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PRELIMINARY INVESTIGATION OF THE TEMPORAL SPECIFICITY OF 

SEQUENCE LEARNING IN THE PRIMARY VISUAL CORTEX THROUGH 

PREDICTIVE CODING 

ANTHONY AMIN KHOUDARY 

ABSTRACT  

The primary visual cortex (V1) has been classically viewed as an immutable 

feature detector, with robust responses to low-level characteristics of objects in the visual 

field. Recent studies have shown the capacity of this cortical area to perform more 

complex computations. Nominally, the phenomenon of sequence learning relies on the 

ability of V1 to encode the serial order and temporal frequency of a spatiotemporal visual 

sequence. Investigating the mechanisms driving this phenomenon through the lens of 

predictive coding will further the understanding of how V1 operates locally to encode 

time and learns to predict the future based on minimal sensory information. Through in 

vivo multi-unit recordings from awake mice, this study sought to isolate neural evidence 

for predictive processing within the paradigm of sequence learning. Seventy unique units 

were isolated from forty-two mice subjected to experimentation. Preliminary analyses 

revealed a significant effect that agrees with the initial report on sequence learning but 

contradicts predictive processing theory.  Further investigation is required to draw more 

robust conclusions about the predictive computations that occur during sequence 

learning. Increased sample size and refinement of data analysis will likely lead to 

interesting results. 
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I. Introduction 

Learning a new task and forming a memory requires some change in neural 

circuitry. Decades of research has shown that these changes are often the result of 

synaptic plasticity. Synaptic plasticity can alter the strength of synaptic connections, 

modulating the information shared among neurons. These changes have been observed 

across various levels of the neural hierarchy, from individual synapses to functional 

networks regulating global processes (Abbott & Nelson, 2000). Though many forms of 

plasticity are well understood, the underlying mechanisms of sequence learning are not. 

Gavornik and Bear (2014a) have shown that sequence learning contains temporally 

specific and predictive components. Deducing the mechanistic basis of this observed 

plasticity in the mouse will contribute to the general body of knowledge relating to how 

the brain encodes time and predicts the future, with broader implications for the human 

visual cortex. The ultimate goal is to build machines that learn as effectively as humans 

and to understand how learning can be revived in certain neuropsychiatric disorders. 

 

Traditional perspectives on primary visual cortex function 

 The visual cortex has been utilized for decades across animal models to 

investigate mechanisms of cortical function and plasticity. The hierarchical structure of 

this cortical area allows for the extraction of increasingly complex characteristics from 

objects in the visual field, represented in ascending visual areas (DiCarlo et al., 2012; 

Hubel & Wiesel, 1968; Larkum, 2013). In the traditional framework, conscious 
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perception is the product of hierarchical combinations of distributed neural 

representations. This is thought to be achieved by bottom-up relay of sensory information 

and top-modulation by higher order cortical areas (Glickfeld & Olsen, 2017). 

The role of the primary visual cortex (V1) in the traditional theory of visual 

processing is based on a series of seminal experiments by Hubel and Wiesel (1962). They 

showed that V1 receives binocular input from the lateral geniculate nucleus (LGN) with 

similar retinotopy and stimulus preference (Hubek & Wiesel, 1962). In other words, 

presentation of a bar oriented at 30 would elicit V1 activity when presented to the same 

retinal location in either eye. From the results of further experiments into the receptive 

fields for these neurons, Hubel and Wiesel proposed three classes of visually responsive 

cells within V1: simple cells, complex cells, and hypercomplex cells. Simple cells were 

observed to have spatially distinct excitatory and inhibitory areas. These cells responded 

maximally to stimuli with stark contrasts across a range of orientations, giving rise to the 

classic ‘center-surround’ receptive field. Complex cells were found to have spatially 

homogenous receptive fields that maintained orientation tuning but showed sensitivity to 

direction of movement of the stimulus. Lastly, hypercomplex cells were classified as 

having inhibitory regions flanking an otherwise homogenous receptive field similar to 

that of complex cells. For example, an oriented bar with a length that lies well within the 

receptive field of a hypercomplex cell will drive increased responses as its length is 

increased up to a certain limit. Once the length passes that limit, the response decreases 

as a function of stimulus length because portions of the stimulus now lie in the flanking 

inhibitory regions of the receptive field. This phenomenon is known as end stopping 
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(Hubel & Wiesel, 1968). Later studies showed the receptive fields of neighboring cortical 

columns to be tuned to similar orientations, allowing for detection of stimuli that may 

span multiple receptive fields (Hubel et al., 1976).  

Although neurons in V1 were shown to receive binocular input, certain 

populations responded more readily to visual stimulation in one eye compared to the 

other. This property was coined ocular dominance (OD) and it has been shown to rely 

heavily on experience dependent synaptic plasticity; demonstrated though monocular 

deprivation (MD) experiments in kittens (Wiesel & Hubel, 1965). Following a period of 

MD, responses in V1 were primarily driven by activity in the opened eye even though the 

projections from the closed eye remained intact, suggesting a competitive learning 

process that guides early plasticity. This effective rewiring of V1 in response to MD was 

found to be confined to an early developmental window, similar to the critical period of 

embryogenesis (Spemann & Mangold, 2001). If normal vision was restored before the 

kitten reached an age of roughly three months, functionality of and responsiveness to the 

deprived eye was restored. However, past this point restoration of normal vision leads to 

minimal recovery in the deprived eye (Hubel & Wiesel, 1970). These findings have 

collectively shaped the conceptual framework of the mechanistic basis by which V1 

operates and develops. Consequently, V1 has been viewed as static feature detector 

whose properties are largely driven by experience dependent plasticity during a well-

defined period of developmental plasticity (Gavornik & Bear, 2014b).  

Nearly all early investigations into visual physiology and development were 

conducted in monkeys and cats, but within the past two decades the rodent has become 
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the dominant model. Rodent V1 has been shown to share many of the same features as 

early models, including OD plasticity (Gordon & Stryker, 1996; Sawtell et al., 2003). The 

rodent primary visual cortex, similar to monkeys and cats, contains a topographic map of 

the visual field (Smith & Häusser, 2010; Wang & Burkhalter, 2007), has orientation 

tuned simple and complex cells (Niell & Stryker, 2008; Ohki et al., 2005), and functional 

specificity at the synapse level (Ko et al., 2011). The rodent model provides a greater 

level of convenience with regards to its size, cost and amenability to genetic 

modification. These factors coupled with newly developed technology for in vivo 

recording, imaging, and manipulating neuronal activity has led to a substantial body of 

work on the structure, function, and development of the rodent central visual pathways 

(Seabrook et al., 2017).  

 

Beyond simple feature detection: experience dependent plasticity and sequence learning 

in primary visual cortex 

The mechanisms governing experience dependent plasticity within rodent/mouse 

V1 and the extent of cortical computation that can be carried out by this presumed low 

level cortical area remain to be discovered. Previous work has shown that neurons in 

layer 4 of the binocular region of V1 in adult mice can encode stimulus familiarity. This 

was evidenced by a plateau in the trough-to-peak magnitude of the visually evoked 

potentials (VEPs) recorded from awake mice in response to repeated presentations of a 

high contrast phase reversing grating (Cooke & Bear, 2010). This effect, known as 

stimulus-selective response potentiation (SRP), is spatially specific and requires N-
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methyl-D-aspartate (NMDA) receptor activation in a similar fashion to long-term 

potentiation (LTP) (Frenkel et al., 2006).  

Reports have also shown the capacity of adult rodent V1 to encode reward timing. 

In a visually cued reward protocol, naïve mice exhibited V1 activity that lasted the 

duration of the visual cue. After repeated presentations of the visual cue paired with a 

water reward over the course of days, V1 activity persisted until the time of reward 

delivery even when the reward was withheld (Shuler, 2006). These results contradict the 

traditional view of V1 as a simple feature detector, and instead indicate that V1 activity is 

modulated by experience. Specifically, they suggest that V1 can learn stimulus 

familiarity and encode the temporal dynamics of past associations – processes previously 

assumed to be restricted to higher order visual areas.  

 

 To add to the growing body of knowledge regarding the dynamic ability of V1 to 

learn well beyond the critical period and perform complex computations, Gavornik and 

Bear (2014) investigated the V1 response to sequences of spatiotemporal visual stimuli. 

Adult mice were subjected to a four-day training period during which they saw repeated 

presentations of a four-element spatiotemporal sequence. Each element consisted of a 

unique full screen oriented, high contrast sinusoidal grating that persisted on screen for 

150ms, with the full sequence denoted ABCD. On the fifth day mice were presented with 

the trained stimulus along with perturbations of the stimulus by reversing the serial order 

(DCBA) or altering the temporal frequency by presenting each element for 300ms 

(ABCD300). The cortical response to each test stimulus was measured as the VEPs in 
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binocular V1 layer 4 and compared to baseline measurements taken on the first day of 

training. Relative to the baseline, the largest increase in response magnitude was 

observed when the trained stimulus was presented with familiar timing (Figure 1). 

Conversely, there was no significant difference in the response magnitude when mice 

were presented with reversed stimulus (DCBA). Similarly, no difference in response 

magnitude was observed when presented with ABCD300 (Figure 1). This increase in the 

magnitude of the VEP in response to repeated presentations of a spatiotemporal visual 

stimulus over the course of days has been dubbed sequence learning. The sequence 

learning phenomenon suggests that V1 is capable of learning the serial order and 

temporal frequency of spatiotemporal stimuli. Confirmation that this process occurs 

locally in V1 was provided through monocular occlusion experiments in which mice 

were trained with sequence presentation restricted to one eye and tested with monocular 

presentation to both eyes. These experiments showed a significant difference between 

evoked VEP magnitude in the contralateral and ipsilateral hemispheres corresponding to 

the trained eye when presented with ABCD. This difference was not observed in the 

trained hemispheres in response to DCBA, nor was it present in the corresponding 

hemispheres of the untrained eye. These findings indicate that the plasticity occurs at a 

site where information from the two eyes can be segregated. As there is no evidence that 

monocular segregation persists beyond V1, it likely that this process occurs locally within 

V1 (Gavornik & Bear, 2014b).  

 To differentiate sequence learning from the SRP phenomenon, mice were 

systematically treated with the NMDA receptor antagonist 3-(2-carboxypiperazin-
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4yl)propyl-1-phosponic acid (CPP) and subjected to both the SRP and sequence learning 

protocols. CPP treated mice did not show the characteristic increase in VEP magnitude 

across days when subjected to the SRP procedure; however, the potentiated response was 

observed in mice subjected to the sequence learning protocol. The mechanistic basis of 

this process was further isolated by treatment with scopolamine, a muscarinic 

acetylcholine receptor antagonist, which abolished the increase in VEP magnitude after 

completion of the sequence learning protocol. Thus, sequence learning is independent of 

SRP and cholinergic input is a necessary component of its mechanism.  

 These findings clearly demonstrate that V1 was able to recognize the neural 

representations of the familiar visual stimulus. However, it was unclear whether this 

paradigm was sufficient for V1 to regenerate the response in the absence of external 

stimulation. To investigate this, another cohort was subjected to the sequence learning 

training protocol but shown test stimuli with the second element omitted and replaced 

with a grey screen along with the trained stimulus (ABCD). The first element was either 

predictive of the trained second element (A_CD) or a novel element with no predictive 

value (E_CD). The cortical response to the omitted second element was significantly 

larger when preceded by the familiar initial element compared to the novel. This suggests 

that V1 can actively predict expected visual stimuli with a high degree of temporal 

precision. Further current source density (CSD) analysis, showing the source/sink pattern 

of the neural response across cortical layers (Kamarajan et al., 2015), confirmed this 

conclusion. The source/sink pattern in response A_CD was almost identical compared to 

observed pattern in response to ABCD (Figure 1). In other words, V1 is active when it 
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expects to see a stimulus even if a stimulus is not physically present. Collectively the 

experimental basis of sequence learning provides robust evidence that V1 is dynamic 

cortical area capable of carrying out presumed “higher” cortical function with 

mechanisms that operate within the local physiology. 

 

Predictive processing as a mechanism of sequence learning  

 Predictive processing has been posited as a framework for understanding neural 

function, with a strong basis in the fields of computational and cognitive neuroscience 

(Clark, 2013; Koster-Hale & Saxe, 2013). Predictive processing theory is centered on the 

idea that the brain generates an internal model of the world based on ascending sensory 

information relayed throughout the cortex. This internal model is then used to predict 

future sensory input (Gregory et al., 1980). This process is thought to assume a 

hierarchical organization, similar to the traditional perspective V1 function. Higher level 

areas communicate the predicted input to lower-level areas via top-down projections. 

These predictions are compared to the actual, bottom-up, sensory input and an estimate of 

the difference between the two is computed. Substantive differences between the 

predicted and actual sensory input causes the cortex to update its model so that it can 

maintain an accurate internal representation of the world.  

The notion of comparisons between predicted and actual feedback has been 

utilized to model the dopaminergic reward system and the functionality of the cerebellum 

(Schultz et al., 1997; Wolpert et al., 1998). While it’s likely that there are predictive 

processing components to neocortical function, disambiguating between neuronal activity 
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responsible for relaying sensory information and communicating predictions has proven 

difficult with current experimental and technological methods. As a result, the underlying 

neurophysiology is poorly understood. Regardless of this empirical gap, a large amount 

of theoretical work has been devoted to characterizing the neural architecture necessary 

for implementing predictive processing in mammalian cortex. 

Computing the difference between predicted and actual sensory input requires two 

types of neurons: internal representation neurons and prediction error neurons. Internal 

representation neurons project downward in the hierarchy and send predictions about 

bottom-up input. Conversely, prediction-error neurons project upward in the hierarchy, 

relaying the difference between the prediction and actual bottom-up sensory input. It has 

been proposed the response of prediction error neurons is proportional to the magnitude 

of the difference between ascending sensory input and descending predictions from 

internal representation neurons. To clarify, if incoming sensory input matches the 

prediction from internal representation neurons, prediction-error neurons show a 

decreased response relative to when the two signals are incongruent. To operate 

effectively in the sensory cortex, both functional classes of neurons are expected to 

respond selectively to certain stimulus features (G. B. Keller & Mrsic-Flogel, 2018). 

There are two scenarios when prediction-error neurons will show an increased response. 

The first, called positive prediction error, occurs when bottom-up input is stronger than 

predicted (i.e., presentation of an unexpected stimulus). Conversely, negative prediction 

error occurs when bottom-up input is weaker than predicted (i.e., omission of an expected 

stimulus). Neurons with sufficiently high baseline firing rates could signal both positive 
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and negative prediction errors through bidirectional control of their response, with 

increased firing rates coding for positive prediction error and decreased firing rates 

signaling negative prediction error. This bidirectional control has been observed in the 

dopaminergic system (Schultz et al., 1997); however, the relatively low basal firing rates 

in the neocortex make bidirectional control much less likely (Niell & Stryker, 2008; 

Sakata & Harris, 2009). It is hypothesized that positive and negative prediction errors 

signals are communicated through two independent microcircuits in the neocortex (G. B. 

Keller & Mrsic-Flogel, 2018).  

 The internal representations postulated by predictive processing are similar to 

those in the traditional framework, with certain cells responding maximally to certain 

features in the visual field such as lines and edges. The difference between the two 

theories is how these internal representations are updated. The traditional representative 

framework changes internal representations through feature detection as information is 

relayed to ascending sensory areas. On the other hand, predictive processing updates 

internal representations through continual comparisons of bottom-up input and top-down 

predictions based on previously developed internal representations (G. B. Keller & 

Mrsic-Flogel, 2018). This theory of cortical processing is advantageous over the 

traditional view because updating the internal representation is not driven by bottom-up 

input. This allows for modulation of the internal representation solely by top-down 

signaling, providing a framework by which the cortex can simulate and predict the 

environment.  
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 The notion that perception is an active process is sufficient to explain a variety of 

everyday experiences, particularly within the scope of visual consciousness. This is 

evident through visual illusions such as color constancy and inattentional blindness 

(Foster, 2011; Simons & Chabris, 1999). Our distorted perception of true reality confers 

the advantage of prediction. We can anticipate the sensory consequences of our own 

movements in addition to the dynamics of other objects in the world. For example, we 

can approximately deduce where a ball flying through the air will land in relation to 

ourselves and approximately when that will happen. Such predictions depend on detailed 

knowledge about the properties of objects in the visual field and their context in 

particular moments in time (G. B. Keller & Mrsic-Flogel, 2018).  

 Physiological evidence for predictive processing in the neocortex is evident in 

both classically observed phenomena and new experiments. End-stopping has been 

modeled within the context of prediction error (Rao & Ballard, 1999) with suppression of 

the response being a consequence of top-down inhibition. The idea of top-down 

inhibition has been applied to a variety of classical visual receptive field properties, 

demonstrating how they can be explained through predictive processing (Spratling, 

2010). Additionally, negative prediction error signals have been observed in layer 2/3 of 

mouse V1 where neuronal populations selectively respond to the absence of visual flow 

(G. B. Keller et al., 2012) or the absence of an expected visual stimulus (Fiser et al., 

2016). Studies have isolated prediction error signals specific to deviations in spatially 

confined areas of the visual field (Zmarz & Keller, 2016). These prediction error 

receptive fields were found to be aligned to the retinotopic map of visual cortex and 
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similar in size to visual receptive fields, suggesting that prediction errors and visual 

perception are separate aspects of the same cortical computation. The development of 

predictive responses in the visual cortex have been shown to rely heavily on experience 

(Makino & Komiyama, 2015; Poort et al., 2015). Passive sensory experience, visuomotor 

coupling, and exposure to visual cues within a spatial environment all result in predictive 

responses (Attinger et al., 2017; Fiser et al., 2016; Gavornik & Bear, 2014a; Leinweber et 

al., 2017; Xu et al., 2012). 

 As a result, investigating the sequence learning phenomenon through the lens of 

predictive processing seems promising. This thesis examines the extent to which 

sequence learning is predictive with regards to the temporal frequency of the trained 

stimulus. The goal is to further elucidate the mechanisms which shape experience-

dependent synaptic plasticity in mouse V1. Relating these findings to the theory of 

predictive processing will contribute to the greater body of knowledge surrounding 

predictive processing and its role in neocortical function with potential implications for 

understanding the human visual cortex.  
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II. Materials and Methods  

Animals 

 All animals used in this study were wild-type C57BL/6 mice (Charles River 

Laboratories). Both male and female mice were included. Animals were housed with 

same sex littermates with up to five animals per cage. Mice were kept on a twelve-hour 

light/dark cycle with food and water provided ad libitum. Experiments were performed 

during the light cycle at between the hours of 12pm and 5pm and each animal was used 

for one experiment. Forty-two mice were run in the experimental design. Average age of 

animals upon completion of the experiment was post-natal day 74 (P74) ± 1 (standard 

error of the mean, SEM). All procedures were approved by the Institutional Animal Care 

and Use Committee (IACUC) of Boston University.   

 

Multi-unit Electrode Construction  

 In order to record neural data in vivo from awake mice, custom multi-unit 

recording electrodes were constructed from Omnetics connectors (Model A79006-001). 

To begin a 2.25cm piece of silver wire (AM Systems, Inc. Cat#782500. 0.10”) was cut 

and soldered to two channels of the connector to serve as the electrical ground. Six pieces 

of tungsten wire (California Fine Wire, 0.0009, MO#351990) were to cut to a length of 

approximately 10cm. Each piece of wire was individually wrapped around a unique 

channel of the connector, with three wires on either row. The wires were then heated with 

a heat gun set to 450 F to ensure secure attachment to the pins. The wire tails were 

pulled together using water until a straight bundle formed close to the connector. A guide 
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wire was glued to the bundle and the newly connected wires were looped to the opposite 

side of the connector and fixed with cyanoacrylate glue (Figure 2). Curation time was 

accelerated using Zipkicker (Robart Manufacturing). The assembled bundle was then cut 

to a length of approximately 2mm from the tip of the guide wire (Figure 2). Each channel 

was electroplated in a non-cyanide gold solution using a Nano-Z software to achieve a 

final impedance of approximately 200 kilo-Ohms at 1000 Hertz (Hz).   

 

Electrode Implantation Surgeries 

 Mice were anesthetized with an intraperitoneal injection of 50mg/kg of ketamine 

and 10mg/xylazine. 0.5% to 3% of isoflurane was used as an additional inhalation 

anesthetic during surgery. Eye lubricant was applied to both eyes to protect from 

excessive aridity during the procedure. A heat pad was placed below the surgical stage to 

prevent fluctuations in the animal’s body temperature. After removing fur from the 

animal’s head, the exposed skin was swabbed with 70% ethanol and iodopovidone before 

being cut to reveal the skull. The skull was cleaned with 70% ethanol to remove 

membranes and any remaining connective tissue was scraped down with a scalpel. 

Following another swabbing with 70% ethanol, the skull was dried with compressed air. 

To facilitate head restraint a steel headpost was affixed to the skull anterior to bregma 

using cyanoacrylate glue. This headpost was used to secure the mouse in a stereotaxic 

apparatus to ensure consistent and accurate electrode implantation. Electrodes were 

placed either in the right or left hemisphere during each procedure. Small burr holes, 

approximately 0.5 mm, were drilled over binocular primary visual cortex (3.1 mm lateral 
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from lambda) until the cavity filled with cerebrospinal fluid (CSF). The dura was 

carefully removed, and the electrode was lowered 450 µm below the cortical surface to 

acquire neural data from layer 4/5 of V1. The ground wire was placed below the dura 

mater approximately 1 mm lateral from bregma in the same hemisphere as the electrode 

in V1. All electrodes were rigidly secured to the skull using cyanoacrylate glue cured 

with Zipkicker. Dental cement was used to enclose exposed skill and electrodes in a 

protective headcap. 0.1 mg/kg of Buprenex was administered subcutaneously as a 

postoperative analgesic. After surgery mice were monitored for signs of infection and 

provided with at least 48 hours of recovery before habituation to the recording and 

restraint apparatus.  

 

Experimental Design 

 The experimental setup was comprised of a tube-like viewing apparatus to which 

mice were head fixed for passive viewing of visual stimuli on a monitor with no ambient 

lighting (Figure 1). One day prior to the experiment each animal was habituated in the 

viewing apparatus for thirty minutes. During habituation mice viewed a grey screen on 

the monitor under experimental conditions (i.e., without ambient lighting). The 

experiment consisted of a three-day training period during which mice were randomly 

assigned a specific training stimulus that was shown on each day of training to induce 

sequence learning. On the fourth day, various test stimuli were presented to investigate 

the predictive capability of neurons within V1 with regards to temporal frequency.  
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Stimulus Presentation 

 All visual stimuli were generated using MatLab to control drawing and timing. 

Stimuli were presented on a monitor placed 25cm directly in front of the mouse. Each 

stimulus consisted of a sequence of four visual elements followed by an inter-sequence 

grey screen. Each visual element was a full screen oriented sinusoidal grating shown at 

75% contrast.  

A. Training Stimuli 

The two training stimuli were composed of the same four visual elements, 

referred to as ABCD. The following orientations were used across all mice for 

training: A – 75, B – 120, C – 35, D – 160. To investigate the temporal 

component of predictive processing, the training sequence was presented in one of 

two alternating temporal patterns, denoted ‘Long-Short’ (LS) or ‘Short-Long’ 

(SL). In the LS presentation pattern, element A was shown for 200ms, the long 

interval, and element B was shown for 100ms, the short interval. Elements C and 

D were then both shown with long and short intervals respectively, resulting in a 

unique temporal pattern. Conversely, in the SL presentation pattern element A 

was shown for the short interval and element B was shown for the long interval. 

Element C and element D were shown under the same intervals as element A and 

element B, respectively. This resulted in two training stimuli with opposite 

presentation times for each individual element. In each training session mice 

viewed 200 presentations of their randomly assigned form of ABCD (LS or SL) 

which were grouped into four blocks of 50 presentations, with each presentation 
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separated by a grey screen shown for 1000ms. Each presentation block was 

separated by one minute. Each training day thus contained two full minutes of 

visual stimulus presentation (200 x 600ms) during the approximately ten minutes 

spent in the viewing apparatus.  

B. Test Stimuli 

To create periods of hypothesized positive and negative prediction errors with 

respect to the temporal pattern of the stimulus, eight test stimuli were presented 

each under the previously discussed LS or SL temporal pattern. The test stimuli 

consisted of two sequences of high contrast full screen oriented sinusoidal 

gratings: ABCD and ABBD. The orientation of elements was identical to those 

shown during training. On Test Day, animals viewed approximately 75 

presentations of each test stimulus in randomized order with each presentation 

separated by a grey screen shown for 1000ms. All 75 presentations of each test 

stimulus were shown within one block. There was a one-minute break between 

each block. The total time of visual stimulation on Test Day was roughly six 

minutes (75 x 600ms) over approximately thirty minutes spent in the viewing 

apparatus. Showing both temporal patterns of each test stimulus subjected each 

mouse, regardless of the assigned training stimulus, to periods where the 

hypothesized positive and negative prediction error signals could be observed. 
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Data Processing and Analysis 

 Each electrode contained five or six channels per mouse, depending on the 

building process. Data from each channel was amplified and digitized using an Open 

Ephys recording system. Spiking activity was digitized at 30 kilo-Hz (kHz) and bandpass 

filtered from 300-6000 Hz. Periods of neural activity were isolated by investigating the 

variance of the voltage trace in each channel. The threshold for spiking activity was set to 

four standard deviations below the mean voltage. Spike times were isolated as crossings 

of this threshold, where the initial measured voltage was above the threshold and the 

subsequently measured voltage was below the threshold. These timestamps were used to 

create a raster plot and corresponding peristimulus time histogram (PSTH) for each 

channel in response to each test stimulus. An algorithm determined which units were 

visually responsive and eliminated responses from units that were highly correlated to 

isolate distinct units. Waveforms and number of spikes were analyzed for evidence that 

was suggestive of predictive computations occurring locally in V1 (Figs. 4,6,8).  

A. Unpaired Comparisons 

Comparison of distinct units’ responses to the same test stimulus created windows 

where negative and positive prediction error signals could be observed. To probe 

negative prediction error, responses were collected from all units when presented 

with ABCD-LS (Figure 4). Responses of units that were trained on the presented 

sequence, ABCD-LS, were compared to responses from units that were trained on 

the opposing sequence, ABCD-SL, during the same windows interest (Figure 4, 

black overlays). Unit responses in each trial were normalized to the average firing 
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rate of that unit over the entire recording on test day. The average response in the 

windows of interest was taken across trials and that magnitude was compared 

between training groups (Figure 5).  

 

To probe positive prediction error, responses were collected from all units when 

presented with ABCD-SL (Figure 6). Responses of units that were trained on the 

presented sequence, ABCD-SL, were compared to responses from units that were 

trained on the opposing sequence, ABCD-LS, during the same windows of 

interest (Figure 6, black overlays). The average normalized response was obtained 

as described above and compared between training groups (Figure 7).  

 

In both presentation patterns, element C is shown 300ms after sequence onset. To 

investigate if there was a differential response to C when shown during a novel or 

trained presentation pattern, responses 350-400ms after sequence onset were 

collected. The average normalized response in this window was obtained as 

described earlier and compared between training groups (Figures 5,7). To 

investigate whether the orientation of the third element affected the response, the 

average normalized response to the second B in ABBD was compared between 

training groups in the appropriate presentation pattern (LS for negative prediction 

error and SL for positive prediction error, Figures 5,7). 
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B. Paired Comparisons 

Investigating the same unit’s response to different test stimuli allows for more 

controlled analysis of the temporal plasticity of sequence learning. To probe this, 

responses to the same element presented under novel and trained timing in all 

units were collected. Responses were gathered 50-100ms after the onset of each 

element (Figure 8). Responses were normalized to each unit’s average firing rate 

during the entire recording on test day. The average of the normalized response 

was taken across trials and that magnitude was compared when the element was 

presented under novel or familiar timing (Figures 9, 10). This analysis was 

stratified by training type to ensure paired comparison of the same units.  

 

Histology 

A. Tissue Preparation 

Postmortem perfusions were performed to optimize the clarity of histological images 

that were analyzed by eye to determine the location of electrode tracks within the 

cortical layers. This served as a validation to confirm the data was recorded from the 

correct cortical area and layer. Animals were euthanized with an injection of 5mg per 

10g of weight of pentobarbital into the abdominal cavity. Perfusions were performed 

with 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS). The mice were 

then decapitated, and the entire head was placed in 4% PFA in PBS for a week to 

complete the fixation process. Following fixation, the brain was extracted and placed 
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in a solution of 30% sucrose for two days in preparation for sectioning. Brain tissue 

was sectioned in 50µm on a cryostat machine and stored in PBS until the 

immunohistochemistry protocol was performed  

B.  Immunohistochemistry  

The slices were placed in a blocking solution (1% Triton-PBS; Normal Goat Serum) 

consisting of 5 mL of Normal Goat Serum diluted with 45 mL of 0.1% PBS-Triton 

(NGST) for one hour at room temperature. For the detection of the location of the 

electrodes, the slices were stained with NeuN, GFAP, and Hoechst. A primary 

antibody solution was made with 1:500 polyclonal rabbit anti-GFAP and 1:1000 

monoclonal mouse anti-NeuN diluted with NGS-T. The slices were incubated in the 

primary solution at 4℃ overnight and were then rinsed three times with 0.1% Triton 

in PBS. A secondary antibody solution was made with 1:500 dilution of Alexa Fluor 

488 goat anti-mouse and Alexa Fluor 568 goat anti-rabbit. Because the secondary 

antibodies are light-sensitive, the slices were covered with aluminum foil and were 

incubated with the secondary solution for 1 hour. After incubation, they were rinsed 

three times with PBS, and then stored in PBS until mounted on slides for fluorescence 

imaging. 

C. Fluorescent Imaging 

All slices were imaged by a Nikon Ni-E fluorescence microscope. The GFAP stain 

was imaged using the mCherry filter, the NeuN stain was imaged using the GFP 

filter, and the Hoechst stain was imaged using the DAPI filter (Figure 9).  
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III. Results  

 We were successful in isolating seventy distinct units from thirty-nine mice in our 

experimental setup. Forty-six units were trained on the SL presentation pattern and 

twenty-four were trained on the LS presentation pattern. To investigate the response 

of these units to the test stimuli, the average normalized responses to the elements of 

the sequence were calculated (see Methods). These values will subsequently be 

referred to as the response magnitude(s).  

 To analyze neural signals corresponding to negative prediction errors, response 

magnitudes from distinct units were compared when presented with ABCD-LS 

(Figure 4). Specifically, two 50ms windows capturing the visual response to the 

omission of elements B and D were considered (Figure 4, black overlays). The 

response magnitudes of units trained on the SL presentation pattern (n=46) was 

compared to response magnitude of units trained on the LS presentation pattern 

(n=24). The difference in response magnitudes between the two training types was 

insignificant in the window corresponding to the omission of B (Figure 5, top left 

panel, Wilcoxon rank-sum test, p = 0.82). Opposingly trained units also had similar 

response magnitudes in the window corresponding to the unexpected omission of D 

(Figure 5, top right panel, Wilcoxon rank-sum test, p = 0.74). Similarly, there was no 

difference in response magnitude between opposingly trained units in response to C 

(Figure 5, bottom left panel, Wilcoxon rank-sum test, p = 0.97) or in response to the 

second B in ABBD-SL (Figure 5, bottom right panel, Wilcoxon rank-sum test, p = 

0.85).  
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 To probe positive prediction errors, the same comparisons of response magnitudes 

between training types was conducted, however in response to ABCD-SL. The 

windows of interest represent the visual response to unexpected presentations of 

elements B and D (Figure 6). The difference in response magnitudes between training 

types was insignificant in first window (Figure 7, top left panel, Wilcoxon rank-sum 

test, p = 0.89) and second window (Figure 7, top right panel, Wilcoxon rank-sum test, 

p = 0.49). Additionally, the difference in response magnitudes was insignificant in 

response to C (Figure 7, bottom left panel, Wilcoxon rank-sum test, p = 0.21) and in 

response to the second B in ABBD-LS (Figure 7, bottom right panel, Wilcoxon rank-

sum test, p = 0.72).  

 Analysis of the same unit’s response to different stimuli allowed for deeper 

investigation into the temporal plasticity of sequence learning through paired 

comparisons of the response to elements presented under novel and trained timing 

(Figure 8).  In units trained on the LS pattern (n=24), there was no significant 

difference in response magnitude following presentations of elements B (Figure 9, top 

left panel, Wilcoxon sign-rank test, p = 0.28), C (Figure 9, bottom left panel, 

Wilcoxon sign-rank test, p = 0.71), and D (Figure 9, top right panel, p = 0.84) under 

novel and trained timing. In similar fashion, there was an insignificant difference in 

response magnitude following the presentation of the second B in ABBD when the 

sequence was presented under novel and familiar timing (Figure 9, bottom right 

panel, Wilcoxon sign-rank test, p = 0.39).  
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 In units trained on SL pattern (n=46) there was an insignificant difference in 

response magnitude following the presentation of elements B (Figure 10, top left 

panel, Wilcoxon sign-rank test, p = 0.42) and D (Figure 10, top right panel, Wilcoxon 

sign rank test, p = 0.22) under novel and trained timing. Similarly, there was no 

significant difference in response magnitude following presentation of the second B 

in ABBD when the sequence was presented under novel and familiar timing (Figure 

10, bottom right panel, Wilcoxon sign-rank test, p = 0.71). However, there was a 

significant difference in the response magnitudes following the presentation of C. 

Greater response magnitudes were elicited by presentation of C under trained timing 

as compared to novel timing (Figure 10, bottom left panel, Wilcoxon sign-rank test, p 

< 0.005).  
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IV. Discussion 

The goal of this project was to examine sequence learning as a predictive process and 

investigate the ability of V1 to encode and regenerate the temporal structure of a 

sequential stimulus. The experimental design was created to allow for periods where both 

positive and negative prediction errors could be observed and analyzed.  

Preliminary data analysis yielded mostly inconclusive results. However, it is 

important to note that analyses are ongoing. A first pass analysis, done without removing 

redundant units, showed significant differences in the unpaired response magnitude in 

opposingly trained units 450-500ms after sequence onset when presented with ABCD-

LS. This corresponds to the second window of interest, capturing the V1 response to the 

omission of element D and potentially represents a negative prediction error signal (see 

Figure 4). After removing redundant units, this effect was found to be insignificant as 

reported in this thesis (Figure 5, top right panel). The algorithm employed to remove 

redundant units uses a low correlation threshold to label units as similar and its automated 

removal of visually responsive units likely contributed to the lack of the effect observed. 

Correcting this algorithm and confirming by eye that it has removed the appropriate units 

should lead to more cohesive results going forward.   

A significantly greater response magnitude was observed following presentation of C 

under trained timing compared to novel timing in units trained on the SL presentation 

pattern (Figure 10, bottom left panel). The fact that this effect was produced in our first 

pass analysis and is replicated here inspires confidence in its validity. It is interesting that 

this differential response to trained C was not seen in LS trained units (Figure 9, bottom 
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left panel).  This could be the result of reduced sample size in the trained LS cohort 

(n=26) compared to the trained SL cohort (n=46). The training stimulus was randomly 

assigned on day one of the experiment, leaving the stratification of training to chance. 

Manually assigning training types in the future would allow for a more balanced analysis.  

The factors driving the observed increase in response magnitude following 

presentation of C under trained timing compared to novel timing remain unknown. It is 

difficult to explain this finding in the context of predictive processing. If sequence 

learning is a predictive process, the training period should be sufficient for the posited 

internal representation neurons within V1 to generate an accurate internal model of the 

trained sequence (G. B. Keller & Mrsic-Flogel, 2018). Consequently, when presented 

with the trained stimulus under familiar timing, cortical predictions should accurately 

match the incoming sensory stimuli resulting in decreased firing from putative prediction 

error neurons. Contrastingly, Gavornik and Bear (2014a) showed that the trained 

ssequence robustly drove periods of increased firing rates from multi-units within V1. 

The increased response magnitude driven by presentation of C under trained timing is 

puzzling because the onset of C is constant across both presentation patterns. If prediction 

error signals are present in V1, it follows that they would be observed in the windows of 

interest investigated in this thesis, not during an invariant period of visual stimulation. 

Accordingly, this finding is in agreement with the initial report on sequence learning but 

contradicts predictive processing theories. This discrepancy has potential to be furthered 

parsed out with additional data from the proposed experiment described in this thesis 

coupled with a refined analysis pipeline. 



   

 

 

27 

   While predictive processing has a strong body of experimental evidence, the 

cortical manifestation of this process is diverse. Studies investigating adaptation as a 

predictive process have reported that inhibition is a crucial component (Carandini, 2000; 

A. J. Keller et al., 2017) while others found no evidence of inhibition contributing to the 

process (Carandini & Ferster, 1997). How predictive processing emerges in sequence 

learning remains unknown. The lack of significant effects did not allow for a 

characterization of a distinct response, either in the form of increased or decreased 

response magnitude. 

 The goal of this project was to collect data that would show activity of the 

hypothesized prediction error cells that are central to the predictive processing 

framework. Data was collected from layer 4 of the binocular region in primary visual 

cortex which mainly receives thalamic input (Bastos et al., 2012). Although no units in 

this study showed consistent responses indicative of positive or negative prediction error 

signaling, it is possible that these cells are present in layer 4 and we simply did not record 

one or they dropped out of analysis. Other studies have shown predictive processing 

computations occurring in layer 2/3 of V1 (Adesnik et al., 2012; Angelucci et al., 2017; 

Saleem et al., 2013; Zmarz & Keller, 2016), thus another possibility is that these cells 

reside outside of layer 4.  

In summary, preliminary analyses of sequence learning as a predictive computation 

revealed trends that require further experimentation to be fully explained. The data 

showed evidence that contradicts predictive processing; however, no conclusions can be 

drawn due to the temporal invariability of the observed effect. Additional data collection 
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and refinement of data analysis will increase the potential of this experimental design to 

parse the mechanisms governing sequence learning and their relation to predictive 

processing.  
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V. Figures

Figure 1. Sequence learning in the primary visual cortex. (a) schematic of 

experimental set up. (b,c) Visually evoked potentials (VEPs) extracted from 

extracellular recording electrodes showing waveforms of the response to 

training and test stimuli (b) and average magnitude of the response on day 1 

and day 5 (c). (d) Multi-unit activity evoked by trained and untrained stimuli 

on day 5 evident through peristimulus time histogram (PSTH) and 

corresponding raster plot. (e) Current source density analysis (CSD) of the 

neural activity of V1 in response to the trained stimulus (top) and similar 

activity in absence of the second element (bottom, green overlay). Reprinted 

from “Higher brain functions served by the lowly rodent primary visual 

cortex” J.P. Gavornik and M.F. Bear, 2014, Learning & Memory, 21, p. 527–

533. Copyright by Learning & Memory
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A B 

Figure 2. Multi-unit electrode construction. (a) Building process 

showing attachment of guide wire to assembled bundle and glue 

placement. (b) Completed electrode ready for surgical implantation 
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Figure 3. Example of raster plot (top panel) and corresponding peristimulus 

time histogram (PSTH, bottom panel) in response to ABCD-LS. Each row 

in the raster is a presentation of the sequence, with each dot representing a 

spike. Averaging the number of spikes across trials creates the PSTH. Solid 

red lines at t=0s and t=0.6s indicate sequence on/off. Dashed black lines 

indicate the onset of each element of the sequence, while horizontal arrows 

further indicate the duration that each element is held on screen. Clear 

responses to changes in the visual field are readily observed from multi-unit 

data 50-100ms after the onset of each element.  
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Figure 4. Raster plots and PSTH from distinct units in response to 

ABCD-LS. Dashed lines indicate sequence on/off. Black arrowheads 

on x-axis show onset of each element in the presented sequence. The 

unit shown in red was trained on ABCD-LS whereas the unit shown in 

blue was trained on ABCD-SL. Unpaired comparisons of multi-unit 

responses to same stimulus creates two windows (black rectangular 

overlays) where negative prediction error signals are hypothesized to 

be observed. As shown, B is presented at 200ms after sequence onset 

(first black arrowhead, x-axis). Units trained on the SL temporal 

pattern should expect B to be shown earlier, specifically 100ms after 

onset of the sequence (first blue arrowhead). Its omission is 

hypothesized to drive observable neural responses in the window 

shown by the black overlay. The same conditions apply later in the 

sequence to element D. 
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Figure 5. Quantification of unpaired comparisons across units in response to 

ABCD-LS. Spikes were counted in 50ms windows during which negative 

prediction error signals should occur (see Figure 4), corresponding to the 

unexpected omission of elements B (top left, n.s., Wilcoxon rank-sum test, p = 

0.82) and D (top right, n.s., Wilcoxon rank-sum test, p= 0.74). Neither the 

response to C or to the corresponding second B in ABBD-LS were 

significantly different (Wilcoxon rank-sum tests, p = 0.97 and p =0.85, 

respectively) between units with opposing training stimuli. Black lines show 

the mean difference between the two training types. 
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Figure 6. Raster plots and PSTH from distinct units in response to ABCD-

SL. Dashed lines indicate sequence on/off. Black arrowheads on x-axis 

show onset of each element in the presented sequence. The unit shown in 

red was trained on ABCD-SL whereas the unit shown in blue was trained on 

ABCD-LS. Unpaired comparisons of multi-unit responses to same stimulus 

creates two windows (black rectangular overlays) where positive prediction 

error signals are hypothesized to be observed. As shown, B is presented at 

100ms after sequence onset (first black arrowhead, x-axis). Units trained on 

the LS temporal pattern should expect B to be shown later, specifically 

200ms after onset (first blue arrowhead). This unexpected presentation time 

is hypothesized to drive observable neural responses in window shown by 

the black overlay. The same conditions apply later in the sequence to 

element D. 
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Figure 7. Quantification of unpaired comparisons across all units in response 

to ABCD-SL. Spikes were counted in 50ms windows during which positive 

prediction error signals should occur (see Figure 6), corresponding to the 

unexpected presentation of elements B (top left, n.s., Wilcoxon rank-sum test, 

p = 0.49) and D (top right, n.s., Wilcoxon rank-sum test, p= 0.89). Neither the 

response to C or the corresponding second B in ABBD-SL were significantly 

different (Wilcoxon rank-sum tests, p = 0.21 and p =0.72, respectively) 

between units with opposing training stimuli. Black lines show the mean 

difference between the two training types. 



36 

 

 

 

 

 

 

 

Figure 8. Raster plots and PSTH from the same unit in response to ABCD in 

both presentation patterns (SL in blue, LS in red). Arrowheads on and above the 

x axis indicate the onset of each element. This unit was randomly assigned to be 

trained on the LS pattern making it the trained response. Comparison of the 

same unit to differing stimuli offers a more controlled analysis of the response to 

each element, allowing for comparison of the response to each when presented 

under novel and trained timing, as indicated by the black text arrows.  



37 

 

 

 

 

 

 

 

 

 

Figure 9. Quantification of each unit’s response to elements of sequence when 

shown under novel and trained timing. These are responses from units trained 

on LS (n=24) presentation pattern, deeming the SL pattern novel. Paired 

comparisons are shown through connected data points. If the connecting line is 

blue, then the response under novel timing was greater than the response under 

trained timing. Red connections indicate that the trained response was greater 

than the novel response. Black lines show the mean difference between the two 

presentation patterns. None of the comparisons were significantly different 

according to the Wilcoxon sum-rank test (p > 0.25 for all).  
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Figure 10. Quantification of each unit’s response to elements of sequence 

when shown under novel and trained timing. These are responses from units 

trained on the SL (n=46) presentation pattern, deeming the LS pattern novel. 

Paired comparisons are shown through connected data points. If the connecting 

line is blue, then the response under novel timing was greater than the response 

under trained timing. Red connections indicate that the trained response was 

greater than the novel response. Black lines show the mean difference between 

the two presentation patterns. Only the response to C was found to be 

significantly different, with a greater response to trained presentations of the 

element compared to novel ones (Wilcoxon sum-rank, p < 0.005). None of the 

other comparisons were significantly different according to the Wilcoxon sum-

rank test (p > 0.20 for all).  
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Figure 11. Histology preparation of a 50µm coronal slice of the binocular 

region of the primary visual cortex. The slice was stained with NeuN (green), 

GFAP (red), and Hoechst (blue). White arrow indicates location of electrode 

tract, confirmed by red staining indicating astrocytosis. This image serves as 

confirmation that data was properly recorded from layer 4/5 of binocular V1.  
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