
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

2019

Breaks, trends and the attribution of

climate change: a time-series analysis

Estrada, F., & Perron, P. (2019). Breaks, Trends and the Attribution of Climate Change: A

Time-Series Analysis. Economia, 42(83), 1-31. https://doi.org/10.18800/economia.201901.001

https://hdl.handle.net/2144/39046

Downloaded from DSpace Repository, DSpace Institution's institutional repository



www.fondoeditorial.pucp.edu.pe

2019, Volume 42, Issue 1, 1-31 / ISSN 2304-4306

E C O N O M Í A

revistas.pucp.edu.pe/economia

Breaks, Trends and the Attribution of Climate Change:
A Time-Series Analysis

Francisco Estradaa , b, Pierre Perronc,☆

aCentro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria,
Circuito Exterior, 0451 Mexico, DF, Mexico
bInstitute for Environmental Studies, Vrije Universiteit, Amsterdam, Netherlands
B feporrua@atmosfera.unam.mx
cDepartment of Economics, Boston University, 270 Bay State Rd., Boston, MA, 02215, USA
B perron@bu.edu ☆Corresponding author

Abstract
Climate change detection and attribution have been the subject of intense research and debate
over at least four decades. However, direct attribution of climate change to anthropogenic activi-
ties using observed climate and forcing variables through statistical methods has remained elusive,
partly caused by difficulties to correctly identify the time-series properties of these variables and
by the limited availability of methods to relate nonstationary variables. This paper provides strong
evidence concerning the direct attribution of observed climate change to anthropogenic greenhouse
gases emissions by first investigating the univariate time-series properties of observed global and
hemispheric temperatures and forcing variables and then by proposing statistically adequate mul-
tivariate models. The results show that there is a clear anthropogenic fingerprint on both global
and hemispheric temperatures. The signal of the well-mixed Greenhouse Gases (GHG) forcing in
all temperature series is very clear and accounts for most of their secular movements since the
beginning of observations. Both temperature and forcing variables are characterized by piecewise
linear trends with abrupt changes in their slopes estimated to occur at different dates. Neverthe-
less, their long-term movements are so closely related that the observed temperature and forcing
trends cancel out. The warming experimented during the last century was mainly due to the
increase in GHG which was partially offset by the effect of tropospheric aerosols. Other forcing
sources, such as solar, are shown to only contribute to (shorter-term) variations around the GHG
forcing trend.
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1. Introduction

The scientific literature on climate change shows sound direct and indirect scientific evidence
about the warming of the climate system during the 20th century and of its anthropogenic com-
ponent. A considerable amount of the available attribution studies is based on model predictions
about how the world would be with and without anthropogenic interventions with the climate
system. However, direct attribution of climate change to anthropogenic activities using observed
climate and forcing variables through statistical methods has remained contentious. Examples
of the application of statistical techniques to address the attribution of climate change are Stern
and Kaufmann (1997a,b), Kaufmann et al. (2006a,b), Tol and De Vos (1993, 1998), Hui and
Rodríguez (2005), among others, who showed how the possible presence of stochastic trends in
temperature and forcing series could be interpreted. Since then, important advances have been
proposed in testing for unit roots, which have significantly changed econometric modeling (see
Perron, 2006 for a review) and are useful to address the detection and attribution of climate
change (Gay-Garcia et al., 2009; Estrada et al., 2010; Estrada et al., 2013a; Mills, 2010a,b; Gil-
Alana, 2008). This literature has shown that the assumption on which these earlier attribution
studies are based on (i.e., temperatures and forcing variables being integrated processes) was
not soundly tested and that there are strong reasons from both statistical and climate physics
perspectives for questioning this assumption (Estrada et al., 2010; Gay-Garcia et al., 2009; see
also Triacca, 2001).

This paper first investigates the time-series properties of temperatures and forcing variables
using recent econometric techniques to determine what type of data generating process best
describes them. Establishing these properties then allows testing for the existence of long-term
relationships between temperatures and forcing variables. It is shown that both temperature
and different combinations of the radiative forcing variables can be best represented as trend
stationary processes with a one-time structural change in the slope of the trend functions occu-
rring at different dates and of diverse magnitudes. In spite of these differences, the multivariate
models indicate that the long-term movements of all these variables are so closely related that
the observed temperature and forcing trends cancel out, producing stationary residuals. The
results show a clear anthropogenic fingerprint on both global and hemispheric temperatures. In
particular, well-mixed Greenhouse Gases (GHG) is the variable which contributes the most to
the secular movement of the total observed radiative forcing. Its signal is clearly imprinted in
all temperature series and accounts for most of their long-term movement since the beginning of
observations.

Our analysis suggests a break in the slope of the trend function of the first principal component
of the forcing variables. The post-break trend slope is twice the value of the pre-break slope
value and the resulting post-break trend slopes of global, northern and southern hemispheres
temperatures are up to 7, 9 and 10 times larger than their pre-break slope values, respectively.
The contribution of the different forcing variables is also estimated and it is shown that the
warming experimented during the last century was mainly due to the increase in GHG, which
was partially offset by the effect of tropospheric aerosols. Other forcing sources, such as solar,
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mainly contribute to shorter-term variations around the GHG forcing trend and are shown to
play no role on the short-run dynamics of temperature series, at least in annual time-scales.

This manuscript was the starting point for some ideas that were developed further and pu-
blished later, with different methods and newer data. The objective of this contribution is to
show some extensions that were never explored further in the context of the research that the
authors have published elsewhere. In particular the results presented here show robustness to
different datasets and methods. See, in particular, Estrada et al. (2013a,b, 2017), Estrada and
Perron (2017, 2019). A review of the statistical methods used can be found in Estrada and Perron
(2014).

The paper is structured as follows. Section 2 presents a univariate analysis of the time series
properties of the various variables used, both temperatures and radiative forcings. Section 3
establishes the fact that temperatures and forcings share a common breaking trend. Section 4
provides a brief analysis of the short-run dynamics and results from Granger causality tests. A
time series model for global and hemispheric temperatures is presented in Section 5. In Section
6, our selected model is shown to provide improved forecasts compared to that of Kaufmann et
al. (2006a), which assumes integrated series that are cointegrated. Brief concluding remarks are
offered in Section 7.

2. Univariate Analysis of the Time-Series Properties

The time-series properties of annual global and hemispheric temperatures from both the
Climatic Research Unit’s HadCRUT3 (Brohan et al., 2006) and the NASA database (Hansen et
al., 2010) are analyzed (henceforth, we simply use HadCRUT3 and NASA when referring to the
respective datasets). The HadCRUT3 spans the period 1850-2010 while NASA covers only 1880-
2010. The series are presented in Figure 1. Below, we show strong evidence for trend-stationarity
when using unit root tests that allow for a break in the trend function (Kim and Perron, 2009;
Perron, 1997, 1989). These results are broadly similar to those of Gay-Garcia et al. (2009) and
Estrada et al. (2013a), except that we provide evidence for the presence of two breaks in the
slope of the trend function of the southern hemisphere’s temperature. We also show these breaks
to also be present in the radiative forcing produced by well-mixed GHG.

The standard Augmented Dickey-Fuller unit root test (ADF, Dickey and Fuller, 1979; Said and
Dickey, 1984) applied to global and hemispheric temperatures seems to provide strong evidence
for a unit root; see Table 1; other most recent unit root tests proposed by Ng and Perron
(2001) also suggest the same results. However, as shown by Perron (1989) these results can be
misleading if there are breaks in the trend function of the time-series. Figure 1 suggests the
presence of structural breaks in the slopes of the trends of all temperatures series. Hence, the
results in Table 1 could be misleading. To test for the existence of these breaks, we applied the
testing procedure of Perron and Yabu (2009) which is valid whether the noise component is I(1)
or I(0) and thus circumvents the problem of pretesting for a unit root usually needed to apply
structural change tests. From the results reported in Table 2, the stability of the slope parameter
of the trend function for all temperature series is rejected at the 1% significance level, providing
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(a) HadCRUT3 (sample 1850-2010)

(b) NASA (sample 1880-2010)

Figure 1. Time series plot of the global and hemispheric temperatures series from the HadCRUT3 and
NASA datasets.

strong arguments for the need of unit root tests that allow for a one-time break in the trend
function.

Perron (1989) first suggested unit root tests in the presence of structural breaks in the trend.
Several methods have been developed to extend his original tests to the case of an unknown break
date; e.g. Perron (1997), Zivot and Andrews (1992) and Perron and Rodríguez (2003). For these
tests the possibility of a break is only allowed under the alternative hypothesis (stationary noise
component) and not under the null (integrated noise component). The literature has shown that
the Zivot and Andrews (1992) test and some of the tests proposed in Perron (1997) can reject the
null hypothesis of a unit root if there is a large break in the slope of the trend function when a
unit root noise component is actually present (see Vogelsang and Perron, 1998; Kim and Perron,
2009). To avoid this problem, Kim and Perron (2009) present new unit root testing procedures
based on the original test of Perron (1989) that allow for a break in the trend function both under
the null and alternative hypotheses and that include a pretest for the existence of a break using
the Perron and Yabu (2009) test. If this pre-test rejects, the limit distribution of the unit root
test is then the same as if the break date was known (see Perron, 1989; Perron and Vogelsang,
1993). This is very advantageous since when a break is present the test has much greater power.

2.1. Results for Observed Global and Hemispheric Temperatures

We apply the Kim and Perron (2009) and the version of the Perron (1997) tests based on
selecting the break date by minimizing the t-statitistic of the change in slope, which is immune
to the size problem alluded to above. The “changing growth” model is assumed for global and
hemispheric temperature series given that global warming would imply a change in the rate of
increase of these variables, as was also proposed in Gay-Garcia et al. (2009) and Estrada et al.
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Table 1
Standard Augmented Dickey-Fuller test applied to temperature series.

Series ADF test statistic
Global (NASA) -1.49
Global (HadCRUT3) -2.30
NH (NASA) -1.75
NH (HadCRUT3) -2.40
SH (NASA) -2.92
SH (HadCRUT3) -2.80

Note: The AIC information criterion was used to
select the lag length, and the deterministic regres-
sors were a constant and a trend. None of the
statistics are significant at the 5% level (critical
value: -3.41).

Table 2
Perron and Yabu (2009) tests for structural changes in the trend function for time series with an integrated
or stationary noise component.

Series Exp-Wald statistic
Global (NASA) 5.20a

Global (HadCRUT3) 4.36a

NH (NASA) 4.04a

NH (HadCRUT3) 4.93a

SH (NASA) 5.14a

SH (HadCRUT3) 5.77a

Note: a, b, c denote statistical significance at
the 1%, 5% and 10%, respectively.

(2013a). As shown in Table 3, the results provide quite clear evidence for trend-stationarity once
a break in the slope of the trend is allowed. For all time series and with both tests, the null
hypothesis of a unit root is rejected at the 1% significance level in favor of a trend stationary
process with one-time change in the rate of growth. The changes have occurred at different
times in the global and hemispheric temperatures and consisted in abrupt increases of different
magnitudes in the rate of warming.

It is important to note that in the case of global and northern hemisphere temperatures the
estimates of the break dates are quite similar for both the HadCRUT3 and the NASA time series:
1971 and 1978 and 1984 and 1985 for the global and northern hemisphere temperatures from
the HadCRUT3 and NASA, respectively. As revealed by the results of applying the methodology
of Perron and Zhu (2005), when considering a 95% confidence interval one cannot consider the
estimates of the break dates from these databases to be statistically different (Table 4). It is also
worth noting that the break dates from global and northern hemisphere temperatures are not
statistically different, regardless of which database is used. These results are also congruent with
those shown in Gay-Garcia et al. (2009). Nevertheless, the estimates of the break date in the
southern hemisphere temperature are quite different, and depend on the database selected. The
results obtained using the NASA dataset are very similar to those in Gay-Garcia et al. (2009),
where the break in the trend function is estimated to occur at the beginning of the 20th century.
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Table 3
Tests for a unit root with a one-time break in the trend function, HadCRUT3 (C) and NASA (N) data.

Series Tb k µ̂ tµ̂ β̂ t
β̂

γ̂ tγ̂ α̂ tα̂ S(ê) tα(λ̂AOtr )

G_C 1971 0 -0.40 -18.09 0.0022 7.45 0.0136 10.17 0.59 -6.37a 0.126 -5.61a

NH_C 1984 0 -0.40 -15.37 0.0030 9.27 0.0243 9.45 0.58 -6.46a 0.154 -5.91a

SH_C 1955 0 -0.38 -17.03 0.0011 3.12 0.0099 10.26 0.55 -6.86a 0.122 -6.26a

G_N 1978 0 -0.32 -16.58 0.0039 12.15 0.0129 9.04 0.40 -7.45a 0.091 -6.40a

NH_N 1985 0 -0.31 -11.81 0.0042 10.02 0.0235 9.00 0.46 -6.90a 0.124 -5.57a

SH_N 1923 0 -0.24 -9.846 -0.0005 -0.70 0.0078 7.85 0.35 -7.91a 0.084 -6.82a

SH_N∗ 1955 0 -0.30 -15.40 0.0027 6.84 0.0066 7.56 0.36 -7.79a 0.091 -5.91a

Note: The regression model for the unit root tests is defined by the following equations: 1)yt = µ+βt+ γDT ∗t + ỹt, where
DT ∗t = 1(t > Tb)(t−Tb) and 2) ỹt = αỹt−1 +∑ki=1 ci∆ỹt−1 +et. The symbols used are defined as follows: Tb is the estimated
time of the break; k is the number of lagged differences added to correct for serial correlation; S(ê) is the standard error
of the regression; µ̂, β̂, γ̂ are the regression coefficients of the trend function and tµ̂, tβ̂ , tγ̂ the corresponding t-statistic
values. α̂ is the sum of the autoregressive coefficients and tα̂ is the Perron (1997) unit root test statistic. tα(λAOtr ) is the
Kim and Perron (2009) unit root test. a,b,c,d denotes statistical significance at the 1%, 2.5%, 5% and 10%, respectively
(critical values from Perron, 1997, for the test tα̂, and from Perron and Vogelsang, 1993, Table 1, for the test tα(λAOtr )).

Table 4
Break date estimates and 95% confidence intervals for global and hemispheric temperatures.

NASA HadCRUT3
Globe 1978 1971

(1971,1985) (1962,1980)
NH 1985 1984

(1979,1991) (1977,1991)
SH 1923 1955

(1914,1932) (1945,1965)
SH∗ 1955 -

(1945,1965)

On the contrary, using the HadCRUT3 the break date is estimated to occur in 1955, a break
date that is statistically different from both the estimate using the NASA dataset and that of
Gay-Garcia et al. (2009).

These differences can be explained by analyzing the sum of the squared residuals (SSR) of the
regressions used to estimate the beak date. The estimates of the SSR show two minima in both
the NASA and HadCRUT3 series. Figure 2 shows the results to be sensitive to the sample period
used: when the sample of the HadCRUT3 and NASA series are the same (Figure 2b), the global
minimum occurs around 1915 and is very similar to that of NASA (Figure 2a). However, when the
full sample of the HadCRUT3 is used (1850-2010) the global and local minima exchange places:
the global minimum occurs in 1955 and the local one takes place during the first three decades of
the century (Figure 2c). This behavior suggests the existence of a second break in the slope of the
trend function and that the longer sample of the HadCRUT3 provides a better estimate of the
break date. For this reason, Table 3 also includes the results for the NASA southern hemisphere
temperature series when choosing 1955 as the break date (labeled SH_N*). As can be seen from
the results, the rejection of the null of a unit root is robust to this change in the break date.
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SSR_B

(a) NASA

SSR_B

(b) CRU (sample 1880-2010)

SSR_B

(c) CRU (sample 1850-2010)

Figure 2. Sum of the squared residuals of the regressions used to estimate the break date for the Southern
Hemisphere temperature series from the NASA and HadCRUT3 datasets with different samples.

The total increase in global and hemispheric temperatures is estimated to be practically
the same from the HadCRUT3 and NASA datasets: near 0.8°C, 1°C and 0.7°C, for the global,
northern and southern hemisphere temperatures. Also, from both datasets about 60% of the
observed warming in the global and northern hemisphere has occurred in a short period of time,
the last three to four decades in the case of the global average and in the last twenty-five years for
the northern hemisphere. The rate of increase in the global and northern hemisphere temperatures
in the post-break period has been approximately 1.7°C and 2.7°C per century, respectively. In
the case of the southern hemisphere, most of the warming has occurred since the last 55 years
(between 64% and 82%, depending on the dataset) and the rate of increase in temperature has
been approximately 1°C per century. The magnitudes of the pre- and post-break slopes reveal
important differences between datasets, particularly in the case of the southern hemisphere for
the pre-break period. For global and northern hemisphere temperatures, the estimates of the
pre-break slope using NASA’s dataset are 77% and 40% larger than those using the HadCRUT3
dataset, and 145% larger in the case of the southern hemisphere temperature. The differences
in the estimated post-break slopes are small in the cases of global and northern hemisphere
temperatures (5% and 1%, respectively) but for the NASA dataset the southern hemisphere
post-break slope is about 34% smaller than that of the HadCRUT3’s. The large differences in
the estimates of the southern hemisphere pre- and post-break slopes using NASA and HadCRUT3
datasets can be due to the inclusion of a wider coverage in the sea-surface temperature dataset
in the later (see Brohan et al., 2006).

According to these estimates observed temperatures have experienced a large increase in
the rate of growth since the mid-20th century. For the NASA dataset the post-break rate of
warming (i.e., the pre plus post-break slopes) is 3.3, 5.6 and 2.4 times larger than the pre-break
estimate for global, northern and southern hemisphere, respectively. For the HadCRUT3 dataset
these rates are 6.2, 8.1 and 9 times larger than the pre-break slope, in that order. As will be
shown in the next sections, these abrupt increases represent the response of the climate system
to a doubling in the rate of growth of the observed forcing. These changes concur with the
important characteristics of observed warming that have been previously reported (Gay-Garcia
et al., 2009): temperature series can be better described as trend stationary processes with a
one-time permanent shock that cannot be interpreted as part of the natural variability; climate



8 F. Estrada and P. Perron

change has occurred in two stages, the first consisting in a moderate rate of warming and a
second one showing a much larger rate of increase occurring rather abruptly in a short period of
time. Estrada et al. (2013a) have shown that these time-series characteristics are also present in
the 20th Century Climate Experiment simulations conducted for the IPCC’s Fourth Assessment
Report (IPCC-WGI, 2007).

2.2. Results for the Observed Radiative Forcing

In this section, the time series properties of radiative forcing series are investigated using
the same econometric techniques applied before to temperature series. The results are robust
to different definitions of the radiative forcing trend and show that the common assumption of
forcing variables being integrated processes is not supported by the data. The radiative forcing
series used were published by Hansen et al. (2011) and are available at the NASA Goddard
Institute for Space Studies website. The database covers the period 1880-2010 and includes
the following variables (in W/m2): well mixed greenhouse gases, WM-GHG (carbon dioxide
(CO2), methane (NH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs)); ozone (O3);
stratospheric water vapor (H2O); solar irradiance (SOLAR); land use change (LAND_USE);
snow albedo (S_ALBEDO); stratospheric aerosols (STRAT_AER); black carbon (BC); reflective
tropospheric aerosols (R_AER); and the indirect effect of aerosols (AIE). As can be seen from
Figure 3, with the exception of stratospheric aerosols, all time series show a clearly nonstationary
behavior in their level with large changes in their rates of growth.

Because the interest relies on investigating the relationship between temperature and anthro-
pogenic and natural forcing series, different “aggregate forcing trends” that may be driving the
observed changes in global and hemispheric temperatures are constructed and analyzed in this
section, instead of focusing on the time-series properties of the individual forcing variables. We
use this approach mostly because we want to extract the overall influence of total anthropogenic
versus natural forcings on temperatures, not the specific effect of various individual components
keeping in mind that CO2 stands out as the dominant one. In addition, these radiative forcing
trends are used to estimate the multivariate models presented in the next section, as a substi-
tute for the original forcing variables, which permits avoiding severe multicollinearity problems.
Two approaches were adopted for constructing different “forcing trends”. The first consists in
simply adding the forcing variables to construct the forcing trend. This is the standard procedu-
re in climate modeling. Three forcing trends using this approach were considered (Figure 4): 1)
well-mixed greenhouse gases (WM_GHG) which represents the dominant human contribution
to the observed radiative forcing; 2) GHG_SOLAR, composed of WM_GHG plus SOLAR, re-
presents the main anthropogenic and natural forcing variables; 3) ALL_FORCING includes all
of the human and natural forcing that contribute to the forcing trend (GHG_SOLAR plus H2O,
LAND_USE, S_ALBEDO, BC, R_AER and AIE). Note that STRAT_AER was not added to
construct the forcing trend given that it is stationary around a constant. Instead, this variable
is introduced as another independent variable in the regression models presented later. As can
be seen from Figure 4, WM_GHG is the most important variable contributing to the increase
in radiative forcing. Solar forcing mainly contributes to adding variability to the WM_GHG
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Figure 3. Time series plot of the forcing variables: well mixed greenhouse gases (WM_GHG); ozone
(O3); stratospheric H2O (H2O); solar irradiance (SOLAR); land use change (LAND_USE); snow albedo
(S_ALBEDO); stratospheric aerosols (STRAT_AER); black carbon (BC); reflective aerosols (R_AER);
aerosols indirect effect (AIE). Units are watts per squared meter.

trend, particularly imparting the well-known Schwabe 11 year cycle (IPCC-WGI, 2007). The
ALL_FORCING variable shows that the sum of forcing factors other than greenhouse gases and
solar have a negative net effect on the forcing trend. The reduction in the rate of growth of the
total radiative forcing is particularly important since the 1990’s, primarily due to the direct and
indirect effects of tropospheric aerosols.

The second approach consists in applying a principal component analysis to reduce the di-
mensionality and extract the principal modes of variation, in particular the trend mode. The
first principal component explains 83.32% of the variance of the radiative forcing and, as can
be seen in Figure 5, it represents the forcing trend. As revealed by the eigenvector associated
to this principal component, the forcing trend is a mixture of human and natural factors with
similar weights, except for stratospheric aerosols whose weight is close to zero (Table 5). The
forcing trend is thus a combination of all forcing series excluding stratospheric aerosols. The



10 F. Estrada and P. Perron

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

1900 1925 1950 1975 2000

WM_GHG

GHG_SOLAR

ALL_FORCING

Figure 4. Forcing trends constructed as the sum of the radiative forcing variables; units are watts per
squared meter.
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Figure 5. First and second principal components of the set of radiative forcing series.

second principal component (also depicted in Figure 5) explains only 10.15% of the variance
and it mainly represents the stratospheric aerosols forcing (Table 5). The remaining principal
components contribute only marginally to explaining the variance of this set of time series and
therefore are excluded from subsequent analyses.

The time series properties of the series constructed using both approaches are analyzed in the
rest of this section and will be used for the multivariate models presented subsequently. Note
that while the first approach has a clear physical meaning and allows for easier attribution of the
observed warming to different natural and anthropogenic factors, the second approach provides
a clearer separation of the trend mode from the other modes of variability.
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Table 5
Eigenvectors of the first two principal components of the set of radiative forcing.

Variable PC1 PC2
WM_GHG 0.340 -0.036
SOLAR 0.272 0.120
STRAT_AER 0.011 0.988
H2O 0.345 -0.041
BC 0.339 -0.015
R_AER -0.343 0.027
AIE -0.345 -0.018
O3 0.339 -0.060
S_ALBEDO 0.340 -0.016
LAND_USE -0.331 -0.049

As in the previous section, standard ADF unit root tests were applied to the forcing variables.
The ADF tests included in all cases a constant and a trend as the deterministic components with
the exception of the STRAT_AER and PC2 variables for which only a constant was included.
The results in Table 6 show that while PC2 and STRAT_AER can be considered as stationary
around a constant, the unit root null hypothesis cannot be rejected at any conventional levels
for all the “forcing trend” variables. Again, other most recent unit root tests proposed by Ng and
Perron (2001) also suggest the same results. Nevertheless, as mentioned in the previous section,
standard unit root tests can be severely affected by the presence of structural breaks in the trend
function, particularly when the break occurs in the slope parameter. Figure 4 and 5 strongly
suggest that the rate of growth of these variables has not remained constant over the sample
period, and thus standard unit root tests may not be adequate for investigating their time-series
properties.

The existence of structural breaks in the slopes of the trend function of these forcing trend
variables was tested using the Perron and Yabu (2009) procedure and, as shown in Table 7, for
all variables the null of parameter stability is strongly rejected. These results clearly suggest that
the finding of unit roots in the forcing variables reported in some of the previous publications
may due to the effect that breaks in the slope of the trend function have on standard unit root
tests. As in the case of global and hemispheric temperatures, allowing for the presence of a one-
time structural change in the slope of the trend function changes the conclusions markedly. As
shown in Table 8, the Perron (1997) and Kim and Perron (2009) tests applied to the forcing trend
variables defined above strongly reject the null of a unit root in favor of trend stationary processes
with one permanent break in their rate of growth. This finding has important implications for
the multivariate modeling of temperatures and radiative forcing variables. The results indicate
that there are no differences in the order of integration of these variables, all of them can better
be described as trend stationary processes. Therefore, the existence of long-term relationships
can be tested using standard regression models and there is no need to invoke for this purpose
cointegration methods that require the assumption of unit root processes in temperature and
forcing series.

The point estimate of the break date for all the forcing trend variables constructed under the
first approach is 1960. This break occurs after the small decline in WM-GHG around WWII and
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Table 6
Standard Augmented Dickey-Fuller test applied to the various forcing trend.

Series ADF test statistic
WM_GHG -2.74
GHG_SOLAR -2.76
ALL_FORCING -2.73
STRAT_AER -4.92
PC1 -2.31
PC2 -4.80

Note: The AIC information criterion was
used for determining the lag length, and
the deterministic regressors were a cons-
tant and a trend, except for PC2 and
STRAT_AER for which only a constant
was included. Figures in bold denote sta-
tistical significance at 5% level.

Table 7
Perron and Yabu (2009) test for a structural change in the trend function allowing an integrated or
stationary noise component.

Series Exp-Wald statistic value
WM_GHG 62.79a

GHG_SOLAR 5.41a

ALL_FORCING 5.63a

PC1 2.65a

Note: a, b, c denote statistical significance at
the 1%, 5% and 10%, respectively.

the subsequent recuperation of European economies (Figure 4). For PC1, the break date occurs 13
years earlier, in 1947. The estimated post-break rates of growth of the radiative forcing variables
are of much larger magnitude compared with those before the pre-break: for WM_GHG the
increase in the rate of growth is 334%; 213% for GHG_SOLAR and 345% for ALL_FORCING.
In the case of PC1, the post-break rate of growth is 107% larger than it was prior to the occurrence
of the break. It is interesting to note that according to the 95% confidence intervals estimated
using the Perron and Zhu (2005) procedure (Table 9), the break dates of the forcing variables
are not statistically different form the break date found in the southern hemisphere temperature
series. Also, when applying the Perron and Yabu (2009) test on the forcing trends to the sub-
sample 1880-1930, another break in the slope can be found at the beginning of the 20th century
which is very close to the one that can be found in the southern hemisphere temperature series
using the NASA dataset and when restricting the HadCRUT series to 1880-2010 (Table 4 and
Figure 2). In the case of global and northern hemisphere temperatures, the break in the slope
occurs later in the century and there is no evidence of another break at the beginning of the
century. Despite these differences, it is shown in the next section that the long-term movements
of all these variables are so closely related that the observed temperature and forcing trends
cancel out, producing stationary residuals. Temperature and forcing variables share the same
long-term trend. The forcing signal of well-mixed greenhouse gases is present in all temperature
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Table 8
Unit root tests applied to the “forcing trend” variables allowing for a one-time break in the trend function.

Series Tb k µ̂ tµ̂ β̂ t
β̂

γ̂ tγ̂ α̂ tα̂ S(ê) tα(λ̂AOtr )

WM_GHG 1960 7 -0.0343 -4.08 0.0105 64.95 0.0351 87.76 0.9009 -4.24b 0.040 -3.96b

GHG_SOLAR 1960 2 -0.1459 -8.20 0.0144 44.50 0.0307 42.37 0.8359 -5.59a 0.022 -4.86a

ALL_FORCING 1960 2 -0.0852 -5.34 0.0064 20.82 0.0221 28.98 0.8365 -4.58a 0.076 -4.24b

PC1 1947 2 -4.0457 -110.44 0.0496 61.45 0.0533 35.52 0.6901 -7.37a 0.162 -5.85a

Note: The regression model for the unit root tests is defined by the following equations: 1)yt = µ+βt+ γDT ∗t + ỹt, where
DT ∗t = 1(t > Tb)(t−Tb) and 2) ỹt = αỹt−1 +∑ki=1 ci∆ỹt−1 +et. The symbols used are defined as follows: Tb is the estimated
time of the break; k is the number of lagged differences added to correct for serial correlation; S(ê) is the standard error
of the regression; µ̂, β̂, γ̂ are the regression coefficients of the trend function and tµ̂, tβ̂ , tγ̂ the corresponding t-statistic
values. α̂ is the sum of the autoregressive coefficient and tα̂ is the Perron (1997) unit root test statistic. tα(λAOtr ) is the
Kim and Perron (2009) unit root test. a, b, c, d denotes statistical significance at the 1%, 2.5%, 5% and 10%, respectively
(critical values from Perron, 1997, for the test tα̂, and from Perron and Vogelsang, 1993, Table 1, for the test tα(λAOtr )).

Table 9
Break date estimates and 95% confidence intervals for the forcing trend variables.

Break date
WM_GHG 1960 (1958,1962)
GHG_SOLAR 1960 (1957,1963)
ALL_FORCING 1960 (1955,1965)
PC1 1947 (1944,1950)

series. It is especially pronounced for southern hemisphere temperatures for which the signal is
much clearer given that it is dominantly covered by the ocean, known to modulate temperature
variability, making it more stable around the long-term trend (Jones et al., 1986a,b; Hansen et
al., 1987).

The difference in the estimates of the break dates in the northern hemisphere, southern he-
misphere and global temperatures can be accounted for by the effect of the Atlantic Multidecadal
Oscillation (AMO) which represents ocean-atmosphere processes naturally occurring in the North
Atlantic with a large influence over the northern hemisphere and global climates. As shown in
Estrada et al. (2013b), when this effect is filtered out the break dates for global and northern
hemisphere from the HadCRUT3 dataset are estimated to occur in 1955 and 1959, respectively.
The NASA dataset leads to similar estimates of the break dates, namely 1956 and 1968. Hence,
once the AMO is accounted for, all temperature series have nearly the same break dates, which
are very close to those of the forcing variables.

3. Common Breaking Trends

We first use a simple approach to test for common trends in temperatures and forcing va-
riables that consists in estimating an Ordinary Least Squares (OLS) regression and conducting
a standard ADF test on the residuals. This is similar to the Engle-Granger (1987) two-steps
cointegration test but for trend-stationary variables (so the critical values are those tabulated
with no deterministic term included). The basic idea is to detrend global and hemispheric tem-
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peratures with the forcing trends and test if any non-stationarity remains in the residuals. With
stationary residuals, both temperatures and radiative forcing share the same long-term trend and
the observed warming during the 20th century can be attributed to anthropogenic activities. We
use the regression:

Ti,j,t = α + βFTr,t + εt (1)

where Ti,j,t are the observed average temperatures for the global, northern and southern he-
misphere (i = 1,2,3) and for the NASA and HadCRUT3 datasets (j = 1,2), while FTr,t are
the forcing trends. The way forcing trends were defined above is useful to separate the im-
portance of human and natural factors in the observed warming trend: WM_GHG is mostly
human-made, GHG_SOLAR represent a combination of the main human and natural forcing
factors, and ALL_FORCING the sum of all natural and anthropogenic forcing factors. If the
residuals from regression (1) obtained using WM_GHG are non-stationary but stationary when
using the GHG_SOLAR or ALL_FORCING variables, this would be evidence about the strong
contribution to observed warming by non-human-induced forcing factors. On the opposite, if
the residuals are stationary when temperatures are detrended using WM_GHG only, the in-
terpretation is then that anthropogenic factors are the dominant cause of global warming. To
further highlight the importance of human role in the observed warming of the 20th century,
a combination of the forcing trends defined above is also considered: ALL_FORCING minus
WM_GHG (hereafter ALL_FORCING*) which represents all forcing with the exclusion of the
most important anthropogenic forcing.

Table 10 shows the slope coefficient estimates of regression (1) as well as the associated
t-statistic value and the coefficient of determination for each combination of temperature and
forcing trends. The first thing that transpires from these results is that the slope coefficients in all
the estimated regressions using ALL_FORCING* are nonsensical because they imply a negative
relation between radiative forcing and temperature that is not physically possible. The total
forcing trend when excluding WM_GHG has a strong negative trend that cannot reproduce the
observed warming. Hence, the observed warming cannot be explained in a physically consistent
manner if the well-mixed greenhouse gases are excluded. The last column of Table 10 presents
the value of the standard ADF test specified with no deterministic terms when applied to the
residuals of regression (1). A rejection of the null hypothesis of a unit versus the alternative
of stationarity is evidence that the trends in temperatures and forcings are common. If they
were not, and given the fact that it has been established that the trends are non-linear, this
would induce residuals having a non-constant mean, which would induce a bias in the sum of the
autoregressive coefficients towards one and, hence, a non-rejection of the null hypothesis. These
results show strong support for the common trend hypothesis between temperatures and radiative
forcing, and in particular for the contribution of greenhouse gases to the observed warming.
Even when the forcing trend is limited to WM_GHG, the ADF test is considerably larger (in
absolute value) than the critical value at the 1% significance level, providing strong evidence that
observed temperatures follow the same long-term path as the human-made forcing, which has
been increasing very rapidly since 1960. Strong evidence in favor of a common trend is shown
for global and hemispheric temperatures and for both NASA and HadCRUT3 datasets. The
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Table 10
Estimated slope coefficient, goodness of fit measure, and ADF test on the residuals of regression (1) for
different forcing trends.

Global Temperature NH Temperature SH Temperature

Forcing Trends β R2 ADF β R2 ADF β R2 ADF

NASA
DATASET

WM_GHG 0.258 0.81 -3.96 0.283 0.70 -4.05 0.232 0.84 -7.45

(23.59) (2) (17.27) (1) (26.01) (0)

GHG_SOLAR 0.241 0.82 -4.03 0.264 0.70 -4.05 0.217 0.85 -7.98

(24.07) (2) (17.46) (1) (26.74) (0)

ALL_FORCING 0.409 0.80 -3.76 0.447 0.68 -3.86 0.371 0.84 -7.72

(22.86) (2) (16.67) (1) (25.99) (0)

PC1 0.079 0.79 -3.52 0.086 0.67 -3.70 0.071 0.83 -7.47

(22.14) (1) (16.24) (1) (25.31) (0)

All Forcing -0.664 0.79 -6.07 -0.735 0.69 -4.28 -0.593 0.80 -6.79

Except GHG (-22.06) (0) (-16.96) (1) (-22.85) (0)

Global Temperature NH Temperature SH Temperature

Forcing Trends β R2 ADF β R2 ADF β R2 ADF

HadCRUT3
DATASET

WM_GHG 0.255 0.77 -5.85 0.280 0.71 -5.20 0.231 0.74 -5.97

(21.05) (0) (17.59) (0) (19.40) (1)

GHG_SOLAR 0.238 0.78 -5.87 0.261 0.71 -5.23 0.215 0.74 -5.95

(21.14) (0) (17.73) (0) (19.36) (1)

ALL_FORCING 0.409 0.78 -5.82 0.444 0.70 -5.06 0.374 0.76 -6.20

(21.15) (0) (17.18) (0) (20.27) (1)

PC1 0.077 0.74 -5.28 0.085 0.68 -4.86 0.069 0.70 -4.07

(18.92) (0) (16.39) (0) (17.34) (2)

All Forcing -0.650 0.74 -5.50 -0.722 0.69 -5.19 -0.579 0.69 -5.77

Except GHG (-18.98) (0) (-16.92) (0) (-1.75) (0)

Note: Figures in parentheses show the t-statistic values except for the ADF in which case it shows the number of lags
to correct for serial correlation chosen using the BIC criterion. The critical values for the ADF test are: -2.583 (1%),
-1.943 (5%), -1.615 (10%).

results when using the variable PC1 is of special interest because a principal component analysis
permits extracting the trend mode in a way that it is more clearly separated from other modes
of variation in the multivariate forcing dataset. Hence, it may provide a better representation
for the secular movement of the forcing during the sample period. Again, the results indicate
a strong long-term relationship between temperature and radiative forcing. Hence, the common
trend finding is not sensitive to the way the forcing trend is constructed provided WM_GHG is
included.

Figure 6 shows the observed global and hemispheric temperatures from the NASA and Had-
CRUT3 datasets and the corresponding fitted temperatures obtained from regression (1). It
shows that the different definitions of the forcing trend describe very well the long-term move-
ment of all temperature series, irrespective of the dataset and forcing trend considered. Note
that the fit produced by WM_GHG reproduces the southern hemisphere temperature so closely



16 F. Estrada and P. Perron

that it almost appears to be a running-mean of temperature. The fit is also very good for global
and northern hemisphere temperatures, though not as good as for the southern hemisphere. The
northern hemisphere’s temperature shows larger variability around its long-term trend because
of large ocean-atmosphere cycles that are part of the natural variability over the North Atlantic
(notably the AMO) and also the differences in the percentage of land-continent (Schlesinger and
Ramankutty, 1994; Kerr, 2000; Knudsen et al., 2010).

Figure 6 also shows the ALL_FORCING plus START_AER and the PC1 plus the PC2
fits (for the global temperature series of the HadCRUT3 dataset, PC2 was not significant and
not included). The variables associated with volcanic eruptions have an important effect on
temperature variability over the northern hemisphere and global temperatures. Stratospheric
aerosols were not significant for the southern hemisphere. Figure 6 illustrates other important
common characteristics of temperatures and forcing trends, being more evident for the southern
hemisphere. For example, the reported cooling or slowdown of warming shown by all temperature
series during 1940-1975 (e.g., Jones et al., 1986a,b,c; Hansen et al., 1987; Tol and De Vos, 1998)
also coincides with a slowdown in the well-mixed GHG forcing during the same period. The
slowdown in the warming during the last two decades also matches with the deceleration in
the increase of the well-mixed greenhouse gases forcing mainly in CFCs due to international
regulation (more clearly seen in the southern hemisphere temperature), see Estrada et al. (2013b).
Finally, as discussed above, the structural break found in the NASA’s southern hemisphere
temperature (and in the HadCRUT3 data when the sample is restricted) is also present in
WM_GHG.

The evidence presented in this section indicates that the WM_GHG forcing had a determi-
nant role in the observed warming during the last century and dictates the long-term movement
in observed temperatures. The changes in aerosols, albedo and other forcing factors contributed
somewhat to reducing the warming particularly since the second part of the 20th century. The
solar cycles and the volcanic forcing are the main contributors to the variability around the
well-mixed greenhouse forcing trend. Figure 7 illustrates these facts by showing the individual
contribution of well-mixed greenhouse gases, solar and solar plus other forcing factors to the ob-
served northern temperature series (NASA). The contributions of these variables to the observed
warming were obtained by taking the differences between the fitted temperatures shown in Figure
6. The results are similar for global and southern hemisphere temperatures and therefore are not
shown. While the WM_GHG have produced an increase of 0.85°C in the northern hemisphere
temperature over the period 1880-2010, the solar forcing produced an increase in temperatures
around 0.06°C from 1880 to 1960 and then a cooling of more or less the same magnitude from
1961 to 2010. The joint contribution of all forcing except WM_GHG amounts to a decrease of
around 0.1°C from 1880 to 2010. That is, the net contribution of all forcing factors other than
WM_GHG has been a slight cooling of around 10% of the warming caused by the WM_GHG
increase.
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Figure 6. Observed and fitted temperatures using different definitions of the forcing trend.
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Figure 7. Contributions of different combinations of the forcing trend to the observed warming in the
northern hemisphere temperature.

In light of the strong evidence for a long-term relation between forcing and temperature
variables, the results indicate that the break in the forcing trend caused the subsequent breaks
in temperature series. Table 11 presents a comparison of the post- and pre-break values of the
slope of the trend for the forcing and temperature series. In all cases the breaks in temperature
series are more than proportional to the break in the forcing variable, irrespective of the forcing
trend and of the temperature dataset. For example, for the case of PC1, a doubling in the rate of
growth of the forcing produced a post-break slope in the global mean temperature between 4.3
(NASA) and 7.2 (HadCRUT3) times its previous value. For the northern hemisphere the response
to the break in the forcing trend is even larger ranging from 6.6 (NASA) and 9.1 (HadCUT3)
times its pre-break slope, while for the southern hemisphere the post-break slope is between 3.4
and 10 times its first slope value. Due to natural variability processes and climate dynamics,
the breaks in the slope of the forcing manifested themselves with different time lags in global
and hemispheric temperatures. The break had an impact on the southern hemisphere almost
simultaneously, while for the northern hemisphere and global series these breaks occurred about
35 and 24 years later, respectively.
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Table 11
Comparisons of the post- and pre-break values of the slope of the trend for the forcing and temperature
series for the HadCRUT3 (C) and NASA (N) datasets.

Forcing trend Post-break slope compared to its pre-break value

WM_GHG 334%

GHG_SOLAR 213%

ALL_FORCING 345%

PC1 107%

Temperature Post-break slope compared to its pre-break value

G_C 718%

NH_C 910%

SH_C 1000%

G_N 431%

NH_N 660%

SH_N 344%

4. Short-Run Dynamics and Granger-Causality Tests

To test for the existence of feedback processes in the short-run dynamics of forcing and
temperature variables, a vector autoregressive model (VAR) was estimated using the detrended
data of the PC1 forcing and of the NASA’s global and hemispheric temperatures, as well as
the Southern Oscillation Index (SOI) as endogenous variables and PC2 and a constant term
as exogenous. The best VAR models estimated for both hemisphere and global temperature
series are of order 3 and misspecification testing shows that they are statistically adequate (no
autocorrelation, no heteroskedasticity, and residuals approximately normal). These models also
satisfy the stability condition as the inverse roots of the characteristic polynomials lie inside the
unit circle in all cases. Table 12 presents the results of Granger Causality tests. They show that the
detrended forcing (PC1) does not Granger-cause detrended global or hemispheric temperatures,
and that the detrended global or hemispheric temperatures also do not Granger-cause detrended
PC1. Hence, the forcing trend, here represented by PC1, has a strong role defining the long-term
evolution of global and hemispheric temperatures but does not contribute to the short-term
dynamics and no significant short-term feedback processes is present, at least with the annual
frequency considered. The results are the same using any of the forcing trends considered (as long
as WM-GHG is included). Hence, the forcing trends are exogenous. For an alternative perspective
on causality from radiative forcing and temperatures, see Estrada and Perron (2019).

5. Time Series Models for Global and Hemispheric Temperatures Series

In this section, statistically adequate models for global and hemispheric temperatures for the
NASA and HadCRUT3 datasets are presented. It is shown that parsimonious time-series models
can provide a very good fit for observed global and hemispheric temperature series and produce
basic estimates of climate sensitivity within ranges reported in the literature using different
methods. The models attempt to capture both the short and long-term dynamics: the secular
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Table 12
Results of the Granger Causality tests applied to the detrended northern hemisphere, southern hemisphere
and global temperatures, and detrended PC1; NASA dataset.

Dependent
variable

Excluded Test P-value

NH∗

SH∗ 1.02 0.80

PC1∗ 4.34 0.23
SOI 18.51 0.0003

SH∗

NH∗ 0.88 0.83

PC1∗ 2.83 0.42
SOI 18.84 0.0003

PC1∗
NH∗ 1.02 0.80

SH∗ 0.89 0.83
SOI 4.26 0.24

G∗
PC1∗ 3.90 0.27
SOI 25.97 0.0000

PC1∗
G∗ 0.08 0.995
SOI 4.39 0.22

Note: SH and NH represent the southern and northern hemisphere tem-
peratures, respectively. ∗ denotes that the variable has been detrended. G
represents global temperatures.

movement in global and hemispheric temperature is captured by the forcing trends that were
shown to share their long-term trend with temperature variables, while the short-run dynamics
are accounted for by the internal dynamics of temperature series and by some climate indices
that are known to have an important role in capturing the inter-annual variability of global
and hemispheric temperatures. The general form of the models is represented by the following
regression:

Tt = α+β1FTt+β2AERt+
J

∑
j=1

φjTt−j+
K

∑
k=0

γk+1SOIt−k+
L

∑
l=0

δl+1NAOt−l+
M

∑
m=0

ηm+1AMOt−m+εt (2)

where Tt is global, northern or southern hemisphere temperature from the NASA and HadCRUT3
datasets. Two sets of models were estimated using different forcing trends and stratospheric for-
cing. The first set uses the PC1 as the forcing trend (FT) and PC2 as a proxy for the stratospheric
aerosols forcing (AER). The second set of models uses ALL_FORCING and STRAT_AER as
the forcing trend and the stratospheric aerosols forcing, respectively. For modeling the short- and
medium-term dynamics, the general model includes the El Niño/Southern Oscillation (ENSO,
denoted here by the SOI), the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal
Oscillation (AMO), which are commonly considered as important natural sources of inter-annual
global and hemispheric climate variability (Enfield et al., 2001; Hurrell, 1995; Wolter and Tim-
lin, 1998). The number of lags was chosen based on the statistical significance of the parameters
and also to have nearly-normal residuals with no autocorrelation or heteroskedasticity and a
functional form deemed well specified with stable parameters.

Table 13 shows the estimated coefficients of the proposed models for global and hemispheric
temperatures. Although the results of misspecification testing are not shown here, all models
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are statistically adequate in the sense that the residuals do not show autocorrelation, they are
homoskedastic, normal and the estimated parameters are stable. Note that all coefficients have
signs expected from climate physics: the forcing trend has a warming effect, while stratospheric
aerosols produce a decrease in temperatures; a negative variation in SOI (for example, the occu-
rrence of an El Niño) produces an increase in temperatures and the contemporaneous values of
NAO of AMO are positively related to temperatures. The coefficient of determination R2 in all
of the models is very large, indicating that the models fit the observed data quite well.

The different models show strong similarities indicating robustness of the results; e.g., the
data set used (NASA or HadCRUT3) or the definitions of the forcing variables included (PC1 or
ALL_FORCING; PC2 or STRAT_AER). Global temperature models typically include signifi-
cant variables such as the forcing trend, stratospheric aerosols, a lagged value of global tempe-
rature, and the contemporaneous values of SOI and AMO. As expected from the results in the
previous sections, the short-term dynamics are more complex in the northern hemisphere tempe-
ratures for which the models, in general, include the same variables as for the global temperature
models plus a second order lagged value of AMO and a contemporaneous value of NAO. On
the other hand, the models for the southern hemisphere temperatures show simpler short-term
dynamics for which only the contemporaneous value of SOI and AMO and a lagged value of
the southern hemisphere temperature are relevant. As discussed previously, the variability of the
southern hemisphere temperatures is strongly modulated by the oceans and, hence, less affected
by shorter-term processes compared to the global and northern hemisphere temperatures. As in
the case of the VAR model in Section 4, for all models of temperature series lagged terms of the
forcing trend are not significant, supporting the hypothesis that this variable does not have a
significant effect on short-term dynamics. Some differences in the results between the datasets
are clearer for the southern hemisphere series, where for the HadCRUT3 series the forcing from
stratospheric aerosols is not significant and the AMO is shown to be relevant to explain part of
the variability of temperature. These are due to the wider ocean sea-surface temperature coverage
of the HadCRUT3 dataset (Brohan et al., 2006).

The estimated long-run effect of the total forcing (excluding the stratospheric aerosols) is very
similar regardless of the dataset used: the global temperature estimate differs only by 1.08% from
one dataset to the other, while for the northern hemisphere the difference is 5.86% and the largest
difference (8.11%) occurs in the estimate for the southern hemisphere, where the two datasets
are less similar. The estimates show even smaller differences amounting to less that 3.5% (0.15%
for global, 3.12% and 3.44% for northern and southern hemispheres, respectively). Again, the
results are robust to the different datasets and the definition of the forcing variables.

The estimates in Table 13 can provide basic approximations of the climate sensitivity (CS)
to changes in the forcing variables. Using the NASA dataset, a volcanic eruption of similar
magnitude to that of Mount Pinatubo in 1991 would produce a cooling effect of 0.16°C in global
temperatures, and of 0.29°C in the northern hemisphere (the estimates using HadCRUT3 are
similar: a cooling of 0.1 and 0.18 for global and northern hemisphere temperatures, respectively).
These values are close to those estimated from observations and climate models (Hansen et al.,
1996). Basic estimates of CS to a doubling of the atmospheric concentrations of CO2 can also
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Table 13
Estimated coefficients and coefficient of determination of regression (2), HadCRUT3 (C) and NASA (N)
datasets.

α β1 β2 φ1 φ2 γ1 δ1 η1 η2 R2 S(ê)

P
C
1
and

P
C
2
used

G_N -0.009 0.054 0.019 0.275 - -0.030 - 0.346 - 0.930 0.0690

(-1.43) (10.17) (2.95) (4.19) (5.17) (8.08)

NH_N 0.008 0.038 0.038 0.358 0.196 -0.020 0.060 0.642 -0.325 0.915 0.0889

(0.98) (5.64) (4.59) (4.69) (3.16) (-2.53) (3.20) (9.07) (-3.93)

SH_N -0.030 0.040 0.013 0.445 - -0.035 - - - 0.886 0.0778

(-3.77) (6.90) (1.91) (6.02) (-5.45)

G_C -0.054 0.035 - 0.525 -0.029 - 0.437 -0.225 0.921 0.0744

(-5.28) (6.51) (7.69) (-4.55) (8.37) (-3.66)

NH_C -0.026 0.038 0.021 0.373 -0.029 - 0.575 -0.253 0.917 0.0885

(2.70) (5.11) (2.51) (4.41) (-3.78) (8.64) (-3.03)

SH_C -0.081 0.031 - 0.535 -0.041 - 0.152 - 0.863 0.0903

(-6.06) (6.31) (8.66) (-5.64) (3.36)

A
L
L
_
F
O
R
C
IN

G
and

ST
R
A
T
_
A
E
R

used

G_N -0.147 0.283 0.053 0.262 - -0.028 - 0.327 - 0.933 0.0678

(-8.59) (10.47) (4.30) (4.06) (-4.88) (7.98)

NH_N -0.101 0.264 0.096 0.203 0.158 -0.029 0.040 0.479 - 0.910 0.0915

(-5.49) (8.60) (5.64) (2.85) (2.56) (-3.70) (2.13) (7.99)

SH_N -0.134 0.210 0.033 0.426 - -0.033 - - - 0.887 0.0775

(-6.13) (6.92) (2.53) (5.64) (-5.14)

G_C -0.169 0.212 0.033 0.448 - -0.031 - 0.407 -0.186 0.930 0.0705

(-6.60) (7.16) (2.53) (6.11) (-5.02) (7.98) (-3.12)

NH_C -0.123 0.203 0.059 0.370 0.154 -0.026 0.041 0.602 -0.282 0.912 0.0857

(-4.41) (5.37) (3.66) (4.48) (2.44) (-3.28) (2.27) (8.76) (-3.26)

SH_C -0.204 0.197 - 0.443 - -0.039 - 0.159 - 0.872 0.0872

(-7.64) (7.18) (6.63) (-5.56) (3.62)

be obtained, although they must be interpreted with care since to estimate CS two equilibrium
states should be compared, and the observed climate is not at an equilibrium state (IPCC-
WGI, 2007). Rather, observed temperature records describe a climate transient, i.e., a measure
of the strength and of the contemporary climate response to greenhouse gas forcing. Hence, the
estimated CS are expected to underestimate the “true” value of this parameter and to lie close
to the lower end of the CS range produced by climate models and reported in, e.g., the IPCC’s
Fourth Assessment Report (IPCC-WGI, 2007).

To construct the CS estimates, it is assumed that for a doubling of CO2 atmospheric con-
centrations the corresponding radiative forcing is ∆Q2x = 4.39 W/m2 (Houghton et al., 1990;
Wigley and Raper, 1990). The CS parameter is then estimated by S = β1/(1 − φ1 − φ2)∆Q2x. In
order to account for the uncertainty in the estimated parameters β1, φ1 and φ2, the confidence
intervals for S were obtained from Monte Carlo simulations using 10,000 replications based on
the parameters and standard errors are shown in Table 13. Table 14 presents the estimated CS
for global and hemispheric temperatures for both the HadCRUT3 and NASA datasets. Note that
the CS values are very similar for global and hemispheric temperatures irrespective of the dataset
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used. As expected, although the estimated mean CS values for global temperature (around 1.7°C
with a 95% confidence interval of 1.21°C to 2.32°C) are consistent with the range of CS estimates
using climate models simulations (IPCC-WGI, 2007), they lie on the low end of such range. The
estimates are closer to those produced using observations and statistical models (e.g., Kaufmann
et al., 2006a; Stern and Kaufmann, 1997b; Tol and De Vos, 1998). The largest response to a
doubling of CO2 atmospheric concentrations occurs in the northern hemisphere where the esti-
mated 95% confidence interval extends from 1.17°C to 3.14°C, with a mean estimate near 2°C.
The lowest values for CS are those for the southern hemisphere, ranging from 1.12°C to 2.22°C.
But these differences are not statistically significant.

The estimates presented in Table 14 do not take into account a large part of the feedback
processes that exist in the climate system and that are incorporated in complex climate models.
Therefore, they could seriously underestimate the CS and the hemispheric differences could be
larger due to the diverse regional climate feedback processes. To illustrate the importance that
these feedbacks can have over CS estimates, consider the following equation to express the climate
sensitivity, S = ∆T0/(1 − f) where f is the feedback factor, which amplify (if 0 < f < 1) or damp
the initial blackbody response of ∆T0 = 1.2○C for a CO2 doubling (Knutti and Hegerl, 2008).
The typical value for current General Circulation Models has a mean of 0.65 (Knutti and Hegerl,
2008). Using this value for f , climate sensitivity for global temperature would be 4.9°C instead
of 1.7°C. The underestimates of the CS presented in Table 14 when compared to the CS range
produced by climate models are probably due to several feedback processes that a climate model
considers but that statistical models exclude. In addition, as argued above, observed temperature
records do not provide information about equilibrium states but merely about a climate transient.
It is likely that a large part of the warming induced by changes in radiative forcing during the
20th century has not yet manifested itself in observed temperatures (IPCC-WGI, 2007).

6. Comparison with the Cointegration Model of Kaufmann et al. (2006a)

Kaufmann et al. (2006a) proposed an alternative model for global temperatures. They assu-
med temperature and forcing series to be integrated processes without breaks and accordingly
considered an error-correction model based on a cointegrating relation, labelled CECM. We up-
dated their results using the specification presented in their Table III. The radiative forcing trend
is RFAGG: well-mixed greenhouse gases, the direct and indirect radiative forcing of anthropoge-
nic sulfur emissions and solar irradiance. The cointegrating relation between temperatures and
RFAGG is

Tt = α1 + β1RFAGGt + µt (3)

so that µt is stationary. Efficient estimates of the parameters are obtained using Dynamic Ordi-
nary Least Squares (DOLS) with one lag and lead terms (Saikkonen, 1991; Stock and Watson,
1993). The results are presented in Table 15. In all cases, the long-run relationship between tempe-
ratures and radiative forcing, β1, is highly significant with magnitude similar across temperature
series. The estimates α̂1 and β̂1 can then be used to estimate the following error-correction model



24 F. Estrada and P. Perron

Table 14
Climate sensitivity estimates for a doubling of CO2 atmospheric concentrations; HadCRUT3 (C) and
NASA (N) datasets.

Dataset 5% Mean 95%

G_C 1.21 1.72 2.32

G_N 1.35 1.69 2.08

NH_C 1.17 1.98 3.14

NH_N 1.32 1.85 2.52

SH_C 1.12 1.58 2.10

SH_N 1.16 1.63 2.22

Table 15
Estimates of the cointegration relation between temperature series and RFAGG using the DOLS estimates
with one lag and lead terms.

α β

G_N -0.2679 0.4350

NH_N -0.2553 0.4799

SH_N -0.2804 0.3900

G_C -0.3704 0.4373

NH_C -0.3357 0.4763

SH_C -0.4050 0.3985

Note: All entries are significant at the 5% le-
vel. The standard errors were estimated using
the Newey-West heteroskedasticity-robust pro-
cedure.

by OLS:

∆Tt = α2 + ρ (Tt−1 − (α̂1 + β̂1RFAGGt−1)) +∑k

i=1
δi∆Tt−i +∑j

i=1
φi∆RFAGGt−i (4)

+∑l

i=1
γiSOIt−1 +∑m

i=1
ψiNAOt−1 + µ1STRAT_AERt + εt

The number of lags were specified as in Kaufmann et al. (2006a, Table III, column(4)), i.e.,
k = 2, j = 2, l = 1 and m = 2. Note that the CECM in Kaufmann et al. (2006a) was tailored
for global rather than hemispheric temperatures. However, the results shown below reveal that
this specification yields similar results and goodness of fit for Northern Hemisphere (NH) and
Southern Hemisphere (SH). Hence, we shall adopt the same model for all temperature series. The
parameter estimates of the Error Correction Model (ECM) (4) estimated by OLS are presented
in Table 16. They show that many estimates are not statistically significant. Note that with
the exception of the contemporary value of SOI all other series included to account for natural
variability are not statistically significant, in particular NAO is not significant in the regression
for the NH temperatures and it has a negative sign in the regression for global temperatures. The
later results are somewhat at odds with what could be expected from climate theory (Hurrell,
1996). These updated results are similar to those presented in Kaufmann et al. (2006a). This
could be interpreted as a sign of poor model specification. Nevertheless, since our goal is to
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compare our trend-stationary model, labelled TSM, with the CECM proposed by Kaufmann et
al. (2006a), we shall keep the same model specification. Finally, it is interesting to note that the
coefficients on the lagged values of ∆RFAGGt are not statistically significant in neither Table 16
nor in Kaufmann et al. (2006a, Table III). This gives additional support to our results in Section
4 that the radiative forcing trend does not contribute to the short-term dynamics of temperature
and that there are no significant short-term feedback processes, at least when considering an
annual frequency.

To compare the two models, we consider both their relative in-sample and out-of-sample
forecast performance. The trend stationary models (TSM) considered is the one in Table 13
using ALL_FORCING and STRAT_AER. We report the root mean squared error (RMSE),
the Theil Inequality Coefficient (TU), and to assess whether one model has significantly better
predictive power, we use the Diebold and Mariano (1995) test (DM) and the S2a test (Lehman,
1975). With ŷt the forecast of the temperature yt, the RMSE is ∑tf+ht=tf (ŷt − yt)2 /h, where tf is
the starting date of the forecasting period and h is the forecast horizon. The TU statistic is
TU = [(∑tf+ht=tf (ŷt − yt)2 /h)/(∑tf+ht=tf ŷ

2
t /h)(∑

tf+h
t=tf y

2
t /h)]1/2 and has the advantage of being scale

invariant and defined between 0 and 1, with zero indicating a perfect forecast. The S2a statistic
is defined by S2a = ∑Nt=1 I+ (dt) − 0.5N/

√
0.25N , where dt = [yt − ŷtTSM ]2 − [yt − ŷtCECM ]2, with

I+ (dt) = 1 if dt > 0, 0 otherwise, N is the number of forecasts and ŷtTSM denotes the forecast
from the TSM model while ŷtCECM is the forecast from the CECM model. The DM statistic
is the t-statistic of the OLS estimate of α in the following regression: dt = α + et. Significantly
negative values of the statistics S2a and DM provide evidence that the the TSM forecasts are
statistically more accurate than those of the CECM.

Tables 17-18 present comparisons of the TSM and CECM forecast performances using in-
sample one-step ahead (static) and dynamic forecasts from the beginning of the sample to the
end. The results are similar and show that the TSM forecasts for G and NH are more accurate
(5% statistical level) than those of the CECM for both the HadCRUT3 and NASA datasets.
For SH temperature, the forecast performances of the TSM and the CECM are similar with the
exception of the dynamic forecast using NASA in which case the CECM performs better. Table 19
presents the results for an out-of-sample dynamic forecast evaluation. The sample used for model
estimation was 1880-1990 and 1991 to 2010 was used as the forecasting period with an horizon of
20 years. The actual values of the explanatory variables were used to generate the forecasts. The
results confirm that the forecasts for G and NH from the TSM are significantly more accurate
that those from the CECM at the 5% level; for SH the differences are not statistically significant.
In summary, the TSM model provides a better in-sample fit of temperatures and more accurate
forecasts for all series with the exception of SH, in which case the forecast performances are not
statistically different. The results are robust to the temperature dataset used and the type of
forecasts conducted. These findings are consistent with the fact that the TSM model provides a
better in sample fit for G and NH temperatures and a nearly equal fit for SH (cf. Tables 13 and
16).
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Table 16
Estimates of the error correction model using the specification of Kaufmann et al. (2006a).

α2 ρ δ1 δ2 ϕ1 ϕ2 γ0 γ1 ψ0 ψ1 ψ2 µ1 S(ê)
G_N 0.025b -0.42b -0.22b -0.12c -0.27 0.08 -0.036b -0.014 -0.014 0.001 -0.016 0.075b 0.081
NH_N 0.036b -0.34b -0.28b -0.07 -0.024 -0.06 -0.039b -0.023b 0.006 0.023 -0.021 0.124b 0.111
SH_N 0.013 -0.50b -0.15c -0.13 -0.23 0.24 -0.033b -0.008 -0.031b -0.021 -0.012 0.026 0.077
G_C 0.017c -0.34b -0.15 -0.16b -0.23 0.12 -0.046b 0.002 -0.023 0.005 -0.023 0.055b 0.085
NH_C 0.029b -0.29b -0.18c -0.10 -0.10 -0.26 -0.047b -0.005 -0.006 0.019 -0.027 0.086b 0.109
SH_C 0.006 -0.38b -0.15 -0.24b -0.32 0.52∗ -0.045b -0.003 -0.037b -0.005 -0.022 0.026 0.087

Table 17
In-sample static (1-step) forecast comparisons of TSM and CECM.

RMSETSM RMSECECM TUTSM TUCECM S2a DM
G_N 0.0662 0.0766 0.1319 0.1551 -1.5085c -2.5506b

NH_N 0.0886 0.1052 1.1538 0.1836 -2.3959b -3.1437b

SH_N 0.0760 0.0732 0.1694 0.1612 0.6212 1.5453
G_C 0.0686 0.0817 0.1224 0.1465 -3.2832b -3.3305b

NH_C 0.0826 0.1040 0.1411 0.1791 -2.3958b -3.9456b

SH_C 0.0856 0.0825 0.1489 0.1407 0.0887 0.8271

Note: b, c denote statistical significance at 5% and 10% levels, respectively. Bold entries
denote the smallest forecast error statistic.
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Table 18
In-sample dynamic forecast comparisons of TSM and CECM.

RMSETSM RMSECECM TUTSM TUCECM S2a DM
G_N 0.0689 0.0827 0.1373 0.1649 -1.6850c -2.6273b

NH_N 0.0917 0.1212 0.1592 0.2098 -2.0492b -3.7630b

SH_N 0.0834 0.0781 0.1860 0.1695 1.6860c 2.1102b

G_C 0.0784 0.0985 0.1406 0.1751 -2.2184b -3.7735b

NH_C 0.0927 0.1345 0.1589 0.2323 -3.2832b -4.8641b

SH_C 0.1007 0.0953 0.1760 0.1610 1.6860c 0.8895

Note: b, c denote statistical significance at 5% and 10% levels, respectively. Bold entries
denote the smallest forecast error statistic.

Table 19
Out-of-sample dynamic (20-steps) forecast comparisons of TSM and CECM.

RMSETSM RMSECECM TUTSM TUCECM S2a DM
G_N 0.0765 0.1144 0.0846 0.1292 -2.5236c -2.1039b

NH_N 0.0984 0.1525 0.0931 0.1427 -2.0647b -2.1600b

SH_N 0.1226 0.1179 0.1730 0.1660 0.2294 1.1881
G_C 0.0709 0.1057 0.0999 0.1510 -1.1471 -2.3514b

NH_C 0.0815 0.1381 0.0897 0.1543 -1.6059c -3.1927b

SH_C 0.1070 0.1045 0.2039 0.2031 0.2294 0.5913

Note: b, c denote statistical significance at 5% and 10% levels, respectively. Bold entries
denote the smallest forecast error statistic.

7. Conclusions

This paper demonstrates the existence of a robust long-run relationship between radiative
forcing and global and temperature series, and that the anthropogenic emissions of greenhouse
gases have contributed dominantly to the observed warming during the recorded period. The
attribution of climate change to anthropogenic activities presented is robust in that it takes into
account the most important natural and anthropogenic forcing variables and natural variability
modes referred to in the literature, and it is based on the two most important temperature
records available.

The univariate time series analysis shows that both temperature and forcing variables are
better represented as trend stationary variables with a break in the slope of their trend function
in the 20th century that can hardly be interpreted as a part of natural variability. Also, it is shown
with multivariate models that these piecewise linear long-term trends cannot be reproduced
in a physically acceptable way unless well-mixed GHG are included. The temperature series
show a delayed but more than proportional response to the change in the slope of the forcing
trend. The large delay in the northern hemisphere is due to the low frequency natural variability
produced by ocean/atmosphere processes over the North Atlantic (Estrada et al., 2013b). The
tests for a common trend show that temperatures and forcing variables share the same long-term
trend, highly influenced by the well-mixed GHG forcing. The observed warming has clearly been
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produced by greenhouse gases: about 0.85°C of the observed warming can be attributed to the
well-mixed GHG forcing, while solar forcing had a warming effect near 0.06°C until the first half
of the 20th century and then a cooling effect of a similar magnitude. The joint contribution of
all forcing variables except well-mixed GHG produced a net cooling effect of 0.1°C from 1880 to
2010.

Parsimonious models for the global and hemispheric temperatures able to capture both the
short and long-term dynamics are presented and shown to provide a better fit and more accurate
forecasts than the error correction model of Kaufmann et al. (2006a). While stratospheric aerosols
had a large but short-term cooling effect in the northern hemisphere, the effect of volcanic
eruptions is shown not to have been significant in the southern hemisphere. Short-run dynamics
are also shown to be different in the northern and southern hemispheres. The former has a more
complex short-run dynamics with stronger persistence and a large influence of ENSO, NAO and
AMO. The southern hemisphere temperature has a simpler dynamic in which the excursions
from its secular trend are smaller and are mainly influenced by ENSO. The climate sensitivity
estimates for a doubling in the CO2 atmospheric concentrations are within the 1.5°C-4.5°C range
commonly accepted. This paper provides strong evidence on the direct attribution of climate
change to anthropogenic activities using observed temperatures, forcing variables and statistical
methods.
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