £ O~ (dx; dy)
Ny *Nz2 ., x v

+MNEN2 + MNEN2 4 M NEN2 4+ o
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where

8
<bNpje 1 E
1 .
M = 1 Ve et (x) @cf() (22N (x)); ~pNe
T k=0
z E
LY gpe N2 (x") @cf() @EN ()~ N (dxdy)
<bNyje 1 D E
. 1 . . .
MM = = v OREN206)  © UZENT () (Wiki) Buef( )~
N; sz- k=0
D E
y opt N () ¢ (@EN(x)) WX @wef( )~ptN (dxdy)
N1;N 1 <bN>T<l N1;N DD NNE NNE
Mg = T - Yo ORENI) c Y@PN(x) Cwhkigw? <N e (Oxig ~et N
1 2 - k=0
Z _ DD E E
LY BT e @) MW T FO)E ST (X dy)

As N, grows, we can rewrite this equation in terms of Riemann integrals and scaled measure tNl;NZ

D E D E

f; L\lliNz f; c’)\|12N2
Z .2
= y  hYNe(x)  @cF() (2FN1(x)); &N (dX';dy)ds
0 X Y
L 22
T y hguNad) ¢ UZFNi () (WX @wef( ) SN2 (dx'dy)ds
11 ZOtZX Y
+— y  hYsNedy e 0zZNy )y fwdxw?; NeNe o F(OX NeNz o (dx; dy)ds

NI * 0o x v

+MN1N2+MN1N2+MN1N2+O

2
2

(42)
Fir any xed f 2 C2(R**N2(*+d) similar analysis as in Lemma 3.1 in [39], we have the following bound
for terms MNENZ; i = 1;2; 3.
Lemma C.3. For any N 2 N, there is a constant C < 1 such that
" #
C

2 2 2
N1:N N1:N N1:N

E sup M7 + M3p? + MU3? —

t2[0:T] N>

From equation (@2), we see that the evolution of I{"*N2(f) involves the evolution of N*N2 and hp'tiN2,
In the next lemma, we prove the convergence of the processes ( ; Ni:Nz. th Nz, IN1 Nz(f)) in distribution in

the space Dgo([0; T]), where E? = M(R1*N1(+d)) RM R The convergence of INl N2(f)case2: =1
then follows from Lemma [C.4l

Lemma C.4. For any xed f 2 CZ(RM*N1(+d) jf = =1 , the processes ( *"; th Ne. | NNz ()
converges in distribution in Dgo([0; T]) to ( O'*; he't; IVt (F)), where h'* satis es equation ( and 1N (F)
is given by
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ZZ E

I (F) = y hi¥(x) @cf() @&N(xh); o (dx"; dy)ds
° )i YZtZ D E
S~ y hie<) ¢ "@ZNh) W) Bwef( ) ot (dx;dy)ds
11 ZOtZX Y DD E E
h y hi"(<) ¢ (ZZN ) CwhxAw?; 5 ra FOX% g (dx’;dy)ds
Nif * o x v

(43)

Proof. By Lemmas and fINUN2 (F)gn,on is relatively compact in Dg([0; T]). By Lemma
f NuNz: gNuNzg o is relatively compact in D ([0; T]), where E = M(R¥*N:(*+d)  RM_Since relative
compactness is equivalent to tightness, we have that the probability measures of the family of processes
FIN2:N2(F)gn,on and the probability measures of the family of processes £ NiiNz; hNuiNzgy 5 are tight.
Therefore,  N1iNz; hNuiN2o NNz (F) g 5 is tight, hence it is also relatively compact.

Denote Nu:N2 2 M(Dgo([0; T]) the probability measure corresponding to ( N1:Nz: NuiNz: [N1Nz (f))
Relative compactness implies that there is a subsequence NNz« that converges weakly. We now show that
any limit point  of a convergent subsequence NNz« jsa Dirac measure concentrated on ( N1; hN1; [N1(f)) 2
Deo([0; T]), where ( Nx;hN1; INL(F)) satis es equations (37) and (43). De ne a map Fy( Nty hNi; INi(f)) :
De([0; T]) ¥ R for each t2[0;T], my;::;mp 2 Cu(R), and 0 s < <sp, L

Fi( ;h;I(F)) .
t
=FCMRNY Ry e B() @0y B @iy
z.Z
t y hir(x) ¢ '(ZZN(xh)) wix?) @waF(); N (dx’dy)ds
Z.Z 1

11 y hi+x) ¢ 2N <) "whdw? & orafOX o (dXdy)ds
Ny * o x v
my (15 (F)) mp (I8 (F)) ;

(44)
where F ( N1; hN1) is as given in gquation (38). Using equatlon (#2), Lemma|C.3| the analysis of F ( N:;hN1)
in Section [B.3and the fact that f; Y™z = 0O,(N, 2), we obtain

E nung [F1( 5 hyI(F)] = E F( NulN2; pNul2)

D E v #
+E f; g‘l N2 MN1 N2+MN1 N2+MN1 N2+O N2 2 mi |2:1;N2(f)
' =t '
1 2 % 2 % 2 % 1
C —+— +C E MW{®  +E MM +E MNRR +C ——
N N2
!
1 1
C a5+t ==
N, NS

Therefore, limn, s 1 E noing [F1( N2 hN2; IN2(F))] = 0. Since F () is continuous and F( N1:Nz; hN1iN2)
is uniformly bounded, together with analysis in Section we have that F;() is continuous and thus
F1( NuN2; hNuN2- NuN2 (£)) s uniformly bounded. Hence,

Jim B e Fa( NhNIN(R) =0
Py B

We have shown that any limit point N of a convergent subsequence must be a Dirac measure concen-
trated ( N1;hN2; IN2(F)) 2 Deo([0; T1), where ( Na; hNe; IN1(F)) satis es equations (37), and M=
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weakly. By Prokhorov’s theorem, the processes ( ¢+ 2; h'=N2: INUN2(F)) converges in distribution to
(o he I8 (F)). O

C.2 Relative Compactness of K"

We begin this section by proving the following lemma for the term Nz’ MtNl;N2

Lemma C.5. For any N, 2 N and x 2 X, there is a constant C < L such that
' #

C
E sup N2 MN1 N2(x) 5>
t2[0;T] N,

Proof. Recall that M{** N2 = M{ENZ + MJEN2 + MJEN2 | which are de ned in (26) to (28). Let F¢ be the
-algebra generated by NN M{\'Sl N2 MQ‘; N2 and Ml'\'; N2 for s t. Since for any t > r, we have

h i
E N, MMM MMM (x) jF,
bNyfe 1 h D E
1 . .
=1 Eoyic g ™0w) 2P0 2PN e
N2 k=bNxrc

D E
y gt ZBNe) ZEN0g 5N (X dy)iFee

X
1
N2
Therefore, we have
i h i h i

E N M ™ JFr =E N; Mz™00  Mz™ 00 jFe +E Ny MLz ™ 0jFr = 0+N, M2 (x);

proving the martingale property for the process N2 M Nz(x) and x 2 X. Hence, by Lemmanand Doob’s
martingale inequality, we have

#
s . 2 » i 2 C
E sup N, MIN2(x) CNZ E MM (x) —
t2[0;T] ' ' N,
where the constant C < .. Note that since <1land ~ % we have 1 27 >0.
Similar analysis gives
" # " #
1;N2 C 1;N2 C
E sup N2 M2 (x) ——=, E sup N2 M3 (x) —
t2[0;T] N, t2[0;T] N,
Hence,
" # " #
z Ni;N 2 X Ni1;N Cc
E sup N, M7 73(x) C E sup N, M & 2(x) ——=
t2[0;T] =1 t205T] N,

]
The next three lemmas prove relative compactness of the family FK{NN2;t 2 [0; T]gn,2n in Dgm ([0; T]).
Lemma C.6. There exist a constant C < 1, such that for each x 2 X,
) 2
sup  E KM"MN(x) <c
No2N;0 t T

In particular, for any > 0, there exist a compact subset U RM such that

sup P KMM2y <
N22N;0 t T
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Proof. By (39) and Cauchy-Schwarz inequality, we have
D E, . 2 .
c (ZZ;Nl(X)); é\ll‘Nz + N2 MtNl,Nz +0 N2 2(2 7) :

. 2 .
KerMepg  Co P+ 2+ e+ Ny 2

where
o 1
ZZ _ 3D _E
= y hsR() @ Bro( ) N i BRL(): SN A (dXdy)ds
0 Y 1=
1 y(z tZ et
+|\T y hs (X)
lj=1 0 XY
) _ B E D E D B _E
WIBYI(); 85Nz BRI ) o+ BRI() ot BRI MM (dxidy)ds
ZZ _ D JE 13D _ LE
an= KM (<) B )i 00+ Bilo( ) 0% (dx';dy)ds
0 X Y =1
D E )
xxXB3(); M (dx; dy)ds:

1 XZ tz N1;N 0 3;j N1
Ks b Z(X) Bx’ ( ); 0

-+ —
Ni,_; o x v
By Assumption de nition of ', and Lemma there exist some constant C < 1, such that
8 O
<D E {3 D _ E D E D . E =
BZL,( ), M o+ BI() N xX*BI(), 2+ | <CcC:
(45)

sup B)l(;xo( ); (')\l:L + W
1 j=1

x;x02X -
Then, by the Cauchy-Schwarz inequality and equation (37), we have

, 7.z 2 7.2 27

ht*()  C i (@xdy)ds  + hi: () (@x;dy)ds

XY Y
Z.2
Cyt? + Cot hN2(x%) % (dx"; dy)ds;
0 XY

Z.z
hN2(x) 2 (dx; dy)ds:

which implies that,
Za 2

he () (dxdy) CiT?+C,oT

0

sup
t2[0;T] X Y
Therefore, by Gronwall’s inequality,
Z
2
sup ht(x)  (dx;dy) sup CiT?exp(C,Tt) < C(T); (46)
0OtT X Y 0OtT
for some constant C(T) < A depending on T. By Cauchy-Schwarz inequality and , we also have
Z.2
(112 Cst K NNz (x%) 2 (dx"; dy)ds: (47)
X Y
Since 2 CgH(R), by Lemma|[C.1} there exist some constant C < 1 such that
h i D . E, D ) E,
<C, E BIL() MM  <c E xxBJ() 2N <C @8)

E B>l<;x°( ); 211;N2
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Assumption [2.1} we have

1
Z+Z , 1 %D E,
E[(1)’] Ct E@ BLo() N "+ Brge(); 81Nz A (dx;dy)ds
0 X Y Nljzl
Z+Z 1 X ) w2 D E,
+Ct = E  xxX'BZI(); NNz T BRI (), Nl (dx’; dy)ds
o x vy N1 j=1
Cat?
N 2 N 2 N 2 . 2
Since prN2 c gt 4 DNz, Nz oy Assumptionand Lemma we have
o, Z.7Z , Z.7Z D E,
N2 § KN2iNz () “ (dx?; dy)ds . Bl,o( ) NuNe Mo (dx; dy)ds
2.7 °
Ct KNz () 2 (dx; dy)ds;
0 XY
Z.Z Z.Z
N 2 t . t 1 Db . . E>
e C KNz () * (dx's dy)ds o Bik() fuNe g (dxidy)ds
0 X Y 0 x v N1
Z.2 ,
Ct KNuN2 (%) (dx"; dy)ds;
,  ziz7 "
BN T KNN2 () - (dx; dy)ds
' 0 X Y
th lXD N N1;N NE2D3" N'NE2
No BRIy Mgt B N (addy)ds
o x v N1y
Z.2Z ,
+C KNuNz () = (dx’; dy)ds
0 XY
Z¢Z 4 D E,D . _ E,
& BIOx ot xB(); M gt (dXdy)ds
o x v N1 j=1
Z.Z
! Ny 0y 2 0.
+C y hgt(X)) ™ (dx’;dy)ds
0 XY
242 1 D ) . LE2D E,
No XXBYI( ) ez g By () JMe (dx’; dy)ds
0o x v N1;
Z.Z Z .7 D E
C t KNl;Nz 0N 2 d O.d ds + C t ix B3;j . N1;N2> 2 d O.d ds:
t s 7 2(X) T (dxdy)ds + Ct N ()i s (dx; dy)ds:
0 X Y 0 X v N1
Hence,
Z.Z Z.Z
. 2 t ) t 1 X D . ) E2
NNz = o KN2N2 (%) 2 (dx"; dy)ds+Cst N Bl (), N2 (X dy)ds
0 X Y 0 XY 1.

j=1
(49)
By to (@9), and the(de nition of  (dx; dy), we see that
Zi >¢
E KMMN2(x) ¢ (Cs + Cs)t? + Cs*Csy E KMMN2(x) * ds
0 xo2x
D E, 2 .
+E Ny 277 ¢ 2Ny oM +E NMEN T w0 NP2 D
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Summing both side of the above inequality over all x 2 X, where X is a xed data set of size M gives

2 ZtX
E KMiN(x) CMT2+CT E KMNiNz(x) % gs
x2X 5 0 x°2xE
> > ]
+ E Nj 27 ¢ (z2ZMNx); NN > v TE NZ’MtNl;NZZ +0 N,22 7 . (50)
x2X x2X

Sincefor =, 3,2(2 ) 1,wehave

.D B2 c X _
E Ny %7 ¢ @¥Ni); g —— E C}° C
Nz( 2 7). L
i=

Therefore, by applying Gronwall’s inequality to equation and using Lemma|C.5

> _ 2 h i
E KMMN(x) C(M)T?exp CTt ;
x2X

where C(M); C are some nite constants. Hence, for any x 2 X, there exist C < 1 such that
h i

) 2
sup E KMMN(x)  <C(M)T?exp CT?2 C:
N22N;0 t T

By Markov’s inequality, the compact containment condition for KtNl;NZ follows, concluding the proof of
the lemma. O

We next establish the regularity of the process KtNl;N2 in Drm ([0; T]). For the purpose of this lemma,
we denote ((z1;22) = minfkzy 7k, ;1g for z1;2, 2 RM,

Lemma C.7. For any 2 (0;1), there is a constant C < 1A such that for 0 u ,0 v ~t, and
t2[0;T], i
. : . . . C
N1;N2. N1;N N1;N2. N1;N :—N1;N
E g Kag 5K g K Key™ jFe? C +7N21 >

Proof. For0 s<t T, the leading terms in equation gives

KoM KEMN2(x)

o 1
Z.z L %D E
y hM(<) @ Bi() MM+ Bige( )i NNz A (dx’;dy)d
s XY L
| 3 Z+Z
+ = y hM(x)
Nl j=1 S X Y
_ D E D ED ) E
XXOB):);;J( ); N1;N2 B)3(6J( ); é\ll + Bi:]( ); 8‘1 XXOBi:}J( ); N1;N2 (dXO,dy)d
242 D E | 3D E
+ KNENZOE) - Blo()i o+ BRla( ) o (dXdy)d
s X Y ’ N1 . '
j=1
1 MZil D ED ) E
+ - KNNzd) - BRI(); o xxXBRI(); o (dX;dy)d

N
1j:15 XY

+ {\ll;Nz(X) Is\ll;Nz(X) +N2’ MtNl:Nz(x) MSNl;NZ(X):
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Taking expectation on both sides of the above inequality, by Assumption Lemmal[A.d and analysis
in Lemmas[C.5 and [C.6] we have for 0 t s <1
i Z . Z
i t

h
E KoM (x) KIN(x) FMEN2 C(t s)+Cy E KNuN2(xl) FNeN2 o (dx; dy)d
s XY

NI

> - . 2 -
+CE N, MMM MMENz(x) RN

C

C + ———=:
Ny

Note that
C C

+ .
1 2~ 2 27
N2 N2

following an analysis similar to Lemma 3.1 of [39]. Since x 2 X is arbitrary, the statement of the lemma is
then implied. O

> - . 2 .
E Ny M) MMM Rl

By combining Lemmas [C.6|and we have that the sequence of processes FK{MN2:t 2 [0; T]gn,2n is
relatively compact in Dgm ([0; T]), which follows from Theorem 8.6 of Chapter 3 of [17].

C.3 Convergence of Kt

Denote Ip+™N2 = 184N2(BL (1)), 1¢N? and 13#™? as Nj-dimensional vectors with j-th entry being
IpeN2(B21 (1)) and IR¥N2(BZI( ), respectively. We also let I3; 1313 be the corresponding limits

for IE{NZ;IE{NZ;IQ{NZ as N, ¥ 1. Recall that from Section for , 2 (1=2;1), if * < 1 2,
It =013 =13t =0,and if > =1 o, I 130134 are given by for appropriate de nitions of the
function f.

In this section, we show that the processes ( ¢ *"2; hptNz; [RiENz DNz, Mz e NiN2y - converges in
distribution in Dg, ([0; T]) to ( &' i 108 15 15 K{'), where E; = M(RYHN:@+d)y  gM - R RN
RN+ RM and K{\'l satis es either of the following evolution equations:

Case 1. When ,2 ;2 and ~ 2 3orwhen ;2 31 and” <1 2 3 then KM (x) is

given by (15).
Case 2. When .2 2;1 and > =1 , then K{"(x) satis es (16).

By Lemmas and Section f NuNo: pNuUNz: NNz [NNe o NeN2 - g eNsNag o s rela-

tively compact in Dg, ([0; T]). Denote Ni:Nz 2 M(Dg, ([0; T]) the probability measure corresponding to

( NuiNz: hNuNg NNz NaiN2. NNz N2iN2y “\We now show that any limit point N1 of a convergence sub-

sequence "N1:Nac is a Dirac measure concentrated on ( N1; hNt; [Ne: [N2: |N; KNy where ( N1; hNt) satis es
1 N1.Nzi.Nj. N H - .

equation and (I7%; 1% 13 KN2) satis es Lemma equations (15), or for di erent values of

and ”.

Case 1. When , 2

52 and 7, Z,orwhen 2 31 and " <1 2 3, for any
2 Cp(R), myt;:iympd 2 Cy(R) for i = 2;3;j = 1;::1;Ny, 715111525 2 Cp(RM), and

Nw
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0 s;< <sp t,wede neF;:Dg,([0;T]) ¥ R+ as

Fa( ;h;lg;lo; 15 K)

=F(NMhNy+ 0 0 mi(Ry) mz(0,) + ed 0 miP R mgd (19

) ) 1;S1 I:Sp
8 2 T 3
< < N Z.2 N 1
KT Kot y hhO) A Bra() + I Bihe() O (dxdy)ds
x2X " 0 XY Lj=1
Z.2
1 X ! N1 /0 0yN1 3j D 3J . NlE 0.
Ne y hgt(xX) xxIet BRI() BR'() ot (dx';dy)ds
lj=1 0 X Y
Z.2
1 Mo NP oD HTRY N1E N: 3 0.
N. y hgt(X) xx* BI(); ot gt By ()  (dx';dy)ds
lj=1 0 XY
* +
z tZ N1 70 1 1 X 2;j . N1 0.
+ K (X)) Byl )+ No B ( ) o (dx’; dy)ds
0 X Y 11 o
1 XZtZ N 0 OD 3;j NED 3;] NE 0 - N N
Ny . YKsl(x XX B ) ot BR() of  (d@Xhdy)ds_  zi(Kg?) zp(Kg,h)
i=1 g

where F( N1;hN1) is as given in equation and I{\;‘tl;j is the j-th element of the N;-dimensional vector
I!\;'tl for i = 2;3. We now note that for any x 2 X, by equation (39),

7 7 2 3
. . t _ . 1 > .
K00 Kot ™0y hERRER) AT Bre() + g T Ble() B (@Xidyds
j=1
1 Mtil _ D . E
Ny y hdN(d) ol BRI() BII( ) o (dxX;dy)ds
lj=1 0 XY

1)(th D

E .
|\T y h;\Il;NZ(XO) xx° B)3(;J( ); (’)\|1;N2 |L\|12N2 Bioj() (dXO;dy)dS
l1j23 0 X Y

* +
ZZ . 1 . .
+ KN () Bl )+ Bila()i 07" (dx'sdy)ds
0 X Y -
1 ML L D _ED __ _
+ KNiN2(x)xx? BEI(); 9N BII(); o™ (dX;dy)ds

Ni;; 0 x v
=M +@+E+@+EF M)+ N M) + 0N, 2,
where terms (1); (2); (3); (4); (5) will be speci ed and analyzed as follows. We see that term (1) satis es
2 3

zZ.Z 1 X )
W= y hShe¢) oy RN AR Be() Ao 1N BIl() S (dXidy)ds
0 X Y 5 ljzé
1 ‘e N1;N2 4,0y 4jN1;N2 1 1 > N1;N2 2j 5 0.
= N K2 (x%) 4y Bu:x( ) + No I Byo( ) (dx’; dy)ds
1 0 XY 1i=1

= Nz )+ SN2 (x)
(51)
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Term (2) can be rearranged into

£

Z.Z +

N1;N 0 1 1 X 2;j N1;N2 N 0
) = Kt ™2(X) Bygyo( )+ — By() o* ot (dx';dy)ds
0 X Y ’ Nlj:l '
* +
p it . 13 N
=9 KW N2 (") By ) + Bixe( )i or  (@X’;dy)ds;
N2 o x v ’ Ni,_, ™
and by the Cauchy-Schwarz inequality, Lemmas and forany t 2 [0; T,
O o -+ 1
1 Z.Z 1 X )
E@ N KYN2(xh) BLo( ) + N BZL.(); o (dx’;dy)ds A
2 0 X Y 1i=1
o) * +1
C Z+2 1 X )
< E@KMMN(X)  Brw( )+ Bik() o A (dX;dy)ds
N, o x v ’ Ny. . ™
= (52)
7.z O e Ape S
C . 3 1 .
N E KMMN0) T TER BloO+r  BELON B K (@didyds
2 0 X Y 1i=1
c(m)
N, '

where C(T) < 1 is some nite constant depending on T.

We discuss terms (3) and (4) together. Since

1 thz N1;N j D 3;j NE

N y RO ol BEI() BRF(): o (axidy)ds
]

3)
-1 0 XY
1 MLl _ D __ _E
Ny y  hiENz o) sodip ™ BEI()  BRM( )i om™ (dxidy)ds
1., 0 XY
j=1
L ZZ
N1N, j=1 0 X Y

1 Ml il D E

+ KN2Nz oYMz BEI()  BEI(); YNe (dx';dy)ds
N1N, =1 0 XY

y hNe(x%) xxdIeNe gEicy NN gEI ) (dx’; dy)ds

D E
TN y () sodINeNz B3Iy BEI(); NNz NNz (g dyyds;

1 L S Ni (0 oD 3 T NiiN> 3 0
y hgt(X) xx' B( ) of k7 Bl() (X dy)ds

1 32l D . W E B

NG oy y h's\ll;Nz(XO) XXO Biu( ); é\ll,Nz |{\11.N2 Biéj() (dXO;dy)dS
j=1

1 ML L D E )

0 x YKs” N2 BEI(); o2 IpNE BEI()  (dX;dy)ds

j=1
1 ML L D _ E B

TR o oy Y mEEReG et B MM ot 1T BRE() @iy,

j=1
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one has

B)+@=
. M2 t2 . D .
= NMEOw [y RMed ot BE() BIC) MM paN (@didy)ds
j=1
1 Ml L D _ E .
+ y h’s\ll:Nz(XO) XXO Bi;J( ); gll,Nz (l)\|1 |L\|1,N2 Biéj() (dXO;dy)dS

PR _
y  hYr(d) sodlIfENz gy 1NNz BEI()  (dx'; dy)ds
j=1 0 XY

e y  hNe(x) xdIfsNz B3Iy g B3I () (dx; dy)ds

y hNz() oclp e BEI() 1M BII() (X dy)ds:

j=1 0 XY
(53)
Since by Lemmas [B.1] and
Z.2 _
E y  hgh<) xRN BEI() 1N BRI()  (dx';dy)ds
0 X Y 1
Z .z ,!

e y RSO sodigt e BRIC) IR BEI()  (@Xidy)ds
0 XY
Z.Z o,

C(T) E N2 I 1puN BYI() (dx"; dy)ds

0 XY

Z 2 ) 4z : 43

c(T) E 1NuN2 Bg3i() E 1N B3I() (dx"; dy)ds
(0] XY

C(T);

E y hls\ll;Nz(XO) XxoloNl;Nz B)i*():j( ) |L\11:N2 Bioj( ) (de;dy)ds
0 X Y
tZ h i

E y h’s\ll;Nz(XO) XXO |5\11:N2 B)ﬁi;j() |{\11:N2 B)3(OJ() (dXO;dy)dS
ZZ h i ' ) 4 2 _ ) 4
E y huNz(x®) xx E 1IpvN2 B3I() E Ip=N2 B3() (dx’; dy)ds
0 XY
C(T);

NI
Al
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the expectation of the last three terms in is bounded by O(N, 7). Lastly, for term (5), we have

1 Mll D _ED __ _E
O =g K BIO oM B 0t (@Xdy)ds
i=1
1 MLl D ED __ E
N oy Katedxd BRIC); ot BH() ot (X dy)ds
j=1
1 MLt . : _ ,
= KN (dadlp ™™ BRI() 16™™ BI()  (dxidy)ds

- -
NN, j=1 0 X Y

1 ML L D E

N KNz (Y INENz g3y B3I () N (dx; dy)ds

NiNz ;) 0 x v

1 il D E )
+ - KNiNz (e BEI(); o 19N> BEI ()  (dx;dy)ds:
N1N, j=1 0 XY
By the Cauchy-Schwarz inequality, Lemmas [C.1] and forany t 2 [0;T],
o | w2z | 1
E@ . KNGz (e difeNe g3i) 10Nz B3I () (dX’; dy)ds A
NiN3 ;=3 0o x v

1 %2 b NeN ey NaNz iy |
E KNI ™ xxX'BFI() o™ BRI()  (dx’;dy)ds

—
NiNy ;=p 0 x v

zZ.Z h i
1 BCEt ) 11
E KNiNz(xt) 2 2

I
AR

. . 4 2 . . 4
— E 1N xx'B2I() E 195N B3I() (dx"; dy)ds

c(m).
NS
0 1 Mt . b . E n
EQ N KNz 0xdlp=Ne BEI() BEI(); o (dX;dy)ds A
N2 j=p 0 X Y
(@] 1

1 > D N EZ¢? _ _
E@_——~ sup xxBY() o" KN ()Ip ™2 BEI()  (dx'; dy)dsA
NiNz ;> 0 X Y
Z .7 h H 1
c Xt . 2!
—_— E KIMN2(x"
NiNz . 0 x v °

. i 2 2
E 1™ BII() (dx"; dy)ds

1
2

C(T)
N, '
and similarly,
o 1
e . L c()
EQ - KN BRI(); o ot Bl()  (dx’dy)ds A === (54)
NiNz i) 0 x v N,
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By equations (51) to (54), the analysis in Sections|[B.3and and Lemma|[C.5 we have

h i
E npng Fo( N2 Nz N ey N Ny

4 "
=E nvp, F(N5RN) +E 0 IEN2 0 mi(IDEN?)  + E 1N 0 mi (1NN
n=1 i=2 j=1 n=1
> Z.Z
+ B K00 KM y M) 18N BL()  (dX;dy)ds
x2X 0 XY
Z .7z
1 At ) . .
N o g Y EETEON) RN BE()  (axidy)ds
j=1
1 Ml il _ D . E
y  hENzG) ol BEI() BRI oMM (dxsdy)ds

le:l 0 X Y
1 MLl D E )

N; y hgtfNe() s BRI o 1N BR()  (dxidy)ds
lj=1 0 XY

Z .z - +
' N1;N2 (0 1 1 X 2ij NN 0
+ K2 () Bie()+m Bia( )i 0777 (dXTdy)ds
0 X Y 1o N o
1 Ml il D _ED __ _E \'a =
+W Ké\ll;Nz(XO)XXO B)S;;J( ); (|)\|1,N2 Biéj( ); é\ll,Nz (dx“;dy)dSA Zi(Ké\:l;Nz) )
lj=p1 0 X Y i=1 z
1 1
= = 1
- N, 202
C % +C 11 .+ 11,+ 11 +CE N,MMN +C t L
N, * Ny * N N7 N,* N2
1
1 1 1
(@ 1 s+ —F—+ —
Ny * N7 N

Therefore, limn, s 1 E ~ona [F2( 5 hslelo; s K)] = 0. Since F() is continuous and F( NiiNz; hN1iN2) g
uniformly bounded, together with analysis in Sections and we have that F,() is continuous and
Fo( N1iN2; gNuiNa: [NuNz. NNz NNz i NuiN2y s yniformly bounded. Hence, by weak convergence we have

N|i5n1E Nz [F2( i hy e l2; 13 K) = E wa[Fa( 5 hslg 215 K)] = 0:

We have shown that any limit point N of a convergence sequence must be a Dirac measure concentrated
( Ny RNz 0 1N KN), which satis es equation (37), I = 0 for i = 1;2;3, and equation (T5). Since
the solutions to equations and are unique, the processes in consideration converges in distribution
to( §'*;hN1:0;0;0; KN) by Prokhorov’s theorem.

Case 2. When 2 3;1 and > =1 , forany t 2 [0;T], m};::;;md 2 Co(R), my?;:::;mid 2 Cy(R)
fori=2;3;j =1;:::;Ny, z3;:01,2p 2 Co(RM),and 0 s; < <sp t,wede neFz( ;h;lyllsK):
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De,([0;T]) ¥ R, as

Fs( ;h;lg;lo; 15 K)

=F(NuhN+ F M) miady, mi(y,) + F Oy midapeh md (1))
s 2 i=2 j=1 3
X = N N ‘el Niso0y 4Ni Rl 1 2 2;j 0
+ KT) Kpt(x) y  hMixl) 41 Byxo( ) + N 1N BZL() 5 (dx’; dy)ds
x2x ~ 0o XYy Lj=1
1 MLl D E

Ni._, 0o x v y  hghed) xdIgt BYEI() BI(): ot (dxX;dy)ds
J:

1 RS D E )

N y hERGE) ¢ BEI(): gt IR BEF()  (dxidy)ds
1:.4 0 XY
j=1

* +
i SV
+ K (X) Bl )+ Be()i ot (dXdy)ds
0 X Y 152
)
1 Bt il D ED E =
9 KOO BIFI( ) ot BL'( )i oF  (dXidy)ds_ zi(KE?) zp(KgY)

Ni,; o x v
_ (55)
where F( Ni;hN1) is as given in equation (38), I1¢7 is the j-th element of the Ny-dimensional vector I}
for i =2;3, and

z.Z
F (Y (F)) = 1IN (F) y hd* () 0cF() Z®MN(xD)); & (dx’;dy)ds
0 XY
yAA
E yORNGE) ¢ ZPN0) W) Buef( ) N (i dy)ds
Ny * 0o _xv
Y

y hgRed) e (@EM ) CwhAw? 8 raf(OxG I (dxdy)ds:

By equations to (54), Lemmas[C.4 and and the analysis in Section we obtain

1 1 1 1 1
E numg [Fa( 5 hilalslss KY€ + -+ =+ -+
NNz [Fa( 15 I2; 13 K)] NI ® Nz'% N2 N, N,

Therefore, limn, s 1 E ~yina[F3( 5 hly; o513 K)] = 0. By analysis in Sections and we have
that F3( ) is continuous and Fg( NtiN2; hNuiNz. [NuNa. NNz NNz i NNz y s gniformly bounded. Hence,

Nlir'nl E ~nping [Fg( th; |1; |2; |3; K)] =E n [FS( i h; Il; |2; |3; K)] =0

We have shown that any limit point N of a convergence sequence must be a Dirac measure concentrated
( Ny pNz e D 1N KN 2 De ([0; T1), which satis es equation (37), (43), and (T6). Since the solutions
to equations and are unique, by Prokhorov’s theorem, the processes

( N2iN2; qNuiNo o [NuNz. NNz NNz i NaiN2y gonverges in distribution to ( Nt; N N2 (N [N KN,
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D Proof of Theorem 2.5

For 22 3,1 ;7=1 , wecan further look at the uctuation process +"2 =N, ~(KM™N2 KN,
for > ”. The evolution of L\'l;Nz(x) can be written as
z.2z
e 00 = o ox v y ht(<) Ny 18PN (Br( ) 18 (Brw( ) (dX;dy)ds
Rt D N 2] pi
N y h:d) Ny 19 N2(BR( ) IH(BRde( ) (dxX;dy)ds
lj=g 0 X Y
] 3ctit . ; o D F
N y hiHed) Ny N2 BREIC) 1 BEI()  xxXBRM(); ot (@Xdy)ds
lj=g 0 X Y
1 XZ tZ D - E . h . i 3 i
+ y hYroxd)  xxBEI(); ot N, 1NNz BRIy 1M BR() (X' dy)ds
Lj=1 0 XY
Z.Z L +
SNe() Bre()+ - Bile()i 0" (dxdy)ds
0 X Y ’ Nlj:l '
1 MLl D ED

N oy S0 BEIO) 6 B ot (@xXidy)ds
j=1
+N, T )+ g0+ NpME N+ O(N, 2T );

(56)
where §PMN2(x) =Ny 27 ¢ (ZZN1(x));~p N2 L and N2 and M{NTN? are as given in Sectionsand
We see that if 2 % the last two remainder terms in equation ponverge to zero as N, :IE by
the similar analysis in Lemma In addition, if = » 3, §*N(x)= ¢ (22?'\'1(x));pN72~(')\'1;N2 ¥
GN*(x) where GN* () is the Gaussian random variable de ned in . For any xed f 2 C3(R¥*N1(+d) et
LY N2 (F) = N, T IN2(F)  IN1(F) . Its the evolution can be written as

h

1
L™ ) =N, 7 1) Ig ) IR () + 1g N (F)
Z.2
=N o Y hgtNz(x) - @cF( ) (ZZN1(x)); &Mz (dx;dy)ds
Z 02 D _ E
No Y RERED) GT() @He): ot (@xidy)ds
N, Ll
+ le Dy Y NEETEEG M@ (Wi Gwef(); S (dxdy)ds
N, Ll D E
Z y hied) ¢ (@ZFMNd) (W) @wef(); o (dX';dy)ds
Ny * o x v
N, L2
+ le Dy YO NEEEGG e M@ fwhdwd e (O ST (A dy)ds
N, Ll DD E
Z y hred) e '@EN) Cwhxdw? e FOXE 9t (dX dy)ds
Ni " o x v £
_|_N2 f; (l)\ll;NZ (')\ll +N2 ,M'\;ljl_;;th'FNz ,M'\;lé;;i\lz_FNZ ,M'\,Ié,’tNZ_'_O N2 2

=ML+ AN+ + PEN2eN, f; gtz fe
i N1;N2 N1;N2 N1;N2 2+
+N, M- +M o2+ Mg +0 N,
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where Z.zZ
MDL=N, = y hi'(x) @f() &N (x)); N2 (dx';dy)ds
Z t>% D

E
N, % KNUN2(0) @F( ) (ZZN0)); N (dx; dy)ds;
0 X Y

y hd*(xX) ¢ (ZFM(<)) (WX) Bwzf(); &N (dx';dy)ds

X
N, 27 Ll D E
2 KNUN2 (k0 ¢ 0(ZZN1 (k%)) (wix?) Buef( ) Nt (dx’;dy)ds;
Y

DD E
y hEi<) e (@B ) Cwixhwd gt e fOXG SN (dxidy)ds

X
tZ D E
y hhed) o (@EM ) CwhAw? fN r FOXG ot (dxdy)ds

Y
2 ZZ DD E E
KN () ¢ @2 dh) dwhxDw? 0t ra FOXG S (dx' dy)ds;

and
N1;N2 _
- . 22 D E
= — KNuN2 () @ F( ) (ZZN(xY); ( MoN2 Jiny  (dx"; dy)ds
N5 0 X_Y
1 Z 7z D E
———— KNz ¢ (ZZN1(x%) (WiX") @wef( );( SN2 My (X' dy)ds
Ni *N; 0 _X Y
1 ZZ DD E E
1 s KON () ¢ 2N (xh) dwixDw? 0t ra FOXG (SN2 By (dx dy)ds
Ny *Nj 0_X Y
1 ZZ DD E E
———— KON () ¢ Y@ZMNedh) dwtxhw? (SN2 iy e fOX DNe (dx; dy)ds
N; *N; 0 _X Y
1 ZZ DD E E
R y hix) ¢ UZZN() Cwhxhhw?; QN2 Ny e fOX SN2 (dx dy)ds
Ni *N; 0 X Y

The following lemmas show compact containment and regularity of Ly'* "2 (f) forany xed £ 2 C3(RI*N1(1+d)),
Lemma D.1. When 2 2, forany xed f 2 C3(RVN1(+D) there exists a constant C < 1, such
that

i 2
sup E LtNl'Nz(f) <C:
N22N;0 t T

Thus, for any > 0, there exist a compact interval U R, such that

sup P LPN(F)2Uu <
N22N;0 t T
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Proof. By equation and the Cauchy-Schartz inequality, we have

) 2
Lo ™N2(F)

Z.Z
C ! Ny (y 0y 2 0.
m . y hgt(X)) ™ (dx’;dy)ds
t . N, 2 1 . N, 2
by y BT @FROAN ST T gy e MZERE) W) Buef(): ST (@xdy)ds
1
Z . Z
C t . 2
+ e KNuN2 () “ (dx’; dy)ds
0 XY
Z+Z D . E, 1 D . E,
oy EFO @Ne oty ¢ (@) W) Bwef(): 0t (@xdy)ds
1
Z.Z

c Ny 7y 0y 2 0.
* NZE ONZE D oy y hg*(X)  (dx’;dy)ds
Z+Z DD E E,
¢ "(ZZN (X)) CwhAW 0t e FOXG SN2 (dx; dy)ds

2.2 " p £

2
+ ¢ (@ZPNx) wixw? NNz FOxG BT (dx;dy)ds
0 XY
C 212 2
+ . K NNz (50 = (dx’; dy)ds
NZE ONZETTY oy
tZ DD E E,
¢ "@FNy(xh) dwhxdw?; Mt e FOOX (dx’; dy)ds
0o XY
NN 2 D e N2 " \aNzNz 2 " (A NzNz 2 " NNz 2 2+2

+C Lt + N, 0 + N, Muyy® + N, M@ + N, Mg® +0 N,
When 27 =2 2,0 t T, the expectation of the rst ve terms and [, ? are bounded

by Assumption [2.1] Lemmas [A.1] and Since , >3, <land + , 1 1 ,<1% by
similar analysis as in Section[C] the remainder terms all converges to 0 as N, ¥ .. The result of the lemma
follows. O

Lemma D.2. When 2 2 ,, forany f 2 C3(RI*N:A+dy 2 (0;1), there is a constant C < 1 such
that for0 u ,0 v ~t,and t 2 [0;T],

h i
. : . . ) . C C
E g Leig (Bl ™ () g L™ @iLgy™ @ jreY o
Ny <2 N, 2
Proof. The proof is identical to that of Lemma C.2 of [43] and thus it is omitted from here. O
Denote Ki'=Nz = ( NNz, Nz, NulNz NNz, Mz i MisN2y g the next lemma, we prove the

convergence of the processes (Ki*™2; LY ™N2(£)) in distribution in the space Dg,([0;T]), where E; =
M(R1+N1(1+d)) RM R RN;L RN;L RM R.

Lemma D.3. When , 2 21, ~ =1 > and 27, for any xed f 2 CZ(RY*N:(+d)  the
processes (K}t Nz LNt N2(F)) converge in distribution in the space Dg,([0;T]) to (KNt; LN (f)), where
KEt = (o he 10 150 130 KY) satisfying equations (37), @3), and (I6). When < 27, L{'*(f) = 0.

When =27, LN(f) satis es (17).

Proof. Recall that fKN=N2gy oy is relatively compact in Dg, ([0; T]), where E; = M(RY*N:(+d)y  RM
R RN: RN RM. By Lemmas[D.1and[D.2] fLNNz(f)gy,2n is relatively compact in Dg([0; T]). These
implies that the probability measures of the family of processes fKN+:N2gy_ >y and the probability measures

48



of the family of processes FLNN2(F)gn,on are tight. Therefore, FKN1:Nz; | NuiN2 (F)gy 5 is tight. Hence,
NNz, | NNz (Fygy oy is relatively compact in Dg, ([0; T]).

Denote N1:Nz2 2 M(Dg, ([0; T]) the probability measure corresponding to (KN1:Nz; | N1:Nz2(f)) Relative
compactness implies that there is a subsequence NNz that converges weakly. One can show that any
limit point N of a convergence subsequence NNz« js a Dirac measure concentrated on (KNt; LN1(f)) 2
De,([0; T]).

Case 1. When < 27, forany t 2 [0;T], by;:::;0p 2 Cp(R), and 0 51 < <s, t wedene
Fa(K; L(T)) : De,([0;T]) ¥ R4 as

Fa(Ki L(F)) = Fa( NNy i ig KN+ Lgs(F) 0 by (LS (F)) bp(LEZ(F)) 5 (57)

where F3 is as given in equation (55). By equation (57), Lemma|C.3] and similar analysis as in Lemma|D.1]
we have
" #
. h'd
E nums [Fa(Ki L(F)] = E o [Fa( i hile; K)+E LY*M2(F) 0 bi (L&M= (F))

1 i=1

1 1 1 1 C C Cc
C s i i e T S
N NS Ny N, N3 Ni *N NS
1 1
N2 2 a2 2
+E N, 2 MM+ E N, 2 TN +7(1:
L 2 NE
L
1 1 1
c T .tz t 3
N2 NZ N22 2

Therefore, limn, 1 1 E ~ying [Fa(K; L(F))] = 0. Since F4() is continuous and uniformly bounded,

N|2il'!T]1 E N7;Np [F4(K; L(f))] =E Ny [F4(K; L(f))] =0:

Since relative compactness implies that every subsequence NNz« has a further sub-subsequence that con-
verges weakly. And we have show that any limit point N of a convergence sequence must be a Dirac
measure concentrated (KNi; LN:(f)) 2 Dg,([0; T]), where L¢(f) = 0. Since the solutions to equations
anf\jl are unique, by Prokhorov’s theorem, the processes (K{'*N2: LN"N2(£)) converges in distribution to
(K'*;0).

Case 2. When = 27, forany t 2 [0;T], by;:::5;0p 2 Cp(R), and 0 51 < <s, t wedene
Fa(K; L(T)) : De,([0; T]) ¥ Ry as

49



Fs(K; L(F))

Z.2
= Fa( Nty Ny NN N KNy L Na(F) y hNix®) 1Nt g f() @FNi(x?)) (dX
0 X Y
ZZ D E
+ KO 0cF() 2ZN(xD)); o (dx';dy)ds
0 X Z
1 tZ

NI T, oy ) gt (x) 1% ¢ (@ZZMi(x)) (W'X) Bwf()  (dX’;dy)ds
1

1 ZZ D E
+W KN (X)) ¢ "(@ZN(xh)) wix?) @wzf(); o (dx;dy)ds
ll ZOt ZX Y b E
y hdred) 1N e WzENy () dwihxhw?; Mo f(X (dx’ dy)ds

Z .7 D E
1 t .
NERE hee () 18" ¢ YZZN () PwhdAw? i FOX gt (A dy)ds
1 1
1 L2 DD E E -
+ KN ¢ 9zZNix®) ‘whxhw?; g  FOX 3 (dxXY dy)ds
N; 0 X Y
by (Ls, (F)) bp(Ls, (F)) ;
where F3 is as given in equation (55). We rst note that by equation (57)
Z.Z
Lo ™ (F) y h{sNe(x) RNz @cf() (ZPM(x)  (dx;dy)ds
0 Y
ZZ D _E
+ KNa(x) @cf() @*M0)); om™  (dx';dy)ds
0 1x th
e y hiuNzd) 10Nz ¢ (zEN () (wix') @wef( ) (dX’;dy)ds
0 _X 'Y
11 ZZ D _E
PRy KOO ¢ M@ ) i) e f () ot (@xidy)ds
1
,; Ll D _E
e y hiiNe(x) 1iNe ¢ 0zZN(x)) fwhxw?; N na F(OXY (dxdy)ds
1 0 _X 'Y
Z.Z D E
1 t . . . .
N y  hiNz() 10Nz o 0z2N) CwhAw? e FOXEG N2 (dx dy)ds
1 0 _X 'Y
1 Zi? DD _E E
R LD e M@ o) fahdws gt FOXEG g (@xidy)ds
1
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-+

ke
Z.Z
17t : : 1 . :
=N KM () @cF () @ZM() + g (ZZM () (WX) @uef( )i o™ (dx';dy)ds
N, o x v N; *
1 LiZ DD E E
NI . Y|<;“1;N2(x°) ¢ UZZN ) dwhxdw?; N2 i F(O)x% NNz (dx; dy)ds
2 1
Z.Z
1 ! : : . .
NIND T o YKQII'NZ(XO) ¢ "(ZFN+(x)) whxw?; JNz e f(O SN2 (dx; dy)ds
2 1
1 ZiZ D E
FRENT T o o KOO e @) fwhdw® SN f (O gt (@xidy)ds
2 1
1 t DD E _
NONE T o o K00 e H@PM0h) "wixw? ot raa O o (A dy)ds
2 V1
1 L1l DD .
NNT T KN () ¢ 0@BN () dwhxw? 5 e FOXG N2 (dx’; dy)ds
2 N1 XY
1 Ll DD _E
NN y hYrxd) ¢ UZEN ) fwhxdw?; g2 e fOX SN2 (dx'; dy)ds
2 N7 0 _X'Y
Z.Z
7,\'-,\?1 ; y hghed) o M@ENM ) CwhdwE fN e FOXG fN (dxdy)ds
2 N7 0 _X'Y
1 L1l D E
NI T y hgRed) o (@EM ) CwhAw? §N ra FOXG o (dxdy)ds
2 1D 0 XY E

1 P— ) . .
Ny RN ) Ny MR N, MR 0 N,

By similar analysis as for equations (52) to , the expectation of the absolute value of the rst nine terms
above are bounded by O(N, ). Then by Lemma we have

1
E nune [Fs(K;L(F))] C 1l >t ll - * 11 a ]2- iy +WCT+ S
N, N7 N, Ny 2 Nz
1 1
2 2 22
vE N N e e T e S
Nzl
1 1 1 1 1 1
C 1 > + 1 = + 1 - + 1 + 3 > 1
N NG N, N7 Ny N,
11

+
N, 2 Ng
Therefore, limn, 1 1 E ~ping [Fs(K; L(F))] = 0. Since Fs( ) is continuous and uniformly bounded,
Nlim:L E niing [Fs(K; L(F))] = E ~y [Fs(K; L(F))] = 0:
21

The result then follows.
O

Moving back to the analysis of 2‘1;“2, we rst show compact containment of N in the next lemma.

Lemma D.4. When minf » %;2 2 20, there exit a constant C < 1., such that

) 2
sup E MMy <
N22N;0 t T
Thus, for any > 0, there exist a compact subset U RM, such that

sup P N2y <
N22N;0 t T
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Proof. In the proof below, C < 1 represents some positive constant, which may be di erent from line to
line. We rst rewrite the term N, ~ ™2 () =N, ~ NN+ N, T JEN )+ N, T 3N (x) as

Z.Z
. N 1t ) _
N TR0 = e SO Broa() S (@Xidy)ds
21 i
A YK?I(X°) Bioo( ); £ (dx’; dy)ds;
2
> NN 1 322 : D2__ W E
N, 2t (X)) = NiNT SN2 (x7) Bx}io( ), SN (dx; dy)ds
N2 j—p 0 X v
1 Ml il D . E
A KE(X) Biia(); §4MN2 (dX;dy)ds;
N1N; j=1 0 X Y
1 Mtil D E

N, ~ MNe(x) = NulNz (! BEI(); NNz BHI(); NuN2 (g, dy)ds

N1N, j=1 0 X Y

1 SRS _ D E
AN KX BEI(); 84N BRI(); {2 (dx';dy)ds
NiNy o 0 x v

1 )'(Z +Z D ED i E
— SN BRI ) ot BRI(); &N (dx’idy)ds
NiNz ;) 0 x v
1 ),(Z tZ D ED E

7> KN B3I(); o BII(); NNz (dx’;dy)ds
NiN; ;o 0 x v
1 XZ tZ D E

N y hg0ed) xx BRI(); oM BII(); g (dxidy)ds:
1WN2 j=1 0 X Y

Since the above terms involves the term KtNl(x), we rst look at the bound for KtNl(x). By the Cauchy-
Schwarz inequality, equations (37), (43), and the analysis in Lemma [C.6] for any t 2 [0; T], we have

N 2 Z 12 2 CT Zix 2
Kt (x) Ct?> + Ct KNi(x%) © (dx%dy)ds CT?+ — KN:(x") © (dx’; dy)ds:
0 X Y M X02X
Summing over x 2 X on both sides gives
2 Z X 2
KNM(x) CT?2M +CT KN1(x%) © (dx’; dy)ds:
x2X 0 xo2x

By applying Gronwall’s inequality, we have

> 2
sup Kt (x) sup CT?Mexp(CTt) <C;
otT x2X 0OtT

2

which implies that sup, T KtNl(x) < C for any x 2 X. Using this uniform bound for KtNl(x) together

with Lemma [C.1} similar analysis as for equation (49) gives
ZZ h

> NN 2 ; 2i e
E Ny,  ¢"72(X) Ct E M0 T (dxdy)ds + CtP + —o—
0 X Y N

52



By equations (45)), (46), and Lemmas [C.5| and we have

7 7 2 3
N1:N 2 t N1:N 1 2 1 ot N1:N 2ij 2 0
E MNoy© ot E4LMMNBLa() + - LM™MB() B (@xidy)ds
0 X Y =1
z.z
] . 2 )
+Ct E LMNBII()) 2+ LN )+ NN ® (dx;dy)ds
0 XY

- . 2 . 2 . 2
+E N, "M +CE  *™(x) +CE NyM{ M (x)

Ct? + CtZ e Eh NuilN2 () 3 (dx’; dy)ds + _cr C+——+
0 XY ° ’ N22(2’ ) N2l 2
Summing over x 2 X on both sides gives
> h i Zi>< h i
E MNex)®  CMT2+CT E NN ® (s dy)ds:

x2X 0 yoox

By Gronwall’s inequality, we get

> ) 2
sup E MNx) sup CT?Mexp (CTt) <C;
0t Tx2X otT

. 2
which implies that sup, 1 E = £*N?(x) < C forany x 2 X. The result of the lemma then follows. [

The next lemma establishes the regularity of the process '*™2 in Dgm ([0; T]). For the purpose of this
lemma, we denote q(z1;z2) = minfkzy  zok,. ;19 for zy;2z5 2 RM. The proof of the lemma is similar to that
for Lemma|[C.7, which we omit here.

Lemma D.5. For any 2 (0;1), there is a constant C < A such that for 0 u ,0 v ~t, and
t2[0;T],

h i
N1i;N2. N N1;N2. NNz =Ni;N2 c
Eg &0 ¢ a4 ¢ AV | C +—
NZ

Combining these with our analysis of L{*'N2(f), we can now identify the limit for ™2, We denote
L1':\|1;N2 — (Ki\ll;Nz;LlN;%;NZ; L'2\|;11:;N2; Lg!%;Nz)' where LE%;NZ — Li\ll;Nz(Bi;xo( ))' le\!%;Nz and Lg!%;Nz are Nl'
dimensional vectors with j-th entry being LtNl;NZ(B)Z(éf(U( )) and LYN2(B2( ), respectively. In the next

lemma, we prove the convergence of the processes (L{'*"N2; N™N2) in distribution in the space Dg, ([0; T1),

where E3 = M(R1*N1+d)y RM R RNi RN: RM R RNi RNi  RM,

Lemma D.6. When ,2 3;1,”=1 ,and » 3, the processes (Ly ™2, '*N2) in distribution
in the space Dg,([0;T]) to (Lg'*; ). In particular, L' = ( 8" h'; 10 15 18 KO LY LY LAY
satis es equations (37), (@3), and (16), L1}; L3 LY, ' satisfy either of the following case:

Case 1. When ,2 2;2 and > 3,orwhen ,2 21 and <2 2, , 3, onehas L'l\& =0,

LY =Ly =0and " satis es (18).

Case 2. When 2 2,1 and =2 2, , %, LY LYE LY satisfy equation and . satis es
(19).

Proof. By analysis in Lemmal|D.3| fLNN2gy,y is relatively compact in D, ([0; T]), where E4 = M(RI*N:(1+d))
RM R RV RNM: RM R RN: RN Bylemmas|D.4and f NuNogy oy is relatively compact

in Drm ([0; T]). These implies that the probability measures of the family of processes fLN1:N2gy oy and the
probability measures of the family of processes f Ni:Nzgy 5y are tight. Therefore, fFLN1iNz;  NuiNagy 5 s
tight. Hence, fLN1:Nz;  NuNzg o is relatively compact in Dg, ([0; T]).
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Denote N3Nz 2 M(Dg,([0; T]) the probability measure corresponding to (LN+Nz; NiiNz2) - Relative
compactness implies that there is a subsequence NNz that converges weakly. We now show that any limit
point N1 of a convergence subsequence NN« is a Dirac measure concentrated on (LN:; N1) 2 D, ([0; T]).

Case 1. When 2 3;2 and » 3<27,orwhen 2 2;1 and <2~ , I foranyt2[0;T],
byl bl 2 Cp(R), di;iiiidp 2Ch(RM),and 0 s; < <sp  t,wede neFe(L; ):Dg,([0;T]) ¥ R+

as

Ni.; Nipl XX Na1:j i Nuij iy Niii
Fe(L, ) =Fa(K ™ L™ (By.xo( ))) + Lix® 0 bP(Lig) by’ (Lis, )
o i=2 j=1
> 212 B 1 3, "
+ @ P M+ 1) BreO)*+ i Baw() ot (didy)ds
x2X 0 XYy Lj=1
1 Ll D ED E
N SO BRI() ot BY(); ot (dXdy)ds
1j=1 0 X Y 5 3
Z .z L X _
y hSR(K) ALRBLe( D+ LSH(BE())S (@xX';dy)ds
1.
j=1
1 Ll D ; E
No y h(<) LEBRI()) xx'BR(); o (dx'idy)ds

1

0 XY

Ni;; 0o x v

1 MLl D ) E .
No ooy hi* (") xxBI(); & LB () (dx";dy)dsA dp( sp)
j=1

where F4(K; L(Bx:xo(C; W))) is as given in equation and L!\;'tl;j is the j-th element of the N;-dimensional
vector LY for i = 2;3. Note that by equation (56), we have

Z.Z * s N
L\ll;Nz(x) ro\ll;Nz(x)+ 2|1;N2(X0) B}(;Xo( )+ Bf(gf(o( ): (l)\ll;Nz (dx": dy)ds
0 XY Nlj:l
1 Ll . D _ED |
N oy SNEdped BRAC) oMM BRI gt (@xdy)ds
j=1
Z .z 2 | x | 3
o x v hg N2 (x7) AL M2 (B ))+|\Tl LNsNz((B2,( )5 (dx’; dy)ds
=1
1 Z il D ) E
N o gy Y PANEG) LNeEFIO) BRI 0t (@Xidy)ds
i=1
1 ¥4l D

E _
o8 y M) xxBFI(); oM™ LYN(BR () (dX';dy)ds
lj=0 0 XY

=) +@ +@) +@ +©G) +N, o)+ N, M) +O(N, 2T );

where * +
g £t 13 :
e Y SN () Bie()+ i Bie(): oM™ (dXdy)ds; (59)

1521
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1 MLl . D _ED __ E
@ = RNy SEMe e BRI o™ B ot (dxidy)ds
N2 j—p 0 X Y

i o E
+HN1N2 0wy SN1;N2(X0)XX0 B)?zlj( ); (’)\ll,Nz Biéj( ); 0N1,N2 (dx°;dy)ds;
J:
1 Z.Z 2 1 X . 3
® =3~ KON () ALDN (BLo( ) + - LIN(BEL( )5 (@ dy)ds;
2 0 X Y 1i=1
1 2l _ _ - D . N E
O =[GNT oy EEEOLNEEIIO) B () B (@xdy)ds
2 j=1
1 KEL : . oD wnE
NND o, Y MRNe) LN@EIIO) B 5N (@didy)ds
2 j=1
1 Mlil _ D ) GE .
®) =N . YKSNLNZ(XO) xxX'BII(); o LY=N2(B3I (1)) (dX';dy)ds
2 j=1
1 R _ D - NN E ' o (60)
AT oLy NG odBIC); PN LNERI()) (@didyds:
2 j=1

We now analyze each of these ve terms. By the Cauchy-Schwartz inequality, Lemmas [C.7] [C.6] [D.1] and
B.4, we have

. . C
EOD +G) T (61)
2
For term (2) , since
1 M Z4Z D _ED __ E
AN E gll:Nz(XO)XXO B)S(;J( ); (’)\ll,Nz Biéj( ); ([)\11 (dx”;dy)ds
1N2 4= 0 X Y
1 X D ) EZZ D E
N E sup xxX'B3(); - NuNz( 0y BEi(); N2 (dx; dy)ds
N2 g X9 0 X Y
w2l h i. D E, %
ﬁ E - MiNed)® TE BII(); g (dx'; dy)ds
N2 j=1 0 X Y
C
N,
and similar bound can be obtained for the second term in (2) , we have E[j(2) j] C:Nz’. For term (4)
we see that
C 32l h ) zi% h i i 2i%
FION) B E KNG T TE LIN(BRI() T T (dXidy)ds
N2 j=1 0 X ¥
il h _ i h i. D . CEg
+ﬁ E L'S\lliNz(B)3(;J( )) 22 E vy h's\lliNz(XO) 4 4 E XXOBiéj( ); 0N1,N2 (dXO;dy)dS
N2 j=1 0 XY
(M)
I\|2
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Similarly, E[j(5) j] C(T)=N,. By the Cauchy-Schwartz inequality, Lemmas and we
have

h i
E N, ~puhe

2 23%
Z+Z h i1 B
c "t . 3 . 1 . .-
= B NN P TER N BL( N+ ML) 6 (@Xdy)ds
N, o x v Nlj:l ’
c ‘it ) 1 X , °
+ E4 1) BaaGw) +——  1N2(BZL() 5 (dx’;dy)ds
N, 0 X Y N1 j=1
ZZ h i h i D E, &
C X t ) 11 . ) 11 - ) 2 2
+ xAE - MiNepd)® TE S BII(); MNe fTE - BJI(); NN (dx’; dy)ds
NiNz i) 0 x v
c il h i D E, %
+ xx"E  BZI(); NuNz E  B3(), NN (dx’; dy)ds
NN, j=1 0 X Y
c R TA h iz D E

1
. ] 2 32
CE  MaiNzody 2 FE BEI(); NaN: (dx; dy)ds

c il D E, 2 D E, }

_ s ) 2
= x>'E BI(); o* E B() ™ (dx’; dy)ds
NiN; j=1 0 XY
1
o 3 242 o Ji D Eqt ik
xx"E  BZI(); NNz E  BI() NN (dx’; dy)ds
NiNz ., 0 x v
L]
1 1
C + —
N, NJ

(62)
Putting everything together, by equation (56), Lemmas Lemmas and the analysis
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in Section [C| we have

E ~ning [FG(L; )]

X B h . o o
= E npme Fa(KV LN (BLo( ) + S N R (D) by (Lia ™
i=2 j=1
X 20 Z+Z - 1 B B
+ E40 PN Mg+ SNe(x) Ble()+ - BRl()i o™
x2X 0 X Y N1 _,
1 Ml Z D _ED __ _E
+ = 'S\|1:N2(X0)XX0 B)?;;J( ); (')\ll,Nz Bibj( ); (')\ll.NZ (dXO;dy)dS
Ni,o; 0o x v
7.7 2 - | 3
y hSuNe() AN B () s LEEM(BE( DS (@xXdy)ds
0 X Y -
1 MLl D ) E
— y  hYrNz(xl) NN )) xxBII(); N2 (dX';dy)ds

N
ljzg 0 X Y

1 ML L _ D ) el E
N y  hguNed)  sodBRI(); ot LgNE(BL (1)) (dx';dy)dsA

1

1 + 1 c 1 1

-+ +
1 27 27
N, =N N, N7

C

+CE N,MMMN2 +O(N, ")
'

1 1
C STtz
Ny, 2 Nj
Therefore, limn, 1 1 E ~npinp [Fe(L; )] = 0. Since Fg( ) is continuous and uniformly bounded,

Jim E s [Fo(Li )= E w [Fo(Ls )] =0:

(dx’; dy)ds

3
dp( 2:)1:N2) 5

Since relative compactness implies that every subsequence NNz« has a further sub-subsequence that con-
verges weakly. And we have show that any limit point N1 of a convergence sequence must be a Dirac measure
concentrated (LN:; Ni) 2 Dg,([0; T]). In particular, K satis es (16), L)} = 0, L)t = L} = 0 and

'* satis es equation (I8). Since the solutions to equations (37), and are unique, by Prokhorov’s

theorem, the processes (Ly'* N2, N1™N2) converges in distribution to (LN*; Moy,

Case 2. When 2 2;1 and =2 2 2=2’,foranyt2[O;T],bi;j;:::;b;;j 2 Cp(R), dg;:::5dp 2 Co(RM),
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and0 s1< <sp t,wede neFs(L; ):Dg,([0;T]) ¥ R+ as

1 XX Nui;j itj oy N1ij i5j ey Niij
F7(L; ) = Fs(K; L(Bx.xo( ))) + Fo(bie?) b (L) bp! (Lis.)
i=2 j=1
0 Z.2 > +
X @ N1 N1 t N1 0 1 1 X 2;j . N1 0.
+ £ () o)+ s '(X) Byl )+|\T By ( ) o (dx7; dy)ds
x2X 0 Xy Lj=1
1 MLl D ED . E
+ = 210 BPI(); ot Bl (): ot (dX’;dy)ds
Ni._, 0o xv
]
2 3
Z.Z 1 M )
y hY(x) AN (BLe( )+ LY((BZL( )5 (@x;dy)ds
0 X Y N1j=1
1 MLl D E

= y ned) LB () xBR(): b (@xidy)ds
lj=g 0 X Y

1 XZ tZ D j N E 3;j
o8 y hi() xdBRI(); ot LYTBRI()) (dx;dy)ds
lj=1 0 XY 5 3
Z+2 1 X ]
+ KA Blo() +1- 18" B() 5 (dX;dy)ds
0 X Y 1j=1
1 Bt oD o E
+ KoY BFI()  BI( )i 0" (dxdy)ds
lj=0 0 XY
1
1 MLl b .~ E .
NG gy SR BP0t 1 BE() (@Xidy)dsA di( 3) dp( &)
j=1

where Fs5(K; L(Bx:xo(C; W))) is as given in equation , L!\;‘tl;j is the j-th element of the Nj-dimensional
vector L'i\.'t1 for i = 2;3, and F_(f) is equal to Li\‘l(f) minus the right-hand side of (I7). Note that by

’

equation (56),
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Z.Z - X +

|t\11;N2(X) ONl;NZ(X) + 2‘1;N2(X0) B)l(;xo( )+ Ni g(o( ) Nl N2 (dXO;dy)dS
0 X Y 1j=1
1 ML L D ED E
+ SNz BEI( ) o™ BRI(): o™ (dx;dy)ds
1j=1 0 XY 5 3
Z .2 L X _
y hYiNe(xh) 4Nzl () + - LYN2((BEL()D (dx';dy)ds
0 X Y N1j=1
1 MLl D E
= y hiuNz(xt) LMN2B2I()) xx'BY(); oM (dx’;dy)ds
Nlj:1 0 XY 63
] B2l . D el NN 3 ©
Ni o x v y  hYuNz(y B3I ), o'vN2 LYsN2(BR (1)) (dX; dy)ds
, 1= 2 3
t 1 B
+ KYNz () 41NNz gL () + = 1Y B2 () 5 (dx';dy)ds
0 X Y Nlj:l
1 Mtl _ D E
+ KNENz (Y INeN2 B3I () BEI(); o2 (dx'; dy)ds
Ni,.; 0o x v
1 MLl D E )
+ — KN1 NZ(XO)XX B3J( ) N1 [\P |L\Il;Nz Biéj( ) (dXO;dy)dS
Nlj:1 0 X Y
1 XZ tZ N1;N 0 0yN1;N 3;j Ni1;N 3] 0
= _— K2 () xxClg 2 (B ( DIp 72 Beg' () (dx; dy)ds
NiN, j=1 0 XY
1 XZ z N1;N2 (0 0fN1;N2 /1 3;j N1;N2 3] 0.
* NN K2 XX g 2 (B (I By () (dx7;dy)ds
N2 j=p 0 X Y
L M Z 2 _ _ ) _ Ny
NoN KONz )odIZeN2(BET( NINEN2 B () (dx’; dy)ds
N2 j=p 0 X Y
1 ML L D E

N1N2 0 X VY y h'S\ll(XO) XXO Bi;j( )1 gll;Nz Biéj( ), SNl;Nz (dXO,dy)dS
i=1

+(1) +@ +@) @ +(G) FNMIE)+OMN, T ):;
where (1) to (5) are given in (59) to (60). By Lemmas|C.1 and

2 3
1 )'(Z +Z _ -
EARINT o o RO @O BIIC)  (@didyyds S
2 j=1
Z .7 h - h ; .
c Xt ) i _ ) 1 . ) L2
W . YE Ké\ll’Nz(XO) 22 E |2|1,N2(B)3(,j( )) 4 2 E I(l;ll,Nz Biﬁj( ) (dXO;dy)dSI
2 j=1
C
NZ

Similarly, the expectation of the absolute value of the rst three terms on the right-hand side of ( are
bounded by O(N, ). The analysis for the forth term and (1) to (5) are given in (61) to (62).
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Therefore, we have

E N7:N2 [F7(L; )]

h A Teq . .y .= . E
= E nyme Fs(K;L(BLo( ) + E FuLie™) byt (L3e™=) by (Lier
20 =2 -
> . . Z+2Z 1 X .
+ E40@ PN Mg+ SO Boe(O)+ gn Bide(): 0"
x2X 0 j=1
1 MLl D _ED __ _E
+ SNy BEI( ) o™ BRI 0™ (dxX';dy)ds
lj=0 0 XY
2 3
Z.,Z | _ o N
y hYeNGe) ALNNEBLL( )+ LEENA(BR()S (dxXdy)ds
0 XY 1j=1
1 )(Z tZ D

_ W
N y hgtNe(x) LgNBFI () xXBR(): ot (dxX';dy)ds
lj=0 0 XY

1 MLl . D ) LS
N y hguNe(d)  xxd’BI(); o LgN2(BL (1)) (dx';dy)ds
lj=4 0 X Y
2 3
Z.2 L _
+ KO AN Beo() +- 157 BXo() S (dx';dy)ds
0 X Y =1
] B2l . _ oD .
+ KNz (dpodIfNe BEI( ) BRI( )i o™ (dxsdy)ds
lj=p 0 XY 1
1 MLl D _E )
"Ny KN (o BRI ) o2 108N BRI() (0 dy)dsA
lj=p1 0 XY )
1
dl( 2‘11;N2) . dp( SNpl;NZ)
1 1. cC h o,
C ——+ + - +CE N,MMMN?(x) +
Nl 2 1 N 27t >
2 NS5 ' 2 2
1 1

C

+
Ny 2 N,2
Hence, limyn, 1 1 E ~nyinp [F7(L; )] = 0. Since F7() is continuous and uniformly bounded,

Jim E s [Fo(Li 1= E s [Fr(Ls )] =0:

The result then follows by Prokhorov’s theorem.

)

+

(dx’; dy)ds

O

E Derivation of the asymptotic expansion of h{\'“'\'z for ,2(1=2;1)

D

The goal of this section is to provide an inductive argument to derive the asymptotic expansion for f;

and h{'*'™N2 as N, ¥ 1 as claimed in and respectively.

N1;N2
t

h Let 2 Nand let GN1(x) be the Gaussian random variable de ned in Section Then, when , 2
2 1,2+1 e obtain that for any xed f 2 C;L(R*™*N1(1*®) as N, ¥ 1, we have the expansion given

2 2 +2
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by where forn 3,

Z.2 " #
. 1 .
hi®= ¥ Qu) s (C O) + I s(C* () (@Xsdy)ds
. 1
l Z tZ N N N N #
+ y Q)X INLCH( ) N o (ruaf()XY)  (dX';dy)ds
N; 0 X Y N k=0
ot Z +Z # (64)
QN s () IV 1o (CHHO)) + —1— I 1 (CEP( )  (@x;dy)ds
m=1 0 XY . Nl #
% 1 th N1 0 M N1 3 N1 0 0. .
QN s (<) INACE()) N (rwaf (XD (@X;dy)ds;

1 3
N; 0 X Y k=0

where . N
CX()=@F() @*M0);
CH2()=c "@% () (W) Buwaf(); (65)
CR()=c ¥ (%) "(whx)w?:
i
As N, ¥ 1 and when ;, 2 %; g—g , We have the asymptotic expansion 1; for h{\'“Nz(x). The

terms on the right hand side of the asymptotic expansion satisfy the deterministic evolution equations

). € and €.

@] 1
2.2 1 D .
QRi(9) = Y Qi) I O@Be()+ - Bie()A (@xidy)ds
0 X Y - .
1 XZ tz N1 /0 0 X N1 3;j N1 3] 0
+ No y Qps(X) xx hes BL'() 1 ks B () (dx’; dy)ds
Lj=0 0 XY k=0
Z.z o s 1 (66)
% t N1 0 INl @Bl i Bz;j A d U.d d
Qn m;s(x) m;s x;x°( )+ N x;x°( ) ( X, y) S
m=0 O Y . lj=1 4
1 X % z tZ N1 0 0 >aS N1 3;] N1 3;J 0
N Qn* m:s (X)xx hes BX() It ks By () (dx';dy)ds;
Lj=1m=0 © Y k=0
When ,2 21,2+
7 7 @] 1
t b G
Q09 = 6(x) QUONI @BL.()+ o BALOA (@i dy)ds
0 XY 1._
= 67)
1 XZ 4

o8 QNNxXIL BEI() 192 BH () (dx';dy)ds:
lj=1 0 XY
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and when ,=2%*1

2= 72 5
7.2 (@) L% 1
QU9 =GN () + Yy QRE() N@BL()+ - Bl.()A (dxdy)ds
0 X Y 121
1 Bttt N X N i N 3;j :
+ y  Qoi(x) xx’ e BF() 1My BRI()  (dX';dy)ds
lj=p 0 XY k=0
7 7 (@] 1 (68)
X ot N, nN: @R1L 1 X 2 (VA 0
Q m;s(X )Im?s Bx;xU( ) + W Bx;xo( ) (dX ;dy)ds
m=0 0 X Y 152
" #
1 X ><L Z tZ N1 0 0 X N1 3:] N1 3] 0. .
— Q™ s (X)xx hes B1() It ws Bx () (dx’; dy)ds:
1 j=1m=0 0 XY k=0

It is interesting to note that the approach that is presented in this section also recovers the rigorously
derived formulas for = 1and = 2 as presented in the main theoretical results of Section [2 Below we
focus on presenting the argument for the case > 2.

E.1 General > 2 case

To nd an expyessiorfor QN for any > 2, we use an inductive argument. Assuming Qp'i(x) = hp' (x)
and I(')\!%(f) = f; (')\'1 , We have already rigorously shown that the statement holds for =1and =2. For
n=3;:::; 1, we will assume that Qm and I,'}';lt(f) satisfy the following deterministic evolution equations,

o 1
Z.2 s
QNA(9) = Y Qa0 I O@Be()+ - Bl()A (@xidy)ds
0 XY B 1j=1 )
1 B2 N X N i N 3;j
+ y  Qpi(x) xx It BEI() N B()  (dxdy)ds
lj=1 0 XY o k=0 1
>l 1
o Yinm;s(x°)lm%s@Bi;xo( )* N BieOA (@idy)ds
m=0 j=1
. #
1 XMZ tZ N1 0 0 X N1 3;j N1 3] 0
N Qn " m:s(X)Xx hes BRM() It ks B () (dx’; dy)ds;
lj=im=0 0 XY k=0

and
Z .2z " . #
hi®= ¥ Q) N1 (Cod O) + o 1(C*() - (@Xsdy)ds
. 1
Z .2 > #
+ y Qo) RLCR( ) 1N s(ruaF( X)) (dX;dy)ds
N; 0 X Y . K=0 "

»d Z+Z 1
QN s () IV 1 o(CHHO)) + —1— I 1 (CE2( )  (dx;dy)ds
m=1 0 X Y . N u
M 1 z tZ N1 0 N1 3 N1 0 0.

—— QN ms()  IRLECH() N, o (rwaf (X)) (dX; dy)ds
N; 0 X Y k=0

m=1
We now derive the formulas for QNi and INi(f) for any 2 N.
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When 2 2-1;Z*1 plugging equations and into the left hand side of equation gives
(the symbol is used to ignore the remainder terms in and (21))

he ™20 hg ™ (%) ;
: tZ X 1 N1 7,0 1 Nj 70 )
y @ 5 QisX) ?Q 5(X)
0 X Y k=1 N> o N, 1
> 1 1 X
N1 1 = 2;j A 0.
o N;(l 2) Ik;s @BX;XO( ) + Nl i Bx;x0( ) (dX de)dS
1
1 XZ tZ X 1 N ( 0) N ( 0)- 0
+ — Q +(X 1 Q 5 (X XX
Nijo xov T g )T
" #" #
> 1 Ni p3ij > 1 N1 3;j 0.
R e BEO) — sk BE()  (@xidy)ds
k=0 'N2 o) k=0 'N2 1
<Z+Z e S
= _ y QRO I0:O@BLe( )+ BIL()A (dx;dy)ds
-0 X v Ni,_,
o)
1 XZ tZ N N j N 3ij =
o y Qoa(x) xxXlgd BZI() lot B'()  (dx’;dy)ds_
1j=1 0 X Y >
8Z 7 (0] 1
>< 1 =t N1 0y N1 @g1 1 X 2 (VA 0
+ N ) - y QO;S(X) In;s Bx;xo( )+ W Bx;xﬂ( ) (dX ;dY)dS
n=1 N> -0 XY 1ig
o) 1
L 2 1
QN ms OO @BL o( )+ BZL()A (dx’;dy)ds
m=o 0 X Y ’ ’ ’ Np._, 7©
" J_l
1 XZ tZ N X N j N 3;j #
+ y  Qoi(x) xx It BIFI() N BI()  (dx%;dy)ds
Lj=1 0 XY k=0 o
Z.2 " # o
1 Dt N1 hout DX Ni 3 N1 3 0. o
N Qn™* m;s(X)XX hes BXP() It ks Bxd () (dX5dy)ds _
Lj=im=0 0 X Y k=0 iy
(0] 1
l <Z tZ N 1 X .
— QU0 @B )+ J  Bie()A (X'idy)ds
N, 2 - 0 XY S
8]
1 32 i? . . =
TNy gy QRO BEIO) log BEI()  (@idy)ds . +ON, 9
- :
! 8 o 1
> 1 Ny 1 <t ¢? N1y ) N1 @1 1 XK 2§ (A 0
= nil ») Qn:t(x) , 1 - Q :S(X )IO;S Bx;x°( )+ N. BX;XO( ) (dx’; dy)ds
n=o Ny N,> 2 -0 XY =1
1 2l N w3 =
0 QUO)xxlpt BRI() lot By!() (dxdy)ds_ +O(N );
1j=1 0 X Y >
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1 ; N1;N2 ; P 1 1 N1 R
for some > 5. Adding hy (x) and subtracting |, _g ka;t(x) on both sides, we have
2

1
Q)
2
8
1 ! p <4t ° 1 >, -
= — 5 (N;* “hg*"™(9) T QUGS @B ) + 1 BLlo(OA (dx'idy)ds
N,? 2 N, 2 -0 XY Lj=1
9
| 3cZ+Z _ =
o QNXXIYE BII() Ig: BH ()  (@x';dy)ds _ :
lj=1 0 X Y >

Since N,? 2hg'l"\‘z(x) converges in distribution to the Gaussian random variable GN1(x) de ned in
, we have an expression for QN;%:

7.2 (o) S 1
Q09 = 6(x) QUGS @B ) + 1 Bll(OA (dX;dy)ds
0 X Y 1j=1
1 Mz 2 N i N 3j
— QNL)XXIYE BEI() 19 BI()  (dx;dy)ds:
Nlj:1 0 X Y ' '

which coincides with (67).

When 22, we rst derive an expression for I, (f) by plugging and into equation (31),
p ED _ E
L L ,
Z.Z !
1 ) < 1 N1 (0 (+D)A  2)
y —i 3 Qs(X)  O(N 2))
NI 2 0 x v o NK@T ke 2 ,
> 1 N 1)1
SR (G () + O, (DA 2y (g dy)ds
Kk 2
]
Z .7z 1
L ‘ > ) N (+1D)A  2)
+ — y ——Q .1(X0) O(N 2 )
Nll 1|'\'|21 2 0wy o N;(l 2) <k;s , 2
< 1 :
m'?@é(ciaz( ) +O(N, (D 2y (@x%: dyyds
k Nz
]
Z .z 1
L ‘ > 1 N (+1D)A  2)
+ — y ———0 .1(X0) O(N 2 )
Nll 1N21 2 0 % vy ‘o N;(l 2) <k;s , 2
< 1 .
i RACE () +OM, TP D)
Kau N2 "
2! 1

Nk(l ) k(Nl 2)|Eé(rwlf( )XO) + O(N2 ( +1)@ 2)) (dXO;dy)dS
Kk 2 2
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" "
= 7“\"1 N+ —— N_l XO |N1 ) Cf;l + INl . Cf;z
n=1 N;(l 2) n,t( ) N2 @ 2 0 )'(' v y QO,S( ) l,S( X0 ( )) N]]_' l,S( 0 ( ))
> <l #
1 Ny 0 N1 f;1 1 N1 £:2 0
N, & D QU () I 1 CE () + T It 1(CE7())  (dxidy)ds
N2 m=1 0 XY . Nl
1 £t > #
——— N1 0 Ni/~3 N1 0 0.
+ NiL 1N2 @ 2 0 x v y QO;S(X) Ik;s(CXO( ) | 1 k;s(l"wlf( )X)  (dx’; dy)ds
1 >l il

2

k=0 #

>
- QM (X IN1(C3, INv — (rya ()X dx’; dy)ds
N]:!_ 1N2 (1 2) et o X v m,s( ) o k,s( X ( )) m 1 k's( w ( ) ) ( y)

+ O(N2 (+1@ 2))

D E

P
Subtracting f; N + | _! Nn%Dz,lr'}‘}t(f), IrEnuItlgpIyinglé\l2 @ 2) o poth sides of the above equation,
2

and using the fact that Nz(l 2 f N2 f; o' converges to 0 in distribution when

2 +1 we can get the following evolution equation for INg (f),
Z.Z " #

. 1 .
IN:(F) = LY Qps(x) 1N (CEN( N+ SN (CRP()) (X dy)ds
¢ Z+Z ) ' #

. 1 .
o YQ'“lm;s(x‘)) N RO+ er':l Ls(CR2()) (@ dy)ds
m=1 1

Y " #

>
N NE y QX)) RE(CH( ) Ny o (rwaF(O)X)  (dX';dy)ds
1 0 X Y k=0 "

1 >l N 0 < Ni/~3 N 0 0
Q™ mis(X) hes(Co( ) It 1 ks(rwaf()X)  (dx';dy)ds;
m=1 0 X Y k=0

which concludes the inductive step for I'\f% ().
Next, we derive QNi by plugging equations and into the left hand side of equation (29):

htNliNz(X) hgll;NZ(X)

| |
Z .z = '
1
Doy Y gEa Qe ot T )
k=0 d 1 3
> 1 1 X2 1)@
4 OB+ BIEOA+OMN, (TP )5 (dxidy)ds
Z .z '
1 3o <
+ — y WQE‘;(XO) O(N2(+1)(1 2)) xx!
.I.\Il j=1 0 XY k=o No = 2 7 y
<X 1 .
—o BHI() +O(N, (D¢ )
k=0 NZ
> 3 #
R s BSI() +O(N, ™% 2)  (ax’dy)ds
k=0 'V2
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(O] 1

> 1 N1 1 ZeZ Nicy 0y N1 @gl 1 X 2;j A 0.
— o — Qni(x) + L0 D o oy Y Qus(X) INi@Bs () + N, By ( )2 (dx';dy)ds
n=0 Y2 2 i=1
" #
1 XZ tZ N1/ 0 0 = N1 3:j N1 3;i 0.
t—— y  Qps(X) xx hes B2() 1Mys B () (dx’; dy)ds
N1N, j=1 0 XY o k=0 1
1 > }Z e N1 nN1 @Rl 1 X 2ij A 0.
a 2 Q m;s(x )Im;s Bx;xo( )+ W Bx;xo( ) (dX ,dy)dS
N, m=o0 0 XY Li=1
1 X ‘et N 03y 0 X N 3;j N 3 i 0
YD) O QMmO R BIO) e B (@Xdy)ds
1N7 j=1m=0 k=0
+ O(N +1);

where 1 > ( +1)1 2). Following the same idea as earlier, when , = % we note that
1 )= % = 55, We can obtain an expression for Q'\g% (which coincides with ):

7.7 o % 1
QNi(x) =GN (x) + y Qi) N@BLo( )+  BIL()A (dx';dy)ds
0 X Y NlJ-:l
" #
1 XZ tZ N1 4,0 0 X N1 3;] N1 3j 0
+|\T y Qps(X) Xx hes BXI() My By () (dx’; dy)ds
lj=0 0 XY o k=0 1
> Z2Z 13
O Qs OO @Bl ) + 1 Biie()A (aXidy)ds
m=0 j=1
" #
1 X XZ tZ N1 0 0 X N1 3:j N1 3] 0
o QM s (X)xx e BRI() I s Bi'()  (dX';dy)ds;
lj=im=0 0 XY k=0

where G(X) is the Gaussian random variable. And when , > % QN;% is driven by the deterministic

equation
z .z (0] % 1
QN0 = y Qo) NE@BLa()+ - BI()A (dx;dy)ds
0 X Y ) - )
1 XZ tz N X N 4] N 3]
+ y  Qpi(x) xx’ It BI() 1My BE()  (dx;dy)ds
lj=1 0 X Y o =0 1
> Z+Z N 1 3 o
Q lm;s(xo)lrl?rl\%s@Bi;x‘)( )+ Ny Bxgd’( )A (de;dy)ds
m=0 0 XY N =1 N
1 X X Z tZ N1 0 0 X N1 3'j N1 3;j 0. .
Ni Q m;s(x )XX Ik;s Bx' ( ) Im k;s Bx0 ( ) (dX !dy)ds1
1 j=1m=0 0 X Y k=0

This concludes the inductive step for the derivation of QN;% ().
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