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Abstract 

Sex biased expression characterizes ~1,000 genes in mammalian liver, and impart 

sex differences in metabolism and disease susceptibility. The sex-dependent temporal 

patterns of pituitary growth hormone (GH) secretion, pulsatile in males and more 

continuous in females, are known to sex-differentially activate transcriptional regulators 

(TFs), leading to widespread sex-differences in the mouse liver transcriptome. This thesis 

elucidates sex-biased gene expression patterns in the following studies. Gene structures, 

expression patterns and species conservation are characterized for ~15,000 liver-

expressed intergenic long noncoding RNAs (lncRNAs), many of which are novel. 

Analysis of intergenic lncRNA promoters revealed unexpected high conservation and 

significant enrichment of TF binding compared to protein-coding promoters. A subset of 

intergenic lncRNAs showed strong sex-specific and GH-dependent gene expression, and 

whose transcription was tightly correlated with the surrounding chromatin environment 
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and TF binding patterns. The pervasive role of genetic factors to regulate sex-biased 

genes was revealed by analyzing livers with matched genotype and gene expression data 

from Diversity Outbred (DO) mice, an outbred population with high natural allelic 

variance derived from eight inbred strains. Significant associations between genetic 

variants and gene expression (eQTLs) were identified, including many eQTLs with a 

strong sex-biased association. Remarkably, a large fraction of these sex-biased eQTLs 

were linked to either gain or loss of sex-specific gene expression in the DO founder strain 

predicted to be regulated by the eQTL. Thus, genetic factors are a major contributor to 

the variability of sex-biased genes, which has important consequences related to the 

individual variability of liver phenotypes with known sex-differences. Natural genetic 

perturbations in DO mice were leveraged to identify candidate lncRNAs that may 

regulate hypophysectomy (hypox) responsiveness. Co-regulated protein-coding gene 

clusters were discovered based on gene expression correlations across DO mouse livers, 

many of which are enriched for distinct hypox response classes. LncRNAs whose 

expression showed unexpected significant negative correlation with protein-coding gene 

clusters enriched for genes of the opposite-sex bias and inverse hypox class were 

hypothesized to play negative regulatory role. In sum, these studies expand the 

characterization of the sex-biased hepatic transcriptome and reveal contributions of 

genetic factors to the regulation of sex bias in mammalian liver. 

.  
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Chapter 1 Introduction 

1.A Summary 

The liver plays key physiological functions, including the metabolism of drug and lipid, 

as well as bile acid synthesis. Sex-differences are widespread in mammalian liver 

transcriptome, where, in mouse, there are >1,000 genes with significant sex-bias 

expression. Many liver sex-specific genes are implicated in the sex differences of 

clinically important variables, such as liver disease susceptibility and function. Growth 

hormone (GH) is known to be a key regulator of sex-biased genes through its secretion 

pattern that are different between the two sexes. In male, GH is secreted in pulsatile 

manner, whereas in female, it is secreted near continuously. Sex differences in GH 

plasma level sex-differentially activates STAT5b and other GH-dependent transcription 

factors (TF), propagating sex differences to the entire liver transcriptome. GH, by 

mechanisms that are not yet understood, impart sex-differences in the liver chromatin 

structure, histone marks and methylation status. 

 

The goal of this thesis is to characterize the sex-biased liver transcriptome and its 

associated gene regulation mechanisms in mouse liver, which were accomplished by 

discovering liver-expressed long noncoding RNAs (lncRNAs; Chapter 2) and their 

putative regulatory roles (Chapter 4), as well as elucidating genetic factors altering gene 

expression of liver sex-biased genes (Chapter 3).  Briefly, in Chapter 2, I discovered 

liver-expressed intergenic lncRNAs (lincRNAs), and characterized their gene expression 

patterns and conservation level. TF bindings, chromatin marks, and chromatin openings 
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undetectable amount. In contrast, the female growth hormone pattern in rats is continuous 

due to more frequent pulses (Tannenbaum and Martin 1976, Eden 1979). Similar sex-

dependent GH secretion patterns, albeit less striking, were observed in mouse (MacLeod 

et al. 1991), and to a much weaker degree in human (Pincus et al. 1996). The male GH 

secretion pattern, in rat, was imprinted by early exposure to neonatal androgens (Jansson 

et al. 1985). The sexual dimorphic growth hormone secretion patterns result in sex 

differences in the plasma GH level, which in turn activates transcriptional regulators 

(TFs) through GH signaling in a sex-differential manner (Waxman et al. 1991, Waxman 

et al. 1995, Zhang et al. 2012). GH-dependent TFs activate or repress their target genes 

differently in males and females, propagating sex differences to the entire liver 

transcriptome (Holloway et al. 2008, Conforto et al. 2012, Conforto et al. 2015). Ablation 

of circulating GH through the surgical removal of pituitary gland (hypophysectomy; 

hypox) leads to a near global loss of sex-biased gene expression pattern (Wauthier et al. 

2010, Connerney et al. 2017), whereas continuous infusion of GH in male mice, 

delivered via an osmotic pump, leads to the feminization of liver gene expression 

(Holloway et al. 2006, Lau-Corona et al. 2017). It is therefore, through the sex-dependent 

GH secretion patterns, liver sex-biased genes are mainly regulated. Due to its prominent 

sex-biased GH secretion patterns, the rodent model is ideal to study sex-biased gene 

expression patterns. 
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1.C GH-dependent TFs 

Sex differences in the temporal plasma GH profiles result in the activation of GH 

signaling in a dynamic, sex-differential manner (Waxman et al. 1995, Gebert et al. 1999).  

GH binding to a growth hormone receptor activates JAK2, which in turn phosphorylates 

the signal transducer and activator of transcription 5 (STAT5) (Brooks and Waters 2010, 

Sedek et al. 2014). Phosphorylated STAT5 would then translocate to the nucleus and 

bind to a TTC(C/T)N(G/A)GAA motif to regulate transcription of gene targets (Soldaini 

et al. 2000). STAT5 activity is pulsatile in male rat liver, as a direct response to GH 

secretion pulses, while in female rat liver, STAT5 activity show a persistent low level 

(Choi and Waxman 2000). Between the two members of STAT5 proteins, STAT5B, not 

STAT5A, mediates most GH signaling in liver (Udy et al. 1997), and is responsible for 

the loss of ~90% of sex-biased gene expression in STAT5-deficient mouse model 

(Clodfelter et al. 2006). Sex-biased STAT5 binding sites were shown to be enriched for 

correspondingly sex-biased genes, confirming the action of STAT5 to positively regulate 

gene transcription (Zhang et al. 2012). STAT5 binding sites are proximal to 35% of sex-

biased genes, suggesting a substantial fraction of sex-biased genes are regulated by 

STAT5, but also leaving the possibility open for other GH-dependent factors in the 

regulation of sex-bias genes (Zhang et al. 2012). The male-biased transcriptional 

repressor BCL6 was shown to preferentially bind to female-biased STAT5 target genes in 

male liver, indicating BCL6 competition for STAT5 binding sites as a mechanism to 

repress female-biased genes in male liver (Zhang et al. 2012). A similar negative 

regulation is carried out in female mouse liver by the female-biased transcriptional 
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repressor CUX2, which was shown to repress male-biased genes (Conforto et al. 2012). 

In contrast, binding sites for CUX2 overlap female-biased binding sites for HNF6 at a 

subset of female-biased genes, indicating a role for CUX2 to indirectly activate female-

biased genes. Overall, HNF6 mostly show positive regulatory role as shown by its male-

biased binding sites that are proximal to male-biased genes in male liver (Conforto et al. 

2015). Taken together, a network of GH-dependent TFs is essential to maintain sex-

biased gene expression in mouse liver. 

 

1.D Classification of sex-biased genes in response to hypophysectomy 

Surgical removal of the pituitary gland (hypophysectomy; hypox) ablates all circulating 

hormone, including pituitary GH, which is used as a model to tease out GH-dependent 

gene regulations. There are two major classes of liver sex-biased genes as defined by 

their sex-dependent positive or negative responsiveness to hypox. Class 1 genes are 

activated by the GH secretion pattern in the sex where they are highly expressed, whereas 

class 2 genes are repressed by the GH secretion pattern in the sex where they are less 

highly expressed (Fig. S4-1) (Wauthier et al. 2010, Connerney et al. 2017). 

Consequently, class 1 genes are down regulated and class 2 are de-repressed (up 

regulated) after hypox. 

 

1.E GH-dependent sex differences in liver epigenome 

GH-dependent sex differences are also apparent in the mouse liver epigenome, including 

at a subset of transcriptional regulatory sites, as defined by open chromatin regions based 
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on DNaseI hypersensitive sites (DHS) (Ling et al. 2010). Sex-biased DHS are 

significantly enriched for nearby sex-biased genes with matching sex-specificity, 

implying the tight connection between sex-biased DHS with sex-biased gene 

transcription (Ling et al. 2010). The majority of sex-biased DHS, however, are distal, 

suggesting long-range interactions are involved in the regulation of liver sex-bias genes. 

The majority of male-biased DHS are suppressed in response to the feminization of GH 

secretion pattern via continuous GH infusion, delivered via an osmotic pump, while a 

subset of female-biased DHS is induced. Even more striking, a subset of male-biased 

DHS showed dynamic opening and closing in response to GH pulses (Connerney et al. 

2017).  

 

Analysis of male and female chromatin state maps, based on six chromatin marks and 

DHS, identified the use of H3K27me3 repressive mark to down regulate highly female-

specific genes in male liver (Sugathan and Waxman 2013). Sex-differential chromatin 

states also characterize sex-biased DHS, not sex-biased genes, highlighting the 

importance of distal regulatory sites. Integration of chromatin state maps and genome-

wide binding data for five GH-regulated TFs highlight the regulatory role for sex-

differential chromatin states, including to facilitate sex-dependent chromatin opening at 

male-biased DHS and sex-dependent transcription activation through sex-biased STAT5 

bindings (Sugathan and Waxman 2013).  All of these results suggest an epigenetic-driven 

mechanism plays a major role in the maintenance of sex-specific gene expression in 

mouse liver. The mechanisms in which sex-differential chromatin states are established 
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is, however, poorly understood. Long noncoding RNAs were shown to interact with 

chromatin modifying enzyme to regulate gene transcription (Tsai et al. 2010, Guttman et 

al. 2011, Engreitz et al. 2013). We hypothesize that sex-biased chromatin state 

regulations are mediated by sex-specific lncRNAs, which prompted us to characterize 

liver-expressed lncRNAs in Chapter 2.  

 

1.F Sex-biased genes during mouse liver development 

Widespread sex differences in mouse liver transcriptome are not seen until puberty 

(Conforto and Waxman 2012, Lowe et al. 2015), where at 4 weeks of age, 13% of adult 

sex-biased genes showed significant sex-biased expression, as compared to 85% of adult 

sex-biased genes at 8 weeks of age (Conforto and Waxman 2012). The majority of sex-

biased genes in fetal liver, however, are retained in adulthood (Lowe et al. 2015). Male 

liver showed extensive changes during liver development, where 76% of male-biased 

genes were up regulated and 47% of female-biased genes were down regulated by 8 

weeks of age, as compared to 33% sex-specific genes that are regulated in female liver 

(Conforto and Waxman 2012). Sex-specific genes showing early sex-biased expression, 

at 4 weeks of age, include transcriptional repressor CUX2, highlighting the need to 

analyze sex-biased expression during liver development (Conforto and Waxman 2012). 
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Chapter 2 Hepatic lincRNAs: high promoter conservation and dynamic, sex-

dependent transcriptional regulation by growth hormone1 

 

2.A Abstract 

Long intergenic non-coding RNAs (lincRNAs) are increasingly recognized as key 

chromatin regulators, yet few studies have characterized lincRNAs in a single tissue 

across diverse conditions. Here, we analyzed 45 mouse liver RNA-seq datasets collected 

under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of 

them are novel, with regards to gene structures, species conservation, chromatin 

accessibility, transcription factor binding, and epigenetic states. To investigate potential 

for functionality, we focused on the responses of the liver lincRNAs to growth hormone 

stimulation, which imparts clinically relevant sex differences to hepatic metabolism and 

liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with 

many being nuclear-enriched and regulated by growth hormone. The sex-biased lincRNA 

genes are enriched for nearby, and correspondingly sex-biased, accessible chromatin 

regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional 

activators (STAT5, HNF6, FOXA1, FOXA2), and transcriptional repressors (CUX2, 

BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-

                                                
 
1 A modified version of this chapter was published in Molecular and Cellular Biology. Melia, T., 
Hao, P., Yilmaz, F., and D.J. Waxman (2015). “Hepatic long intergenic noncoding RNAs: high 
promoter conservation and dynamic, sex-dependent transcriptional regulation by growth 
hormone.” Mol Cell Biol 36:50. qPCR on somatostatin-deficient and STAT5a/STAT5b-KO mice 
were carried out by Feyza Yilmaz, as noted in appropriate places in this chapter. Dr. Pengying 
Hao participated in early stage experimental and computational efforts to identify sex-specific 
lincRNAs. 
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specific lincRNAs in female liver, was associated with enrichment of H3K27me3-

associated inactive and poised enhancer states. Strikingly, we find that liver-expressed 

lincRNA promoters are more highly species-conserved and have a significantly higher 

frequency of proximal binding by liver transcription factors than liver-expressed protein-

coding promoters. Orthologs in one or more supraprimates were identified for many liver 

lincRNAs, including two rat lincRNAs that show the same growth hormone-regulated, 

sex-biased expression as their mouse counterparts. The integrated analysis of liver 

lincRNA chromatin states, transcription factor occupancy and growth hormone regulation 

provides novel insights into the expression of sex-specific lincRNAs and their potential 

for regulation of sex-differences in liver physiology and disease.   

 

2.B Introduction 

High-throughput sequencing of mammalian transcriptomes has revealed near-ubiquitous 

transcription of the genome and the generation of large numbers of non-coding (nc) 

transcripts. ncRNAs have drawn much attention as potential chromatin regulators, 

exemplified by classical ncRNAs, such as Xist (Yang et al. 2014). Several thousand 

ncRNAs have been discovered in human (Cabili et al. 2011, Derrien et al. 2012), mouse 

(Guttman et al. 2009, Guttman et al. 2010, Kutter et al. 2012, Luo et al. 2013), zebrafish 

(Ulitsky et al. 2011, Kaushik et al. 2013), and fruit fly (Li et al. 2009, Young et al. 2012), 

where they exert diverse regulatory roles in gene expression (Rinn et al. 2007, Huarte et 

al. 2010, Guttman et al. 2011, Ulitsky et al. 2011, Sauvageau et al. 2013); however, the 

vast majority of ncRNAs are poorly characterized, both computationally and 
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experimentally. Many ncRNAs share salient features of protein-coding genes, including 

transcription by RNA polymerase II, 5’ capping, splicing, polyadenylation, and 

deposition of histone marks associated with transcription, specifically H3K4me3 at the 

promoter and H3K36me3 across the gene body (Guttman et al. 2009). These ncRNAs are 

typically >200 nt in length (long ncRNAs) and can be classified based on their genomic 

location in relation to the nearest protein-coding genes, as antisense, intronic, divergent, 

and intergenic (Rinn and Chang 2012, Kung et al. 2013).  

 

Long ncRNAs have diverse functions, which can be broadly categorized as 

scaffolds/guides, decoys, enhancers, and others (Rinn and Chang 2012). Scaffold (guide) 

long ncRNAs bind one or more proteins to form complexes that can direct ncRNA 

binding partners to target genes. Examples include long ncRNA scaffolds that bind 

chromatin-modifying complexes capable of reading, writing, and/or erasing histone 

modifications, indicating a role for long ncRNAs in epigenetic control (Khalil et al. 2009, 

Tsai et al. 2010, Zhao et al. 2010, Guttman et al. 2011, Wang et al. 2011). HOTAIR, a 2.2 

kb long intergenic ncRNA (lincRNA) encoded within the HOXC gene cluster, regulates 

its distal target genes via two modular binding domains: one domain binds PRC2, which 

deposits H3K27me3 (repressive) marks, and a second domain binds LSD1, which 

demethylates the active chromatin mark H3K4me2 (Tsai et al. 2010). Decoy long 

ncRNAs, such as Gas5, contain binding motifs that titrate DNA binding proteins. Gas5, 

which contains a glucocorticoid response element motif embedded within a hairpin 

structure, is induced during starvation, enabling it to sequester glucocorticoid receptor 
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and thereby suppress the expression of metabolic genes (Kino et al. 2010). Other long 

ncRNAs have enhancer-like functions and can activate the transcription of genes either in 

cis or trans (Orom et al. 2010, Engreitz et al. 2013, Hacisuleyman et al. 2014). In one 

study, 7 of 12 long ncRNAs examined exerted positive transcriptional effects within 300 

bp of their sites of transcription (Orom et al. 2010). Other long noncoding RNAs bind 

microRNAs (Wang et al. 2010, Braconi et al. 2011, Ulitsky et al. 2011), regulate 

alternative splicing (Tripathi et al. 2010), or pair with mRNAs via Alu repeats (Gong and 

Maquat 2011). Thus, long ncRNAs constitute a rich regulatory layer that can shape gene 

expression by diverse mechanisms.  

 

Mammalian liver plays a critical role in the metabolism of structurally diverse drugs, 

steroids, fatty acids and environmental chemicals (Waxman and Holloway 2009, Baik et 

al. 2011, Gu and Manautou 2012). The expression of genes that control liver metabolism 

and other functions can be dramatically altered by diverse stimuli, making the liver an 

ideal model for studies of condition-specific gene regulation and for investigation of 

ncRNAs that may contribute to these processes. Recent studies report the discovery of 

10,571 mouse lincRNAs across six tissues, including liver (Luo et al. 2013). Examination 

of liver lincRNA transcription evolution in three rodent models revealed that nearly half 

of 388 identified lincRNAs were acquired or lost since the divergence of rat and mouse 

(Kutter et al. 2012). Another study investigated long ncRNA expression during liver 

maturation and identified 433 pairs of long ncRNAs and their neighboring protein-coding 

genes, which showed correlated patterns of expression during neonatal, adolescent and 
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adult stages of liver development (Peng et al. 2014), indicating cis regulation. Despite 

these efforts, large numbers of liver-expressed long ncRNAs are uncharacterized, and 

their expression dynamics under conditions that affect liver physiology and disease, 

including diverse hormonal environments, remain unknown. Comprehensive analyses 

that connect the responses of lincRNAs to diverse stimuli to changes in chromatin 

environment, transcription factor (TF) binding, and gene expression are needed to 

understand liver lincRNA function within the context of gene regulatory networks. 

 

Liver gene expression is highly responsive to many drugs and environmental chemicals 

(Amacher 2010, Zanger and Schwab 2013), which activate nuclear receptors, such as 

CAR and PXR, master regulators of hepatic drug and fatty acid metabolism (Tojima et al. 

2012, Kodama and Negishi 2013, Banerjee et al. 2014). Hormonal factors also induce 

large changes in gene expression in the liver (Waxman and O'Connor 2006, Ruiz et al. 

2013), in particular genes showing sex-differential expression (Lichanska and Waters 

2008, Waxman and Holloway 2009), as is also seen in several other non-reproductive 

tissues (Rinn and Snyder 2005, Isensee et al. 2008, Sakakibara et al. 2013). In liver, sex-

biased gene expression is regulated by the sex-dependent patterns of pituitary growth 

hormone (GH) release (Waxman and O'Connor 2006): pulsatile GH release in males 

versus persistent (near continuous) GH release in females (Jansson et al. 1985, Veldhuis 

et al. 2001, Adams et al. 2015). The resulting sex differences in plasma GH profiles 

activate the TF STAT5 (Kang et al. 2013) by JAK2-catalyzed tyrosine phosphorylation 

(Brooks et al. 2014) in a dynamic, sex-differential manner (Waxman et al. 1995, Gebert 
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et al. 1999), which is linked to downstream sex differences in liver chromatin 

accessibility and epigenetic (histone) marks (Ling et al. 2010, Sugathan and Waxman 

2013). These sex-differential chromatin states are associated with sex differences in the 

binding of STAT5 and other GH-regulated TFs (Conforto et al. 2012, Zhang et al. 2012, 

Conforto et al. 2015), which together regulate the sex-biased transcription of ~1,000 

liver-expressed genes (Clodfelter et al. 2006, Wauthier and Waxman 2008, Wauthier et 

al. 2010). Little is known, however, about the mechanisms whereby GH establishes and 

maintains the unique chromatin states seen in male and female liver (Sugathan and 

Waxman 2013).  

 

Sex-biased liver gene expression, as seen in mice, rats and humans, is associated with 

hormone-dependent sex differences in susceptibility to fatty liver disease (Ayonrinde et 

al. 2011), hepatocellular carcinoma (Ruggieri et al. 2010, Baik et al. 2011), polygenic 

dyslipidemia, and coronary artery disease (Zhang et al. 2011, Papp et al. 2012). Previous 

studies identified several lincRNAs, including H19 (Matouk et al. 2007, Zhang et al. 

2013), Meg3 (Braconi et al. 2011, Anwar et al. 2012) and HULC (Panzitt et al. 2007, 

Wang et al. 2010), which are associated with diseases showing a significant sex-biased 

prevalence in humans, notably hepatocellular carcinoma, liver fibrosis and liver 

regeneration (He et al. 2014, Takahashi et al. 2014). However, it is unknown whether 

these or other lincRNAs are expressed in a sex-dependent manner in liver, or whether 

they might be subject to tight regulation by GH and have the potential to contribute to the 

widespread sex differences that characterize liver function and disease susceptibility. 
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Here, we use the mouse model to elucidate gene structures, species conservation, and 

expression patterns for 4,961 liver-expressed lincRNAs. Strikingly, we find that liver 

lincRNAs show exceptional per-base conservation and a significantly higher frequency of 

TF occupancy in their proximal promoter regions than promoters of liver-expressed 

RefSeq protein-coding genes. We identify a subset of liver lincRNAs showing strong 

sex-biased expression regulated by pituitary GH secretion profiles, with enrichment for 

nearby sex-dependent Dnase I hypersensitive sites (DHS) and sex-differential binding by 

GH-regulated TFs. These findings are integrated with chromatin state analysis, which 

reveals distinct roles for sex-differential patterns of chromatin states in regulating male-

specific compared to female-specific lincRNAs. These findings are discussed in the 

context of mechanisms of GH regulation of sex-specific liver lincRNAs and their 

potential for regulation of sex-differences in hepatic physiology and disease.   

 

2.C Materials and methods 

Mouse treatment and liver RNA isolation. Intact and hypophysectomized adult male 

and female CD1 mice (8-12 weeks old) were purchased from Charles River Laboratories 

(Wilmington, MA). Livers from male and female wild type and somatostatin-deficient 

mice (9-12 week old) were provided by Drs. R. M. Luque and R. D. Kineman (University 

of Illinois at Chicago, Chicago, IL) and were described previously (Meyer et al. 2009, 

Cordoba-Chacon et al. 2011). Liver tissues were collected from 8-12 week old male and 

female hepatocyte-specific STAT5a/STAT5b-KO mice, and corresponding floxed control 
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mice, provided Dr. L. Hennighausen (NIDDK, NIH, Bethesda, MD) (Holloway et al. 

2007). RNA was isolated from individual mouse livers using TRIzol reagent (Invitrogen 

Life Technologies, Inc., Carlsbad, CA). Animals were treated using protocols specifically 

reviewed for ethics and approved by the Boston University Animal Care and Use 

Committee. 

 

Mouse liver RNA-Seq and data analysis. RNA-seq data was obtained from 45 poly(A)-

selected mouse liver RNA-Seq samples representing five biological conditions. 

Individual RNA samples were prepared from either total liver RNA (22 samples) or 

nuclear liver RNA (23 samples). The biological conditions represented in the total liver 

RNA datasets are untreated male and untreated female mouse liver, and livers of male 

mice treated with chemical activators of the nuclear receptors CAR, PXR and PPARA. 

Biological conditions represented in the nuclear RNA datasets are untreated male and 

female mouse liver, and livers of male mice treated with chemical activators of the 

nuclear receptors CAR and PXR. A detailed analysis of the lincRNAs responsive to 

chemical activators of the nuclear receptors will be presented elsewhere. Liver RNA 

samples were divided into 8 sets, each comprised of RNA samples sequenced in the same 

run (Table S7 in (Melia et al. 2016), Gene Expression Omnibus (GEO) series GSE66140 

and GSE48109, and ENCODE series GSE36025 and GSE6026). All datasets were 

mapped to the mouse genome (mm9) using TopHat2 (Kim et al. 2013) with default 

parameters. A mouse genome mm9 annotation, derived from the UCSC repository, was 

downloaded from Illumina (archive-2012-03-09-05-07-56) and was used as the starting 
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point for Tophat2 to discover splice junctions. For paired-end reads, the r parameters 

were calculated by subtracting the length of the adaptor sequence (2 x 120 nt) and read 

length from the average fragment size. The fragment size was determined experimentally 

from Agilent Bioanalyzer tracings or was determined computationally by mapping 

paired-end reads to the mm9 genome using Bowtie (Langmead et al. 2009) and then 

computing the mean distance between every mapped paired read. Mapping percentages 

varied from 68% (ENCODE samples) to 98%, with a median of 85% reads mapped. 

 

Defining lincRNAs. All 45 RNA-Seq samples were used for transcript assembly by 

Cufflinks (Trapnell et al. 2010), which finds the minimum number of transcripts that 

encompass all the reads while including each read in at least one transcript. The mouse 

genome mm9 annotation was used as the starting point for transcript reconstruction. 

Fragment bias correction and multi-read correction options were both applied; all other 

arguments were set to default values. A total of 31,792 transcribed loci (transcribed 

genes), 120,376 isoforms, and 63,656 splicing variants were identified. The initial list of 

31,792 transcribed genes was reduced to 7,088 transcribed loci after filtering to remove 

transcripts that overlap RefSeq protein-coding genes in either the sense or antisense 

direction. We next applied three filters to remove transcripts that are lowly expressed 

(low expression filter, described below), short (RNA length < 200 nt), or exhibit 

similarity to protein-coding genes (protein-coding potential filter; described below), 

reducing the number of transcripts to 4,961 (liver-expressed lincRNAs). To obtain a 

stringent set of liver-expressed lincRNAs, we further filtered the list of 4,961 by 
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removing: 1) lincRNAs that overlap with any of the 1,626 miRNAs, 334 rRNAs, 433 

tRNAs, 1,424 snRNAs or 10,517 pseudogenes annotated in Ensembl version 

NCBIM37.67, in either the sense or antisense direction; and 2) lincRNAs whose longest 

ORF was > 150 amino acids, resulting in a set of 4,454 stringent lincRNAs (Fig. 2-1A).  

 

Low expression filter. The quality of transcript reconstruction results depends on the 

depth of sequencing, and to a certain extent, the level of gene expression; genes that are 

highly expressed are more likely to have reads covering their full gene bodies than lowly 

expressed genes. Accordingly, we excluded lowly expressed genes, as their gene 

boundaries definitions are likely truncated. We quantified the expression of each gene (in 

FPKM) by rerunning Cufflinks with the –G option turned on. To determine the proper 

gene expression cutoff for each RNA-Seq sample, we varied the expression cutoff (in 

FPKM) while counting the fraction of RefSeq noncoding gene ends that are correctly 

predicted (i.e. covered by reads from the 5’ to the 3’ end) versus those are incorrectly 

predicted for each cutoff value. We plotted a receiver operating characteristic (ROC) 

curve for each RNA-Seq sample based on the number of correct and incorrect predictions 

for each cutoff interrogated, and then selected the cutoff with the greatest true positive 

rate while keeping the false positive rate below 15%. We thus identified optimized 

FPKM cutoffs tailored to the sequencing depth and read length of each RNA-Seq sample. 

Genes that passed the expression cutoff in at least two biological replicates in at least one 

dataset were retained. For the G81 dataset (Table S7 in (Melia et al. 2016)), we retained 

genes that passed the expression cutoff in at least two biological conditions. Expression 
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cutoff values ranged from 0.01 to 0.09 FPKM for 35 of the 45 RNA-seq samples, and 

from 0.6 to 1.4 FPKM for the other 10 samples (G78, and ENCODE S1, S2 samples; 

Table S7 in (Melia et al. 2016)).  

 

Protein-coding filter. Transcripts that contain a known protein domain, or do not exhibit 

codon degeneracy when looking at their multiple genome alignments, were identified 

(see below) and removed. To identify known protein domains, we created mature RNA 

sequences for each isoform of every gene by downloading their genomic sequences, 

removing introns and then concatenating consecutive exonic sequences. Bases that were 

not assigned to any of the four bases were replaced with either A, C, T or G with equal 

probabilities. The resulting mature RNA sequences were then translated to amino acid 

sequences in all 6 reading frames. For each amino acid sequence, we calculated the 

probability that it belongs to one of the 13,672 protein families defined in Pfam (Finn et 

al. 2014) using HMMER (Finn et al. 2011), which enabled us to identify, and then filter 

out, 480 transcribed loci that contain at least one protein domain. 

 

Codon evolutionary analysis. Codon evolutionary analysis was used to distinguish 

coding from noncoding regions based on the observation that protein-coding genes are 

depleted from non-synonymous and nonsense substitutions during evolution to retain 

their amino acid sequence (Lin et al. 2011). Briefly, based on the assumption that each 

codon evolved independently as a Markov process along a phylogenetic tree, we 

calculated the probability for a set of codons to evolve from a phylogenetic tree that 
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represents a coding region compared to another phylogenetic tree for a noncoding region. 

Both trees are identical in terms of branch lengths and structures; the difference lies in the 

frequency of a specific codon evolving to another codon (i.e. codon substitution matrix). 

The rate of codon substitution among identical and synonymous codons is expected to be 

higher for the coding compared to noncoding region. We downloaded 64 x 64 codon 

substitution matrices for coding regions and non-coding regions along with a 

phylogenetic tree of 29 mammals from Lindblad-Toh et al (Lindblad-Toh et al. 2011), 

which were empirically derived from sequence alignments of many known coding and 

noncoding sequences and maximized using an expectation-maximization approach. We 

used PhyloCSF (Lin et al. 2011) with these downloaded parameters to calculate the 

probability of each gene being coding or noncoding, as follows. For each gene, we 

extracted 46 species whole-genome multiple alignment data from the UCSC genome 

browser sequence and annotation downloads server (Karolchik et al. 2014), removed 

species that were not in the defined set of 29 mammals, enumerated all possible complete 

start-to-stop codon regions in the 6 possible reading frames, calculated the log-likelihood 

ratio based on the coding model versus the noncoding model for each reading frame and 

reported the highest score. The resulting log-likelihood score is termed coding potential 

score, where a positive score indicates that the gene being interrogated is likely to encode 

conserved peptides. We identified 126 genes with positive coding potential out of 4,252 

putative lincRNA genes that could be multi-genome aligned. 4,961 lincRNA genes 

remained after applying the above three filters (Fig. 2-1A).  
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Other high-throughput datasets. We downloaded genome-wide chromatin mark and 

transcription factor binding data sets for mouse liver, as follows: H3K4me3 marks from 

Sugathan and Waxman (GEO series GSE44571) (Sugathan and Waxman 2013) and 

Kutter et al (ArrayExpress E-MTAB-867) (Kutter et al. 2012); H3K36me3 from 

Sugathan and Waxman (GEO series GSE44571) (Sugathan and Waxman 2013) and the 

mouse ENCODE project (GEO series GSE31039) (Stamatoyannopoulos et al. 2012); 

RNA polymerase II from Sun et al (GEO series GSE21773) (Sun et al. 2011) and the 

mouse ENCODE project (GEO series GSE36027) (Stamatoyannopoulos et al. 2012); 

STAT5 and BCL6 from Zhang et al (GEO series GSE31578; STAT5-high male liver 

peak set using antibody C-17, Santa Cruz Biotechnology #sc-835x; male and female liver 

peak sets for BCL6 using antibody N-3, Santa Cruz Biotechnology #sc-858x (Zhang et 

al. 2012) (Table S11 in (Melia et al. 2016), and see below); HNF6 from Conforto et al 

(GEO series GSE60014; male liver peak set) (Conforto et al. 2015); CUX2 from 

Conforto et al (GEO series GSE35985) (Conforto et al. 2012);FOXA1 and FOXA2 from 

Li et al (ArrayExpress E-MTAB-805; merged male and female liver peak sets) (Li et al. 

2012); HNF4A from Schmidt et al (GEO series GSE22078) (Schmidt et al. 2010); 

PPARA, LXR and RXR from Boergesen et al (GEO series GSE35262) (Boergesen et al. 

2012); HNF1A from Faure et al (ArrayExpress E-MTAB-941) (Faure et al. 2012); 

CEBPA and CEBPB from Jakobsen et al (GEO series GSE42321) (Jakobsen et al. 2013); 

GR from Everett et al (GEO Series GSE45674) (Everett et al. 2013); DHS from Ling et 

al (GEO series GSE21777; combined set of 70,048 male-specific and sex-independent 

liver DHS) (Ling et al. 2010); and poly(A) sites from Derti et al (GEO series GSE30198) 
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(Derti et al. 2012). We also downloaded 2,651,801 multi-tissue, mouse-specific CAGE 

clusters from the FANTOM consortium (Balwierz et al. 2009).  

 

Expression quantification. Gene expression was quantified using HTSeq (Anders et al. 

2015) using default settings. The same mouse genome mm9 annotation that was used for 

mapping reads was used to define RefSeq gene and exon boundaries for quantifying gene 

expression. To facilitate quantification of gene expression, each gene whose direction of 

transcription is unknown was assigned a provisional directionality based on a simple 

majority vote of reads mapping to the plus versus the minus strand across the set of 18 

stranded RNA-Seq samples examined. In the case of a tie, the direction of transcription 

was arbitrarily assigned to the plus strand by default. In this manner, 1,171 lincRNAs 

were assigned to the plus strand, 1,150 to the minus strand, and 67 lincRNAs defaulted to 

the plus strand. The geometric mean normalization method (Anders and Huber 2010) was 

used to normalize reads across samples for most analysis. For expression distribution 

analysis, reads were normalized across samples by calculating FPKM values. The 

prcomp function in R (Gentleman et al. 2004) was used to compute principal components 

of read counts across samples that were normalized with a variance stabilizing 

transformation (Anders and Huber 2010) to remove the dependence between mean and 

variance of count data. The set of 500 lincRNAs with the highest gene expression 

variance across the 45 samples was used to calculate the principal components. We 

plotted the first against the fifth principal components, as they separate the samples either 

by their cellular compartment (total vs. nuclear RNA) or sex. 
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Subcellular localization. Differential analysis was carried out using DESeq (Anders and 

Huber 2010) to compare the normalized gene expression values for nuclear versus total 

liver RNA samples for the G78 RNA-Seq dataset, and separately, for the G81 RNA-Seq 

dataset (Table S7 in (Melia et al. 2016)). The two differential analyses were performed 

separately on liver-expressed lincRNAs and RefSeq protein-coding genes. For each 

dataset (i.e. G78 and G81), lincRNAs and RefSeq protein-coding genes that have < 50 

reads summed up across conditions in all samples were excluded. Subcellular localization 

was assigned when at least one dataset showed significant enrichment for gene 

expression in either nuclear or total RNA at fold-change ! 2 and adjusted p " 0.05.  

 

Liver-specificity. 42 paired-end RNA-Seq samples collected from 21 mouse tissues 

(GSE39524; Table S8 in (Melia et al. 2016)) were downloaded from the mouse 

ENCODE project (Stamatoyannopoulos et al. 2012). Each sample was mapped to the 

mouse genome. The expression in liver and in the other 24 non-liver samples was 

quantified for each of the 4,961 liver-expressed lincRNA and 14,057 liver-expressed 

RefSeq protein-coding genes (see ‘Expression quantification’, above). The tissue-

specificity of each gene (lincRNA or RefSeq protein-coding gene) was quantified by 

dividing its expression level in a given tissue over the sum of its expression levels across 

all 22 tissues. To correct for the over representation of liver samples in the full tissue 

panel (which includes data for only two samples for all tissues except liver), all liver data 

are also presented as two samples, one based on the maximum expression of each gene 
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across 42 total liver RNA samples and the other based on the maximum expression across 

23 nuclear liver RNA samples. These 65 liver RNA-seq data sets encompass the 45 

samples used to discover lincRNA gene structures, as well as 8 RNA-seq samples from 

the hypophysectomy study (G85 samples) and 12 RNA-seq samples from the continuous 

GH treatment study (G88 samples) (Table S1, Table S7 in (Melia et al. 2016); GEO 

series GSE66140). A gene was considered as solely expressed in a given tissue when no 

sequence reads were detected in other tissues. Tissue specificity was also determined 

based on the maximum expression level of each lincRNA in a given tissue, measured in 

FPKM. The highest FPKM amongst all RNA-seq samples in a given tissue was used to 

represent the gene expression level for such tissue. RNA-seq data was also downloaded 

from ArrayExpress E-MTAB-2582 (Stubbington et al. 2015) and mapped as described 

above (Table S8 in (Melia et al. 2016)) to identify GH-regulated sex-specific liver 

lincRNAs expressed in three T cell subtypes where STAT5 activity is high. 

 

Conservation analysis. We used Phastcons (Siepel et al. 2005) to calculate per base 

conservation scores based on the multiple genome alignment of 10 selected species from 

the supraprimate (Euarchontoglires) clade (rat, guinea, rabbit, human, chimp, orangutan, 

rhesus, marmoset, bushbaby, treeshrew), downloaded from the UCSC genome browser 

sequence and annotation downloads server (Karolchik et al. 2014). A multi-genome 

alignment was derived from the 30 vertebrate species multi-genome alignment by 

removal of the 19 species excluded from our analysis (i.e. retaining only mouse and the 

other 10 species). In separate analyses, putative orthologs in the same 10 species were 
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identified based on sequence similarity, as follows. First, we collapsed all isoforms of 

each mouse lincRNA gene into a single transcript by taking the union of all exons. 

Second, we downloaded each genome, where all of the repeats are hardmasked (i.e. 

replaced by N’s). Third, we used Exonerate (Slater and Birney 2005) to find sequences in 

each genome that are similar to each lincRNA with the affine:local model selected and 

softmasking of lincRNA introns. Up to 20 top hits were retained. Fourth, we 

concatenated neighboring hits, i.e., hits within 2 kb of each other. Fifth, we realigned the 

concatenated hits with their orthologous lincRNA sequence using Exonerate with the 

global alignment option selected. Where no global alignment was produced, we accepted 

any local alignment of the two sequences. Based on this final realignment, we calculated 

the percent overall identity of the two sequences. Sixth, we removed any hit that 

overlapped with an annotated RefSeq protein-coding gene in the genome of interest and 

retained alignments that spanned at least 10% of the mature mouse lincRNA gene and 

were > 600 bp in length. These cutoffs were chosen to maximize the frequency of correct 

prediction of known lincRNA orthologs (Fig. S10A, Fig. S10B in (Melia et al. 2016)). 

No alignment percent identity cutoff was required, as the lowest percent identity match 

was ~60% (Fig. S10C in (Melia et al. 2016)). To identify genomic regions in the rat that 

are syntenic with mouse lincRNAs, we used the LiftOver tool from the UCSC genome 

browser (Karolchik et al. 2014) by relaxing the identity match to 60% and by not 

allowing the hit to span multiple orthologous regions.  

 



!

!

25 

qPCR. Primers used for confirmatory quantitative PCR to assess the sex-specificity and 

GH-responsiveness of five mouse lincRNAs and two orthologous rat lincRNA regions 

are listed in Table S10 in (Melia et al. 2016). Real-time PCR analysis was performed on 

RNA samples isolated from individual mouse and rat livers using Power SYBR green 

PCR master mix and an ABS 7900HT sequence detection system (both from Applied 

Biosystems). 

 

Overlap analysis. Overlap with a known lincRNA found in lncRNAdb (Amaral et al. 

2011) was established by the overlap between the liver-expressed lincRNA or its 

orthologs, identified as described above, in either the sense or antisense direction. 

Overlap between a liver-expressed lincRNA and a PRC2-interacting RNA (Zhao et al. 

2010) further required that the lincRNA be transcribed in the same direction as the PRC2-

interacting RNA, as annotated in the original study.  

 

Comparison of TF occupancies for FPKM-matched lincRNA and protein-coding 

genes. For each liver-specific lincRNA whose median FPKM across datasets was > 0.52 

FPKM, we randomly chose a liver-specific protein-coding gene with a similar FPKM (± 

0.1 FPKM). This FPKM-matched lincRNA and protein-coding gene set was used to 

determine the TF occupancy rate of the promoter region for each gene set. Liver-specific 

lincRNA and liver-specific protein-coding genes were defined as genes whose expression 

in liver is > 60% of their cumulative expression across 22 mouse tissues. Multi-tissue 

expressed genes were defined as genes expressed in at least two tissues, with no more 
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than 10% of their cumulative-expression across 22 tissues occurring in liver, and < 60% 

of their cumulative-expression across 22 tissues occurring in any non-liver tissue. 

 

Sex-specificity and GH regulation of liver lincRNAs. Normalized gene expression 

values from six sets of male and female mouse liver RNA-Seq samples were compared 

by differential expression analysis to identify sex-specific lincRNAs, as follows. DESeq 

and edgeR (Robinson et al. 2010) were used to analyze the total RNA datasets G78 (T1), 

G83 (T2) and G85 (T3). Normalized gene expression ratios were used for two 

unreplicated G78 nuclear RNA samples (N1). Multi-factor DESeq was used to account 

for different sequencing runs for the merged dataset of G83 and G85 total RNA samples 

(T4), and DESeq was used for the merged dataset of G81 and G86 nuclear RNA samples 

(N2). Liver-expressed lincRNAs that showed a > 4-fold difference in expression between 

male and female liver at adjusted p < 0.05 in one or more of the 6 datasets, by either 

DESeq or edgeR, were tentatively designated sex-specific lincRNAs. For the G78 nuclear 

dataset, a threshold of > 50 read counts, summed across all male and female samples, was 

used in place of a p-value cutoff. Further, for nuclear RNA datasets, we excluded from 

the sex-specific list any lincRNA that did not show a response to either hypophysectomy 

(at fold change > 4 and adjusted p < 0.05) or continuous GH infusion (at fold change > 2 

and adjusted p < 0.05), resulting in a list of 247 sex-specific liver-expressed lincRNAs. 

172 of the sex-specific lincRNAs were expressed at > 1 FPKM (Table S1 in (Melia et al. 

2016)). 171 of the 247 lincRNAs were designated stringent sex-specific lincRNAs, based 

on their dependence on GH for sex-specific expression, as shown by their dysregulation 
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in male liver following continuous infusion of GH for 1, 4 or 7 days (female-like GH 

pattern) or following hypophysectomy, and were used for TF enrichment analysis. 141 of 

the 171 stringent sex-specific lincRNAs could be classified based on their responsiveness 

to hypophysectomy (class 1 or class 2 responses; Table 2-2). The GH-regulated sex-

specific lincRNAs showed a sex-difference in expression ranging from 4-fold to 190-

fold, for male-specific lincRNAs, and 4.2-fold to 1,240-fold, for female-specific 

lincRNAs (see Fig. 2-4B, below). Any lincRNA from the list of 4,961 liver-expressed 

lincRNAs that was not included in the list of 247 sex-specific lincRNAs was deemed sex-

independent; the latter list was used as a background when calculating the enrichment of 

sex-specific lincRNAs nearby sex-specific protein-coding genes. The 857 sex-

independent lincRNAs showing < 1.2-fold sex-difference in at least 3 of 4 datasets (G78 

nuclear, G78 total, G83 and G85 datasets) were designated stringent sex-independent 

lincRNAs. DESeq and edgeR were used to identify liver-expressed lincRNAs showing 

differential expression between intact and hypophysectomized mice, and those showing 

differential expression between male mice treated with GH as a continuous infusion for 1, 

4 or 7 days compared to vehicle-treated control male mice based on normalized gene 

expression values. Hypophysectomy and GH infusion both lead to widespread 

dysregulation of sex-specific protein-coding genes in mouse and rat liver (Wauthier and 

Waxman 2008, Wauthier et al. 2010). The significance level was set at fold-change > 4 

for the hypophysectomy model and fold-change > 2 for at least one of the time points in 

the continuous GH infusion model, and adjusted p < 0.05 for both. RNA-seq data sets are 

available as GEO series GSE66140. 
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Sex-specific protein-coding genes. DESeq and edgeR were used to identify a set of 840 

sex-specific RefSeq genes based on the normalized gene expression values in the G78, 

G83 and G85 total RNA datasets, of which 33 are ncRNAs. Thus, 807 protein-coding 

genes were identified as sex-specific based on the criteria adjusted p < 0.05 in at least 2 

of the 3 total RNA datasets, as determined by either DESeq or edgeR. The 807 RefSeq 

coding genes showed a sex-difference in expression ranging from 1.41-fold to 884-fold, 

for male-specific genes, and 1.41-fold to 10,030-fold, for female-specific genes, when 

considering the highest fold change across the three datasets (see Fig. 2-4B, below). Any 

RefSeq protein-coding gene that was not included in the sex-specific protein-coding 

genes list was considered as sex-independent.  

 

Enrichments. 1) Gene proximity enrichment: Enrichment scores (ES) for the proximity 

of sex-specific lincRNAs to be nearby (within 25 kb) sex-specific RefSeq protein-coding 

genes of the same sex specificity were calculated as follows: ES = (number of sex-

specific lincRNAs nearby matched sex-specific RefSeq protein-coding genes) / (number 

of sex-specific lincRNAs nearby sex-independent RefSeq protein-coding genes), as 

compared to (number of sex-independent lincRNAs nearby any sex-specific RefSeq 

protein-coding genes) / (number of sex-independent lincRNAs nearby sex-independent 

RefSeq protein-coding genes). 2) Enrichment of DHS and TF binding events (except for 

CUX2 binding sites): ES values for having a female-specific TF binding site or DHS 

nearby (within 10 kb) a female-specific lincRNA was calculated as follows: ES = 
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(number of stringent female-specific lincRNAs that have a nearby female-specific DHS, 

or a nearby stringent female-specific TF binding site) / (number of stringent female-

specific lincRNAs nearby non female-specific (i.e. male-specific + sex-independent) 

DHS, or TF binding sites), as compared to (number of non female-specific lincRNAs (i.e. 

male-specific + stringent sex-independent lincRNAs) that have a nearby DHS, or female-

specific TF binding site) to (number of non female-specific lincRNAs nearby non female-

specific DHS, or TF binding sites). Enrichment analysis was carried out in the same 

manner for a control gene set, comprised of 267 sex-independent lincRNAs that are 

hypophysectomy-responsive (see Fig. 2-4C, below), which were compared to the set of 

sex-independent lincRNAs that are not responsive to hypophysectomy. A corresponding 

analysis was performed for male-specific DHS and TF binding site enrichments. 3) 

CUX2 binding enrichment: Enrichment scores for having CUX2 bound within 10 kb of a 

stringent female-specific lincRNA were calculated as follows: ES = (number of stringent 

female-specific lincRNAs that have a nearby CUX2 binding site) / (number of stringent 

female-specific lincRNAs that do not have a nearby CUX2 binding site), as compared to 

(number of non female-specific lincRNAs (i.e. male-specific + stringent sex-independent 

lincRNAs) that have a nearby CUX2 binding site) / (number of non female-specific 

lincRNAs that do not have a nearby CUX2 binding site). Since CUX2 is not expressed in 

male liver, no enrichment analysis was carried out for male-specific CUX2 binding. 4) 

Gene set enrichment analysis (GSEA) (Subramanian et al. 2005) was carried out using 

default settings to determine if sex-specific lincRNA TSS regions (-1 kb to +1 kb 

window surrounding the TSS), or gene bodies (TSS to TES) are enriched for having a 
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particular chromatin state in one sex, but not the other. These analyses using chromatin 

state maps in male and female mouse liver (Sugathan and Waxman 2013), where each 

consecutive 200 bp segment of the mouse genome was assigned one of 14 chromatin 

states (state 1 to state 14; see Fig. 2-6B, below). Enrichment for chromatin state x in male 

liver was established by comparing the distribution of liver lincRNAs where state x is 

found within its gene body or TSS in male liver, but not in female liver, over the full list 

of 4,961 liver lincRNAs, ranked from high to low male/female expression ratio. This 

analysis was carried out for each of the 14 states (Sugathan and Waxman 2013) in male 

liver, and separately, in female liver. Normalized enrichment scores ! 1.45 with FDR " 

0.05 were deemed significant. GSEA was also carried out for 16,124 RefSeq protein-

coding genes, where we excluded genes that have no reads in the RNA-seq datasets used 

to determine sex-specificity. 

 

Clustering of sex-specific lincRNAs. Consensus clustering (Reich et al. 2006) was used 

to identify 5 clusters of male-specific lincRNAs based on the chromatin state patterns of 

each lincRNA in a 2 kb window surrounding the TSS, and in a 2 kb window surrounding 

the TES, in both male and female liver. The number of clusters, n=5, was chosen to give 

robust, reproducible clusters over 100 runs. Each lincRNA was clustered after counting 

the total number of bases across the 2 kb region assigned to each of the 14 states for each 

genomic segment of interest, i.e. male TSS ± 1 kb, female TSS ± 1 kb, male TES ± 1 kb 

and female TES ± 1 kb. The 5 clusters were then sorted from high to low male-specificity 

(clusters A to E). Similar clustering was performed for female-specific lincRNAs.  



!

!

31 

 

Other analyses. For TF peak analysis, HNF1A and HNF4A raw data were mapped to 

mm9 using Bowtie2 (Langmead et al. 2009). Biological replicates were combined before 

removing PCR duplicates using Picard (http://broadinstitute.github.io/picard). Peaks were 

then discovered using MACS2 (Zhang et al. 2008). BCL6 peaks (binding sites) identified 

separately in male and female liver (Zhang et al. 2012) were merged to give a single list 

of 6,656 peaks. This merged peak list was compared to the set of genomic regions 

differentially bound by BCL6 between individual male and female liver samples (Zhang 

et al. 2012), as determined by Andy Rampersaud of this laboratory using diffReps (Shen 

et al. 2013) after removing differential binding regions showing < 2-fold difference 

between male and female samples, as well as those diffReps regions mapping to weak 

BCL6 peaks (MACS2 score < 25, or peaks having < 20 ChIP-seq reads). The 6,656 

merged BCL6 peaks were thus classified into 1,459 male-biased, 42 female-biased and 

5,155 sex-independent BCL6 peaks (Table S11 in (Melia et al. 2016)). Statistics for 

human lncRNAs were calculated from GENCODE annotation version 21 (June 2014 

freeze, GRCh38, Ensembl77). For hypothesis testing, p-values were calculated using R. 

P-values < 2.2e-16 were rounded up to 1e-15 due to R’s limitation for representing 

floating numbers. All analyses were done using custom Perl and R scripts unless 

otherwise noted.  

 

Availability of supporting data 
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The sequencing data sets supporting the results of this article are available at the Gene 

Expression Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/gds) as series 

GSE48109 and GSE66140. 

 

2.D Results 

Identification of liver-expressed lincRNAs. 45 RNA-Seq datasets, obtained using 

polyA-selected total and nuclear liver RNA isolated from male and female mice under 

various conditions (see Methods), were used to assemble liver-expressed RNA transcripts 

and discover novel gene structures. 7,088 transcribed intergenic loci were identified after 

removing transcripts that overlap RefSeq protein-coding genes on either strand. 

Transcripts showing low expression across samples were filtered out (Fig. 2-1A). A 

second filter removed transcripts < 200 nt in length. A final filter removed transcripts 

whose protein-coding potential score, which indicates the rate of synonymous vs. non-

synonymous substitutions across species, resembles that of protein-coding genes. This 

final filter applied a stricter cutoff for removing transcripts with protein-coding potential 

than that used to define RefSeq noncoding genes (Fig. 2-1B). A total of 4,961 liver-

expressed lincRNAs passed all three filters (Table S1 in (Melia et al. 2016)). Removal of 

188 lincRNAs that overlap small RNAs or pseudogenes on either strand, as well as 319 

lincRNAs with an open reading frame (ORF) > 150 amino acids in length, resulted in 

4,454 stringent lincRNAs. 92% (4,554) of the full set of liver lincRNAs do not overlap 

RefSeq transcripts (i.e., non-RefSeq lincRNAs), and 59% (2,941) do not overlap any 
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ncRNAs reported previously (Guttman et al. 2009, Kutter et al. 2012, Luo et al. 2013, 

Xie et al. 2014) (Table S1 in (Melia et al. 2016)).  

 

Liver lincRNA gene structures. To distinguish genuine lincRNAs from spurious 

products of leaky transcription, we looked for associations with histone marks classically 

found at lincRNA promoters (H3K4me3) and gene bodies (H3K36me3) (Guttman et al. 

2009). We examined the frequency of each histone mark at lincRNA genes as compared 

to protein-coding genes after binning both gene sets based on their expression levels, to 

remove bias against genes expressed at a low level. The frequency of each mark 

increased with increasing gene expression in a similar manner for both lincRNA and 

protein-coding genes (Fig. S1A, S1B in (Melia et al. 2016)), as expected for genuine 

transcripts. The lower frequencies of these marks at lower expression levels may reflect 

histone mark intensities below the threshold of detection at the available ChIP-seq 

sequencing depths, as well as incomplete lincRNA gene structures, which can lead to 

incorrect assignment of gene body boundaries.  

 

The completeness of our reconstructed gene structures was assessed by proximity of 

lincRNA transcription start sites (TSS) to 5’ cap site locations identified as CAGE-Seq 

clusters in liver (Balwierz et al. 2009), and by the proximity of lincRNA transcript end 

sites (TES) to 3’ poly(A) tails identified by genome-wide sequencing (Derti et al. 2012). 

Both marks increased in frequency as the level of lincRNA expression increased, similar 

to the trend for protein-coding genes (Figs. S1C, S1D in (Melia et al. 2016)). Overall, 
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71% of liver lincRNAs have either a proximal CAGE-Seq, poly(A)-Seq or promoter-

associated H3K4me3 peak, supporting our lincRNA gene boundary assignments and our 

conclusion that the liver lincRNAs are independent transcripts, and not extensions of 

nearby protein-coding transcripts. Further, the fraction of lincRNA promoters vs. protein-

coding gene promoters bound by RNA polymerase II was very similar at equivalent 

levels of gene expression (Fig. S1E in (Melia et al. 2016)), suggesting that RNA 

polymerase II makes a substantial contribution to liver lincRNA transcription.  

 

24% of the liver lincRNAs are multi-exonic (Table 2-1, Table S1 in (Melia et al. 2016)). 

This compares to only 10-15% multi-exonic lincRNAs in ribosomal RNA-depleted 

mouse and rat liver RNA-seq libraries (Kutter et al. 2012). The multi-exonic liver 

lincRNAs tend to have longer exons and longer mature transcripts, but intron lengths 

similar to protein-coding genes (Table 2-1).  

 

Liver lincRNAs: nuclear enrichment and tissue specificity. The 4,554 non-RefSeq 

liver lincRNAs are expressed at a lower level than RefSeq protein-coding genes, similar 

level to known RefSeq noncoding genes, and were most highly expressed in the nuclear 

compartment (Fig. 2-1C), indicating nuclear retention. Of 2,399 liver lincRNAs having 

sufficient sequencing depth for analysis, 1,234 showed significant nuclear enrichment, 

while only 93 were enriched in the total RNA fraction (primarily cytoplasmic RNA) 

(Table S1 in (Melia et al. 2016)). In contrast, RefSeq protein-coding transcripts showed 

almost equal numbers of nuclear-enriched as total RNA-enriched transcripts (33% vs. 
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29% of transcripts). Subcellular compartmentalization captured ~70% of the variance in 

lincRNA expression across the liver RNA datasets and cleanly separated total liver RNA 

from nuclear liver RNA samples (Fig. 2-1D, left). A more minor component (~3% of the 

variance) separated the liver lincRNAs based on sex of the individual mice (Fig. 2-1D, 

right) (also see below).  

 

27% of the 4,961 liver lincRNAs showed strong liver-specificity, defined as > 60% of 

total expression level summed up across the 22 mouse tissues examined occurring in liver 

(Fig. S2A, Table S1 in (Melia et al. 2016)), as compared to only 6% of liver-expressed 

protein-coding genes (Fig. S2B in (Melia et al. 2016)). 1,437 (66%) of the 2,171 

lincRNAs expressed in liver at > 1 FPKM (fragments per kb length per million sequence 

reads), corresponding to an estimated one molecule per cell (Mortazavi et al. 2008), were 

below that minimum expression level in all 21 other tissues examined (Fig. 2-1E, Fig. 

S3A-S3B, Table S1 in (Melia et al. 2016)). Subsets of liver lincRNAs showed co-

expression largely limited to testis or brain (Fig. S3C, S3D in (Melia et al. 2016)). 30 

lincRNAs were expressed at > 1 FPKM in all 22 tissues (Fig. 2-1E, Table S2 in (Melia et 

al. 2016)). Only 29 liver lincRNAs were largely invariant in expression across tissues, as 

compared to 1,069 liver-expressed protein-coding genes (<1.5-fold range of expression 

across 22 tissues). 

 

Conservation of liver lincRNAs. LincRNA conservation was assessed using two 

complementary approaches: 1) by quantifying per-base conservation along lincRNA 
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transcripts and regions upstream of their TSS based on a multi-genome alignment of 10 

supraprimate species; and 2) by using sequence similarity to identify putative orthologs in 

the same 10 species. The first approach relies on the accuracy of the multi-genome 

alignment and the assignment of synteny across species to quantify conservation, whereas 

the second approach identifies genomic regions in each species most similar in sequence 

to each mouse lincRNA, independent of their placement in the multi-genome alignment.  

 

To implement the first approach, we calculated the probability of each base to be 

conserved in a given multi-genome alignment, and then compared the cumulative 

frequency distribution of the per-base conservation score for three gene-centric regions – 

exons, introns, and promoters – between lincRNA and RefSeq protein-coding genes. 

Protein-coding exons showed significantly higher conservation than lincRNA exons, 

which in turn showed modest but significant conservation compared to a random 

(background) sampling of untranscribed intergenic regions, indicating the lincRNA exons 

are subject to moderate evolutionary constraint (Fig. 2-2A). LincRNA introns and RefSeq 

protein-coding introns both showed very low per-base conservation. In contrast, lincRNA 

promoters were significantly more conserved than protein-coding promoters (p < 1e-15, 

Kolmogorov-Smirnov). This pattern of increased lincRNA promoter conservation was 

even more apparent when comparing lincRNA vs. protein-coding promoters of genes that 

are liver-specific (Fig. 2-2B, top; dashed vs. solid blue lines), or genes that are multi 

tissue-expressed (Fig. 2-2B, bottom). Additionally, multi tissue-specific lincRNA 

promoters showed higher conservation than liver-specific lincRNA promoters (Fig. 2-2B, 
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bottom vs. top; compare two sets of blue dashed lines). The strong per-base conservation 

of lincRNA vs. protein-coding promoters drops abruptly downstream of the TSS; this 

indicates strong purifying selection operating on lincRNA promoters (Fig. 2-2C, left). No 

such conservation was seen surrounding lincRNA TES (Fig. 2-2C, right). Fig. S4C-S4E 

in (Melia et al. 2016) shows examples of individual lincRNA promoters with high per-

base conservation. 

 

Next, we examined whether the greater conservation of lincRNA promoters is associated 

with increased binding of liver TFs. Indeed, for 11 out of 12 liver TFs examined, liver-

specific lincRNA proximal (1 kb upstream) promoters were bound significantly more 

frequently than an FPKM-matched set of liver-specific protein-coding gene promoters 

(Fig. 2-2D, left; p < 0.05 for each TF, Binomial exact test). Further, 47% of the liver-

specific lincRNA promoters are occupied by 3 or more of the 12 liver TFs examined, 

compared to only 29% for the corresponding protein-coding genes. Promoter region 

occupancy was more similar when the upstream region was expanded to 25 kb (Fig. 2-

2D, right), with 72% occupancy by 3 or more factors for lincRNAs vs. 62% for protein-

coding genes, consistent with the rapid drop off in lincRNA sequence conservation in the 

extended upstream region (Fig. 2-2C).  

 

Our second approach to defining lincRNA conservation identified putative orthologs in 

other species based on sequence similarity, as detailed in Methods. We identified at least 

one aligned region/putative ortholog for 70% of the liver lincRNAs (Fig. 2-3A), with the 
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largest number found in rat (60%; 2,984 putative orthologs) (Table S3, Table S4 in 

(Melia et al. 2016)). 91% (2,730) of the putative rat lincRNAs orthologs are at syntenic 

regions based on mouse and rat whole genome alignments, indicating that the homology 

extends to the surrounding genomic regions. Using this approach, we correctly identified 

8 out of 12 annotated lincRNA orthologs (Amaral et al. 2011) in rat, human, chimp 

and/or rhesus (Table S4 in (Melia et al. 2016)). Six of these 8 lincRNAs bind chromatin-

modifying enzymes (Table S5 in (Melia et al. 2016)), consistent with reports that many 

lincRNAs bind chromatin remodelers and contribute to chromatin state regulation (Khalil 

et al. 2009, Guttman et al. 2011). 350 of the liver lincRNAs are in the set of 9,788 PRC2-

interacting RNAs identified in mouse embryonic stem cells (Zhao et al. 2010) (Table S6 

in (Melia et al. 2016)), suggesting that many liver lincRNAs interact with chromatin-

modifying enzymes beyond the ones that have been fully characterized.  

 

GH regulation of sex-specific liver lincRNAs. 247 of the 4,961 liver lincRNAs showed 

a > 4-fold differential expression between male and female mouse liver at adjusted p < 

0.05; 134 of these lincRNAs showed male-biased expression and 113 showed female-

biased expression (Fig. 2-4A, Fig. 2-4B; Table S1 in (Melia et al. 2016)). Further, 59% of 

the sex-specific lincRNAs show high liver-specificity (Fig. 2-3B), as compared to 27% of 

all liver lincRNAs (4.3-fold enrichment, p = 7.04e-28; Fig. S2A in (Melia et al. 2016)), 

suggesting they contribute to liver-specific functions. Moreover, 195 sex-specific 

lincRNAs have a putative ortholog in at least one other species, including 170 with an 

ortholog in rat (Fig. 2-3C).  
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171 of the sex-specific liver lincRNAs (85 male-specific, 86 female-specific) showed a 

change in sex-specificity when circulating GH levels were altered, either by surgical 

removal of the pituitary gland (hypophysectomy) (Wauthier et al. 2010), which ablates 

circulating GH, or by continuous infusion of GH in male mice, which gives a female-like 

plasma GH profile and feminizes the expression of many sex-dependent genes in mouse 

liver (Holloway et al. 2006) (Fig. 2-4A, Fig. 2-4C, Table S1 in (Melia et al. 2016)). These 

171 GH-dependent sex-specific lincRNAs are designated stringent sex-specific 

lincRNAs. An additional 17 sex-specific lincRNAs showed responsiveness to 

hypophysectomy when the threshold for a response was decreased from > 4 to > 2-fold. 

However, many hypophysectomy-responsive lincRNAs are sex-independent and respond 

to pituitary hormone ablation in the same manner in males and females (266 out of 267 

hypophysectomy-responsive, sex-independent lincRNAs; Fig. 2-4C and Table S1 in 

(Melia et al. 2016)), consistent with hypophysectomy affecting many non-sex-specific 

liver genes (Wauthier and Waxman 2008, Wauthier et al. 2010). Sex-specificity was 

verified for select lincRNAs by qPCR analysis of individual male and female mouse 

livers (Fig. 2-5A, Fig. S5 in (Melia et al. 2016)). Further characterization of the GH-

dependence of these lincRNAs was obtained by analysis of liver RNA from mice that 

were: (a) hypophysectomized, to ablate pituitary GH; (b) deficient in the GH-responsive 

TF STAT5, which is required for sex-specific gene expression in liver (Clodfelter et al. 

2006); or (c) deficient in somatostatin, which inhibits pituitary GH release and whose 

knockout effectively feminizes the plasma GH profile (Adams et al. 2015) (Fig. 2-5A, 



!

!

40 

Fig. S5 in (Melia et al. 2016)). Finally, sex-specific expression was observed for two of 

the putative rat orthologs, whose sex- and hormone-dependent regulatory patterns in rat 

liver matched those seen in mouse liver, namely, female-specific expression and 

significant up regulation in male rat liver following continuous infusion of GH for 7 days 

(Fig. 2-5B). 

 

We identified subclasses of lincRNAs based on their patterns of response to 

hypophysectomy (Wauthier and Waxman 2008, Wauthier et al. 2010), which either 

reduces or eliminates the differences in lincRNA expression between the sexes (Table 2-

2). 104 (42%) of the sex-specific lincRNAs were down regulated at least 4-fold following 

hypophysectomy in the sex where they are more highly expressed. Thus, these genes, 

designated class 1 lincRNAs, require the correspondingly matched sex-specific pituitary 

GH secretion profile to maintain their sex-specific expression (Table 2-2, and gene sets 

marked C and D in Fig. 2-4A, right). A second, distinct set comprised of 37 other sex-

specific lincRNAs, designated class 2, shows significant up regulation (de-repression) 

following hypophysectomy in the sex where they are less highly expressed (Table 2-2). 

The sex-biased expression of these lincRNAs reflects their active repression by the 

plasma GH profile in the sex showing lower expression. Consequently, class 2 sex-

specific lincRNAs are de-repressed in the sex showing lower expression when pituitary 

GH secretion is ablated. 
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Sex-specific lincRNAs: TF binding, chromatin states, and proximity to sex-specific 

genes. We investigated whether sex-specific lincRNA genes are enriched for sex-

dependent binding by TFs previously implicated in GH regulation of sex-specific protein-

coding genes in mouse liver (Conforto et al. 2012, Li et al. 2012, Zhang et al. 2012, 

Conforto et al. 2015). Male-biased binding of STAT5, FOXA1, FOXA2 and HNF6 were 

significantly enriched nearby (within 10 kb) the set of 85 stringent (i.e., GH-regulated) 

male-specific lincRNAs, and was significantly depleted nearby the set of 86 stringent 

female-specific lincRNAs, when compared to a background set comprised of sex-

opposite and stringent sex-independent lincRNA genes (Fig. 2-6A). Similarly, the 86 

stringent female-specific lincRNAs were significantly enriched, and the 85 stringent 

male-specific lincRNAs were significantly depleted of nearby female-biased binding by 

STAT5 and FOXA2. In contrast, female-specific binding of CUX2 was enriched nearby 

stringent male-specific lincRNAs, and male-biased binding of BCL6 was enriched nearby 

stringent female-specific lincRNAs. Consistent with these findings, sex-biased binding of 

STAT5, FOXA1/FOXA2 and HNF6 is associated with increased liver expression of 

nearby and correspondingly sex-biased genes (Zhang et al. 2012, Sugathan and Waxman 

2013, Conforto et al. 2015), whereas the sex-biased repressors CUX2 and BCL6 

preferentially repress nearby male-biased and female-biased genes, respectively (Meyer 

et al. 2009, Conforto et al. 2012, Zhang et al. 2012). Sex-specific binding by these factors 

at individual sex-specific genes is shown in Fig. 2-5C and Fig. S6 in (Melia et al. 2016). 

The stringent male-specific lincRNAs are significantly enriched for nearby (within 10 kb) 

male-biased sites of Dnase hypersensitivity (DHS) (ES = 4.78, p = 5.77e-11), and the 
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stringent female-specific lincRNAs are enriched for nearby female-biased DHS (ES = 

5.68, p = 3.10e-9; Fig. 2-6A), consistent with these DHS (accessible chromatin regions) 

serving as regulatory regions for the sex-specific lincRNAs. Overall, 94 sex-specific 

lincRNAs have proximal sex-matched DHS; the others do not have any proximal liver 

DHS (45 lincRNAs), or are nearby non-sex-biased liver DHS (108 lincRNAs), 

suggesting they are regulated by sex-biased DHS that are distal. The control gene set, 

comprised of sex-independent, hypophysectomy-responsive lincRNAs (Fig. 2-4C), show 

no significant differential enrichments for either male-specific or female-specific TF 

binding or DHS, as compared to hypophysectomy-unresponsive lincRNAs that are also 

sex-independent. Therefore, responsiveness to hypophysectomy alone, without an 

associated sex-specific gene expression pattern, is not associated with proximal sex-

specific TF binding and sex-specific chromatin accessibility 

 

Next, we investigated whether sex-specific lincRNA expression is associated with 

specific chromatin states, which may be critical for maintaining their sex-specific 

expression. Specifically, we used GSEA (Subramanian et al. 2005) to determine if 

lincRNAs that are preferentially at a given chromatin state in one sex, but not in the 

other, are enriched for being either male- or female-specific lincRNAs. These analyses 

used liver chromatin state maps (Sugathan and Waxman 2013) based on genome-wide 

data for DHS and six chromatin marks for male and female mouse liver, which were used 

to assign defined chromatin states to each consecutive 200 bp segment of the mouse 

genome: the DHS and chromatin marks associated with chromatin states 1 to 3 are 
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indicative of inactive chromatin states, state 4 is devoid of any of the chromatin marks 

that were interrogated, states 5-12 represent various active and poised chromatin states, 

and states 13 and 14 are associated with marks for transcribed genomic regions (Fig. 2-

6B). States 5 to 12 are distinguished by their patterns of DHS and activating chromatin 

marks: states 5, 6, 9, 10 and 11 have various combinations of classical enhancer marks 

(DHS, H3K4me1, H3K27ac), states 7 and 8 are marked as promoter states by the 

presence of H3K4me3 marks, and state 12 is a poised enhancer state (bivalent state; 

combination of H3K4me1 (activating) and H3K27me3 (repressive) marks).  

 

Chromatin state enrichments were identified by GSEA for sex-specific lincRNA TSS 

regions and gene bodies, and then compared to those identified for matched sets of sex-

specific protein-coding genes. For both male-specific and female-specific lincRNAs, we 

observed significant enrichment of the promoter-associated active chromatin state 7 in 

lincRNA TSS regions in the sex where each lincRNA set is more highly expressed, 

consistent with the sex-specificity of their transcription (Fig. 2-6C). A similar result was 

seen for sex-specific lincRNA gene bodies, and for sex-specific protein-coding genes 

(Fig. S7 in (Melia et al. 2016)). Further, in female liver, H3K4me1-associated enhancer 

states 6 and 11, and the H3K36me3-associated transcribed state 14 were enriched at 

female-specific lincRNA TSS (Fig. 2-6C, right) and gene bodies (Fig. S7 in (Melia et al. 

2016)), but we did not see corresponding enrichments at male-specific lincRNAs in male 

liver. In male liver, H3K27me3-associated chromatin states (inactive states 1 and 2, and 

bivalent/poised enhancer state 12) showed significant enrichment at female-specific 
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lincRNA TSS regions (Fig. 2-6C, left). Similar patterns were seen at lincRNA gene 

bodies, and for protein-coding gene TSS and gene bodies (Fig. S7 in (Melia et al. 2016), 

left). However, a corresponding enrichment of H3K27me3-associated chromatin states 

was not found at male-specific lincRNA TSS or gene bodies in female liver, indicating 

H3K27me3 repressive marks are preferentially used to down regulate female-specific 

lincRNA genes in male liver. Finally, male-specific lincRNA TSS and gene bodies 

showed significant enrichment for being in chromatin state 4 in male liver. No such 

enrichments were seen for male-specific protein-coding genes in male liver, or for 

female-specific lincRNAs or protein-coding in female liver. State 4 has little or no signal 

intensity for any of the chromatin marks investigated (Sugathan and Waxman 2013) 

(similar to state 15 of (Kundaje et al. 2015)), suggesting that one or more novel 

chromatin marks not examined may positively regulate male-specific lincRNA 

expression.  

 

Next, male-specific lincRNAs were grouped into 5 clusters using consensus clustering 

(Monti et al. 2003) based on the local chromatin states surrounding each lincRNA’s TSS 

and TES in both male and female liver (Fig. S8A, S8B in (Melia et al. 2016)). Several of 

the clusters showed differences in chromatin state in male compared to female liver (Fig. 

S8C in (Melia et al. 2016), arrows). The most notable differences were the TES of male-

specific lincRNA cluster A, which was marked by transcribed state 13 in male liver and 

by inactive state 2 in female liver, and the TSS of male-specific lincRNA clusters A and 

B, which have a higher frequency of enhancer and transcribed states and a lower 
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frequency of inactive states in male compared to female liver. Correspondingly, male 

lincRNA clusters A and B have the highest male-specificity (Fig. S8D in (Melia et al. 

2016)). Further, the TSS regions of male lincRNA clusters D and E are depleted of state 

11 in male compared to female liver, in line with our finding that state 11 is enriched at 

female-specific lincRNA TSS in female compared to male liver (Fig. 2-6C). Chromatin 

state differences between male and female liver were less dramatic for female-specific 

lincRNAs clustered in the same manner (Fig. S8E in (Melia et al. 2016)). 

 

Finally, we investigated the proximity of sex-specific lincRNAs to sex-specific protein-

coding genes, given the finding that many lincRNAs are active in regulation in cis (Guil 

and Esteller 2012). We found that 36 of the 247 sex-specific lincRNAs (15%) are 

proximal (within 25 kb) of a sex-specific protein-coding gene with a matched sex-

specificity (Fig. S9, Table S9 in (Melia et al. 2016)), whereas only 3 sex-specific 

lincRNAs are proximal to sex-opposite protein-coding genes. This frequency of gene 

proximity is similar to that of sex-specific RefSeq protein-coding genes to other sex-

specific coding genes with a matched sex-specificity (135 of 807 sex-specific coding 

genes, 17%). Overall, sex-specific lincRNAs are significantly enriched for proximity to a 

co-regulated sex-specific RefSeq protein-coding gene as compared to a sex-independent 

gene (ES = 4.5, p = 7.5e-11). Nevertheless, more than 200 sex-specific lincRNAs are 

distant from correspondingly regulated protein-coding genes, consistent with distal 

regulation by the latter set of lincRNAs.  
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2.E Discussion 

The gene expression landscape is shaped by the interplay between local chromatin 

environment and the binding of TFs and other regulators, including lincRNAs (Ernst and 

Kellis 2013, Sugathan and Waxman 2013). LincRNAs act by diverse mechanisms, 

including genome site-specific interactions with chromatin-modifying enzymes that read, 

write and erase histone marks (Khalil et al. 2009, Guttman et al. 2011, Engreitz et al. 

2013). We characterized the mouse liver transcriptome under multiple biological 

conditions, which enabled us to discover 4,961 liver-expressed lincRNA genes, 59% of 

them novel. These lincRNA genes displayed characteristic lincRNA features, including 

H3K4me3 marks and RNA polymerase II binding at the promoter, H3K4me36 marks 

along the gene body, high tissue specificity, fewer exons than protein-coding genes, and 

in many cases, preferential retention in the nucleus, consistent with their proposed roles 

in epigenetic regulation (Khalil et al. 2009, Guttman et al. 2011). 247 liver-expressed 

lincRNAs showed strong (> 4-fold) sex-differences in expression, with the pituitary 

hormone GH serving as the major regulator of sex-biased expression, acting through both 

positive and negative regulatory mechanisms. Sex-specific lincRNA transcription was 

associated with significant enrichment for nearby, matched sex-specific open chromatin 

regions (sex-specific DHS regions) (Ling et al. 2010), as well as matched sex-specific 

binding by GH-regulated transcriptional activators and matched sex-opposite binding by 

GH-regulated repressors, strongly suggesting a role for these genomic regulatory regions 

and their bound factors in sex-specific lincRNA expression. Finally, sex-specific 

lincRNAs were significantly enriched for nearby protein-coding genes of the same sex-
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specificity, consistent with these lincRNAs contributing to regulation in cis; however, the 

majority of sex-specific lincRNAs are distant from any co-regulated protein-coding 

genes. 

 

LincRNA conservation landscape. LincRNA conservation based on a multi-genome 

alignment of 10 supraprimate species revealed that lincRNA promoters are significantly 

more conserved than protein-coding promoters, while lincRNA exons are much less 

conserved than protein-coding gene exons. Putative orthologs of the liver lincRNAs were 

also identified in the same 10 species based on sequence similarity. We correctly 

identified orthologs for 8 of 12 experimentally validated lincRNAs characterized in 

multiple species, of which 6 lincRNAs are reported to interact with chromatin modifying 

enzymes in one or more species (Khalil et al. 2009, Zhao et al. 2010, Guttman et al. 

2011). In the rat, where overall patterns of sex-specific liver gene expression are 

conserved (Waxman and O'Connor 2006), we identified orthologous genomic regions for 

170 of 247 sex-specific mouse liver lincRNAs. We experimentally validated two 

predicted rat orthologs, which exhibited the same female-specificity and continuous GH-

inducible expression as their mouse lincRNA counterparts. 

 

Liver-expressed lincRNA promoters showed greater enrichment for proximal binding of 

liver TFs than protein-coding gene promoters, consistent with the higher conservation of 

liver lincRNA promoters, discussed above. Mouse liver lincRNA regulatory regions are 

thus more highly concentrated close to the TSS than those of protein-coding genes. This 
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suggests that the liver lincRNA genes evolved more recently, and have not yet dispersed 

their regulatory regions to more distant genomic loci, as appears to have occurred with 

regulatory elements of liver-expressed protein-coding genes (Odom et al. 2007). Our 

finding of high liver lincRNA promoter conservation contrasts with other studies 

reporting either similar (Guttman et al. 2009) or lower (Orom et al. 2010) conservation of 

lincRNA promoters compared to protein-coding genes promoters in other systems. We 

can also anticipate that liver-expressed lincRNA and protein-coding gene promoters will 

be enriched for distinct sets of TF motifs, as was found for human lincRNAs (Alam et al. 

2014). Finally, we found that multi-tissue expressed liver lincRNAs show an even higher 

level of proximal promoter conservation than liver-specific lincRNAs. Tissue-specificity 

could therefore be a confounding variable when comparing promoter conservation 

between lincRNA and protein-coding genes. 

 

Regulation of sex-specific lincRNAs by GH. 171 of the 247 sex-specific lincRNAs 

were responsive to a change in plasma GH profiles by either pituitary ablation 

(hypophysectomy) or continuous infusion of GH in male mice, with the latter leading to 

down regulation of many male-specific liver lincRNAs and up regulation of many 

female-specific lincRNAs, as also occurs with many sex-specific protein-coding genes 

(Holloway et al. 2006, Wauthier et al. 2010). Two major classes of sex-specific 

lincRNAs were identified based on responses to hypophysectomy (Table 2-2). Class 1 

sex-specific lincRNAs are positively regulated by the sex-specific GH secretion pattern 

of the sex where they are more highly expressed, and consequently, are down regulated 
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by pituitary hormone ablation. In contrast, class 2 sex-specific lincRNAs are repressed by 

the GH secretion pattern of the sex where they are less highly expressed, and 

consequently, are up regulated by pituitary hormone ablation. These findings suggest that 

the class 1 lincRNAs are regulated by GH-dependent TFs that confer positive regulation, 

e.g. STAT5, while the class 2 lincRNAs are regulated by sex-specific, GH-dependent 

repressors, such as BCL6 and CUX2 (Conforto et al. 2012, Zhang et al. 2012). 

Supporting this, we found that, overall, male-specific lincRNAs are enriched for nearby 

male-biased binding of the pioneer factors FOXA1 and FOXA2 (Friedman and Kaestner 

2006, Zaret and Carroll 2011), which can induce chromatin opening (Sugathan and 

Waxman 2013), and for male-biased binding of the GH-regulated transcriptional 

activators STAT5 (Zhang et al. 2012) and HNF6 (Conforto et al. 2015), which may 

cooperate with FOXA1 and FOXA2 to induce male-specific lincRNA expression. Male-

specific lincRNAs also showed enrichment for female-specific binding of CUX2 

(Conforto et al. 2012), which represses male-biased gene transcription in female liver. 

Female-specific lincRNAs were significantly depleted of nearby male-biased 

transcriptional activator binding events, but were enriched for nearby male-biased 

transcriptional repressor (i.e., BCL6) binding events, which serves as a mechanism to 

suppress female-biased lincRNAs in male liver; and were significantly enriched for 

female-biased binding by STAT5 and FOXA2, which are proposed to activate 

transcription of the associated female-specific lincRNAs. Of note, only 7 of the 171 GH-

regulated sex-specific lincRNAs were expressed in other tissues with high STAT5 

activity, i.e. T cells and mammary gland (Furth et al. 2011, Mahmud et al. 2013), 
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indicating that STAT5 activity alone is not sufficient to drive expression of these genes 

(data not shown). Two of the 7 co-expressed lincRNAs have a nearby (within 10 kb) 

STAT5 binding site in liver (c.f. nearby STAT5 binding for 107 of the 171 GH-regulated, 

sex-specific liver lincRNAs): LiverLincs_chr14_3799 (expressed in mammary gland, 

Tregs and Th2 cells, but not Th1 cells), and LiverLincs_chr6_1886 (expressed in all three 

T cell subtypes). 

 

Chromatin state analysis revealed striking differences between male-specific and female-

specific lincRNAs regarding sex differential enrichment for certain active and repressive 

chromatin states. Whereas the promoter-associated active chromatin state 7 was enriched, 

both at male-specific lincRNAs in male liver and at female-specific lincRNAs in female 

liver, enhancer-associated states 6 and 11 showed significant enrichment only for female-

specific lincRNAs in female liver. State 11, which is marked by H3K4me1 but not by 

H3K27ac or DHS (Fig. 2-6B), may be viewed as an inactive enhancer state (Creyghton et 

al. 2010, Rada-Iglesias et al. 2011). However, as state 6 is characterized by three active 

marks, H3K27ac, H3K4me1, and DHS, and is thus an active enhancer state, its lack of 

enrichment at male-specific lincRNAs suggests that male-specific lincRNA expression 

primarily involves distal male-specific enhancers. We also found that female-specific 

lincRNA TSS regions were enriched in male compared to female liver for three 

H3K27me3-associated states, namely, inactive states 1 and 2, and poised enhancer state 

12. A corresponding enrichment of repressive chromatin states was not found at male-

specific lincRNAs in female liver, indicating preferential usage of H3K27me3 as a 
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mechanism to repress female-specific lincRNAs in male liver. This finding is reminiscent 

of the prevalence of H3K27me3 marks at a subset of the most highly female-specific 

genes in male liver (Sugathan and Waxman 2013), and suggests that GH-regulated male-

specific lincRNAs that interact with PRC2, which catalyzes formation of H3K27me3 

marks, may repress female-specific lincRNAs and certain female-specific protein-coding 

genes by a common mechanism.  

 

Relationship between sex-specific lincRNAs, sex-specific chromatin states and 

protein-coding gene expression. The enrichment of sex-specific lincRNAs for nearby 

and correspondingly sex-biased binding by GH-dependent transcriptional activators and 

sex-opposite binding by GH-dependent repressors suggest a role for these TFs in the 

proximal regulation of sex-specific lincRNA transcription, in addition to their crucial 

roles in regulating sex-specific protein-coding gene expression (Ling et al. 2010, 

Conforto et al. 2012, Zhang et al. 2012, Sugathan and Waxman 2013). One such TF, 

STAT5, is a key GH-responsive factor whose deletion in male mouse liver leads to 

widespread disruption of sex-specific gene expression (Clodfelter et al. 2006). Sex-

specific lincRNAs activated by STAT5 (c.f., Fig. 2-5A, Fig. S5, Fig. S6 in (Melia et al. 

2016)) and other GH-dependent TFs may, in turn, act as scaffolds for chromatin 

regulators to establish or maintain sex-specific chromatin states. Such sex-specific 

lincRNAs could thus link two layers of gene regulation, GH-dependent TFs and GH 

regulation of liver chromatin states. The proposal that sex-specific lincRNAs serve as 

mediators between the effects of sex-specific plasma GH profiles, and the GH-regulated 
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TFs that they regulate, in establishing the distinct chromatin states found in male and 

female liver (Sugathan and Waxman 2013) is supported by the unexpectedly long time 

required for some sex-specific liver genes to respond to feminization of circulating GH 

profiles by continuous growth hormone treatment (response times ranging up to a week 

or longer) (Holloway et al. 2006). Moreover, 350 of the 4,961 liver-expressed lincRNAs 

characterized here are reported in mouse embryonic stem cells to bind PRC2, which 

catalyzes the deposition the repressive histone mark H3K27me3 (Zhao et al. 2010), 

further supporting the role of lincRNAs in regulating chromatin states via chromatin-

modifying enzymes (Guttman et al. 2011). Further work will be required to establish the 

functional roles of the sex-specific liver lincRNAs described here and any contributions 

they may make to the regulation of sex-specific liver gene expression. 

 

In conclusion, by using livers collected under diverse biological conditions, we 

characterized gene structures, expression patterns, and species conservation for ~5,000 

liver-expressed lincRNAs, including ~3,000 novel lincRNA genes. Collectively, these 

liver lincRNAs show unexpectedly high promoter conservation and elevated TF binding 

activity in the proximal promoter region compared to protein-coding genes. We focused 

on a population of condition-specific lincRNAs showing significant sex-specific, GH-

regulated expression. By integrating genome-wide chromatin state maps and genome-

wide binding site data for key GH-regulated TFs, we showed that sex-specific liver 

lincRNA expression is tightly correlated with the surrounding chromatin environment 

and TF binding patterns. LincRNA orthologs identified across species include at least 
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two rat liver orthologs with matched sex-specificity and responsiveness to sex-dependent 

plasma GH profiles. These findings illustrate how multi-omics data can be integrated to 

elucidate molecular mechanisms underlying condition-specific lincRNA regulation.  
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Table 2-1. Exon and introns of novel lincRNA, RefSeq protein-coding, and RefSeq 
noncoding genes 

Genes and transcripts lincRNA 
count 

average 
# exons 

exon 
length 

(nt) 

intron 
length 

(nt) 

mature 
transcript 
length (nt) 

All liver-expressed 
lincRNAs 4,961 1.6 1,075 5,255 1,866 

Multi-exonic 1,179 3.4 998** 5,255 3,393* 

Mono-exonic 3,782 1.0 1,381 - 1,390 

Sex-specific 247 2.5 1,226 5,436 3,792 

RefSeq coding  19,951 10.1 294 5,158 2,897 

RefSeq noncoding  3,156 3.7 384 6,169 1,472 

 

Comparisons for multi-exonic lincRNAs: **, p < 1e-15 vs. RefSeq coding RNAs, and 

*, p = 1.2e-6 vs. RefSeq coding RNAs (Student’s t-test). 

 
 
 
  



!

!

55 

Table 2-2. Sex-specific mouse liver lincRNAs that respond to hypophysectomy 
(hypox) 

Sex specific 
lincRNA  gene class 

Response 
to male 
hypox 

Response 
to female 

hypox 

Hypox, |fold 
change| ! 2 

Hypox, |fold 
change| ! 4 

Adjusted p-value " 0.05 

  Sex-specific lincRNAs (number) 
Male class 1 Down - 65 61 

Male class 1A Down - 46 45 
Male class 1B Down Down 17 15 
Male class 1C Down Up 2 1 

Male class 2 - Up 12 10 
Male class 2A - Up 9 9 
Male class 2B Up Up 3 1 

Female class 1 - Down 44 43 
Female class 1A - Down 33 33 
Female class 1B Down Down 11 10 
Female class 1C Up Down 0 0 

Female class 2 Up - 27 27 
Female class 2A Up - 18 20 
Female class 2B Up Up 9 7 
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Figure 2-1. Liver-expressed lincRNAs.  
Liver-expressed lincRNAs. (A) Scheme for filtering 7,088 intergenic transcripts to 
remove transcripts with very low expression, small RNAs, and transcripts that resemble 
protein-coding genes. The set of 4,961 liver-expressed lincRNAs was analyzed to flag 
identify small RNAs and pseudogenes, and sequences with ORFs > 150 amino acids, 
giving a set of 4,454 stringent lincRNAs. (B) Protein-coding potentials across 29 
mammals, based on genes that are represented in the multiple-genome alignment of the 
29 mammals. Data shown are based on 3,036 of 4,554 liver-expressed lincRNAs without 
RefSeq annotations (i.e., non-RefSeq lincRNAs, a subset of the 4,961 liver-expressed 
lincRNAs), 2,217 RefSeq ncRNAs, and 6,567 RefSeq coding RNAs. An increasing 
positive score along the X-axis indicates greater similarity of the codon substitution 
pattern to known protein-coding genes. The protein-coding potential filter applied to 
liver-expressed non-RefSeq lincRNAs was more stringent than the one used to identify 
RefSeq ncRNAs. (C) Distribution of RNA expression levels in total vs. nuclear RNA 
fractions for each of the indicated gene sets (19,951 RefSeq protein-coding genes, 1,557 
RefSeq ncRNA genes expressed in at least one liver sample, and 4,554 non-RefSeq 
lincRNAs). Data shown are based on the maximum expression level of each gene across 
RNA-seq datasets whose biological conditions are represented in both total liver RNA 
(n=20 data sets) and nuclear liver RNA (n=20 data sets). The 4,554 lincRNAs show a 
greater difference in expression in nuclear compared to total liver RNA fractions than the 
other two gene sets. P-values are based on student’s t-test. (D) Principal component 
analysis of lincRNA expression per sample based on read counts over exons, based on 
analysis of the 500 most-varying lincRNAs across samples. Each data point represents a 
single RNA-seq dataset. The largest variance across datasets (first principal component, 
~70% of total variance) separates nuclear from total RNA samples, and the fifth principal 
component (~3% of total variance) separates male from female samples. (E) Tissue-
specific expression for the set of 2,171 lincRNA genes expressed in liver at ! 1 FPKM 
(also see Fig. S3 in (Melia et al. 2016)). Shown is the number of tissues, other than liver, 
where each lincRNA is expressed at ! 1 FPKM. 1,437 of the 2,171 lincRNAs are 
expressed at ! 1 FPKM only in liver, and 30 lincRNAs are expressed at ! 1 FPKM in all 
22 tissues, of which 23 lincRNAs are known RefSeq noncoding RNAs (Table S2 in 
(Melia et al. 2016)). 
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Figure 2-2. Conservation of lincRNA promoters.  
(A) Per-base conservation analysis of different gene-centric regions of lincRNAs, RefSeq 
coding genes, random background sequences, and control promoter regions (1 kb 
downstream of TSS; see text). The thickness of the background curve represents the 95% 
confidence interval based on 100 random samplings of gene structure-matched and 
length-matched untranscribed intergenic regions, which mimic our lincRNA gene set. 
Curves for protein-coding introns and lincRNA introns overlap. LincRNA promoters 
showed significantly higher conservation than protein-coding promoters (p < 1e-15, 
Kolmogorov-Smirnov). A background set of promoter-associated sequences, using 1 kb 
downstream of the lincRNA TSSs, was used as a benchmark to compare promoters of 
lincRNA genes to those of RefSeq protein-coding genes. (B) Per-base conservation 
analysis of the promoter regions of the most highly expressed (top 33%) liver-specific 
genes (222 lincRNAs, 282 protein-coding genes; Fig. S4A, S4B in (Melia et al. 2016)) 
(top) and multi-tissue expressed genes (289 lincRNAs, 3,619 protein-coding genes; Fig. 
S4A, S4B in (Melia et al. 2016)) (bottom). In both panels, lincRNA promoters showed 
consistent high conservation compared to protein-coding gene promoters (dashed vs. 
solid blue lines); and multi-tissue promoters, for both lincRNAs and protein-coding 
genes, showed greater conservation than the corresponding liver-specific promoters. (C) 
Aggregate plots of mean per-base conservation scores surrounding lincRNA and RefSeq 
protein-coding gene TSS (left) and TES (right). See Fig. S4C-S4E in (Melia et al. 2016) 
for corresponding plots of select, individual lincRNAs. (D) TF occupancy frequency 1 kb 
(left) and 25 kb (right) upstream of sets comprised of 114 FPKM-matched liver-specific 
lincRNA and liver-specific protein-coding genes, whose expression level is >0.52 FPKM 
(see Fig. S4A in (Melia et al. 2016)). The TF occupancy rate at lincRNAs promoters was 
significantly higher (*: p < 0.05, Binomial exact test) than at protein-coding gene 
promoters for 11 out of 12 TFs examined, but not for DHS. 
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Figure 2-3. Liver lincRNA species conservation and tissue specificity.  
(A) Heat map showing species conservation of 3,479 species-conserved liver lincRNAs, 
i.e., lincRNAs that have an ortholog in at least one of the 10 species investigated. 
Orthologs were required to span > 10% of the full length, mature mouse lincRNA 
transcript and be > 600 bp in length (see Methods). (B) Heat map displaying tissue 
specificity of 247 sex-specific lincRNAs. The map is based on the summation of the 
expression levels of each lincRNA across the 22 indicated mouse tissues, with the color 
intensity indicating the fraction of expression seen in each tissue. Data shown are based 
on two RNA-seq samples for each tissue. Liver data are also presented as two samples, 
one representing total RNA samples and the nuclear RNA samples (see Methods). 146 
(59%) of the sex-specific lincRNAs have at least 60% of their cumulative expression 
across the tissue panel concentrated in liver (red); 105 (42%) have 80% of their 
cumulative expression concentrated in liver. (C) Subset of the heat map shown in (A), 
where species conservation is displayed for the set of 195 sex-specific liver lincRNAs 
conserved in one or more species. Magnitude of the sex-difference in lincRNA 
expression is as indicated (FC, fold-change, corresponding to the ratio of male and 
female liver expression levels of each lincRNA). In data not shown, 105 (76%) of the 138 
multi-exonic sex-specific lincRNAs have an ortholog in at least one of the 10 species. 
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Figure 2-4. GH regulation of sex-specific liver lincRNAs.  
GH regulation of sex-specific liver lincRNAs. (A) Heat map of 247 sex-specific liver 
lincRNAs. The first six heat map columns present the sex-specificity of the lincRNAs in 
four total liver RNA datasets (T1-T4) and in two nuclear RNA datasets (N1, N2), the 
next three columns show the changes in liver lincRNA expression after continuous GH 
treatment of male mice for 1, 4 or 7 days, and the last two columns show the changes in 
expression following hypophysectomy (Hypox, Hx) of male (M) and female (F) mice. 
Color bar specifies the log2 gene expression ratios for the indicated sets of liver RNA 
samples. LincRNA genes marked A (right) are female-biased genes that are up regulated 
following continuous GH treatment, and genes marked B are male-biased genes that are 
down regulated following continuous GH treatment (columns D1, D4, D7). Genes 
marked C are male-biased genes that require the male plasma GH pattern to maintain sex-
specificity (and hence are down regulated in M-Hx livers), and genes marked D are 
female-biased genes that require the female plasma GH pattern to maintain their sex-
specificity (and hence are down regulated in F-Hx livers). (B) MA plot presenting sex 
ratio vs. gene expression level, in FPKM, for 247 sex-specific lincRNAs and for 240 sex-
specific protein-coding genes showing > 4-fold sex-differences. Values are based on the 
maximum FPKM value (x-axis) and the maximum fold-difference between male and 
female samples (y-axis) across the datasets considered in this study. Male-specific 
lincRNAs show a similar range of sex ratios but lower FPKMs than male-specific 
protein-coding genes; whereas, there are many fewer highly female-specific lincRNAs 
than highly female-specific protein-coding genes. (C) Venn diagrams showing overlaps 
between 247 sex-specific lincRNA genes, 411 hypophysectomy-responsive lincRNA 
genes, and 252 continuous GH treatment-responsive lincRNA genes. The thresholds for 
sex-specificity and responsiveness to hypophysectomy were set at ! 4-fold and adjusted 
p-value " 0.05 (except as noted in Methods); the threshold for responsiveness to 
continuous GH treatment was set at ! 2-fold and adjusted p-value " 0.05. 171 of the 247 
sex-specific genes are responsive to either continuous GH or hypophysectomy (78 + 66 + 
27). Of note, the size of the non-sex-specific gene sets that respond to continuous GH 
treatment or hypophysectomy are sensitive to the choice of significance level cutoff. 
Thus, of the 147 sex-independent lincRNAs that respond to continuous GH treatment 
(109 + 38), 53 (36%) are sex-specific when the threshold for sex-specificity is relaxed, 
from ! 4-fold to ! 2-fold. Robustness of sex specificity: 75% (129), 57% (97) or 38% 
(65) of the 171 sex-specific, GH-responsive lincRNAs exhibit consistent sex-specificity 
in at least 2, 3 or 4 datasets at fold change ! 2 and adjusted p " 0.05. The finding of 267 
(=38 + 229) hypophysectomy-responsive lincRNAs that are sex-independent presumably 
reflects regulation by pituitary-dependent hormones other than GH, a common feature of 
non-sex-specific protein-coding genes (Wauthier et al. 2010). These 267 genes were used 
as a control gene set in Fig. 2-6A.  
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Figure 2-5. Regulation of select sex-specific liver lincRNAs.  
Regulation of select sex-specific liver lincRNAs. (A) qPCR analysis of individual male-
specific (top) and female- specific (bottom) lincRNAs. Sex-specific expression of the 
male lincRNA is lost when GH pulsatile secretion is abolished, as seen in 
hypophysectomized mice (where GH is ablated) and in somatostatin-knockout mice 
(where the plasma GH pattern is female-like). This lincRNA is also regulated by the GH-
responsive STAT5, as its expression becomes sex-independent in hepatocyte-specific 
STAT5-knockout mice. The female-specific lincRNA shows dependency on the 
continuous secretion of GH: its expression is ablated in hypophysectomized female mice 
and is highly induced in somatostatin-knockout male mice; this lincRNA is not dependent 
on STAT5 for its expression. (B) qPCR analysis of rat liver RNA mapping to rat genomic 
regions (rn4) orthologous to two sex-specific mouse lincRNAs. Data shown are for RNA 
samples isolated from individual rat livers (mean + SD for triplicate reactions), and 
indicate that the rat lincRNA orthologs are expressed in a female-biased manner and are 
inducible to female-like levels in livers of male rats given a continuous infusion of GH 
for 7 days (male + GH). Rat qPCR primers are shown in Table S10 in (Melia et al. 2016). 
(C) Genome browser screenshots for one male-specific (left) and one female-specific 
(right) lincRNA. The gene models track (orange) shows the gene structures for each 
lincRNA, RNA-Seq tracks show the expression level in male (blue) and female (pink) 
liver, chromatin state map tracks show the chromatin state separately in male and female 
liver (see Fig. S6 in (Melia et al. 2016) for color legend), DHS and TF binding tracks 
show open chromatin regions and binding sites that are either male-enriched (blue 
rectangle), female-enriched (pink rectangle) or sex-independent (gray rectangle), and 
chromatin mark tracks show signal intensity for either H3K4me3, H3K27ac and 
H3K4me1 in male (blue) and female (pink) liver. For each sex-specific lincRNA, we 
observed: matched sex-biased binding for activating TFs (STAT5, FOXA1, FOXA2, 
HNF6); sex-opposite binding by the repressors BCL6 and CUX2; and matched sex-
differential active chromatin mark signals. Only multi-exonic gene models are shown for 
LiverLincs_chr6_1718 (right). 
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Figure 2-6. Sex-specific TF binding and chromatin states at sex-specific lincRNAs.  
(A) Enrichment and depletion scores of stringent sex-specific lincRNAs as well as a 
control gene set (comprised of 38+229 = 267 hypophysectomy-responsive, sex-
independent lincRNAs; Fig. 2-4C) for nearby (10 kb) sex-biased DHS and six GH-
responsive TFs implicated in sex-specific liver gene expression. *, p < 5e-2; **, p < 5e-4; 
and ***, p < 5e-6. The background used for the enrichment was the set of sex-opposite + 
stringent sex-independent lincRNAs for stringent sex-specific lincRNAs or 
hypophysectomy-unresponsive, sex-independent lincRNAs for the control gene set. (B) 
Emission probabilities across six chromatin marks and DHS for each of 14 chromatin 
states, as reported previously (Sugathan and Waxman 2013). The darker the blue color, 
the greater the emission frequency of the indicated chromatin mark or DHS in a given 
chromatin state. (C) GSEA analysis of chromatin state enriched in either male-specific or 
female-specific lincRNA TSS regions. 4,961 liver lincRNAs are ordered along X-axis by 
male/female expression ratio. Input gene lists are displayed below the X-axis, with each 
vertical mark indicating a lincRNA whose gene body is in the indicated chromatin state 
in male but not female liver (left), or in female but not male liver (right). As an example, 
results at left show that, in male liver, states 4 and 7 are enriched at male-specific 
lincRNA TSS (positive NES values), and states 1, 2 and 12 are enriched at females-
specific lincRNA TSS (negative NES values). See Fig. S7 in (Melia et al. 2016) for 
corresponding GSEA analysis of lincRNA gene bodies and protein-coding gene TSS and 
gene bodies. 
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Chapter 3 Genetic factors increase the variability of sex-specific gene patterns in 

Diversity Outbred mouse liver 

 

3.A Abstract 

The mammalian liver transcriptome features widespread sex differences affecting ~1,000 

genes, many of which are implicated in sex differences in drug and lipid metabolism, as 

well as disease susceptibility. Growth hormone (GH) is a major regulator of sex-biased 

gene expression through its sex-differential activation of various transcriptional 

regulators. Genetic polymorphisms have been shown to impact the transcriptional 

regulation of select sex-biased genes. Global assessment of the impact of genetic factors 

on sex-biased gene expression, however, is lacking, Here, we show that genetic factors, 

working in tandem with GH, have widespread effects on individual variability in sex-

biased gene expression in livers of Diversity Outbred (DO) mice, an outbred population 

derived from 8 founder strains. Significant associations between single nucleotide 

polymorphisms (SNPs) and gene expression (eQTLs) were identified, a subset of which 

correlated with sex-biased genes and showed stronger association in one sex, as 

compared to the other. Sex-biased gene expression was highly variable between DO 

founder strains. Remarkably, 46% of the cases of gain or loss of sex-specific gene 

expression in individual founder strains can be explained by genetic modifiers identified 

by eQTLs. eQTLs with strong sex-biased associations are enriched for genetic modifiers 

identified for highly sex-specific genes with matching sex-specificity. eQTL regions for 

sex-specific genes are enriched for correspondingly sex-biased open chromatin regions 
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(DHS) and binding sites for the transcriptional activator STAT5. Sex-biased binding of 

the transcriptional repressor BCL6 was enriched at both cis and trans eQTL regions for 

female-specific genes in male liver. A subset of co-regulated gene clusters identified 

based on overlapping eQTLs encompassed highly correlated genes from different 

chromosomes. Thus, genetic factors are pervasive in regulating sex-biased genes in liver, 

which has important consequences to discern individual variability of liver phenotype 

and disease outcome. 

 

3.B Introduction 

Sex differences in mammalian gene expression are not limited to reproductive tissues, but 

also occur somatic tissues (Rinn and Snyder 2005), notably the liver, as seen in mouse 

(Clodfelter et al. 2007, Renaud et al. 2011, Conforto and Waxman 2012), rat (Wauthier 

and Waxman 2008) and human (Tanaka 1999, Zhang et al. 2011). ~1,000 genes are 

differentially expressed between male and female mouse liver (Conforto and Waxman 

2012), imparting sex differences in various liver functions, such as metabolism of drugs 

(Anthony and Berg 2002, Guengerich 2006, Zanger and Schwab 2013), other xenobiotics 

(Klaassen and Aleksunes 2010, Liu et al. 2013), and fatty acids (Wang et al. 2011), as 

well as disease susceptibility (Lu et al. 2009, Tessari et al. 2009, Baik et al. 2011, Zhang 

et al. 2011). Sex differences in the liver transcriptome are widespread and characterize 

both protein-coding transcripts (Conforto and Waxman 2012) and long noncoding RNAs 

(lncRNA) (Melia et al. 2016). Growth hormone (GH), secreted by the pituitary gland, has 

long been known to be a key regulator of sex-biased gene expression (Jansson et al. 1985, 
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Jaffe et al. 2002, Waxman and O'Connor 2006) via its sex-dependent pattern of pituitary 

secretion: pulsatile in males and nearly continuous in females (Veldhuis et al. 2001, 

Veldhuis and Bowers 2003). The resultant sex differences in plasma GH profiles lead to 

the sex-differential activation of the JAK2/STAT5 signaling pathway. GH-activated 

STAT5, in turn, works with other GH-dependent TFs to propagate sex-differences in 

liver transcription through sex-biased binding to liver chromatin (Laz et al. 2007, 

Conforto et al. 2012, Zhang et al. 2012, Conforto et al. 2015). Sex differences are also 

evident in the liver epigenome, which includes sex differences in open chromatin regions 

(DNase I hypersensitive site; DHS) (Ling et al. 2010), chromatin marks (Sugathan and 

Waxman 2013), and DNA methylation (Reizel et al. 2015), all of which are tightly linked 

to the transcription of sex-specific genes.  

 

Genetic modifiers can contribute to the regulation of sex-biased genes (Krebs et al. 2003, 

Krebs et al. 2005, Krebs et al. 2009, Krebs et al. 2012). In one well studied example, 

male-biased expression of Cyp2d9 is abolished by a SNP in a 5’ flanking regulatory 

region (Sueyoshi et al. 1995). In a second example, Regulator of Sex-Limitation (Rsl) 

gene was shown to repress several sex-specific genes, and was associated with activation 

and repression of other sex-specific genes via indirect mechanisms (Krebs et al. 2009, 

Krebs et al. 2012). Genetic polymorphisms contribute to individual differences in several 

drug-metabolizing enzymes (Hines et al. 2008), many of which are encoded by sex-

specific genes (Mugford and Kedderis 1998, Waxman and Holloway 2009). Genome-

wide studies to discover significant associations between genetic variants and liver gene 
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expression have identified many expression quantitative trait loci (eQTLs) for liver-

expressed genes (Gatti et al. 2007, Gatti et al. 2010, Chick et al. 2016, Gatti et al. 2017, 

Tyler et al. 2017). None of these studies, however, assessed the impact of eQTLs on the 

individual variability of sex-biased gene expression. A global assessment of the extent to 

which genetic factors alter sex-biased gene expression is still lacking. Understanding the 

source of variability in sex-biased gene expression in liver has far-reaching implications, 

as sex-biased genes contribute to liver diseases with known sex-differential susceptibility, 

including hepatocellular carcinoma (Ruggieri et al. 2010, Baik et al. 2011), polygenic 

dyslipidemia (Bittner 2006) and coronary artery disease (Zhang et al. 2011).  

 

To ascertain the global impact of genetic regulation on sex-specific gene expression, we 

utilized the Diversity Outbred (DO) mouse model (Churchill et al. 2012, Schmidt 2015), 

an outbred population derived from eight inbred mouse strains. DO mice have high 

natural allelic variance (Svenson et al. 2012, Chesler et al. 2016) and diverse phenotypes 

(Bogue et al. 2015, Odet et al. 2015), which may lead to finer genetic mappings for liver-

specific traits. Further, genome sequences from all DO founder strains are available 

(Keane et al. 2011), allowing genotypes in the DO mouse to be traced back to select 

founder strains. Using the DO mouse model, we find unexpectedly high rates of gain and 

loss of sex-specific gene expression across DO founder strains. ~13,000 autosomal 

eQTLs – many novel and including eQTLs for long noncoding RNAs (lncRNAs) – were 

identified in DO mouse liver. A subset of these eQTLs show sex-bias genetic 

associations, which we used to explain the gain or loss of sex-specific gene expression in 
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DO founder mice. Sex-specific binding of GH-regulated TFs and sex-specific open 

chromatin regions (DHS) were shown to be enriched at eQTL regions identified for genes 

with the expected sex-specificity. Finally, co-regulated genes were identified on the basis 

of overlapping eQTLs, a subset of which contain highly correlated genes from different 

chromosomes. These findings establish the pervasive role of genetic regulation in 

increasing the variability of sex-specific gene expression across DO founder strains. 

Understanding the source and extent of this variability has important implications for our 

understanding of individual variability as it relates to sex-differences in liver disease and 

function.  

 

3.C Materials and methods 

DO mouse liver samples and analyses. Liver RNA sequencing expression data and 

genotyping data based on SNP arrays was downloaded from GEO for 438 individual DO 

mice using accession numbers GSE45684 (Munger et al. 2014, Gu et al. 2016) and 

GSE72759 (Chick et al. 2016). These datasets are derived from 219 male and 219 female 

DO mice, which were further divided into tissues from mice fed a high fat diet (107 

males and 109 females) or a standard chow diet (112 males and 110 females). 264 DO 

samples were genotyped at 7,854 SNPs using the Mouse Universal Genotyping Array 

(MUGA) (Consortium 2012) and 174 were genotyped using a higher density array, 

MegaMUGA (Morgan et al. 2015), encompassing 77,725 SNP probes. Haplotype 

reconstruction. I used quantile normalization, implemented in DOQTL (Gatti et al. 

2014), to normalize microarray intensity values across batches with default parameters. I 
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further used DOQTL to calculate from the normalized microarray intensity values at each 

SNP probe the founder strain that the SNP is most likely inherited from, i.e. the founder 

haplotype. Two founder haplotypes, referred to as founder diplotype, are possible at each 

SNP locus. Thus, there are 36 possible founder diplotypes for a population generated 

from 8 founder strains: 8 homozygous diplotypes and 28 heterozygous diplotypes. 

Briefly, DOQTL uses the intensity of each SNP probe to generate a probabilistic estimate 

for each diplotype state at each SNP in each DO mouse using a hidden Markov model 

(HMM), where the hidden states are the diplotype states. DOQTL assigned each SNP 

locus to the diplotype state with the highest posterior probability. Individual mouse 

genome reconstruction. I used Seqnature (Munger et al. 2014) to construct an individual 

diploid genome for each DO mouse using founder haplotypes that were inferred at the 

previous step. Recombination boundaries are simply the midpoint between neighboring 

SNPs that were assigned to different founder diplotypes. For each recombination block, 

Seqnature recapitulates the founder genome of interest by incorporating high quality 

SNPs and small indels (<100 bases) that were found in that particular genome, 

downloaded as a vcf file from the Sanger Mouse Genome project (release 1211, (Keane 

et al. 2011)). RNA-Seq read mapping. I mapped RNA-Seq reads from each individual 

DO mouse liver sample to its diploid genome, containing both paternal and maternal 

allele sequences, using Tophat2 (Langmead et al. 2009, Kim et al. 2013) with default 

parameters (Fig. S3-1). 
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Other mouse liver RNA-Seq samples and data analyses. I downloaded three publicly 

available liver gene expression datasets for the eight DO mouse founder strains: 1) a 

microarray dataset comprised of 96 samples, six replicates/sex/strain, assayed on the 

Illumina Sentrix Mouse-6 V1.1 platform (http://cgd.jax.org/gem/strainsurvey26/v1); 2) 

an RNA-Seq dataset with 128 male liver samples, six replicates/strain/diet, where the two 

options for diet are standard chow and high fat diet (GEO accession GSE45684) (Munger 

et al. 2014, Gu et al. 2016); and 3) an RNA-Seq dataset with 12 male and 12 female 

C57Bl/6J mouse livers (GEO accession GSE59222) (Lowe et al. 2015). All of the RNA-

Seq datasets were mapped to the genome that matched their respective strain generated 

by Seqnature, based on SNPs/indels retrieved from the Sanger Mouse Genome project 

(release 1211) (Keane et al. 2011), using Tophat2 with default parameters. A published 

mouse liver RNA-Seq dataset from the CD-1 mouse strain, consisting of three pools of 

male and three pools female liver samples, was downloaded from GEO accession 

GSE98586 (Lau-Corona et al. 2017). These samples were mapped to the reference 

genome using Tophat2 with default parameters (Fig. S3-1).  

 

Expression quantification. Gene expression was quantified by counting sequence reads 

that overlap any exon by at least one bp using featureCounts (Liao et al. 2014). For RNA-

Seq datasets that were mapped to a haploid genome, e.g. the C57Bl/6J reference mouse 

genome and any of the eight DO mouse founder strains, only unique reads were used, 

whereas for datasets that were mapped to a diploid genome, e.g. individual DO mouse 

genomes, the best mapped location for each read was used. The restriction of only using 
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unique reads for diploid genomes would limit the read counts to only include those reads 

that mapped to genomic locations where the paternal and maternal allele differ, and thus 

could substantially underestimate expression of any given gene. Further, the gene 

expression level obtained for diploid genomes is based on the total number of reads that 

overlap the counted regions in either the paternal or maternal allele. Reads counts were 

then transformed to fragments per kilobase of exon per million reads mapped (FPKM) for 

downstream analysis. For FPKM calculation on diploid genomes, exon lengths are based 

on the average length of exons from the two alleles of each gene. 

 

Sex-specificity of gene expression. I used three liver expression datasets, described 

above, to establish the sex-specificity of protein-coding genes: 1) RNA-Seq dataset of 

male and female CD1 mouse livers, 2) RNA-Seq dataset of male and female C57Bl/6J 

mouse livers, and 3) Illumina Sentrix Mouse-6 V1.1 expression microarray dataset of 

male and female livers from the eight DO mouse founder strains. I used edgeR (Robinson 

et al. 2010) to perform differential analysis for the two RNA-Seq datasets; and limma 

(Smyth 2004) was used for the microarray dataset with default parameters. For genes 

with multiple microarray probes, we chose the probe with the smallest adjusted p-value. 

A total of 1,033 protein-coding genes showed a male/female gene expression |fold-

change| > 2 at FDR < 0.05 for any RNA-Seq dataset or |fold-change| > 1.5 at FDR < 0.05 

for the microarray dataset, and were designated sex-specific (Table S3-1). 168 multi-

exonic, intergenic liver-expressed lncRNAs were designated sex-specific, as described in 

Chapter 4.  
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Gene expression variability across DO founder strains. Inter-strain gene expression 

variability across the 8 DO mouse founder strains was quantified for each gene using 

RNA-seq data for 8 male livers per strain, as follows: [standard deviation of (mean gene 

expression value for each of the 8 strains)] / [average of (the mean gene expression value 

for each of the 8 strains)]. Intra-strain gene expression variability was quantified for each 

gene in each strain as follows: [standard deviation of (gene expression for n = 8 male 

livers in strain s)] / [mean of (gene expression value for n = 8 male livers in strain s)]). 

 

eQTL mapping. eQTL analysis was carried using liver gene expression data from 438 

DO mice, comprising 219 male and 219 female mice that were either fed a high fat or 

standard chow diet (Fig. S3-1).  We used the additive haplotype model in DOQTL (Gatti 

et al. 2014) to perform QTL mapping by regressing each gene’s expression level on the 

estimates of each of the eight founder strain’s contribution, i.e., founder diplotype 

probability, at each SNP marker. Adjustments to account for relatedness amongst DO 

mice, batch, sex, diet, and interaction between sex and diet were included in the 

regression as additive covariates, written as the following in R: model.matrix(~sex + diet 

+ diet*sex + generation + batch, data = data). The strength of the association between 

gene expression and genotype is given as a likelihood ratio (LOD), which is the -log10(p-

value) when comparing the full model to the null model, where the latter model excludes 

diplotype probabilities. QTL mapping also gives eight regression coefficients, whose 

magnitudes reflect the effect of the founder alleles at each SNP marker. A positive 
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regression coefficient indicates the genetic variant is associated with high expression of 

the gene of interest, whereas a negative regression coefficient indicates the genetic 

variant is associated with low expression of the gene of interest. The DO founder strain 

with the largest gene expression alteration by genetic factors identified in each eQTL, as 

indicated by the largest absolute value of the regression coefficients, is designated as ‘the 

regulating strain’. A Bayesian credible interval, defined as 95% of the region under the 

LOD^10 curve, as implemented in DOQTL (Gatti et al. 2014), was defined for each 

eQTL; this interval delineates the genomic location where the highest association occurs, 

as defined by the uppermost 5% area under the peak of the LOD score curve. 

Significance level. A genome-wide p-value for each association was determined by 

doing 1,000 permutations on the gene expression data. To assemble a list of associations 

between gene expression and SNPs, I recorded the SNP with the highest LOD score for 

each gene; subsequent high-scoring SNPs were only retained if their p-value < 0.05 and if 

they are on a different chromosome than the SNP with the highest LOD score. An FDR 

correction was then applied to the genome-wide p-values. Any eQTL with FDR < 0.05 

was deemed significant. To identify genetic variants whose association with gene 

expression was only found in one sex, we repeated the eQTL mapping analysis twice 

more, once using only male DO liver samples, and a second time using only female DO 

liver samples. Gene expression pre-processing. Gene expression levels in FPKM were 

transformed into normal scores using the inverse normal transformation in DOQTL (Gatti 

et al. 2014) before they were used for eQTL mapping. eQTL mapping was carried out for 

protein-coding genes and for intergenic, multi-exonic lncRNA genes that were expressed 
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in at least one liver sample, namely: 20,559 (18,543 protein-coding and 2,016 lncRNA 

genes), 20,268 (18,275 protein-coding and 1,993 lncRNA genes), and 20,190 (18,207 

protein-coding and 1,983 lncRNA genes) genes when analyzing all DO livers, male only 

DO livers, and female only DO livers, respectively. Interpolating missing genotype 

information. To preserve the extra information that the higher density SNP array 

provides, I performed QTL mapping on 64,713 SNPs markers (Table S3-2), which 

corresponds to the union of SNP markers from the two genotyping arrays used, after 

removing SNP probes with no differentiating information across the eight strains 

(Morgan et al. 2015). For SNP probes that were unique to one type of array, diplotype 

probabilities were assigned from the nearest measured SNP. All of the SNP probes that 

were analyzed are located in autosomes or on the X chromosome.   

!

Sex-biasedness of genetic association. Sex-biased genetic associations for eQTLs that 

are significant in either male liver or female liver samples, are defined by LOD score 

calculated using male only DO liver samples - LOD score calculated using female only 

DO liver samples. 

 

Cis/trans eQTLs. An eQTL was designated cis if the TAD where the gene is located 

overlaps at least one bp with the 95% Bayesian credible interval, which was defined 

based on the interval from the liver sample set (i.e. all livers, male only livers, or female 

only livers) that gives the most significant LOD. Each gene is assigned to the TAD where 
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its TSS occurs. TAD coordinates for mouse liver were based on (Matthews and Waxman 

2017). 

 

eQTL overlap. An eQTL overlaps a published eQTL if the gene name or RefSeq 

accession number matches, and if the associated variant/ associated region overlaps at 

least one bp the 95% Bayesian credible interval identified in this study for each eQTL. 

We used liftOver (Rosenbloom et al. 2015) to convert genomic regions into mm9 

coordinates using default parameters. bioDBnet:db2db (Mudunuri et al. 2009) was used 

to convert Ensembl gene identifiers to RefSeq accession numbers, where applicable.  

 

Liver gene expression variation for sex-specific genes. Liver expression variation for 

sex-specific genes were quantified across 112 male DO mice, and separately across 110 

female DO mice fed on a standard chow diet using the var function in R. 

 

Co-regulated gene cluster. Each eQTL region is centered at the SNP marker with the 

highest LOD score, i.e. the eQTL peak, boundaries are the 2nd SNP marker from the 

center. Overlapping eQTL regions by at least one bp with a common regulating strain are 

assigned as co-regulated clusters. Co-regulated gene clusters were identified based on 

eQTLs discovered in all DO liver samples, and separately male only DO liver samples, 

and female only DO liver samples. This analysis was based on eQTLs that were 

discovered for genes that are expressed (FPKM > 0) in at least 25% of samples in the 
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relevant liver samples sets, i.e., all DO livers, male only DO livers or female only DO 

livers.  

 

Gene expression correlation. A batch effect that correlated with the GEO accession of 

the samples was removed from the gene expression level (in units of log2(FPKM+1)) 

using the ComBat function in the sva R package (Leek et al. 2012) with default 

parameters. The Pearson correlation was then used to calculate pairwise gene expression 

correlations.  

 

TF binding sites and DHS with strain-specific SNPs/indels at eQTL regions. High 

quality SNPs/indels in the 8 DO mouse founder strains were downloaded from the Sanger 

Mouse Genome project (release 1211) (Keane et al. 2011). SNPs/indels that occur in only 

one founder strain were designated as strain-specific variants using a custom R-script 

provided in Supplemental file 1 (available upon request to djw@bu.edu). TF binding sites 

and DHS that are within each eQTL region (95% Bayesian Credible interval, defined 

based on the liver sample set that gives the highest LOD score), and that contain strain-

specific SNPs/indels for the matching regulating strain, were selected for further analysis. 

For analysis depicted in Fig. 3-4, the following eQTL designations were used: eQTLs 

identified for genes with |male/female| > 4 were designated sex-specific (i.e., an eQTL 

for a sex-specific gene), and eQTLs identified for genes with |male/female| < 1.2 were 

designated sex-independent. Male/female expression ratios were determined by edgeR. 

eQTLs whose 95% Bayesian credible interval does not overlap by 1 bp with the TAD 
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that contains the gene it is associated with were designated trans. The number of eQTLs 

analyzed for the analysis of DHS and TF binding sites varied between 17 and 2,793, and 

is specified for each analysis in the x-axis labels of Fig. 3-4. For each eQTL region, we 

counted the fraction of DHS or TF binding sites that are male-specific, female-specific or 

sex-independent, as defined by their original studies, except for the set of ~72,000 liver 

DHS from (Sugathan and Waxman 2013) of which 4,644 DHS were designated male-

specific and 2,814 were designated female-specific (Ling et al. 2010, Zhang et al. 2012, 

Conforto et al. 2015). 

 

 

Principal component analysis (PCA). PCA was done using the prcomp function in R 

using log2, centered normalized microarray intensity values. 

 

DAVID enrichment. DAVID functional annotation tool (https://david.ncifcrf.gov/) 

(Huang da et al. 2009, Huang da et al. 2009) was used to discover enriched KEGG 

pathways by providing the official gene symbol, i.e. gene name, of sex-specific protein-

coding genes discovered in each strain. Pathways with adjusted P (Benjamini) < 0.05 

were deemed significant. 

 

3.D Results 

Sex-specific gene expression patterns show high variability among DO mouse 

founder strains. We identified 1,033 protein-coding genes that show sex-biased 
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expression in mouse liver in one or more of the nine strains examined (418 male-biased 

genes and 615 female-biased genes) (male/female expression |fold-change| >1.5 based on 

microarray analysis; or male/female expression |fold-change| >2 based on RNA-seq, both 

at FDR < 0.05) (Table S3-1). These strains include CD-1 mice, used in our earlier studies 

of sex-biased liver gene expression (Lau-Corona et al. 2017), and the eight founder 

strains used to establish the DO mouse population (A/J, C57BL/6J, 129S1/SvlmJ, 

NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ WSB/EiJ) (Churchill et al. 2012, 

Svenson et al. 2012). To further delineate differences in sex-biased gene expression 

across DO founder mice, I examined the subset of 471 sex-biased liver protein-coding 

genes that were identified using expression data obtained from the same microarray 

platform for each of the eight founder strains. Sex-biased gene expression was highly 

variable across DO founder strains, and was lost for 451 out of 471 (95%) of liver 

protein-coding genes in one or more of the eight founder strains. High variability of gene 

expression was also seen for the 74 most highly sex-biased protein-coding genes 

(male/female expression |fold-change| > 4 at FDR < 0.05 in at least one founder strain), 

where 58 of the genes (78%) did not show sex-specific expression in at least one founder 

strain (see Fig. S3-2 for examples of variable sex-specificity across DO founder strains). 

220 of the 471genes showed sex-biased expression in at least 2 of the 8 strains. Only 20 

genes showed sex-biased expression in all 8 founder strains (Table S3-1). Heat maps 

confirmed the high variability of sex-specific liver gene expression across DO founder 

mice (Fig. 3-1A), and further, indicated that a subset of genes that showed sex-biased 

expression in only one strain were as highly sex-biased as genes that are sex-specific in 
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multiple strains. The heat map also revealed that the genes that are sex-specific in most, 

or in all, founder strains tend to be the most sex-biased (P < 2.7e-4, Student’s t-test). 

Further, analysis of the 220 sex-specific genes with the highest ratio in male liver for 

[gene expression variability across DO founder strains] / [gene expression variability 

within strains], revealed prominent patterns of expression that are highly selective for 

each strain, further confirming the striking variability of sex-biased gene expression in 

DO founder strain livers (Fig. 3-1B).  

 

The number of sex-specific genes identified in each founder strain ranged from 77 genes 

(strain A/J) to 183 genes (strain PWK/PhJ; Fig. 3-1C, Table S3-1), highlighting the 

possibility of strain-specific differences in the regulation of sex-specific genes. A similar 

pattern was seen for the number of highly sex-specific genes (male/female |fold-change| 

> 4; Fig. S3-3A) across strains, where A/J and CAST/EiJ mice have the lowest number of 

sex-specific genes. To identify similarities between sex-specific genes identified in each 

founder strain, I performed PCA based on gene expression levels (Fig. 3-1D). The largest 

variance (PC1 in Fig. 3-1D) corresponds to the sex of each liver, as expected, whereas the 

second principal component clustered male, and separately, female samples based on 

their evolutionary distance (PC2 in Fig. 3-1D; Fig. S3-3B) (Threadgill et al. 2011). The 

six Mus musculus domesticus subspecies strains are closer together, as compared to the 

other subspecies strains, i.e. Mus musculus castaneus (strain CAST/EiJ) and Mus 

musculus musculus (strain PWK/PhJ). Further, among the Mus musculus domesticus 
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strains, the lone, wild-derived WSB/EiJ strain is separated from the other five strains, 

recapitulating the published phylogenetic tree (Fig. S3-3B) (Threadgill et al. 2011).  

 

Next, I investigated if the sex-specific protein genes identified in each strain are enriched 

for different pathways. DAVID analysis (Huang da et al. 2009, Huang da et al. 2009) 

identified 16 KEGG pathways that are enriched (adjusted P < 0.05) in at least one of the 

eight sets of sex-specific genes (Fig. 3-1E). The enriched pathways are broadly divided 

into two categories (see dendrogram along y-axis, Fig. 3-1E): the first 10 pathways listed 

are enriched in select strains, while the last 6 pathways listed are significantly enriched in 

nearly all strains. Many of the pathways enriched in select strains have lower 

significance. Exceptions include pyruvate metabolism, which is uniquely linked to 

WSB/EiJ livers; and biosynthesis of unsaturated fatty acids and metabolism of 

xenobiotics by cytochrome P450, which are most strongly associated with PWK/PhJ 

livers. 

 

I further explored if the variability of sex-specific gene expression patterns across DO 

founder strains affects the major pathway of GH-dependent gene regulation, as indicated 

by the response to hypophysectomy (Hypox). Hypox involves surgical removal of the 

pituitary gland, which ablates secretion of GH, as well as secretion of all other pituitary-

dependent hormones. Two distinct classes of sex-specific liver-expressed genes have 

been identified based on their responses to Hypox. Class 1 sex-specific genes are 

activated in the liver by the pituitary GH secretion profile in livers of the sex where they 
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are more highly expressed, whereas class 2 sex-specific genes are repressed in the liver 

by the GH secretion profile of the sex where they are less highly expressed. 

Consequently, following Hypox, class 1 genes are down regulated in the sex where they 

show higher expression, whereas class 2 genes are up regulated (de-repressed) in the sex 

where they show lower expression. Using published lists of the four Hypox response 

classes of genes (male-specific class 1 and 2 genes, and female-specific class 1 and 2 

genes (Table S3 of (Connerney et al. 2017)), we examined the distribution of each sex-

biased gene class in each DO founder mouse strain. No noticeable difference was seen in 

the proportion of sex-biased genes in each of the four GH-responsive gene sets, as 

compared to the distribution reported for CD-1 mice (Fig. 3-1F; first bar on the left). 

Thus, the major GH-dependent regulatory mechanisms for liver sex-biased gene 

expression captured by the class 1/class 2 classification is largely preserved across DO 

founder strains, despite variability in the expression of many individual sex-specific 

genes.  

 

Genetic regulation of liver-expressed genes. I analyzed 438 DO mouse liver samples 

(Munger et al. 2014, Chick et al. 2016, Gu et al. 2016) to identify SNPs that are 

significantly associated with the gene expression patterns of all liver-expressed genes 

(eQTLs). Genome-wide eQTL analysis was performed across all liver samples, and 

separately, across all male livers (n=219) and across all female livers (n=219). I thus 

identified 10,325 significant autosomal eQTLs associated with protein-coding and 

lncRNA genes when considering all livers, 7,414 autosomal eQTLs when considering 
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male livers only, and 8,233 autosomal eQTLs when considering female livers only (Table 

3-1). These eQTLs can be merged into a set of 12,886 autosomal eQTLs (Fig. 3-2A). An 

additional 4,392 eQTLs were found on the X chromosome (Table S3-3B), resulting in 

17,278 eQTLs identified genome-wide (Table S3-3A). 82% of the all liver, 65% of the 

male liver only, and 95% of the female liver only eQTLs are associated with autosomes 

(Table S3-4A). 51% of the autosomal eQTLs identified here confirm previously 

published eQTLs in mouse liver (Gatti et al. 2010, Munger et al. 2014, Chick et al. 2016, 

Gatti et al. 2017, Tyler et al. 2017); the other 49% of eQTLs are novel (6,344 out of 

12,886) and includemany novel autosomal eQTLs for liver-expressed lncRNAs (Melia et 

al. 2016). More eQTLs were identified in female liver than in male liver for both protein-

coding genes and lncRNA genes (Table 3-1), suggesting genetic regulation is more 

prevalent in female liver. A similar observation was reported in BXD mouse liver (Gatti 

et al. 2010). 66% of autosomal eQTLs that are within the same TAD (Matthews and 

Waxman 2017) as the genes they are associated with, indicating proximal genetic 

regulations dominates the eQTLs (cis regulation; Table 3-1).   

 

For each eQTL, the strain whose SNP is most likely responsible for the genetic 

association captured by the eQTL (‘the regulating strain’), was determined by identifying 

the founder strain with the largest regression coefficient, in absolute value, at the SNP 

marker where the strongest association occurs, i.e. the SNP marker with the highest LOD 

score. 60% (6,158 of 10,325) of autosomal eQTLs discovered when considering all DO 

livers are associated with genetic variants in either CAST/EiJ or PWK/PhJ mice (Fig. 3-
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2B). These strains have the largest number of SNPs and indels (Svenson et al. 2012) and 

are the most evolutionary diverged, as compared to the other founder strains (Fig. S3-3). 

The WSB/EiJ strain follows with 10% all of autosomal eQTLs, and the other five founder 

strains are each associated with ~6% of autosomal eQTLs. This observation indicates that 

the gene expression pattern is altered as genetic variants accumulate during evolution. A 

majority of the autosomal eQTLs (54-67%) are associated with up regulation of gene 

expression in the regulating strain (Fig. S3-4). Some eQTLs have contributions from 

multiple regulating strains, i.e., the genetic variant of interest is associated with changes 

in gene expression in multiple strains. 35.8% (3,706 of 10,325) of autosomal eQTLs 

discovered using all DO liver samples have at least one other founder strain whose 

regression coefficient is within 20% of the identified regulating strain, indicating at least 

two strains make substantial contributions to the change in expression pattern (Table S3-

4A).  

 

1,308 genes are associated with multiple eQTLs (2,779 eQTLs; Table S3-4), suggesting 

these genes are subject to multiple, distinct forms of regulation. One example is the 

female-specific Sult3a1 gene, which is associated with an eQTL on chromosome 10 that 

is highly significant in male DO livers, but is not detected in female livers, and with a 

second, distinct eQTL, on chromosome 9, that is uniquely identified in female livers (Fig. 

3-2C). CAST/EiJ is the regulating strain for the eQTL on chromosome 10, and is 

associated with elevated expression of Sult3a1 in male liver (Fig. 3-2D, left; Fig. 3-2E, 

left). In contrast, NZO/HIltJ is the regulating strain for the chromosome 9 eQTL, and is 
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associated with a distinct regulatory mechanism, leading to decreased expression of 

Sult3a1 in female liver (Fig. 3-2D, right; Fig. 3-2E, left). Both eQTLs reduce the sex 

difference in Sult3a1 expression in their respective regulating founder strains (Fig. 3-2E, 

arrows), but by different mechanisms. 

 

Genetic regulation of sex-specific genes. 987 of the liver autosomal eQTLs are 

associated with one of the 1,033 sex-specific protein-coding genes or the 168 sex-specific 

lncRNA genes (Fig. 3-3A, Table 3-1). Most of the eQTLs associated with sex-specific 

genes were discovered when all DO liver samples were included in the analysis, but 66 

and 71 eQTLs, respectively, were discovered only when male livers or only when female 

livers were used. Further, many of the eQTLs discovered using both sets of DO livers 

showed a stronger genetic association in one sex, as compared to the other (Table S3-4B). 

This trend is evident when LOD scores determined using male DO livers are compared to 

female DO liver LOD scores for the set of strongly sex-specific genes (Male/Female 

|fold-change| > 4) (Fig. 3-3B). eQTLs that are stronger in male DO livers are biased to be 

associated with strongly male-specific genes, and eQTLs whose association is stronger in 

female liver tend to be associated with strongly female-specific genes (Fig. 3-3B). 

Further, eQTLs with the greatest LOD score differences in male vs female liver (top 

10%; 1,060 of 10,597 eQTLs; 172 of 1,060 eQTLs are identified for sex-specific genes; 

Fig. 3-2) are enriched 5.1-fold for being associated with genes with matched-sex-

specificity, as compared to genes with the opposite sex-specificity (P-value < 6.5e-07, 

Fisher’s Exact test). 315 sex-specific genes, however, are not associated with any eQTL 
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(Table S3-4C), indicating that the expression of these genes are less variable, as 

compared to sex-specific genes with eQTLs, across male DO (P < 0.0016, Student’s t-

test) and female DO (P < 0.011, Student’s t-test) mice. The average gene expression level 

for these two gene sets are similar (P> 0.4 in both sexes, Student’s t-test). Pathway 

enrichment on this gene set showed an enrichment for the PPAR signaling. 

 

Next, I examined whether eQTLs with a sex-bias in genetic association may explain the 

variability in sex-specific gene expression across DO founder strains. I considered four 

conditions where an eQTL may result in the loss of sex specific gene expression (Fig. 3-

3C) and four conditions where an eQTL may enhance sex-specificity (Fig. 3-3D). These 

analyses are based on 360 eQTLs (Table S3-5) that are significant in either male or 

female liver samples, which were examined for correlations with any of the 471 sex-

specific protein-coding genes for which we have complete gene expression data in male 

and female livers for the eight DO founder strains. Overall, these 360 eQTLs are 

associated with 68% (322 of 471) sex-specific protein-coding genes. 172 of these eQTLs 

have characteristics that fit the first four conditions, i.e., they are associated with the loss 

of sex-specificity in the regulating founder strain (categories 1-4) and 188 eQTLs fit the 

second four conditions, i.e., they are associated with a gain in sex-specificity in the 

regulating strain (categories 5-8) (Fig. 3-3C, Fig. 3-3D; examples in Fig. S3-6). 

Remarkably, for 134 of the 172 category 1-4 eQTLs (78%), sex-specificity of gene 

expression is lost in the respective regulating strain, but is retained in at least one non-

regulating strain. The fraction of these eQTLs that show a loss in sex-specificity ranges 
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from 53.1% (category 2 eQTLs) to 91.7% (category 1 eQTLs). Presumably the impact of 

many category 2 eQTLs is not strong enough to cause a loss of sex-specificity. In the 

case of the 188 eQTLs in categories 5-8, where an eQTL may increase the sex-specificity 

of gene expression, only 47% of eQTLs (85 of 188, with up to 60.8% in category 5) are 

associated with genes that are sex-specific in the matching regulating strain, suggesting 

there may be another layer of gene regulation, or these analyses may be limited by the 

dynamic range of our microarrays and hence their ability to detect sex-specificity. 

Overall, 60.8% of the 360 eQTLs that we examined (219 eQTLs associated with 205 

genes; Table S3-6) were associated either with the loss or gain of sex-specificity of sex-

biased genes in their matching regulating strains, highlighting the extensive role of 

genetic regulation in increasing the variability of sex-specific gene expression across DO 

founder mouse strains. 

 

Genomic regions identified in an eQTL region may regulate sex-specific gene expression 

in the contributing founder strain through strain-specific genetic variants at sex-specific 

regulatory (e.g., enhancer) regions. These regulatory regions include DNase I 

hypersensitive sites (DHS) that are sex-biased in mouse liver, i.e., are significantly more 

open in one sex, as compared to the other, and sex-biased binding sites for key GH-

regulated liver TFs (Ling et al. 2010, Zhang et al. 2012, Conforto et al. 2015). Strain-

specific genetic variants at these sites may alter or abolish GH-regulated TF binding 

activity and, perhaps alter chromatin accessibility (DHS) thereby dysregulate the 

expression of sex-biased genes. To investigate this hypothesis, we analyzed sex-biased 
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DHS and sex-biased TF binding sites within eQTL regions (i.e. the 95% Bayesian 

credible intervals) and that contain SNPs/indels specific to the identified regulating strain 

(Table S3-4). Only eQTL regions that are < 3MB in width (8,254 of all 12,886 autosomal 

eQTLs; 64%) were used in this analysis. Sex-biased DHS were enriched at eQTL regions 

associated with genes with matching sex-specificity, as compared to eQTLs associated 

for genes expressed with the opposite sex-bias or genes with no sex-specificity (Fig. 3-4; 

top left, first and second panel). The majority of DHS found in any eQTL region, both for 

sex-biased and sex-independent genes, are sex-independent DHS; these DHS showed a 

significant enrichment to be at eQTLs for sex-independent genes, as compared to sex-

specific genes (Fig. 3-4; top left, third panel). A similar pattern of enrichment was found 

for sex-biased STAT5 binding sites (Fig. 3-4, top right). In contrast, male-biased binding 

sites for the transcriptional repressor BCL6, which preferentially represses female-

specific genes in male liver (Meyer et al. 2009, Zhang et al. 2012), showed significant 

enrichment at eQTL regions for female-specific genes, as compared to male-specific or 

sex-independent genes. Moreover, sex-independent BCL6 binding sites were 

significantly depleted at eQTL regions associated with female-specific genes (Fig. 3-4, 

bottom). Further, BCL6 binding sites showed an even greater enrichment for trans eQTL 

regions, as compared to cis eQTL regions (Fig. 3-4; bottom right, as compared to bottom 

left), validating the proposed regulatory role of these trans eQTL regions. Collectively, 

these patterns ofsex-biased DHS and TF binding site enrichments provide strong support 

for the proposed regulatory role of these eQTL regions. 
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Gene expression co-regulation inference based on eQTLs. We hypothesize that genes 

with overlapping eQTLs are likely to be co-regulated, presumably due to their shared 

regulatory regions. Any overlapping eQTLs with a common regulating strain is defined 

as a co-regulated gene cluster. 1,521 co-regulated gene clusters, comprised of 4,105 

genes, were identified based on eQTLs discovered in all DO liver samples (Table S3-

7A). Most of the co-regulated gene clusters are small in size, with 65.8% of all clusters 

contains two genes each (Table S3-7D). The lack of many large co-regulated gene 

clusters suggests that genetic variants in DO mice are generally not at master regulatory 

regions for liver-expressed genes, i.e., regions where a single SNP dysregulates many 

genes. Rather, genetic variation typically impacts a small number (<10) of liver-

expressed genes, leading to the observed variability of gene expression across strains, but 

without gross alteration of liver gene expression patterns.. The identified gene clusters 

show evidence of co-regulation, as many of their members show high pairwise gene 

expression correlation (see examples in Fig. 3-5). 50% (762) of the co-regulated clusters 

contain sub-clusters, where the identified eQTL regions are associated with up regulation 

of some genes in the cluster and down regulation of other genes in the cluster. One 

example is the 21-gene cluster on chromosome 2, which is predicted to occur in the 

PWK/PhJ strain (Fig. 3-5A). The first eleven overlapping eQTLs in the top cluster in 

Figure 3-5A have both positive regression coefficients (i.e. higher expression of the 

eleven listed genes; Fig. S3-7) and are located on the same chromosome with the genes 

they are associated with, whereas the last ten overlapping eQTLs have both negative 

regression coefficients (i.e. lower expression of the ten genes; Fig. S3-7 and Fig. S3-8) 
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and are located on a different chromosome with the genes they are associated with. 

Pairwise gene expression correlation analysis separates these eQTLs into two well-

defined sub-clusters, where each sub-group has either a positive or a negative regression 

coefficient (Fig. 3-5A). The pairwise gene correlations are less tight in the negatively 

correlated sub-cluster (e.g. Zbtb7c), which suggests the eQTL association may result 

from indirect regulation or partial regulation involving another factor. Notably, in the 

case of the eQTL involving Zbtb7c, another, stronger genetic association was identified 

in cis (chr18, Fig. S3-8). The co-regulated cluster in Fig. 3-5A shows that genes from 

different chromosomes may be grouped together (Fig. S3-7), highlighting the ability of 

this approach to identify complex trans regulation. Overall, 10.4% (159) of co-regulated 

clusters group genes from multiple chromosomes. Further, 22.6% (344) of co-regulated 

clusters contain both protein-coding and lncRNA genes, generating testable hypothesis 

for possible functions of the clustered lncRNAs.  

 

Co-regulated gene cluster based on overlapping eQTLs were also discovered in male only 

livers, and separately, female only livers. Differences in co-regulated gene clusters 

identified in male liver, and separately, in female liver were assessed for eQTLs with sex-

biased genetic association. A limited number of co-regulated gene clusters show a switch 

in gene members in clusters identified in male liver samples, as compared to clusters 

identified in female liver samples. This is exemplified by three female-specific genes 

from the Sulfotransferase gene family: Sult2a1, Sult2a3 and Sult2a5 (Fig. 3-6A).  In 

PWK/PhJ male mouse liver, but not in PWK/PhJ female mouse liver, Sult2a1 and 
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Sult2a5 are predicted to be co-regulated, as their eQTLs are overlapping and are 

associated with the high expression of both genes (Fig. 3-6B; top left and bottom left). In 

contrast, in CAST/EiJ female liver only, Sult2a1 shows co-regulation with Sult2a3, and 

the high expression of both genes is associated with overlapping eQTL regions (Fig. 3-

6B; top right and bottom right). Even though all four eQTL regions overlap, their eQTL 

peaks do not overlap, indicating a need for higher resolution genetic mapping to pinpoint 

the precise regulatory regions and tease apart these two distinct regulations. Sult2a5 and 

Sult2a3 show no significant eQTLs in female or male liver samples, respectively (Fig. 

S3-9). The pairwise gene correlations between the three genes are consistent with these 

patterns, as Sult2a1 and Sult2a3 show higher correlation in female liver samples, as 

compared to male liver samples (Pearson correlation 0.7 vs. 0.3; Fig. 3-6A), and Sult2a1 

and Sult2a5 show higher correlation in the male samples, as compared to female samples 

(Pearson correlation 0.8 vs 0.6; Fig. 3-6A). The relatively strong gene expression 

correlation in female livers between Sult2a1 and Sult2a5, which are not in the same 

CAST/EiJ co-regulated gene cluster, indicates that there is, nevertheless, an overall 

correlation in their expression across female DO mouse livers, once the complexity of 

other DO founder strains is factored in   

 

3.E Discussion 

Sex-specific gene expression characterizes many mammalian tissues (Rinn and Snyder 

2005, Lowe et al. 2015), including liver (Zhang et al. 2011, Conforto and Waxman 2012, 

Krebs et al. 2012, Melia et al. 2016), where sex-biased genes are implicated in male-
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female differences related to metabolism of drugs (Thurmann and Hompesch 1998, 

Waxman and Holloway 2009, Zanger and Schwab 2013) and xenobiotics (Mugford and 

Kedderis 1998), as well as disease susceptibility (Shimizu et al. 2007, Tessari et al. 2009, 

Baik et al. 2011). Pituitary GH has long been known to be a major regulator of hepatic 

sex-specific genes (Waxman and O'Connor 2006, Lichanska and Waters 2008) via its 

sex-dependent secretion pattern: pulsatile in male and near continuous in female (Jansson 

et al. 1985, Veldhuis et al. 2001), which in turn activate a cascade of TFs, including 

STAT5, HNF6 and BCL6 (Conforto et al. 2012, Zhang et al. 2012, Conforto et al. 2015). 

Here, we describe the role of genetic variants as another layer of regulation that works in 

tandem with the hormonal environment to control transcription of sex-biased genes. We 

used the DO mouse model, a genetically diverse population derived from eight inbred 

mouse strains (Churchill et al. 2012), to dissect the genetic component of sex-biased 

transcriptional regulation. We found that DO mice show high variability in their sex-

specific gene expression patterns across DO founder strains, where the majority of sex-

specific genes either loose or gain sex-biased expression in one or more founder strains. 

~13,000 significant associations between autosomal genetic variants and gene expression 

(eQTLs) were identified in DO mouse liver, of which 49% are novel, and many are 

associated with lncRNAs. 987 of these eQTLs are associated with sex-specific genes, and 

a subset show stronger genetic association in one sex, as compared to the other. eQTLs 

with a large difference in genetic association between males and females (top 10%) are 

significantly enriched for an association with strongly sex-specific genes with matching 

sex-bias, as compared to genes of the opposite sex-specificity. 60.8% of eQTLs that are 
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associated with sex-specific genes and show a sex-biased genetic association are 

intimately linked with the loss or gain of sex-biased gene expression in the predicted 

regulating strain, highlighting the surprisingly extensive role of genetic variants in sex-

biased gene expression. Analysis of the subset of TF binding sites and open chromatin 

regions (DHS) that contain genetic variants specific to the strain predicted to be regulated 

by eQTLs, revealed a significant enrichment of sex-specific STAT5 binding sites and 

DHS for eQTLs that are associated with genes with matching sex-specificity. 

Correspondingly, the male-biased transcriptional repressor BCL6 was enriched at eQTL 

regions mapping to female-biased genes, a pattern that was amplified in trans eQTL 

regions. Collectively, these patterns of enrichment highlight the regulatory nature of these 

eQTL regions. Finally, overlapping eQTLs were used to discover co-regulated gene 

clusters, some of which grouped genes from different chromosomes or grouped protein-

coding genes with non-coding genes. These gene clusters provided evidence of co-

regulation based on high correlation of gene expression amongst cluster members.  

 

Genetic factors promote variability of sex-biased gene expression across DO founder 

strains. Sex-specific gene expression shows exceptional high variability across DO 

founder mouse strains, where up to 95% of sex-specific genes either gain or loose sex-

biased expression in at least one founder strain. Their high variability across strains 

indicates that they are not housekeeping or essential genes, however, they may contribute 

to clinically important variables, including liver metabolism and liver disease 

susceptibility. Further, the overall number of sex-specific genes varies more than 2-fold 
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between strains. Genetic variability can increase or decrease the number of sex-specific 

genes, as the two strains that are the most evolutionarily divergent from the reference 

strain (C57BL/6J) have either the most sex-specific genes (PWK/PhJ) or the second 

fewest (CAST/EiJ). Remarkably, we demonstrated a tight connection between genetic 

variants and the variability of sex-specific gene expression across DO founder strains 

insofar as sex-specific gene expression was lost for 78% (134 of 172) of eQTLs which 

were associated with a decrease in sex-specificity in the regulating founder strains. 

Similarly, 47% (85 of 188) of eQTLs that were expected to increase the sex-specificity of 

gene expression were corroborated by the gain of the sex-biased gene expression in the 

respective regulating founder strains. Thus, genetic variants have an extensive impact 

in increasing sex-biased expression variability. The lower accuracy of our prediction for 

eQTLs that are predicted to increase sex-biased gene expression, as compared to those 

that ablate sex-specific gene expression (Fig. 3-3C, 3-3D) suggests another layer of gene 

regulation is involved; alternatively, the limits of the microarray data may decrease our 

ability to detect weaker sex-specific gene expression. Overall, 219 eQTLs were linked to 

the loss or gain of sex-specific expression of 205 genes (46% of the 471 sex-specific 

genes, for which we have complete expression in male and female liver of the 8 DO 

founder strains). The pervasive impact of genetic regulation on sex-biased gene 

expression is potentially greater, as up to 68% (322 genes; 360 eQTLs) of sex-specific 

genes are associated with eQTLs that were predicted to modulate the sex-specific gene 

expression across DO founder strains. Differences of the identified sex-specific genes 

across founder strains manifest in the significant enrichment of different KEGG pathways 
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for select founder strains, most notably pyruvate metabolism for WSB/EiJ mice, and 

biosynthesis of unsaturated fatty acids and metabolism of xenobiotics by cytochrome 

P450 for PWK/PhJ mice. Further, DO founder mice exhibit diverse liver phenotypes 

(Svenson et al. 2007, Churchill et al. 2012), including differences in disease 

susceptibility, such as fatty liver disease (Fengler et al. 2016), liver fibrosis (Hillebrandt 

et al. 2005) and hepatoxicity (Tryndyak et al. 2012, Church et al. 2015), as well as 

differences in liver inflammatory responses (Bavia et al. 2015), whose molecular 

mechanisms are thought to involve sex-biased genes (Gonzalez 2005, Shimizu et al. 

2007, Tessari et al. 2009, Ayonrinde et al. 2011, Baik et al. 2011, Takahashi et al. 2014).  

 

We were not able to identify eQTLs for 315 sex-specific genes, and found their gene 

expression across strains to be less variable, thereby preventing us to uncover their 

regulatory regions based on association between genotype and gene expression data 

alone. These genes may be comprised of a core gene set whose sex-biasedness are 

essential to maintain, such that their gene expression variability across strains would not 

be tolerated. This gene set, notably, include important GH-regulated TFs including Bcl6 

and Cux2. A possible hypothesis is that only a limited number of sex-biased genes 

needed to establish the sexual dimorphism characterizing liver transcriptome and liver 

epigenome, and other non-essential sex-biased genes are allowed to vary, leading to 

diverse liver phenotypes. 

 



!

!

99 

Relationship between genetic variants and GH in the regulation of sex-biased gene 

expression. We show that the impact of a subset of genetic variants is substantially 

stronger in one sex, as compared to the other, despite the identical autosomal sequences 

of males and females. Thus, a mechanism must exist to allow genetic variants to confer 

regulatory control in a sex-biased manner. GH and its sex-dependent pattern of pituitary 

secretion is a key regulator of liver sex-biased gene expression, and is a primary 

candidate for this role. Differences in plasma GH profiles activate STAT5 in a sex-

differential manner, and STAT5, in turn, cooperates with other GH-dependent TFs to 

regulate the transcription of sex-biased genes through their sex-differential binding to 

liver chromatin. The sex-dependent plasma GH profiles are also linked to the widespread 

differences in histone modifications and chromatin accessibility between male and female 

liver (Ling et al. 2010, Sugathan and Waxman 2013). An earlier study on human whole 

blood samples found that the genetic control on both sexes are largely similar (Kassam et 

al. 2016), in contrast with a subset of eQTLs in our study showing strong genetic 

association selectively in one sex. This discrepancy may be due to the pervasive action of 

GH in imparting sex differences in regulatory regions in mouse liver (Ling et al. 2010, 

Sugathan and Waxman 2013, Connerney et al. 2017) , which may be missing in human 

whole blood cells.  

 

GH signaling pathways and GH-dependent sex-specific gene transcription seem to be 

largely unperturbed across DO founder strains, as indicated by the similar fraction of 

genes in each strain that belong to each of the four gene categories that are responsive to 
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the loss of GH signaling in hypox mice, defined previously (Connerney et al. 2017). 

Further, eQTL regions, including a subset of trans eQTL regions, were enriched for sex-

biased and GH-regulated sites of chromatin accessibility (DHS) and TF binding that 

match the sex-specificity of the gene that each eQTL is associated with, consistent with 

these eQTL regions playing a regulatory role. This analysis was based on the subset of 

sex-biased DHS and TF binding sites that encompass genetic variants specific to the 

founder strain predicted to be regulated by the respective eQTLs. Thus, certain genetic 

variants are proposed to be within GH-regulated accessible chromatins (DHS) and/or 

functional regulatory regions (TF binding sites) that are active in one sex, but not the 

other, which effectively creates a way for genetic variants to alter GH-regulated gene 

expression in a sex-biased manner. One example is the female-specific gene Cyp2b9, 

which loses its sex-biased expression in 129S1/SvImJ mouse liver. An eQTL with a 

strong repression effect (Fig. S3-6, category 4) uniquely linked to 129S1/SvImJ female 

mouse liver is characterized by 129S1/SvImJ-specific SNPs/indels at one female-biased 

DHS and 3 female-biased STAT5 binding sites. The genetic variants at one or more of 

these regulatory sites are proposed to interfere with the transcription of Cyp2b9 (Fig. S3-

10A), leading to the dramatic decrease of Cyp2b9 expression seen in 129S1/SvImJ 

female liver (Fig. S3-10B and S3-10C).  

 

Properties of the genetic regulation of sex-biased genes. The present study reveals 

several features that elucidate how genetic modifiers impact the transcription of sex-

specific genes, including their tendency to regulate expression a small set of genes, rather 
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than via a master regulator susceptible to the effects of genetic variants. This conclusion 

is supported by our finding that co-regulated gene clusters, identified through overlapping 

eQTLs in the same regulating strain, are mostly small in size, i.e., clusters of <10 genes. 

However, this does not exclude the possibility that some of the genes regulated by 

genetic variants are themselves regulators, which perhaps regulate many genes, but which 

would not necessarily be sufficiently strong to be discovered as eQTLs in the present 

analyses. One such example is the Rsl gene, which codes for a Krüppel-associated box 

zinc finger (KRAB-ZPF) protein, whose expression varies across mouse strains (Krebs et 

al. 2003, Krebs et al. 2005). Rsl directly represses several sex-specific genes, including 

Slp and others, and it appears to regulate other sex-specific genes by indirect activation or 

repression (Krebs et al. 2009, Krebs et al. 2012). Thus, Rsl exemplifies how genetic 

variation can alter the expression of a sex-biased gene, which then causes a 

transcriptional cascade that has a widespread effect on sex-specific gene expression 

patterns. Another feature of genetic regulation in liver is a slight bias towards up 

regulation of gene expression, a property that is retained for strongly sex-specific genes. 

Finally, we found that eQTLs associated with highly male-specific genes tend to have 

stronger genetic regulation in male liver, and correspondingly, highly female-specific 

genes tend to have stronger genetic association in female liver. 

 

In conclusion, we identified significant genome-wide associations between genetic 

variants and gene expression (eQTLs) in DO mouse liver, a subset of which showed 

stronger genetic association in one sex, as compared to the other. We further 
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characterized the high variability of sex-biased gene expression across DO founder 

strains, and showed that eQTLs with a sex-bias in association can explain the loss or gain 

of sex-specific gene expression, in DO founder strains, for 46% of sex-biased genes. 

eQTL regions associated with sex-specific genes, including a subset of trans eQTL 

regions, were shown to be enriched for sex-biased open chromatin regions and sex-biased 

binding sites for GH-regulated TFs. Finally, co-regulated gene clusters were identified 

based on overlapping regulatory regions (eQTLs), where a subset of clusters grouped 

highly correlated genes from different chromosomes. These findings reveal the extensive 

regulatory role played by genetic variants, working in tandem with GH, in the 

transcriptional regulation of sex-biased genes, many of which are implicated in the sex 

differential outcome of liver metabolism and disease susceptibility. 
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Table 3-1. Number of autosomal eQTLs found when using all, male only or female 
only samples.  
We observed more significant eQTLs in female than male. A similar observation was 
made in BXD liver, where 26.7% more significant eQTLs was reported for female liver 
as compared to male liver (1,638 significant eQTLs in male liver vs. 2,076 significant 
eQTLs in female liver).  

Types of 
eQTLs 

Set of 
genes 

All 
Livers 

Male 
Livers 

Female 
Livers Combined 

Combined 
(%in same 

TAD 
(cis)) 

All 

Protein-
coding (n = 
18,543) 

9,088 
(8,753 
genes) 

6,494 
(6,202 
genes) 

7,219 
(6,904 
genes) 

11,362 
(10,097 
genes) 

7,492 
(66 %) 

LncRNA  
(n = 2,016) 

1,237 
(1,177 
genes) 

920 
(885 

genes) 

1,014 
(957 

genes) 

1,524 
(1,318 
genes) 

1,014 
(67%) 

Total 10,325 7,414 8,233 12,886 8,506 

Associated 
with sex-
specific 
genes 

Protein-
coding (n = 
1,033) 

708 
(682 

genes) 

555 
(523 

genes) 

602 
(581 

genes) 
830 

(743 genes) 
631 

(76%) 

LncRNA 
(n = 168) 

131 
(121 

genes) 

99 
(95 

genes) 

105 
(97 

genes) 
157 

(130 genes) 
108 

(69%) 
Total 839 654 707 987 739 
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Table S3-1 to Table S3-8.  
Supplementary tables for Chapter 3 are available upon request (djw@bu.edu) 
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Figure 3-1. Protein-coding gene sex-specificity across DO founder strains. (A) 
Heatmap of the log2 male/female fold-change values across DO founder mouse livers for 
471 protein-coding genes that are significantly sex-specific (male/female |fold-change|  > 
1.5 at FDR < 0.05) in at least one DO founder strain based on the microarray dataset. 
Black boxes highlight genes with stronger sex-specificity in select DO founder strains. 
(B) Gene expression level for 220 sex-specific genes showing the highest inter-strain 
variability, but the lowest intra-strain variability (see Methods), across a set of 64 male 
DO founder mouse livers. The map is clustered based on the summation of expression 
levels of each gene across the 8 indicated DO founder strain male livers, with the color 
intensity indicating the fraction of expression seen in each liver. The data shown are 
based on 8 livers for each DO founder strain. (C) Number of sex-specific protein-coding 
genes in each DO founder strain, based on microarray datasets. (D) PCA of the 96 
microarray samples (6 samples/sex/strain) based on the expression level of 471 sex-
specific genes in each DO founder strain. (E) KEGG pathways enriched (adjusted 
Benjamini P < 0.05) in the set of sex-specific protein-coding genes identified in each DO 
founder mouse strain. (F) Distribution of male-biased class 1 and class 2 genes, and of 
female-biased class 1 and class 2 genes across mouse strains. The first bar presents the 
distribution of sex-biased genes across the four Hypox response classes (Connerney et al. 
2017) identified in CD-1 mice. The other 8 bars represent the corresponding distributions 
in each of the 8 DO founder strains. 
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Figure 3-2. Autosomal eQTLs for liver-expressed genes. (A) Venn diagrams showing 
numbers of autosomal eQTLs discovered using all DO livers, or using male only or 
female only liver samples (Table 3-1) and that are associated with protein-coding genes 
(left) or lncRNA genes (right). Overall, 10,597 autosomal eQTLs are significant in either 
male liver or female liver. (B). Pie chart showing the realtive frequency with which each 
of the indicated DO founder strains has the largest regression coefficient (i.e., is the 
major regulating strain) for the set of 12,886 combined autosomal eQTLs. (C) Genome-
wide association of Sult3a1 in all (left), male only (middle) and female only (right) livers. 
The horizontal red line marks the P < 0.05 significance cutoff based on the permutation 
test. (D) Regression coefficients (top of each panel) and LOD scores (log10(p-value); 
bottom of each panel) across the chromosome that have a significant eQTL peak in male 
(left) or female (right) mouse liver, as marked at bottom. Shaded area in the LOD score 
plot indicates the 95% Bayesian credible interval for each eQTL. (E) Expression of 
Sult3a1 in male and female mouse livers for each DO founder strain (left). Also shown 
are calculated male/female expression ratios (right). The middle hinge of each boxplot 
indicates the median, while the lower and upper hinges correspond to the first and third 
quartiles. Whiskers mark 1.5 * IQR value. Red arrows indicate a decrease in female 
expression in NZO/HiLtJ mice and an increase in male expression in CAST/EiJ mice, 
both of which abolish the sex-specific expression seen in the respective mice strain. 
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Figure 3-3. Autosomal eQTLs associated with sex-specific genes. (A) Venn diagrams 
showing overlaps for eQTLs discovered in all, male only or female only liver samples 
that are associated with sex-specific protein-coding or sex-specific, multi-exonic 
intergenic lncRNA genes. (B) Distribution of LOD score differences (log10 values) in 
male vs. female liver for autosomal eQTLs that are associated with sex-independent 
(left), strongly male-specific (male/female |fold-change| > 4; middle) or strongly female-
specific genes (male/female |fold-change| > 4; left). (C) (Left) Percentage of eQTLs in 
categories #1-4 (described at the right) that are associated with a loss of sex-specific gene 
expression in its regulating strain. (Right) Four possible scenarios, whereby an eQTL may 
result in the loss of sex-specfiic liver gene expression. (D) (Left) Percentage of eQTLs in 
categories #5-8 (described at the right) that are associated with a gain of sex-specific gene 
expression in its regulating strain. (Right) Four possible scenarios, whereby an eQTL may 
result in an increase in the sex-specificity of liver gene expression. 
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Figure 3-4. Enrichment of DHS and TF binding sites that contain regulating strain-
specific SNPs/indels at different types of eQTL regions. Fraction of male-specific, 
female-specific and sex-independent DHS (top left), STAT5 (top right), and BCL6 
(bottom) binding sites with regulating strain-specific SNPs/indels at different sets of 
eQTLs. The different sets of eQTL are as follows: eQTLs identified for genes with 
|male/female| > 4 fold-change were designated sex-specific, eQTLs identified for genes 
with with |male/female| < 1.2 fold-change were designated sex-independent, and eQTLs 
identified in a different TAD from the gene it is associated with were designated trans. 
The number of eQTLs analyzed in each boxplot varied between DHS and TFs, and are 
specified in the x-axis labels. The middle hinge of each boxplot indicates the median 
value, while the lower and upper hinges correspond to the first and third quartiles. 
Whiskers marks 1.5 * IQR value. P-values were determined by the Wilcoxon test, where 
***=0.001, **=0.01 and *=0.05. The number of binding sites and DHS for each eQTL is 
shown in Table S3-4. 
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Figure 3-5. Co-regulated gene clusters based on overlapping eQTL regions 
discovered in all liver samples. (A) A co-regulated cluster consisting of twenty-one 
overlapping eQTLs with the PWK/PhJ as the regulating strain. (B) Four co-regulated 
clusters containing sex-specific genes. The heatmaps show correlations of gene 
expression (Pearson)..  
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Figure 3-6. Co-regulated gene clusters that show different gene members in male vs. 
female liver. (A) Pearson gene expression correlation of Sult2a1, Sult2a3 and Sult2a5 in 
male liver (left) and female liver (right). (B) Regression coefficients (top figure in each 
panel) and LOD scores (bottom figure in each panel) across chromosome 7 for Sult2a1 in 
male liver (top left) and female liver (top right), for Sult2a3 in male liver (middle left) 
and female liver (middle right) and for Sult2a5 in male liver (bottom left) and female 
liver (bottom right). Shaded area in the LOD score figures indicate 95% Bayesian 
credible interval for each eQTL. 
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Figure S3-1. Schematic overview of how the SNP array and RNA-Seq data were 
analyzed for each DO mouse liver samples. 
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Figure S3-2. High variability of the sex-specificity of gene expression in individual 
livers of CD-1 mice and DO mouse founder strains for select male-specific and 
female-specific genes. Gene expression in individual mouse livers across strains: male 
and female CD-1 mice (first row; left), male and female C57BL/6J mice (first row, right), 
male and female DO mice fed a standard chow diet (second row), or fed a high fat diet 
(third row). The fourth row shows box plots of gene expression level (FPKM) based on 
128 individual male livers for DO founder mice fed a standard chow diet (left), or fed a 
high fat diet (right), and for male and female DO founder strain mice (fifth row; left). The 
first four rows are gene expression measured by RNA-Seq (FPKM values), while the 
gene expression on the fifth row was measured by microarrays. Male/Female sex ratios 
across the DO founder strains based on the microarray dataset was also calculated (fifth 
row; right). Examples shown are for a male-specific gene (Cyp4a12b), where male-
biased expression is reduced or lost in PWK/PhJ mice, and a female-specific gene 
Cyp2c39, where female-biased expression is lost in C57BL/6J mice. 
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