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1. Introduction 

1.1 Motion Perception, Recognition Learning, and What-and-Where Atten­

tion 

Our brains are designed to control behaviors that are capable of interacting successfully 

with fluctuating environment;, whose rule;, may change unexpectedly through time. They 

are sclf-cngan-izing system;, whereby behaviors rnay be performed autonomously and ada.p­

tively to environmental changes during which no teacher other than the environmental events 

thernoclves may be present with correct new answers. The present chapter describes two ex­

arnplcs or how the brain may achieve autonomous control in a rapidly changing; environment. 

One example concerns motion perception and object tracking. The other concern;, recogni­

tion learning, categorization, rnernory sc:arcb, and recall. Both examples include dynarnical 

processes which may control attention during cognitive information processing. One process 

snp;gcsLs how atLenLion rnay be used to track when objects are moving in space. 'J"bc other 

process snggcsts bow at.l.ention nray dclirnil. wha!. the defining features of an object. may be. 

'l'lwsc reoults thus contribnt.c Loan analysis of the \Vh;rt cor"Lical stream, which inchrdcs Mea 

V11 of visnal cortex and Lcnrporal cortex, and Lhc \Vhcre processing strcanr, which inclndes 

area MT of visual cortex ;wd parietal cortex, that have" been the subject or much recent 

investigation (Desimone and Ungcrleider, JD8D; Goodale and Milner, JC)D2; Ungcrlcidcr a.nd 

Mishkin, l 98:2; Wise and Desimone, 1988). 

1.2 The Whole is Greater· than the Sum of its Parts 

How can effective models of web complex self-organizing brain processes be derived, 

p,iven Umt no one type of behavioral or brain data CiUl typica.lly clwmcterize its generative 

neural rncchanisnrs? The several answer;, to this question each imply thai. "the whole is 

grcal.c"r than the sum or its parts" when inV:rdisciplinary da.t.a and modelling constraints arc 

consist.cntly joined. Even I. he constminl. that I. he rnoclel lw sci f.-organizing ·namely, l.hal. il. 

ca.n ;url.onomously and adaptivc:ly rcsporHI in realtime to il.s inV:nded range oi" environmenLal 
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challengc:;-imposc:; rna.ny constraints on system design that arc not obvious frorn a boHonr­

up analysi;; of brain data. Modelling self-organizing perception ancl recognition learning 

system:; require:; that ;;cverallcvel;; of proce:;sing, from the behavioral level through the neural 

system, circuit, cell, and channel levels, be computationally integrated. This is true becau:;e 

such a system usc:; internal representa.tions that need to achieve behavioral success despite the 

inability or individual neurone; to discern the behavioral meaning or these representations. 

llow arc coding errors corrected, or appropriate adaptation:; to a changing environment 

cfl'ected, if indiviclual neurone; do not know that thec;e errors or change:; have even occurrccl'l 

It i:; often the case that behavioral success can be computed on the level of networko of 

neurons. 'fhat is why neural network models can clarify how properly designed ne;urono, 

when ern bedded in properly designed neural circuits and systcrns, can autonomously control 

behavior in a rnanner that leads to behavioral succec;:;. 

For example, it is c;rrpy;estecl below bow properties of variablc-:;pcc"l object tracking and 

memory consolidation of recognition categories may ernerge J'rorn system-wide interactions. 

'T'be conrprrtational linkage of multiple organizational levels also lcacl:; to new predictions. 

In partic:rrlar, properties of pn'attc'ntivc apparent motion procc:osing arc linked below to 

properties of attcntiv<' object tracking. It is also srrp;gestc;d bow novelty-sensitive processes 

within the hippoc:arnpal J'orrnation rna.y modulate the size, shape:, and nrrmber of recognition 

categories that arc learned by the infcrotcmporal cortex. 

Granted that tire; emergent properties that h<WC behavioral rneaning arc typically not 

properties of single neurons or other incliviclual neuronal con1poncnto, we: can bcttc:r undcr­

c;tand why behavioral and brain proc:esseo are so hard to understand. \Vhercas c:orrcc:tly clc­

signecl inclividrral neurons arc necessary in such a rnodcl, they arc not sufficient. A mnltilevel 

rnodcllinp; synlhc:;i:; is needed in which individual conrponents, their intcrcellrrlar interactions, 

and tlwir behaviorally significant emergent properties arc all crafted together. 

Srrcb a. nnrltilcvcl analysis achieve's rnrrcb of its power by focu:;ing on a natura.! subscl ol' 

interdisciplinary data. and ioSilCo on a. "vertical slice" throrrgb lhe space or pbcnonwna.. One 

~ 
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never tries to solve "all" the problems at once. In the present instance, these data and issues 

concern preattentive motion processing, attentive recognition learning, and attentive object 

tracking. 'vVe do not analyse such equally important processes as form and color perception, 

reinforcement learning, cognitive-emotional interactions, working memory, temporal plan· 

ning, and adaptive sensory-motor control. On the other hand, larger rnodel systems that 

integrate aspects of all these processes have been proposed as part of a continuing modelling 

cycle (Carpenter <tnd Grossberg, 1991; Grossberg, 1982, l987a, 1987b, 1988, 199:3; Grossberg 

and I<uperstein, 1986, 1989). CJ'his cycle has progressively characterized individual rnoclules, 

and fit them together into larger systems. System constraints that are discovered dming 

this fitting process are used, in turn, to fnrthcr shape the design of individual modules. The 

puzzle cannot be finished unless each piece is designed to fit. 

These modules arc designed to be the rninimal rnodds that can explain a targeted data 

base. They are lumped representations of' neural processes in which no process is included 

unless its functional role is required and dearly understood. 'fhc insistence upon functional 

clarity highlights those d<eta tha.t the model should and should not be able to explain, Lt· 

cilitatcs the discovery or additional neural processes to cxpla.in addition<el da.t<e, and clarifies 

which spc:cic:s-specific variations or the rninirnal rnodels arc workable and which arc not. 

Thc,sc discoveries have, in the past, led to the progre;;sivc unlumping of the rnodcls as they 

en1body cver-morc·powcrrul runctional cornpetenccs for explaining cvr:r-more-cncornpassing 

data base:;. 

2. Modelling Apparent Motion 

2.1 The Ecological Significance of Apparent Motion 

Tbc first model provides a particularly simple example of emergent properties that arc 

clue to dynamica.lly intc:ract.ing nc:twork c:dls. 'I'hc example seems simple after you sec it, 

but tbc da.ta propc~rti<~s that led to its discovery arc highly paradoxical and have been known 

and puzzled about for mauy years. 

;) 
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These data c:orH.:ern phenomena about apparent rnotion. One rnight at once complain 

that apparent motion phenorncna arc of no ecological interest. To challenge this impression, 

consider the task of rapidly detecting a leopard leaping from a jungle branch under a sun-­

dapplcxl forest canopy. Consider how spots on the leopard's coat rnovc as its limbs and 

rnusclcs surge. Irnaginc how patterns of light and shade: play upon the leopa.rcl's coat as 

it leaps through the air. These luminance and color contours rnovc acro:;s the leopard's 

body in a variety of directions that do not necessarily point in the direction of the leopard's 

leap. Indeed, the leopard':; body generates a scintillating mosaic of moving cont01rrs that 

could easily prc:rvent its detcrction. Our perceptual proccsse:; can actively reorganize such a 

scintillating mosaic into a coherent object percept with a unitary direction-of-motion. T'hc 

leopard as a whole thcrn seerns to quickly "pop ont" fn11n the jnngle backgronncl and to draw 

onr atlcnt.ion. Snch a perceptual process clearly h;ts a high survival valnc; for animals who 

posse;;;; it. 

'fhis cic:;c:ription Of t.hc leaping Jeopard emphasizes that the proceSS of n1otion perception 

is an active one. It is capable of trandorming a.molion signallha.t is gcncra.Led by a luminance 

contonr into a clilfcrcnt motion percept. In this sense, our percepts of nHwing objects arc 

often pt'lTcpts of apparent. motion, albcril a.n acla.plivc and useful form of apparent motion. 

'fhc task of undcrrstancling bow we: seer "real" nwtion thus requires that. we al;;o understand 

"apparcnl'' motion. 

The simplest. exarnplcs of apparent rnoLion were cloc:umcnLcd in the 1870's, wbcn Exner 

provided the lirst crnpiric:a.l c;vidcnc:e that the vi;;ual perception of motion was a. distinct 

pcrurptual quality, rather than being merely a series of spatially di;;placcd static percepts 

over time. lie did this by placing two sources of electrical sparks close together in space. 

When the sparks were flashed witb an appropriate; tcrnpora.l interval between thcm, observer;; 

reportcd a cornpcrlling percept of continuous motion of a. single flash from om' loc:a.tion to 

another, even thoup,h neither flash actually moved. At. ;;horter temporal intervals. flashes look 

simultancons and stationary. At. longer intervals, they look like successive• stationary flashes, 

'i 
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with no interveninp; motion percept. Wbcn tbe spatioternporal parameters of tbe display 

arc suboptimal, a "figurcless" or "objectless" motion called ]!hi motion is perceived, wherein 

a sc~nsc of motion without a clearly defined forrn is perceived. II srnootb and c:ontinrHJuo 

rnotion of a perceptually well-defined form is called bela motion, and typically occur:; at a 

larger interstirnulus interval, or lSI, between the offset of one flash and the onset of the next 

nash. 

'fbi:; classical demonstration of a.pparent motion was followed by a. series of renJ<lrkablc 

di;;c:overie;;, particularly by gcsta.lt psychologists, concerning the properties of motion per­

ception. It was noticed that a dcc:rea:;e in lSI cmr.o;c:; the speed of the interpola.tinp; rnotion 

to increase (Kolcrs, 1 972). A rnotion percept can also srnoothly interpolate flashes separated 

by different dist<UH:es, speeding up if necessary to cross a longer distance at a fixed lSI. IJ 

a more intense flash follows a less intense Hash, the perceived motion can travd ba.c:kwa.rds 

from the second flash to the first flash. T'bis percept is called della motion (I<olcrs, 1 972; 

1\orte, 1915). Oanw1.am.olion is the apparent. expansion at the onset of a single Hash, or its 

contraction at its olrset (Bartley, 1lJ41; I\olers, 1 lJ72). ;\ oinrilar cxpansion··then-ccmtraction 

may be perceived when a region is snclclc:nly darlwned relative to its l.mckgronncl, and then 

restored to the background luminance. 

If a white spot on a gray backp;round 1s followecl by a nr:arby black spot on a gra.y 

background, then motion between the spots can occur while the percept changes from white: 

to black at an intcrrncdiatc position. Likewise, a reel spot followed by a green spot on a white 

background leads to a continuous rnotion percept cornbinecl with a binary ;;witch from reel 

to green along the motion pathway (I<olers and von Griinau, 1975; Sqnires, 19:31; van der 

Waals and Roelofs, 19:)(), 1~J:l1; vVcrthrimer, 1D12/19Gl). These results show tha.t the motion 

mechanism can combine: visual stirnuli corresponding to different colors, or even oppo;;itc 

rlirections··ol'-c:cmtrast. Complex traclc:off:; between flash hnninancc, duration, di;;ta.nce, and 

lSI in tlw gcJHcration of 11rotion peru:pts were also discovc:rccl. For cxarnplc, the nrinimuru 

lSI for 1H'ITC:il·ing mol.ion incrc';1s~:;; wil.h i1H:re11sinp; c;patial separation of the indnc:ing flash~:s. 

G 
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This property i;; sornetirnes called Korte';; 'I' bird Law (Boring, I <J50; I<olers, 1972; Korte, 

1915). A similar threshold decrca;;c with distance occurs in the rninirnum ;;timulus onset 

asynchrony, or SOA, which i;; the difl'crencc between the flash onset time;;. Interestingly, 

whereas the minimum lSI der:reasc;; with flash duration, the minimum SOA increases with 

flash duration. 

These cliscovcrie;; raised perplexing is;;ucs concerning the nature of the long-range brain 

interaction that generates a continrrou;; rnotion percept between two stationary flashes. Why 

is this long-range intcraclion not perceived when only a single light is flashecl'l In particular, 

why arc; not outward waves of rnotion ;;ignals indrrced by a single flash 'I How does a motion 

signal get generated from the location or the first flash after the fir;;t flash terminates, and 

only after the ;;econd flash turn;; on? How does the motion signal adapt. itself to the variable 

c\istanccs ;tnc\ ISis ol' the second flash, by spec,ding up or slowing down accorclingJy'l In 

parl.ic:ular, how can the• rnotion signal ac\a.pt t.o 1.\tc' lSI lwt.wccn two flashes c'vcn though such 

adaptation c:an only begin after the first flash is over? I like to call thi;; the ESP Problem. 

ivloreover, what. ecologically useful l'ttncl.ion c\o these curious properties realize ttJHler nrore• 

nonnal pcrccpl.ttal conditions? 

The figura.\ organization ol' motion stimuli can aho inflttcnc:c motion percepts. The 'T'emus 

displays provide a classical exarnp\e ('J'c,mus, I ~J'2(i/ I %0). In Franre I of a Tern us display, 

three white clements arc p!Mecl in a horizontal row on a black background (or conversely). 

i\l'tcr an lSI, in Frame '2 all three clcrncnts arc shil'tcc\ to the right. so that the two rightward 

elcrncnts in Frame I arc in the sanrr' \ou\.tions as the two leftwarc\ elcrncnts in Franre 2. 

Dcpcnc\inp; on the lSI, the observer perceives either of four percepts. At very short ISis, all 

f(Jur e\e;rrent;; a.ppcar simultaneous. At long ISis, observers do not pcrc.cive motion i\.t all. At 

ISis slightly longer than those yieldinp; simultaneity, the' ldtmosl clement in Fra.rnc l appears 

to jump lo the' rigbtJJHlSl clr•IIJCnl in Franrc 2. Cl'bis percept is callccl clement. ;n.olion. AL 

sorncwha.t lonp;c'r ISis, all three flashes ;;ccn; to rnove together between Frarnc I and Fra;ne 2. 

This is callc:c\ .!JI'OUJI nwlion. 

G 
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The percept of group motion might suggest that Ternus percepts are clue to a cognitive 

process that groups the flashes into attendee! objects, and that motion perception occurs 

only after object perception. Such an explanation is not, however, rnadc easily consi:;tcnt 

with the percept of element motion. It ha:; been argued, for example, that at short ISis, tlw 

visual persistence of the brain's response to the two rightrnost Hashes ol' Frame l continues 

until the two leftmost flashes of Frame 2 occur (Braddick, 1980; Bra.dclick and Adlard, 1978; 

Breitrneycr and Ritter, 1986; Pantle and Petersik, 1980). As a. result, nothing changes at 

these two flash locations when Frame 2 occurs, so they do not secn1 to move. This type of 

explanation suggests that at least part of the apparent motion percept is determined at early 

processing stages. It docs not, however, explain bow we sec: clement rnotion. In particular, 

why docs not; the dement motion pen:cpt collide with the two stationary flash percepts? 

'vVhat kind of perceptual space can carry element rnotion acrooo, or over, the stationary 

flaslws'l 

Reverse-contrac;t Tern us motion also suggests that motion properties rnay be determined 

at early processing stages. In thi;; paradip;m, three white spots on a gray background in 

Frame I Me followed by three black spot,; on a gray background in Frame 2 (sec Figure: I). 

i\t the lSio where clement rnotion previously occurred, group rnotion now occurs (Pantle clnd 

l,. . I IJ~I·) - JCCl<:UlO) . f ) . !low docs a change of contra;;t between Fracne: I and Franre 2 obliterate 

elccucnt nrotion? Docs it do so by alte•ring the drccts of visual persistence on Frame 2'1 

Figure 1 

A unified answer to all of these questions has recently been developed in a neuralnroclel 

of rnotion segmentation that clarifies the functional significance of many apparent motion 

percepts (Grossberg, 1991; Gro;;sberg and Mingolla, 199:3; Grossberg and Rudel, 1989, 1992). 

Perhaps the simplest SllCh model is sc:hematized in Figmc: 2. It. is called a. lvlotion Oriented 

Conl.rasi.-Se~nsitive Filter, or lvlOC Filte"r. The: c:nl.ire model of motion sc::gmc:ntation consist;; 

of cnultiplc: copies of tire: ~lOC Filter, each corresponding to a dilfe:rent range of receptive 

7 
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field sizes, and each or which inputs to a grouping, or binding, network that is called the 

Motion Oriented Cooperative Cornpctitivc Loop, or lVIOCC Loop. Taken together, these 

MOC Filters and lv!OCC Loops arc callccl the Motion Boundary Contour System, or Motion 

BCS. 

The Motion BCS is designed to possess the minimal number or processing stages that 

arc c;cpable of tr;ccking an object's direction-of-motion independent of whether the object's 

several p<trts arc darker tb;cn or lighter than the background npon which they arc moving. 

Grossberg and Hudd ( 1992) showed that e;cch of the MOC Filter's processing stages is needed 

to ccxplain the full corpus or d;cta ;cbout beta, gamma, clclta, Tcrnus, and related types of 

rnotion. "flw model's clyn;cmics thereby illustrate how seemingly panvloxical apparent rnolion 

data m;ty be explained as enrergent properties or ec:ologic:ally simple design constraints on 

the tracking of real lllOVing objectS. 

Fip;u re L 

2.2 Variable Speed Apparent Motion 

In this cha.ptc:r, I will focus on one key process or tlw MOC Filter: namc:ly, how "large 

vari<ttions in distance arc accorrrnrod<ttcc! within a ncar-constant anrount of tirnc" (1\olc:rs, 

I 97:2, p. 27l). The 1nec:hanism that. achieves this is posited to exist lwtwccn Level:; 1 and 5 in 

Figure :2. lt is a surprisinp,ly sirnple mechanism and utilizes components that arc generally 

familiar lo psychologists: a Gaussian filter followed by contrast enhancement. due to lateral 

inhibition. Remarkably, in response• to temporally successive inputs to the Caussi<tn filter, a 

travelling wave c:an be generated from the fin;t input location to Uw second input location, 

and the peak of this wave can be contrast-enhanced by latera.! inhibition to generate a focal 

activation that speeds up or slcms clown with increases or decreases of distance or lSI just 

as in the data. 
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2.3 G-Waves for Long-Range Apparent Motion 

How are long-range apparent motion signals generated in such a model? Figure :3 schema­

tizes how a flash at Level I (Figure :la) leads to a focal activation at Level 5 (Figure :lc) 

after it activates the long-range Gaussian filter that joins Level 4 to Level 5 (Figure :lb ). The 

broad Gaussian activation of Level 5 is sharpened into a focal activation by lateral inhibition, 

or competition, among the Level 5 cells. 

Figure :3 

Figme 4 shows bow this input activation looks in tinw. 'l'hc input to Level 1 (Figmc c\a) 

generates a slowly decaying temporal trace (Figure 4b) that has been called "visual inertia" 

by Anstis and Rarnacbandran (1987). When this trace is feel through the Gaussian filter, 

it generates a spatially distributed input to Level 5 that waxes and wanes through time, 

without spreading across space (Figure 1c). T'he rnaxinHml value of this input does not 

move. lienee a. single flash docs not cause a movcrncnt across space. 

Fip;ure 4 

Snpposc, however, that two locations both input through the s;\lltC Gaussian receptive 

field, and that the activation in response to a flash al. the first. loca.tion is decaying while 

activation is growing in response to a flash at the second location (Figure 5). Under these: 

circttrnstances, the.: loin/ input to Level:) front both flashes is the sum of" a tcrnporally waning 

Ganssia.n plus a ternporally waxing; Gaussian, as in Figure G. Under appropriate conditions, 

this Stnn represents a wave whose rnaximum travels continuously in time from the location 

of the first Hash to the location of the second flash. 

Figure t) 

In sunnnary, the time- ancl spacc-avcra.gcd responses to incliviclual flashes do not change 

their positions of maximal activation through time. In this sense, nothing moves. When a 

SC'l"it'S or properly limed and S1J<\C:t'd flasitc:s is pr<'SC'lli.c:d, lJOW(>\"C:l". lh<' SUlil or l.bc tc:rnporally 

D 



Jruuwry 11 1 19.9!; 

and :;patially avera.gccl n;sponscs that they generate can produce a continuously moving peak 

of activity between the positions of the :;troboscopic flashes. This is an crncrgent property 

of network dynamics, rather than a property of any cell acting alone. 

Fip;ure G 

2.4 Motion Speed-Up and Multiscale Coherence 

This Ga.ussian wave, called a G-wave, was discovered and rnathernatic.ally analysed in 

Grossberg ( 1977). These results waited twelve years for publication in Grossberg and H.udd 

( 1 CJRCJ) because it took that long to understand how a. long-range Gau;-;sian filter fit into a 

la.rgcr theory of motion perception, such as the Motion BCS, that also inc:ludc;-; a role for 

tran;;icnt cello and ;-;hort-range spatial interactions. i\ C:-wave occ.ms whenever waxing and 

waning activation traces interact via a spatial c;aussian kemel under appropriate spatiotem-

poral conditions. The properties of a G-wave corresporHI closely to propc;rt.ies of long-range 

apparent. nrotion, including the rc:orrlarkable properties \\'hereby an ;tpparent motion percept 

can speedup when the lSI is decreased ;tt a. fixed intc:rflasb dist.anc:e, or \\'hen the IS! is bdd 

constant and the intcrflash distance i:; increased. 

'fhc basic mathcnlil.tic:;ll framework !(Jr proving t.hesc properlics is very simple'. Let 

flasbc:s occur at. positions i = 0 and i = L. Suppose that 

d:rrJ = -!Llo + .lo 
d! 

defines the activity :r0 and input J0 at. position 0, and 

d:r L -- A J - -:rL·+· L, rU · -

docs the same at position L, where :co(O) = :r:L(O) = 0. Then 

and 

:ro(l.) = (c,A(t--v).Jo(v)dv 
./o 

10 

( I ) 

(2) 

( 'l) 

(I) 



Let the inputs Jo ancl ·h :;witch on to the constant value J at tirnes 0 and T + J for duration 

T, as in 

and 

{ 
J if 0 < i < T 

Jo(i) = 0 if T-< ,-

l (L) = { J if T' +I :S i :S 27' +I 
, L 0 if 2'/' + [ < [ 

where J is the lSI between the flashes. Then for T +I :S i :S 2T + J, 

a.n cl 

Let :r0(i) and :r 1Jf) interact via a long~ range Gaussian filter 

( ' [ (. ')''/2' !>')] 'ji=CXjl·-.J-1~ \' 

(Ii) 

(G) 

(7) 

(8) 

(9) 

as in Figure 2. For sirnplic:ity, replace index i by a continuurn of cells at positions w in Level 

:J. Then the total input to position w of Levt:l 5 is 

( I 0) 

By (7) ami (8), 

,

1

. .. _-·· w:! " (w-L) 2 ·[ 
'/ '(,u' I) = ~~ (I -- c-A 1 )c-A(t- 1) exp[ 2J(2] + (I - c A( t~ 1 --I)) exp[ -~:2]{2-] ( I 1) 

T'he main result show:; under what c.ornbinations of parameters the rnaxinmrn value of 

T(w, i) moves continuously from position w = 0 towards position w = L through tirne. It 

al:;o characterizes the maxirnurn flash separation that can generate a G-wavc in rcspon:;e to 

a Gaussian with size pararneter 1\ in (9). 

Theorem 1 (App:u·ent Motion) 

1 l 
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Tbe rnaxirnurn of 'f'('w, t) movr;;; continuou;;ly from position w = 0 to position w = L if 

and only if 

L<2K 

Proof: 'T'be rnaxilllunr values of T(w,t) occur only at locations w = w(t) such that 

iJT( w, t) = O. 
cho 

By (1 1), such locations obey the equation 

cA(t=~)=cAI = ~H_I_exp[L(L--:2w)l· 
l-e-Al L-w 21\2 

'T'hc function 

( 12) 

( 1 :3) 

(14) 

( J 'i) 

rs an increasing function of/ .. \Vc wi;;h lo clclcrminc when the positions w = w(t) at which 

T(ro, 1.) is r11aximal inc:rcasc as a function of i. In order for this to happen, the right ha.ncl 

;;ide of (14), namely function 

.cJ(w)c" w cxp [ LU; 1-:i'tl)] . 
- 10 L \_- . 

(I G) 

nrrrst also be an incrca;;ing function of w, for all 0 s; w ;C L ;;ince then we can solve for 

( J 7) 

as an increasing function ol' w for all 0 s; w s L. 

Function 9(1o) is nronotom• incrca;;ing if g'(w) > 0, which hold;; if and only if function 

satisfies 

Lw] /r(?o)=(L·-w)[l---
1
, 0 +w 
I , 

h(w)>O. 

( J 8) 

( J ')) 
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In order for (17) to hold for all 0 :S w :S L, the rninimurn of h(w) for 0 :S w :S L rnust be 

positive. The minimmn of h(w) occurs at w ccc ~,and equal:; 

I ( L) L (2 £2 ) 
I 2 CCC 2 - 2K2 . 

The number h(~) is positive if (12) holds. 

(:20) 

'fbc next result proves that the apparent rnotion signal rcachc:; the position w = ~' 

midway between positions w = 0 and w = L at a time i 1 that is independent of L and 
2 

/{. Independence of L illustrates how the wave speeds up to travel over larger intcrfla:;h 

distances. 

Theorem 2 (Equal Half-Time Property) 

'fhc tirnc at which the 1n0tion signa.! rr:aches position w = ~· is 

I - '/' I I I· [ Jll I (! -il'l')] ·~··. ,. 71 nc ····· -c . 

Proof: By (17), we need to compute i c= .r·· 1 (g('w)) when w = .lj-, narncly 

By ( ](i), 

Equation (21) follows imrncdi<ttcly from (2:3) and (14). 

(21) 

( 2:2) 

H.cmarkably, 1112 in (21) also docs nol depend upon the width]{ of the Gaussian filtc•r, 

just so lonp; as the filter is wide enough to support a travelling wave. 'T'his means that tlH' 

:;peed-up property, which seems so mysterious in itself, also achieves an ecologically useful 

property; namely, the ability or multiple spatial scales in the motion perception system to 

generate G-waves tba.t arc all spatially coincident (Figme 7). Because of this property, a 

coherent motion jl(O!Tcpt may be synthesized from data fron1 all the r>patial scales tha.t arc 

activated by the: stimulus. 

J:l 
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Figure 7 

2.5 Spatial Attention Shifts and Target Tracking by the Where Cortical 

StremTr 

Another no Jess usel"ul ecological property of motion speed-up is suggested by the fact 

that rapidly rnoving objects may be perceived only intcnnittently. From this perspective, 

I sugp;est that a. C-w<we rrr<ty give rise to certaiu spatial shifts iu attcutiou, such as those 

reported by Ericksen aud Murphy (19x7), h:wak, Dagcnbac:h, and Egcth (1991), LaBerge and 

Brown (I 989), and Rcnrington and Pir~rcc (I 984). For example, if a targeted predator or prey 

is rapidly moving across a scene, perhaps darting behind protective cover, then an animal 

may be able to sec the target only intermittently. A G-wavc can intcrpobrtc these temporally 

discrete~ views with a continuous motion signal that adapts it;; speed to the varying speed of 

the targel. Such a continuous rnotion signa,l may lw used to predict the location ancl speed of 

the target, and to command motor responses accordingly. 'I'he results of Ewak, Dagenbach, 

and Egeth (I ()lJI) and of Rernington and Pierce (19il'l) arc of particular interest, since they 

report a spw:d-up of opatial attention to covr~r variable distances in equa.J tinw. 

In thosr: cases where motion rnr:chanisrns contribute to spatial attention shifts, it needs 

to lw kept in mind tbaL a spatially continuous motion signal is p;cncratcd only under certa.in 

opatiotcmporal conditions, the speed or the rnotion signal is nonunifonn in time (sec Cross· 

berg and Rudel, 1992), and spatially discrete jurnps in activation rnay occur in cases wlwrc 

continuous rnotion is not observed; for example, i[ L > 2/{ in (12). T'hcsc properties may 

help to disentangle some or the apparently conflicting views about how f<tst attention shifts 

and whether it docs so continuously or discretely. 

ln thinking about these possibilities, the rc:a.cler rnight wonder how a continuous motion 

signal could be intr~rpolatcd behind occluding objr•cts in such a way tlraL it is not sc:en. 

'J\vo thenH~s need to be developed to uudcrstancl how thio might hapJWn. First, the theory 

predicts that a b01rndary segrnentation, whether static or moving, is perc:c:pt nally invisible; 

I 'I 
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within the pa.rvoc:ellular interstripe and rna.gnocellular processing streams of the visual cortex 

wherein they are predicted to be c:ornputed. I like to say that "all boundaries are invi;;iblc". 

Visibility i;; predicted to be a. property of" the parallel parvocellular blob cortical strca.rn 

(Figure 8). Here boundary segmentations define the dornain;; within which visible properties 

of brightncs;;, color, and depth fill-in surface representations. (See Cirossberg and Mingolla 

( 199:3) and Urossberg, Mingolla, <end TodoroviC: ( 1989) for a discussion of how this is predicted 

to happen.) In addition, one ncecb to analyse how <t boundary segmentation, whether ;;ta.tic 

or moving can be cornpletecl "behind" an occluding object in such a. way tllil.t it can influence 

object recognition without being seen. Example'" of ;;uch occludccl boundary completions arc 

discussed in Crossberg (199'1). Brcgnlitn (1CJCJO, p.2:l) has also comrnented upon the possible 

utility of a rnotion signal that can interpolate intermittently viewed moving objects. 'J'hc . . 

present theory suggests a dyna.rnic.al explanation of how this can happen in the brain. 

3. Modelling Recognition Learning and Categorization 

3.1 Spatial Attention, Featural Attention, and Perceptual Binding m the 

What and Where Cortical Streams 

'J'lw hypothesis that a. G-wavc rnay gi vc nse to a spatial attention shift is consistent 

with tire fact thal the' rnotion JWrception, or ma.gnoc.ellula.r, cortical processing strearn is 

pa.rt of a larger 'vVherc processing ;;\ream that includes cortical region i\1'1' as well as parietal 

cortex (Figure 8). 'l'he Where proccs:;ing strca.m computes the locations of targets with 

respect to an observer a.ncl helps to direct attention and action towards thern. ln contrast, 

the l"onn perception, or parvocellula.r, cortical procc:;sing strearn is part of a larger 'vVhat 

prou.:ssing strearn tha.t inc:ludes region V4 as well as infcrotemporal cortex (FigureS). 'J'he 

What processing strcarn is used to recognize targets based upon prior learning. 

'J'hr' second rnodcl of this c:haptc:r contributes to the understanding of how hunl<1.ll:i and 

I G 
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other animals can rapidly learn to recognize-~ and categorize objects in their environments . . 

under autonomous lc<trning conditions in real time. Here again, attention plays a key role. It 

docs not predict a spatial location of a target. Rather, it arnplifies and binds together feature 

c:onrbinations tlmt are used to categorize environmental events into object representations. 

3.2 The Stability-Plasticity Dilemma 

i\n adequate self-organizing recognition system rmrsl lw capable ol' plaslicily in order 

to rapidly learn about significant rww events, yet its rncmory rnust also rcrnain sla.blc rn 

response to irrelevant or often repeated event;;. For example, how do we rapidly learn to 

recognize new faces without ri;;king the unsclcc:tive forgetting of our parents' faces? In 

order to prevent the unsclective forgetting of its learrrcd codes by tire "bloorning, buzzing 

confusion" of irrrlev<l!lt expericnc:e, a scM-organizing recognition sy.sl.ern rn11sl. be sensitive to 

rwvclly. It rH:cds to be capable of distinguishing between familiar and unbrniliar event.;;, as 

well as br-twc:en expected and Hnexpcctcd events. 

;\ clas.s of nrmal nrodcls, called Aclapt.ivc Resonance' Theory, or AHT. model;; was in-

trodHccd in JCJ7(i to help nnders\and how thi.s i;; acc:ornplislred (Grossberg. l'J7Ga, 197Gb). 

In i\HT, clynarnical interactions bc:twec;n an al.l.cntiorml .snbsyst.cm and an orienting snbsys-

tell!, or novc~lt.y dctcct.or, sclf-st.abili:cc learning, without an external leachc:r, as the network 

fanriliarizes it.;;clf with an enviromncnl. by categorizing the inforrnation within it. in a way 

that predicts behaviorally successful outconrcs (Carpenter and Grossberg, lCJCJl; Grossberg, 

1980). AWl' rnoclcls c:onrbine several types of processes that lnwe been dernonsl.rated in 

c:op;nitivc and ncmobiologic:al cxpcrirncnts, lmt not otherwise syntbcsizccl into a model .sys--

tem. 'fable 1 li.sls sornc of the cognitive processes that are joined together in a. consistent 

corrrputal.ional format within i\HT' systems. This synthesis illu.stratcs that leaming and in-

formation processing mechanisms need to c:oevolve in order to achieve bchav·iorally u.sdul 

properties. It. also r·larilie.s how higher-order cognitive pror·c'.ssr's. such as lrypot.he.sis testing of 

lr:amcd t.op-drmn C\pcctations, cont.ml .snc:h apparc'ni.ly lrl\\'cr--ordcr proccssc's as tire learning 

[() 
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or bottom-up recognition categoric:>. That i:; why <Ur analysis or recognition needs aJso to be 

frarnccl as an analysis or lca.ming. 

'fable l 

3.3 Competitive Learning and Self-Organizing Feature Maps 

All the Jr:aming goc~s on in the attentional wbsystem. Its processes include activation 

oF short term rnernory (STM) traces, incorporation through learning of momentary STM 

inforrrmtion into a longer-lasting long term rnernory (LTM) traces, and interactions between 

pathways tha.t carry specific types or infornra.tion with nonspecific p<rtlrways that modula.tr: 

the spr:cific pathways in several different ways. 'J'bese; interactions between specific ST'M and 

J;f'lvl processes <rndnonspecific rnodula.tory processes regulate the stability-plasticity ba.la.nce 

during normal learning. 

T'lrc attentional .snhsystem undergoes both bottonHt]l leaming and top·down learning 

between the processing levels clcnotccl by F1 and F2 in Figme 9. Level F1 contains <rnetwork 

or nodes, or cell populations, each or which represents a Jmrticular combination of sensory 

fca.ttires. 

Level 1'2 contains a network of' noclcs that represent rc:cop;nition code:s, or catep;orics, 

which arc ,,electively activated by the patterns or activation across F1. E<rch node in 1'\ 

scncls output signals to a subset of nodes in ]•:2. Each node in F2 thns receives inputs !'rom 

many F1 nodes. 'fhc thick arrow front F'1 to 1'2 in Figure 9a represents in a concise way the 

army or diverging and converging pathways shown in Fignrc: 9b. Lca.ming takes place at the: 

synapse's denoted by scmicircnlar endings in the F1 ~ 1'2 pathways. Pathways that end in 

arrowhc:a.ds do not undergo Jc:arning. 'l'bis bott.onr--trp learning enables F2 nodes to become 

scolectivcly tnned to particular combinations or activation patterns across F1 by changing 

their L:I'M traces. 'I'his b<tsic: property or recognition learning is mathematically proved 

below. 

Figure 9 

17 
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Why does not bottom-up learning suHice? An analysis of this problem was carried out in 

a type of model-- callr:cl a self-organizing feature nmp, cornpetitive learning, or learned vector 

quantization ···· that forrns part of a larger ART sy:>tcrn. Such a bottorn-up learning rnodel 

shows bow to cornbine associative learning and lateral inhibition for purposes of learned 

catcc:gorization. As shown in Fip;ure lOa, an input pattern is norrna.lizecl ancl registered as a 

pattern of activity, or S'J'M, across the feature detectors of level F'1. Each F1 output signal 

is rnultiplied or gated, by the adaptive weight, or LTivl trace, in its respective: pathway. 

All these LT'M-g;ltccl inputs arc acldc•d up at their target Fi nodes. Lateral inhibitory, or 

cornpr:titive, interactions across the F2 nodes contrast-enhance this input pattern. Whereas 

nmny IS nodes may receive inputs from F1, i<ltcra.l inhibition allows a nruch smaller se;t of 

F'z nodes to store: their activation in STM. 

Figme 10 

Only the F2 node:; that win the c:ornJWtition and :;tore their activity in STi\l can inflnence 

the learning process. S'T'i\l activity opens a learning gate at the l;l'l\l traces that abut the 

winning nodes. These LTi\1 traces can then approach, or track, the inpul signals in their 

pathways by a proc:c:ss of sleepc:st ck"cenl. 'I'his learning law is thus often called ,tJalcd 

slccpcsi dcsccnl, or ins!ar lw.rning. It was introduc:c:cl into rH:ural llC'I.work rnoclc:ls in the: 

1'Hi0's (Crossbcrg, 19(ieJ) and is the learning law that was used to introduce AHT (Grossberg, 

197Ga, l'l7Gb). In particular, let :rli denote the STl\1 activity of the: itir F1 node, :r>2i the 

STivi activity of the jth F2 node, and -'ii Lire adaptive weight or L'l'l'vlt.race in tire bot.lonHrJl 

pathway from node i in F1 to node j in F2. Then the rate of change through time of ;:;;, 

denoted by ;/'J''ii, obeys an equation or tire form 

(24) 

where f and .11 are non-negative signal functions. Not.c: lbat if J(:r2i) '= 0, then :/z::i1 = 0. 

Thus no lc:arning oe·curs if the gate f(:r 2;) is closed. This can occur cithc:r if no inputs 

pc:rtnrb F 1 or if node j loses tlw c:onrpcl.ition across F),. II' f(:r 2.i) > 0, LIH'n :;.i incrc:ases if 

18 
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Such ;m r.:rlvl trace: ''iJ can increase: or decrease to track the signal q(:rli) in its pathway. 

It is thus not a Hcbbian associative law, which can only increase during a le<l!'ning episode. 

Because the adaptive weight ;;i.i can either increase or decrease is size, the smnc Jaw (24) 

can control both long tenn potentiation (J;J'I') and long tcnn depression (L'I'D). Equation 

(:24) ha.s been used to rnodcl nr-urophysiological data about hippocarnpal L'fP (Lr,vy, 1985; 

Levy and Desmond, I 985) and adaptive tuning of cortical feature detectors during the vi-

wal critical period (R;wschecker and Singer, 1979; Singer, !CJ8:J), lending support to AH'f 

predictions that both systems would employ such a learning bw (Cros;;lwrg, 197Ga, 197Gb). 

Self-organizing feature map rnodc>Js wc:re introduced and characterized computationally 

m C:rossberg (1972, 1<J7Ga, 197Gb, 197R), Malsburg (197:3), and Willsh;nv and IV!al;;burg 

(1~176). 'J'hcse rnodcl:; were subsequently applied and fmtber developed by many authors 

(Arnari and Takcrrc:hi, 197S; Bicnc:nstock, Coopc:r, and i'vlumo, 198:2; Cohen and Gros:;bcrp;, 

I CJC'~I. ( 'J'(.J''''])('J'O' 1 ()0') , o l < ,)<") __ . ,·'~; •. u~, 19R7a, l987b; Gro:;:;berg and l<u]Wrstcin, JCJRG; l\obonen, J<JS1; 

Linskcr, I 981i; Rrcnwlhart and Zipsr:r, I 9R5). They exhibit many uscJul properties, especially 

if nol. t.oo nrany input patterns, or clusters of input patterns, pcrtmh level F1 relative to the 

nnrnlwr of categorizing nodes in lc:vcl F2. It was :;hown that. under these spar:;c: environmental 

conditions, ciltr:p;ory learning is stabk; the LTM trace:; track the statistic:; oft he c:nvironrncnt, 

arc :;c:JI'-norrnalizing, and osc:illa.t.c a. minimnrn number of times (Grossberg, J976a., 1971ib, 

I CJ7S). In addition, it was observed that the category selection rule tends l.o minimize error, a.s 

in a Bayesian classifier. Tbe:;c Me the basic properties that have been used in all sub:;equent 

a.pp I i cat ions. 

It was also proved, however, that under arbitrary environnwntal conditions, learning be· 

corncs unstable. Jl' our own Jcamccl categorizations exhibited this property, we could forgr:t 

om parents' faces. Although a gradual switching off of plasticity ca.n partially overcome 

thi:; problerrr, :;uch a mechauisrn cannot work in a JTcop;nit.ion karning :;ysl.eur who:;e pla.stic· 

ity need:; to lw mainta.irH'd throughout adultlwod. 'J'his rncrnory instability is due to ba.:;ic 
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propertic~;; of associative~ learning and lateml inhibition. Alri' rnodcls were introduced to in­

corporate' self-organizing feature maps in such a way as to stabilize their learning in rc:sponse 

to an arbitr<try c;trearn of input patterns. 

3.4 Feature Binding and Attentional Focusing 

In an An:r model (Carpenter and Croc;sbcrg, JCJS7, 1991), learning does not occur as 

c;oon a;; c;omc: winning F2 activities arc c;torcd in STivl. lnc;tcad activation of F2 node;; rnay be 

interpreted as "rnaking a hypothesi:;" about an input at F\. \Vhcn 1'2 ic; activated, it quickly 

generates an output pa.ttcrn that is tranc;rnittcd along the lop-clown adaptive pathways !'rom 

F2 to F'1 . These top-down signals arc multiplied in their respective pathways by LTM 

traces at the sernic:ircular synaptic: knobs of Figure I Ob. The LTM-gated signals frorn all 

the active F2 nodes are added to generate the total top-down fcediJ<u:k pattern from 1-2 to 

1'\. This pi\ttc:rn plays the role: of a learned r~xpec:ta.tion. Activation of this expectation 

'·tests the hypothesis," or "reads out the prototype," or the ac:ti\·e F'J category. 1\s shown in 

Figure I llb, AHT networks are designed to lllatch the "expected prototype" or the category 

against. the bottonHrp input pattern, or c:xc~rnplar, to F1 . :\odes that. arc activat.c:d by this 

exernplar are suppressed if thc:y do not corre'spond to large LT~l traces in the top-do\\'n 

prototype paHerrr. The: nratched 1"1 pattern cncodr:s the clustc:r ol' input. fcatmcs that arc 

relevant to the hypothesis based upon the network's past experience. 'f'his resultant ac:ti\·ity 

pattern, called X"' in Figure JOb, encodes the pattern or features to which the network starts 

to "pay ,ltlenlion. 

Jl' the: expectation is close enough to the input exernplar, then a state or resonance de­

velops as the attcntional focus takes hold. T'hc pattern X* or attended features reactivates 

the F2 cate~p;ory Y which, in tnm, reactivates X*. The network locks into a resonaut state 

through a positive l'ewlback loop that dynamically links, or binds, X* with Y. Darnasio 

(I 989) has used t.hc t.ernr "conw:rgencc: zones" to de~scribe such a resonant procec;s. The rcs­

on<urce binds SJl<lLia.lly distribut.c:d l'c:aLrrrc:s iuLo e:iLhc:r a sLa.ble t'quilibrium or a synchronous 
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oscillation (Eckborn and Scbanze, 1 DD 1; Grossberg and Somers, 1991, HJ92) with proper-

ties rnucb like synchronous feature binding in visual cortex (Eckborn ct aL, 1988; Gray and 

Singer, 1989; Gray cl al., 19K9). 

In AHT, the resonant state;, rather than bottonHrp activation, drives the learning pro-

ces.'i. The resolliwt state persists long enough, at a high enough activity level, to activate the 

slower learninp; process; hence the term adap!'i1Ji: resonance theory. The resonance process 

shows bow dynamical properties, wch as differences in the faster S'fi'vl rates and slower ];I'M 

rates, arc exploited by the system as a whole. Fast infonnation proce)ssing in STi'vl is altered 

by previously learned r;nvr traces, even if' the r:rM traces do not undergo new learning 

clue to the STlVI patterns that they help to create. When an ST'M resonance is rnaintainecl 

through a feedback cxcba.nge of bottom-up and top-down signals, it laots long enough for the . . 

slower L:rM traces to respond to the n"onating STM activities and to undergo new learning. 

In efFect, the resonance crnbodies a global systern-wide conscmus that the resonating S'Ii'vl 

patte~rns arc worth lca.rning about. 

Air!' systems learn prototypes, rather than exemplars, because the attended feature 

vector X', ratlwr than the input cxernplar itself', is lcamed. 'J'hesc prototypes rnay, however, 

also be used to encode individual e'Xlllllplars. How the matching process achieves this is 

described below. If the rnismatch ])('twe)cn bottonHrp and top-down information is too great, 

then resonance cannot develop. Instead the F2 category is quickly rcsd before erroneous 

le.a.rning can occur, and a bout of hypothcsio testing, or memory search, io initiaLed to 

discover a better category. This cornbination of' top down matchinp;, attention focusing, 

and nrcrnory search is what stabilizes i\lri' learning and memory in an arbitrary input 

environment. The tOJHiown matching process suppresses those features within an cxcrnplar 

that arc not expected and starts to focus attention on Lhc featmcs X' that are sbarcd by the 

excrnplar and t.he ar:Livc prototype•. The lrrlllllory search chooses a new category on a fast 

time' scale, bdorc an exclllplar tha.t is too diff'e•rent f'rolll tbc prototype• can destabilize its 

previous learning. !low thl'Sl' rnatching and sc•arch OJll'rations \\'ork will now be surnmarized. 
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3.5 Phonemic Restoration, Priming, and Consciousness 

'J'he Arn· a.t.Lentive matching process is rea.lizc:,cJ by combining bot torn-up inputs and top· 

clown expectations with a nonspecific arousal process that is c:alled attention<rl gain control 

(Carpenter and Gro:;sberg, l<Jil7, 1991). An F 1 node can be fully activated only if two or 

the three input soun:c:s that converge on the node send positive signals to the node at a 

given tinlC. 'I'his constraint is c:allc:d the :!fl Rule. A bottom-up input pattern turns on the 

attentional gain control channel in order to instate itself in ST'M at F1 (Figmc: lOa). A top­

down expectation tmns off the attentiona.l gain control channel (l'igme lOb). As a result, 

only llwsc: input l'eatmc:s that. arc c:onfirmc:cl by the top-clown prototype c:an be attended at 

F1 after a.n F2 category is sclec:tecl. 

'I'lw '2j:l Rnlc: enables an Alrl' network to solve the stability-plasticity dilemma. Car­

penter and Grossberg ( 1907) prove'd that AHT learn in.!!, and mc:rnorv an• stable in arbitrary 

c•nvironJJJCJlLo, but bccoJnc' unstable: when :!-f:l Rcde: rnatching is clin1inatcd. Thus lhe ncalch­

inp; law tha.L guarantees stable learning aho enables the network to pay attention. This type 

of insight. could llC\'CT be derived wii.hOt\( an analysiS of the dynamics of ilUlOUOmOUS learning 

10 real lime. 

illalching by the' 1j:l Hcdc in the• brain is illustrat.c'tl by experiments on ·'phonemic: rcstora· 

Lion" (H.cpp, l'J'll; Sa1nuel, l'lilla, JlJSJb; Warren, 1981; Warren and Shc,rm;l!l. 1'171). Sup· 

pose that a noi:;e spcctrmn replaces a ldt.cr sound, or phonetic scg;rncnt, in a word he;ud in 

an othc:rwise tJnambiguous context. 'flwn subjc:c:Ls hear the correct phonetic scglllcnt., not 

the: noise, to the extent that the noise spcc:lrunc includes the acoustic signa.! of the phones. 

rr silc:nce' replaces the noi:;e, then only silence, is heard. 'fop-clown expectations thus amplify 

expected input k:;tturcs while snppressing unexpected features, but do not create adivations 

not already in the input, just as in the '2/:l RcJic,. 

The '2j:l H.cdc !'or Jrca.tching aloo explains p;Hadoxical reaction Lime and error data front 

pri1ning Pxpcrilllcnts during le:.:ical decision a.nd kLL<"'r ga.p cl<~t/'cLion ta.sk;-; (Crosslwrg a,JHI 
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Stone, 1986; Schvanevelclt ancll\llacDonalcl, 1981). Although priming is often thought of as 

a reoidual dFcct of previous bottom-up activation, a combination of bottom-up activation 

and top-clown 2/:3 Rule matching was needed to cxpla,in the complete; data pattern. This 

analysis combined bottonHrp priming with a type of top-clown priming; narncly, the top· 

clown activation that prepares a network for an expected c;vcnt that may or rnay not occur. 

'I'he 2f:l Rule hereby clarifie;; why priming, by it;;elf, is subliminal and unconscious, even 

though it can facilitate supraliminal proccs;;ing of a ;;ub;;cquent expected event. Only the 

resonant state can support a conscious event in the model. 

'fhesc cxanrple:; illustrate how data from a variety of experimental paraclig;ms uw cn1crp;c 

from computational properties that are designed to accornplish quite different. functions 

than the paradigm itself might disclose; in this case, fast ancl stable recognition lea.rning in 

rc;sponsc to <t rapidly changinp; environrnent. 

3.6 Memory Search, Vigilance, and Category Generalization 

'I' he: criterion of an acceptable '2j:l Rnle nmlch is defined by the n1odcl p<tramelcr pI. hat 1s 

called 1riqilancr: ( Ca.rpenter and C:rossbcrg, 1 'l87, 1991). 'fhc vigilance: pa.ramc;t.c:r is corn puled 

in the orientinp; subsystem .A. Vigilance weighs how si1Hilar an input exemplar I must be to 

a. lop·down prototype V in order for resonance to oc:cm. 11. does so by cornparing the total 

amount of inhibition from the attentional focus at F1 with the total amount of excitation 

from the input pattern I (Figme lOb). In cases where binary features are proc:eooecl, the 

'2f:l Rule implies that the attcntional focw; X' equals the intersection I 11 V of the bot torn· 

up exemplar I and the top-down prototype V. Resonance occurs if pill·- IX*I <: 0. 'l'bio 

inequality say;; that the F1 attentional focus X* inhibits A more than the input I excites it. 

If A is inhibited, then a resonance ha0 time to develop between F1 and 1'2. 

Vigilance c.alibrate;; how much novelty the system can tolc;rate hdore activating A and 

;;earc:hinp, for a different category. Jl' the Lop-down expectation a.nd the bottom-up input are 

too diff'ercut. to satiofy the re,onanrc: crit.<;rion, then hypothe,is t.cst.ing, or llH'lllOry s<;arch, is 
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triggered, because tbe inhibition from F1 to A is no longer sufficient to prevent tbe r;xcitation 

due to I l'rorn activating A. Nonspecific arousal from A to F2 resets the active category at F2 

and initiates the rncmory search. Memory search leads to selection or a better category at 

level F2 with which to represent the input features at level F1. During search, the orienting 

subsystern interacts with the attentiona.l subsy;;tem, as in Figures llk and lOd, to rapidly 

reset misrnatc:hed categories and to select othc;r F2 representations with which to learn about 

novel events, without risking unselcctivc l'orgNting of prcviouo knowledge. Search may select 

a farniliar category if its prototype is sirnilar enough to the input to satisfy the vigilance 

criterion. The prototype rnay then be refined by 2/:l Rule attentional focussing. H the input 

is too dilhrcnt l'rorn any previously learned prototype, then rtn uncommitted population of 

F2 cells is rapidly sdected and learning of a new category is initiated. 

3. 7 Supervised Learning of Many-to~-One Maps from Categories to Names 

Because vigilance can va.r.y· across lca.rning trials: r<:cognition ca.Lc\£SOries capable or en-­

coding widely differing d<-.:grc'eS or gcncra.li;;ation or abstn.tction can be learned by a. sing](; 

AHT system. Low vigilance (! leads to broad gc:rwralization and abstract prototypes be· 

r:rursc; exemplars I tha.l rlill"er greatly frorn an active prototype V can satisfy p[Ii-IX*I :;; 0. 

lligh vigilance leads t.o nruTow p;cncralizr1.t.ion and to prototypes t.ba.t represent fewer input. 

cxr'rnplars, c;v<'ll a single exemplar. Thus a single i\HT' oystcrn may be used, say, to rcc­

ogni;;e a.hstnt_ct. cat(~gorics that encode higlwr-ordc:r inva.riants or races and dog;s) a.s well as 

individual faces and dogs. AHT systerns hereby provide a. new answer to whether the brain 

learns prototypes or exeruplars. Various authors have n~a[i;-occl that neither one nor the other 

alternative i.s satisfactory, and that a hybrid system is needed (Smith, l q90). 

S upcrviserl A rrr, or A HT MAP systems can perform this by brid fun ct. ion 1n a manner 

thai is sensitive to environmental den rands (Figrrre ll ). In an AHT~IAP system, prerlicl.iv·<, 

<'rrors can h<: used to trigp;('r s<:a.rchcs !'or new categories. As a result, rna.ny ca.tcgoric~s in 

orw rrJOclalit.y (e.g., visrra.l r(•cop,nit.ion cat.ep,orir'") may he learned and associa.t.ed wit.h each 
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<:<ttegory in another rnodality (e.g., auditory na.rning categories), just as there may be rnany 

dilfcrent visual fonts tbat all have the sarne narnc "A". A predictive error in naming increase0 

the vigilance pin the visual categorization network just enough to satisfy piii-IX" 1 > 0 and 

thereby to activate A and initiate a nrc>rnory search for a better visua.l category with which 

to predict the clcsirccl name (Carpenter and Grossberg, 1992; Carpenter, Grossberg, ancl 

Reynolds, 1991; Carpenter cl al., 1992). Since low vigilance leads to learning of the most 

gr:ncral categories, this operation, which i;; called match. tracking, sacrifices the nrinirnunr 

arnount or visual generalization on each learning trial in order to correct a naming error. 

Table 2 ;;urnrnarizcs how such a supervised ART system performs relative to other ma­

chine learning, genetic algorithrn, ancl back propagation networks in benchrnark sirnula­

tions. These bendrrnarks incliutte that models or biological leaming enjoy COnlputatioual 

adv<wtage:; over rnore traditional apprcmches. Such benchrnarks arc described rnore fully in 

Carpenter, Grossberg, <Uld Reynolds (J9CJ1) and Carpenter cl al. (llJCJ2). 

'fable 2 

3.8 Memory Consolidation as an Emergent Property of Network Dynanrics 

As inputs arc practiced over learning trials, the c;carclr proce:-;s evcntu;tlly converges 

upon stable categories that access the corresponding catr;gory clircctly, without the need for 

search. The catr:gory that is selected is the om; whose prototype provides the globally best 

match to the input pattern at the systern's present state of knowledge. In this way, "Luniliar" 

patterns can resonate with their category without the need for search, nruch as Cib:-;on ( l 979, 

p. 249) rnay have intended when he hypothesized that the perceptual system "resonates to 

the invariant stnrcture or is attuned to it". Jl" both farniliar and unfamiliar event:; are 

experienced through tirne, familiar inputs can directly activate tlreir learned categories, even 

while unfamiliar inputs continue to trigger adaptive nrcrnory searches for brctter categories, 

until the network's llll'lllory capacity is fully utilized (Carpenter and Grossberg, 19B7, HJ91). 

Thi0 process whereby :;carch i;; grarllla.lly and allloma.tically disengaged nra.y \w intcr-

2r, 
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preted as a fonn of rncnwry consolidation. Thi;; type of memory consolidation is an ernergcnt 

]lHJpr,rty of network interactions. It is, once again, a property that can only be understood 

by studying the network's dynarnic;;. Emergent consolidation does not, however, preclude 

structural fonns of consolidation, since persistent resonance rnay also be a trigger for other 

learnin,"·dependcnt processes, such as transmitter production and protein synthesis, at incli­

viclual cells. 

3.9 .Face Recognition and Inferotemporal Cortex 

II ow do conrponents of the i\HT model map onto brain nrechanisrns'l 'fo begin with, level 

F2 properties may be compared with properties of cell activations in inferotemporal cortex 

(IT) during recognition learning in monkeys. 'l'be ability of F2 nodes to learn categories 

with different levels of genccra.liza.t.ion clarifies how sonre IT cells can exhibit high specificity, 

such as selectivity to views of particular !'aces, while other cells rc•spond to broader features 

of the anirnal's environment (Desimone, 1991; Desimone and Ungerkicler, 1989: Gochin ci 

ol., I <JlJ l: Ilarrics and Perrett, l 'J'l I; Mishkin, 198:2; ivlishkin and Appcnzr,llcr, 1987; Pcrrr,Ll, 

Mi;;tlin, and Chitty, 1'l87; Schw<trlz c! a!., 198:3; Seibert ancl Waxma.n, 1991). In addition, 

when monkeys an' ccxposed to easy and difficnlt discriminations (Spitzer, Dc;;inrone, and 

/doran, l'lSS), "in the difficult condition the anirnals adopted a stricter internal criterion 

for discriminating rnatching f'rolll rHmnratr:hing stimuli ... the animals' internal ncprcoscnta· 

lions of tlw stirnuli were better separated, indcpcnclcnt of the criterion used to discriminate 

them ... inc:rcascd effort ap1Wi1l'S to c;wsc enhancement of the responses and sharpened se-­

lectivity for at.tendccl stimuli" (pp. :J;FJ :3 110). 'fbesc arc also properties of model cells in 

F':J. Prototypes represent a srna.llcr set of exemplars at higher vigil<tncc levels, so a. stricter 

matching criterion is Ieamer!. These cxcrnplars match their finer prototypes better than do 

excrnplaro which nratclr a. co;user prototype. 'l'his better match nrorc strongly act.ivatc:; the 

corresponding /"2 nodes. 

Data fro11r IT support the hypothesi;; that unfarnilia.r or unexpected stimuli nonspecif-­

~G 
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ically activate level F2 via the orienting subsy;,tem. Accorcling to Desimone (1992), "the 

!'act that rr cortex bas a reduced level of activation for familiar or expected stimuli suggests 

that a high level or cortical activation rwt.y itscli' serve as a trigger for attentional and ori­

enting systems, cau;,ing the 0ubject to orient to the stimulus causing the activation. This 

link between the rnnernonic and attentional ;;ystems would 'clo;w the loop' between the two 

;,y;,tems, resulting in orienting behavior that i;; influenced by both current stimuli ancl prior 

nrcrnorie0. Such a mechanism has a nmnbcr of sirnilaritics to the adaptive resonance theory" 

(p. :3~9). Properties of !'I' cells during working rncrnory tasb suggest that active reset occms 

at the end of each trial (Ivliller, Li, and Desimone, 1991; Riches, Wilson, and Brown, 1991 ). 

Reset of F'-J is al;,o a key AHT operation. 

These recent neurophysiological data about rr cells durin!S recognition tasks arc thus 

reflected in level F2 properties. Additional data suggest thill the pulvinar rnay mediate 

aspects of attentional gain control (Desimone, 199:2; Robinson and Peterson, 199:2). Data 

that correlate n· and pulvinar recordings arc needed to critically test this hypothesis. Car­

penter and Cross berg ( 1 CJCJ:l) have suggested that the orienting Ojl('rations whereby vigilance 

is controlled rnay take place in the hippocampal !'ormation. Tlwy support this hypothesis 

by .showing how a formal lesion of the orienting system in Arn· creates a set of properti(cS 

strikingly like symptoms or medial temporal anrncsia in human patient;, with hippocampal 

lesions. This linkage ;;uggcsts the prediction that operations which rnakc the novelty-related 

potentials oi' the hippocarnpal formation more sensitive to input changes may trigger the 

forrnation of rnore selective inl'croternporal recognition categories. Such a correlation rna.y be' 

sought, for cxa.rnplcc, when monkeys learn easy ami clifficuh discriminations. The hypothesis 

also suggests that operations which block hippocampal novelty potentials may lead to the 

lca.nting or coarser rccogni~ion categories, with amnesic s:y1nptoms as the lirniting ca;.;e when 

the hippocampal formation is completely inO[J('rative. 

:~.10 Feature Discovery by Competitive Learning 

27 
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The above properties of ART' sysV~rns have been cornput<rtiona.lly dcrnonstrated and 

mathematically proved in a c>cries of articles by Gail Carpenter and myself in c:olla.boration 

with c;cveral students. The core artic:lcs arc brought together in C<trpcnter and Grossberg 

( 1991 ). In the present chapter, some or the most important rna.thernatical properties of 

com pcti ti ve learning and sci r-orp;anizi ng feat urc maps are reviewed. These properties arc 

important both in thernsclvcs and as a stepping stone to a. rnathernatica.l st.ucly or Airr 

sysUTns. 

Perhaps the sirnplest curnpct.itivc Jc:arning systern is clcfinecl by the following equations. 

Let. I; he the input to the i node in F'1. Let fast competitive interactions within F1 nonmrlize 

this input. 1'hc:rc: arc> several possible types of nonnalization. In the simplest. type, the 

nonnalizcd activity :r 1; of the i 111 node, or cell population, in F1 satisfies 

I ·r· -- 'J. -- ' ''ll- {)l := \=;:-~-~···) 
uf., (· 

(2~) 

so tha.t 

(2Ci) 

Property (I) is called 1. 1 nonnalization. In/)' normali~a.tion. I:;:r';; ccc l. 'file dl'ects o!' 

choosing cJifJ'Nent valnc•s oJ' p, notably J! o= 2, were; first de:-;cribccJ in (:nl"berg (1978). !Jet'(> 

we a.nalyse the case p '., 1, as in the Cross berg ( 1 'J7Cia) utodeltbat was also usc:d by ll.utnelhart 

and :0ipscr (1CJ8'i). 

The norrnalizc•d signals 0; arc rttltltipliccl by adaptive weights and aclclecl to generate 

the• total inpul. 

(27) 

to each node: .i in FJ.. ;\ competition between nodes in 1'2 rapidly choose:-; the activity :r2; 

who:-;e total inputS'; is n1aximal for storage in S'nt while normalizing the total activity of' 

FJ.. Such a rH'twork is often said to carry out a witllH'r-lakc-all (\VTJ\) operation. !low a 

WTi\ cottl[H~Iitivc nc~twork tttay be clc:-;igncd was first dc:-;c:rilwd in Cmssberg (1<J7:l). This 
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fa:;t cornpelitive dynamical procc:;:; may be approximated by the algebraic equation 

if S'j > max (c,S'~c: k tj) 
iF S'j :S max (r,S'c : k! j) 

(28) 

where r i:; a threshold that all inputs rn11st exceed in order to trigger the STM choice and 

storage process. 

Learning in the r;riVI traces takes place more slowly than the STM processes (25) and 

(28). Hence learning cannot be approximated by an algebraic equation. Rather, it obeys the 

in:;tar, or gated :;tecpcst descent, differential CCJHation (24). In the prc:;ent case, thi:; reduces 

to 

(29) 

In order to get a sense of how competitive learning il.ll(l self-organizing feature maps 

work, suppose that a :;inglc input pattern () perturb:; F1 through tirnc and activates node 

j = J in F2. As a result, the tol.al inputs s1 l.o F2 nodes in (27) obey the inequalitic:; 

8.1 > Sc, k i' .J, so :r 21 =, 1 <wei :rn = 0, k jc J, by (28). By (29), only the vector 

;;.} '·= C'J.J,·"'2J,···,·"'n.J) or L'J'j'v! traces that abut node./ U!Hlcrgo lcarniug, broc:ause only 

:r: 21 > 0 in (2'J). During learning, the LTiVI vector Z.J is attracted towards the nornralized 

inpnt vector 0 '= (0 1 , 02 , ... , 011 ) as c:ach ::;.] is "tuned" by the i1 " feature. activity 0;. !\s 

learning proceeds, the: Euclidr:an length IIZ.JII :.~ JB,;D of the rri'vi vcd.or is normalized as 

it approaches lJH' length llfill o: Ji:,of Of the input VC:CtOr, ancl the total input 8.1 in (27) 

increases to its nraxinml possible value. 

'fhis result was proved in Crossbcrg (1976a) and is reviewed below. Its significance i:; 

clarified by notinp; that the total input S'.1 to node J in (27) can be rewritten as 

(:lO) 

because 8.1 i:; the dot product, or inn0r product, of the: vectors 0 and ·'.J· Given that. II·'.JII 

approaches 11011 during learninp;, (:lO) shows tlutt the nraximal S.J, among all S'j, is the one 

whose U1s(O,z1 ) is maxirnal. This quantity corresponds to that vector :OJ which is rnost 
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pa.rallcl to 0. In other words, the S'J'M competition (28) at F2 chooses the node J whose 

vector ZJ is most parallel to 0, and learning turws z; to become even more parallel to 0. In 

addition, the fact that II:;.JII approachc:s 11011 shows tha.t choosing all input vectors so that 

their length 11011 = I eliniinatcc> the dl"ects or variable' input length on the category choice 

process. Then Ll' normalization with )J = 2 replaces the f) normalization in (26). This 

in1plica.tion of the learning theorcrn was noted in Grossberg ( 1 978) and used by I<ohoncn 

( 1 984) in his subsequent application;; or sdr-organizing featnre rnaps. Grossberg ( 1976a) also 

proved thai., when rnultiplc inp11ts ad.ivat.c: F\, then the I;nvi weight vectors tend to track 

the statistics or the input environinc:nt. This property was abo exploited by I(ohonen (1CJ84), 

among others. 

Theorem 3 (Adaptive 1\ming of Feature Maps) 

Given a pattern 0, suppose: that tlwrc exists a unique j '' J such that 

S.J(O) >max{ c. Slc(IJ): k eft J). ( ll ) 

Let. 0 be practiced clming a. sc::quc::nc:c of nonovcrlapping intervals [I'm,\/,], m. = I, 2,. Then· 

the angle: lwtwecn ;)·J)(!.) and 0 monotonic:ally decreases, the signal S.J(I) is lllOllotonically 

attracted towards 11011 2 , and 11:(.1)112 osc:illa.tes at most. once as it pnrsucs S.1(t). In particular, 

if 11-c(.ll(O)II :S 11011, then s.~(l) is IIIOilOLOnC increasing. Except in the trivial case that s.~(o) '·' 

11011 2 , the limiting relation;; 

(l:2) 

hold ir and only if 

"" 2::: ( \/, ·- 1/,) = ex>. 

111-"'" I 

Proof of Theot·em 1. Consider the casco in whic:b 

11011 2 > s.~(o) > 111ax{r, s,.(o): 1.: t J). 

:Ill 
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The case in which S'J(O) 2: 11011 2 can be treated similarly. First it will be shown that if the 

inequalities 

11011 2 > s.~(t) > max{c,S',(i): k f' .J) (:35) 

hold at any time i = T, thc1n they hold at all future timec; t 2: T. By (:34), :r2.1('f') =I and 

:z: 2,(T) = 0, k: f J. Consequently, by (29), at any timet = 'T during a lc;lrning interval 

[If,, \1,11 ], 

and 

il~ Z;J,,(T) = 0 

fork t J and i = I, :Z, ... , 11. By (27) and (:lfl) {37), 

== '£ o;e-::;.1 + o; l 

= s.~(T) + 11011 2 

Thus by (:3•1 ), !'rom the firs I rnon1ellLs of learning onwards, 

_clltSJ(:!')>O= clL!SJ.(T), kiJ 
(" ( .. 

(:lG) 

(:37) 

( :39) 

SinceSJ(t) continues to grow while all S,(t) remain constant, k: f J, incqnality (:34) continues 

to hold for all t? T throup;hout tlw learning process. Since all :1: 2J =-= 0 whcnc:ver no learning 

occms, there i:,; no change in any ::;1 or S; dming these time:.:. Thus (:34) holds for all i 2: 'f'. 

Moreover, by (:38), S'J(t) convcrg<'s rnonotonically towards 11011 2 

'I'o show that SJ(I.) converges to 11011 2 only if (:l:l) holds, integrate (:38) throughout the 

( 40) 

:)I 
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Since no learning occms between Lirnc l = Vm and time l = lim+l• .':i;(U,. .. 1. 1) = 8,;(11,,). 

Using notation SJ, = SJ(Um) and W,, =\!,,-lim for simplicity, (40) rnay thus be writtr~n 

as 

S' . = c• .-W,, ·1·110 11 2 (1 ... -W,,) ' J,m--f- 1 •-' Jm,(. J (. · ( 41) 

Equation ( 41) can be solved rccmsively by setting m = I, 2, ... in ( 41) to find that 

( 42) 

from which it follows that S;(l) convc:rgcs to 1101 11 2 only if ::>.:=~:"~ 1 1+', = oo. 

'fo :;bow that S 1 increases towards 11011 2 if 

( 4 :3) 

we need only t.o show that. S.i(O) <: 11011'2, since: t.bcn ;hS.;(O) 2:0 by (:3~). Were 

(44) 

then by (:30), (:J:l), and ('H). 

and thus 

( 4 (i) 

which is a contradiction. 

'J'o show that the learning process nonnalizcs the vector or r;r~r traces, Jet us usc the 

notation N; = 11:(1 )11 2 = L, ~;1 . Hy (:l6), 

J + 0,) 
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J<:quations (:38) and (47) show that N 1 tracks S'J as S'J track;; 11011 2 Consequently the norrn 

llz(.!)ll = J!VJ approaches 11011 as learning proceeds. In addition, since S'; rnonotonically 

approaches 11011 2, N1 oscillates at most once. 

Finally, let us verify that the anp;lc between z(.J) and 0 closes monotonically clming 

learning even while 11;,(.1)11 is converging to 11011. To do this, the notation C.;= co.s(z(.!),O) is 

convenient. It is suHicient to prove that C:J(t) increases towards I as learning proceeds. By 

(:lO), C.; can be rewri Hen as 

( 1\8) 

Dill"crentiating (18), we lind that 

( 49) 

Substitnting (:18) and ('17) into (119) and cancelling t,lw term N.;S; in two places leads to the' 

equation 

(50) 

which by (;18) is the same as 

!I_('; = _JIQ!l ( I -- Cj) > 0. dl. . J!VJ . - 51) 

l::qnation (51) shows that C.; increases rnonotonically towards I. 

4. Concluding Remarks 

This chapter bas clcsc:ribecl two rnodcls whose explanations of c:ornplcx data can be 

understood by analysing their interactive dynamics in real tirne. T'hc first model illustrates 

how classical data about apparent n10tion ca.n be rationalized in tenns of the spat.iotc,mpora.l 

dyni\.lllic:-; of a long-range (;aussian filter followed by a cont.rast.-cnhanciug stage or ial.cral 

:;:) 
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inhibition. 'I'be rnodel suggests bow paradoxical properties of motion speed-up can be linked 

to the functionally usc:rul property or synthesizing motion data frcHn multiple spatial scalec;, 

and to the: property of prcdic:tivdy interpolating interrnittent motion signals in a way that 

is capable of continuously tracking a ta.rgc:t moving at variable speeds with a focus or c;patial 

attention. 

Tbc second rnodel illustratec; bow a. cornbination of bottorn-up adaptive filtering, top­

clown lea.rnc:d expectations, attc:ntivc rcc;onancc, and novelty-e>ensitivc rncrnory search can 

control rapid learning of recognition catcgoric:s whose shape ancl coarsen esc; can be matched to 

complex enviromrH:ntal dc:rnands, including culturally irnposed clernands. 'I'bc: model clarifies 

how top-down expectations can stabilize the learning process in an arbitrary environment 

and, in so doing, focuc; attention upon and coherently bind those prototypical feature clusters 

that arc used in objcoct categorization. Properties ;;ucb as rncrnory consolidation arise as 

clytlitmical properties of network interactions, and data about such varied phenonH:na as 

phorwnric restoration, priming, and the dynarnics of infcroternporal cortex were linked to 

emergent properties of the network rnodel. 

These results suggc•st that basic neural mechanisms, such as contrast-c'nha.ncing lateral 

inhibition, play a role in rmrltiple nemal systc'rns, whell)(;r Lo select the peak of a motion 

\vavc, as in Figure:(): or to choose a n:cognition category: a.s in equation (28). On the lc~vcl or 
the' systc'm design itself, the results support the view that two distinct types of attention rnay 

modulate visual infomration processing, onco a forrn or spatial attention that arises in the 

\Vhcre processing stream through i'd'I' and parietal cortex, and the other a forrn of featmal 

attention that arises within the What procc;;sing stream through V1 ;end ternporal cortex 

(Figure 8). How these two types or att0ntion interact during our d;cily experiences with 

rapidly chartF;ing nrixtures or farrriliar ancl unranrili<tr events remains an irrrportant subjecl 

for rut urc resc;crch. 
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FIGURE CAPTIONS 

Figure 1. The Tern us cli:;play. (a) 'l'hrcc spots arc pn;;;entcd in each frame in such a way that 

the two leftwardrnost spots in Frame :Z occupy the ;,an1e positions as the two rightwardrnost 

spots in Frame I. The two franH•s arc n;pcatedly cyclccl with ISis inse:rV•cl bctwcem them. At 

very short ISis, all dots appear to flicker in place. At longer ISis the dots at shared positions 

appear to remain stationary, while; apparent rnotion occ:nrs bel. ween lhc ldtwarclrnost spot in 

Franw I and the rightwardmo:;t 0pot in Frarne 2 ("element rnotion'" ). At still longer ISis, the 

three dot:; appear to move; from Fra.rnc I to Frarnc 2 and back as a group ("group motion"). 

(b) 'vVIwn the; dot:; in successive frames have opposite contrast with respect to the; frame, 

only group tltotion occttrs at the ISis where clement motion oeTnrred in (a). [Reprinted with 

perntission from Cros;;berg and Rudel (1992).] 

Figure 2. 'I'IH' simplest one-dinrcnsional IIIOC Filter. The input pattern at Level I is 

;;patially and tctttpora.lly filtr•rc;d by sustained response cell;; at Le•1·el :2. 'l'he stt.otained cdb 

have orir;ntr'd rr;ccpl.iiT field;; that. arc ;;ensitiw to t lte· dirt'ctiott .. of-cont.rasl in the inrilgc, 

either dark-to-light. or lip,ht-to-dark. Level 2 cells play the role of a short.-rangc spatial filter. 

Spa.Lial and tc:Jnporrtl a.\'craging a.rc also ca.rric~d out by Lr<lnsic:nt response u:lls a.t Level :~. 

'T'hc transient cells have; nnoricntecl receptive fields that arc ;;c•nsit ivc to the direction of 

contrast. change• in the cdl input. The upward arrow denotes transient. on-cell;; that arc 

activil.t..ed by a transition from dark to light. Tbe downward arrcm ei<:rwtc;s transient ofF-cells 

that are ac:tivatccl by a transition front light to dark. Level .. j cells cotnbinc sustained and 

transient cell signals ntttltiplicatil·ciy and are thus rendered sen sit i1·e to hotb direction-of· 

1notion and clir(:ct.iou-of-contra.st.. Level ;) cell:-:; Slllll a.cross space \'i<t a Jong·~rangc~ Ga.ussian 

spatial filt.c:r, and across the two types of Lc;ve .. l 1j cc•lls. Lr'1·el :, cl'il;; arc tints sensitive to 

direction .. of-tnotion but in;;ensit.ii"C: to direction-of-contrast.. [1\eprintecl with permission front 

( :ro;;slJC•rg and 1\ ndd (I CJCJ2).] 
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Figure 3. Spatial responses at vanous level:i of the MOC Filter to a point input. (a) 

Su:itained activity of a Level 2 cell. (b) T'otal input pattern to Level 5 after convolution with 

a. Ciaussian kernel. (c) Contrast-enhanced output of Level 5 centered at the location of the 

input maximum. [Reprinted with perrniosion from Grosobcrg and Rudd (1992).] 

Figure 4. Temporal response of the MOC Filter to a point input. (a) 'l'hc input is preocnted 

at a brief duration at location 1. (b) Sustained cell activity at 1 gradually builds after the 

input onset, then decays after ofl'oel. (c) Growth of the input pattern to Lc;vcl:) with transient 

cell activity held constant. 'I'hc activity pattern retain;; a Gaus;;ian shape centered a.t the; 

loca.tion of the input,, that waxes and wanes through time without spreading acrose; space. 

[Reprinted with permission from Grossberg and Rudel (1992).] 

Figure 5. Temporal response of the susta.inc;d cc;lls :ri/,.(1) at Level 2 to two brief succe;;sivc 

point inputs 1;1,.(/,) al locations i =·• 0 and i •·•·• W. For an appropriately timed display, lhe 

decaying response ell. po;;ition 0 overlaps in time the rising rc;;ponse at po;;ition Hi Paran1eter 

k is defined in the fullmoci<'l. [He.printed with perrnission frorn (irossberp; and Rudd (1CJ92).] 

Figure 6. Simulated I\JOC F'ilter response to a two .. flash displcty. Successive rows correspond 

to increasing times following the Frame J ofl'set. (a) 'I'hc two lower curves in each row depict. 

the total input R; at po;;itioo i of Levd 5 due to each of the two flashc;;. 'fhe input due to the 

left llash decreases while the input clue to the right flash increases. 'fhc1 summed input due 

to both flashes is a traveling wave whose maxirnum value across space moves continuously 

between the two fla.sh locations. (b) Position over time of the contrast-enhanced J,cJvcl 5 

re:;ponsc. [Repriutccl with permission fron1 Gros:;herg and Rudel ( 1992).] 

Figure 7. Motion paths generated by fvJOC Filters with cliiFerent CmJssian filter kernC'l 

widths /\ in (9). The motion paths an• ploltecl in a space-time cliagnun wherein each 

rectangle indicates the spal.iol.clttl[JOI'al borJtHlaries oi' one flash in a two flash display. 1\ll the 

1!7 
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motion paths intersect at a point halfway between the two flash locations. [Reprinted with 

permission !'rom Cros;;berg and H.udd (199:2)]. 

Figure 8. Schcrnatic diagram or anatomical connections and neuronal selectivities or early 

visual areas in the nmcaqne monkey. LGN = lateral geniculate nur:lcu;; (parvoccllnlar and 

rnagnocellular divisions). Divisions ol' Vl and V2: blob= cytochrorne oxidase blob regions; 

intcrblob = c:ytoc:hrornc oxidase-poor region;; ;;urrounding the blobs; 4B = lamina 4B; thin 

= thin (narrow) cytochronre oxidase• strips; interstripc =cytochrome oxidase-poor regions 

between the thin and thick stripes; thick = thick (wide) cytochrome oxidase strips; V:l = 

visual area :l; V4 = visua.l arca(s) 4; Ivl'J' = nriddlio temporal area. Areas V2, V:l, V4, 1v!T 

have• connections to other areas not explicitly represented here. Area V:l may also receive 

projections l'rorn V2 interstripes or thin stripes. lleavy lines indicate robust primary con· 

nec:tions, and thin lines indicate wcakn, more va.riable connections. Dotted lines n:present 

observed conncctiom; that rroqtrire itdditional verification. Icons: rainbow = tuned and/or 

opponent wa.vclcngl.h sclccl.ivity (incidence at least 40'){); angle sylllbol c= orientation sclcc·· 

tivity (incidence: at least :20'X): spectacles == binocular disparity selectivity and/or strong 

binocnlar interactions (V:2) (incidence: at least :20%); pointing hand = dirc:ction ol' motion 

selectivity (incidc•ncc at least 211%). [i\eb\pted with permission !'rom DeYoe ami van Essen 

( 19~8).] 

Figure 9. lnterar:tirms between the attcntional nnd orienting c;uhsystenrs or an ada.ptive 

resonance theory (i\HT) circuit: IA•vel /.'1 encodes a distributed represe:ntation ol' an event. 

to be recognized via a short I.Crnl n1enrory (ST1vl) activation pattern across a network or 

feature detectors. Level F2 cnr:ode;s the event to be recognized using a more compressed S'l'~,l 

representation ol' the F1 pa.tlcrn. Learning ol' these recognition codes t<tkcs place at the long 

term rnernory (L'fM) trace:; within the bottom-up and top-down pathways between levels 

F1 and F).. The top-down pathways can read--out lc•a.rncd expectations whose: prototypes arc 

nratchcd against bottonHrp input pntterns at F 1 • ~lisrrratclws in n•sponse lo novel events 
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activate the orientinp; subsystern A on the right side of the figure, depending on the value 

of the vigilance parmneter p. Arousal emitted from A resets the recognition codes that . . 

arc active in STM at F'z and initiates a rncmory search for a more appropriate recognition 

code. Output frorn subsystern A can also trigger an orienting response. (a) Block diagram 

of circuit. [Reprinted with permission frorn Carpenter and Grossberg ( 1 990).] (b) Individual 

pathways of circ:uit, including the input level F'u that generates inputs to level F1• The 

gain control input to levrl F1 helps to instantiate the 2/:3 Rule (see text). Gain control to 

level F2 is JWcded to instate a catep;ory in STM. [Reprinted with permission frorn Carpenter, 

Gro.ssberg, and Reynolds (19'Jl).] 

Figure 10. AHT search for an F~2 recognition code: (a) 'I'he input pattern I generates the 

specific STM activity pattern X at F1 as it nonspecific<elly activates the orienting subsysten1 

A. X is represented by the~ hatched pattern across F1 . Pattern X both inhihits A and 

generates the output pattcm S. Pattern S is transforrncd by the ITM traces into the input 

pattern T, which activa.tes the STivl pattern Y across r2. (h) Pattern Y gc:ncralcs the top .. 

down output pattern U which is transformed into the prototype pattern V. If V mismatches 

I at F'1 , then a new STM activity pattern X* is generated at F1. X* is ncopresentcd by the 

hatched pattern. Inactive nodes corresponding to X an: unhatched. 'fhc reduction in total 

STM activity which oc:c:urs when X is transforrncd into X* ca11SCs a. decrease in the total 

inhibition fnJIII F'1 to .A. (c) If the vigila.nce criterion fails to be met, A releases a Donspecific 

;JroDsal wave to F'z, which resets the STM pattern Y at 1•2. (d) Mtcr Y is inhibited, ito top-

down prototype signal is eliminated, and X can be rein:;tated at F1. Endming traces of the 

prior reset lead X to activate a different STM pattern Y* at l''z. If the top .. clown prototype 

clue to Y*' also mismatches I at F 1, then the o;ca.rch for an appropriate F2 code continues 

until a Jllore appropriate 1'2 rc:prcsenta.tion i:; selected. Then an a.tte11tive resona11cc develops 

and learning of the aJtc~ndcd da.t.a is initiated. [Reprinted wit.h permission from Citr]Wntcr 

and Crosslwrg (JIJ90).] 
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Figure ll.(a) Many-to-om: learning combines categorization of rnany exemplars into one 

category, and labeling of many categoric;; with the same name. (b) In an AHTMAP arr:hi­

tectme, the AHTa and AI\]\ networks l'ornr recognition categories of tire separate streams of 

input vectors labelled a and b, as in the case of visual categories and their <Wclitory naming 

categories. 'I'Ire Map Field learns an associative map from categories in AHTa to categories 

in Alrl'b· When a predicted output in AHTb is rnisrnatchcd by an input vector b, the Match 

Trackinp; process increases the AHTa vigilance value PA until f!;~lal-lx"l > 0, thereby trig­

gc:ring memory search for a better sd of features in a with which to build a category that 

can correctly predict b. [Reprinted with permission from Carpenter and Crossberg (199:2)]. 

Table 1. Complementary cognitive and neural properties that are synthesized into a seJI'­

consistenl computational format within individual AHT recognition models. Tire cumulat.ive 

coinpulat.ional constraints imposed by these properties force design decisions that. arc nol 

evident in either cognitive or neural data by t.lrernsclvcs. 

Table 2. Some machine lcaming benchmark studies which c:ornpare tire pcrl'onnance of 

supervised AIU, or i\HTiv!AI', model;; with that of altemative models. These bencltinarks 

describe how well t.lrcsc systems predict test sets when they experience equivalent training 

sets (a.s in benchmarks 1 11) and the• nuiiihcr of epochs, or repetitions of Lire training set, that 

are needed lo reach the sarnc lcvd of accuracy (benchmark 5) [Reprinted with permission 

from Ca.rpcnlcr and Crossberg, 1992]. 
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ARTMAP BENCHMARK STUDIES 

1. Medical database- mortality following coronary bypass grafting (CABG) surgery 

FUZZY ARTMAP significantly outperforms: 

LOGISTIC REGRESSION 

ADDITIVE MODEL 

BAYESIAN ASSIGNMENT 

CLUSTER ANALYSIS 

CLASSIFICATION AND REGRESSION TREES 

EXPERT PANEL-DERIVED SICKNESS SCORES 

PRINCIPAL COMPONENT ANALYSIS 

2. Mushroom database 

DECISION TREES ( 90-95 % correct ) 

ARTMAP ( 1 00% correct ) 
Training set an order of magnitude smaller 

3. Letter recognition database 

GE~JETIC ALGORITHM ( 82% correct) 

FUZZY ARTMAP ( 96% correct ) 

4. Circle-in-the-Square task 

BACK PROPAGATION ( 90% correct) 

FUZZY ARTMAP ( 99.5% correct) 

5. Two-Spiral task 

BACK PROPAGATION (10,000- 20,000 training epochs) 

FUZZY ARTMAP ( 1-5 training epochs ) 

Table 2 


