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1. Introduction

1.1 Motion Perception, Recognition Learning, and What-and-Where Atten-
tion

Our brains are designed to control hehaviors that are capable of interacting successfuily
with fluctuating environments whose rules may change unexpectedly through time. They
are sclf-organizing systems whereby behaviors may be performed autonomously and adap-
tively to environmental changes during which no teacher other than the environmental events
themselves may be present with correct new answers. The present chapter describes two ex-
amples of how the brain may achieve autonomous control in a rapidly changing environment.
One example concerns motion perception and object tracking. The other concerns recogni-
tion learning, categorization, memory search, and recall. Both examples include dynamical
processes which may control attention during cognitive information processing. One process
suggests how attention may be used to track where objects are moving in space. The other
process suggests how attention may delimit whal the defining features of an object may be.
These results thus contribute to an analysis of the What cortical stream, which includes area
V4 of visual cortex and temporal cortex, and the Where processing stream, which includes
area MT of visual cortex and parietal cortex, that have heen the subject of much recent
investigation (Desimone and Ungerleider, 1989; Goodale and Milner, 1992; Ungerleider and

Mishkin, 1932; Wise and Desimone, 1988).

1.2 The Whole is Greater than the Sum of its Parts

How can effective models of such complex self-organizing brain processes be derived,
given that no one type of behavioral or brain data can typically characterize its generative
neural mechanisms? The several answers to this question each imply that “the whole is
greater than the sum of i6s parts”™ when interdisciplinary data and modelling consiraints are
consistently joined. Iven the constraint that the model be sell-organizing-—namely, that it
can antonomously and adaptively respond in real time to its intended range of environmental
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challenges—imposes many constraints on system design that are not obvious {rom a bottom-
up analysis ol brain data. Modelling self-organizing perception and recognition learning
systems requires that several levels of processing, from the hebavioral level through the neural
system, circuit, cell, and channel levels, be computasionally integrated. This 1s true hecause
such a systen uses internal representations that need to achieve behavioral success despite the
inability of individual neurons to discern the behavioral meaning of these representations.
How are coding errors corrected, or appropriate adaptations to a changing environmeng
effected, if individual neurons do not know that these errors or changes have even occurred?
[t is often the case that behavioral success can be computed on the level of networks of
neurons.  That is why neural network models can clarily how properly designed neurons,
when embedded in properly designed neural cireuits and systems, can autonomously control
behavior in a manner that leads to behavioral success.

For example, it is suggested below how properties of variable-speed object fracking and
memory consolidation ol recognition categories may emerge from system-wide interactions.
‘The computational linkage of multiple organizational levels also leads to new predictions.
In particular, properties of preattentive apparent motion processing are linked below o
properties of attentive object tracking. 1t is also suggested how novelty-sensitive processes
within the hippocampal formation may modulate the size, shape, and number of recognition
categories that are learned by the inferotemporal cortex.

Granted that the emergent properties that have behavioral meaning are typically not
properties ol single neurons or other individual neuronal components, we can beiter under-
stand why behavioral and brain processes are so hard to understand. Whereas correctly de-
signed individaal neurons are necessary in such a model, they are not sufficient. A multilevel
modelling synthesis is needed in which individual components, their intercellular interactions,
and their hehaviorally significant emergent properties are all crafted together.

Such a multilevel analysis achieves much of its power by focusing on a natural subset of
interdisciplinary data and issues—on a “vertical slice™ through the space of phenomena. One
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never tries to solve “all” the problems a$ once. In the present instance, these data and issues
concern preattentive motion processing, attentive recognition learning, and attentive object
tracking. We do not analyse such equally important processes as form and color perception,
reinforcement learning, cognitive-emotional interactions, working memory, temporal plan-
ning, and adaptive sensory-motor control. On the other hand, larger model systems that
integrate aspects of all these processes have been proposed as part of a continuing modelling
cycle (Carpenter and Grossherg, 1991; Grossberg, 1982, 1987a, 1987h, 1988, 1993; Grossherg
and Kuperstein, 1986, 1989). This cycle has progressively characterized individual modules,
and it them together into larger systems. Systern constraints that are discovered during
this fitting process are used, in turn, to further shape the design ol individual modules. The
puzzle cannot be finished unless each piece is designed to {it.

These modules are designed to be the minimal models that can explain a targeted data
base. They are lumped representations of neural processes in which no process is included
unless its functional role is reguired and clearly understood. The insistence upon lTunctional
clarity highlights those data that the model should and should wot be able to explain, fa-
cilitates the discovery ol additional neural processes to explain additional data, and clarifies
which species-specific variations of the minimal models are workable and which are not.
These discoveries have, in the past, led to the progressive unhonping ol the models as they
embody ever-more-powerlul functional competences for explaining ever-more-cncompassing

data bases.
2. Modelling Apparent Motion

2.1 The Ecological Significance of Apparent Motion

The first model provides a particularly simple example of emergent properties that are
due to dynamically interacting network cells. The example seems simple after you see it
but the data properties that led to ifs discovery ave highly paradoxical and have been known

and puzzled about for many years.
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These data concern phenomena about apparent motion. Oune might at once complain
thal apparent motion phenomena are of no ecological interest. To challenge this impression,
consider the task of rapidly detecting a leopard leaping from a jungle branch under a sun-
dappled forest canopy. Consider how spogs on the leopard’s coat move as its limbs and
muscles surge. Imagine how patterns of light and shade play upon the leopard’s coat as
it Jeaps through the air. These luminance and color contours move across the leopard’s
hody in a variety of directions that do not necessarily point in the direction of the leopard’s
leap. Indeed, the leopard’s body generates a scintillating mosaic of moving contours that
could easily prevent its detection. Our perceptual processes can actively reorganize such a
scintiliating mosaic into a colierent object percept with a unitary direction-of-motion. The
feopard as a whole then seems to quickly “pop out” {rom the jungle background and o draw
our attention. Such a perceptual process clearly has a high survival value for animals who

DOSSess 1.

This description of the leaping leopard emphasizes that the process of motion perception
is an active one. It is capable of transforming a motion signal that is generated by a luminance
contour into a different motion percept. In this sense, our percepts of moving ohjects are

often percepts of apparent motion, alheit an adaptive and useful form of apparent motion.

The task of understanding how we see “real” motion thus requires that we also understand

“apparent” motion.

The simplest examples ol apparent motion were documented in the 1870%s, when Ioxner
provided the first empirical evidence that the visual perception of motion was a distinct
perceptual quality, rather than being merely a series ol gpatially displaced static percepis
over time. He did this by placing two sources ol electrical sparks close together in space.
When the aparks were flashed witlh an appropriate temporal interval between then, observers
reported a compelling percept of continuous motion of a single flash from one location to
another, even though neither flash actually moved. At shorter temporal intervals, flashes look
simultaneous and stationary. At longer intervals, they look Tike successive stationary flashes,
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with no intervening motion percept. When the spatiotemporal parameters of the display
are suboptimal, a “figurcless” or “objectiess” motion called phi molion is perceived, wherein
a sense of motion withoutl a clearly defined form is perceived. A smooth and continuous
motion of a perceptually weli-defined form is called beta motion, and typically occurs at a
larger interstimulus interval, or IS1, between the ollset of one flagh and the onset of the next
flash.

This clagsical demonstration of apparent motion was lollowed by a series of remarkable
discoveries, particularly by gestalt psychologists, concerning the properties of motion per-
ception. It was noticed that a decrease in 151 causes the speed ol the interpolating motion
to increase (Kolers, 1972). A motion percept can also smoothly interpolate flashes separated
by dilferent distances, speeding up il necessary to cross a longer distance at a fixed 1S 1M
a more intense fash follows a less intense fash, the perceived motion can travel backwards
from the second flash to the first flash. This percept is called della motion (Kolers, 1972,
Norte, 1915). Gamma molion is the apparent expansion at the onset of a single flash, or its
contraction at its offset (Bartley, 1941; Kolers, 1972). A similar expansion-then-contraction
may be perceived when a region 15 suddenly darkened velative to its background, and then

restored to the background luminance.

Il a white spot on a gray background is followed by a nearby black spot on a gray
hackground, then motion between the spots can oceur while the percept changes from white
to black at an intermediate position. Likewise, a red spot followed by a green spot on a white
background leads to a continuous motion percept combined with a binary switch {from red
to green along the motion pathway {Kolers and von Grilnau, 1975; Squires, 1931; van der
Waals and Roelofs, 1930, 1931; Wertheimer, 1912/1961). These results show that the motion
mechanisn can combine visual stimull corresponding to different colors, or even opposite
divections-of-contrast. Complex tradeoffs between flash luminance, duration, distance, and
[S]in the generation of motion percepts were also discovered. For example, the mininum
15T for perceiving motion increases with increasing spatial separation of the inducing flashes.

Bl
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This property is sometimes called Korte’s Third Law (Boring, 1930; Kolers, 1972; Korte,
1915). A similar threshold decrease with distance occurs in the minimum stimulus onset
asynchrony, or SOA, which is the difference between the flash onset times. Interestingly,

whereas the minimum IS decreases with flagh duration, the minimum SOA increases with

fiagh duration.

These discoveries raised perplexing issues concerning the nature of the long-range brain
interaction that generates a continuous motion percept between two stationary flashes. Why
15 this long-range interaction not perceived when only a single light is flashed? In particular,
why are not outward waves of motion signals induced by a single flash? How does a motion
signal gel generated from the location of the first flash after the first flash terminates, and
only after the second flash turns on? How does the motion signal adapi itsell to the variable
distances and ISls ol the second flash, by speeding up or slowing down accordingly? In
particular, how can the motion signal adapt to the 151 between two flashes even though such
adaptation can only hegin alter the first flash is over? | like to call this the ESP Problem.
Moreover, what ecologically useful function do these curious properiies realize under more
normal perceptual conditions?

The [igural ovganization ol moGion stinmuli can also influence motion percepts. The Ternus
displays provide a classical example (Ternus, 192671850}, In Irame | of a Ternug display,
three white elements are placed in a horizontal row on a black background {or conversely).
After an IS, in Frame 2 all three elements are shifted to the right so that the two rightward
elements in Frame | are in the same locations as the two lefltward elements in Frame 2.
Depending on the IS1) the observer perceives either of four percepts. At very short 151s, all
four elements appear simultaneous, At long 1S1s, observers do not perceive motion at all. At
I51s shghtly longer than those yielding simultaneity, the leftmost element in Irame 1 appears
to jump o the rightmost element in Irame 2. This percept is called element motion. At
somewhat longer 151s; all three flashes seem to move together between Frame 1 and Frame 2.
This is called group motion.

6
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The percept of group motion might suggest that Ternug percepts are due to a cognitive
process that groups the flashes into atiended objects, and that motion perception occurs
only alter object perception. Such an explanation is not, however, made easily consistent
with the percept of element motion. It has been argued, for example, that at short 1S1s, the
visual persistence of the brain’s response to the two rightmost flashes of Frame 1 continues
until the two leftmost flashes of Frame 2 occur {Braddick, 1980; Braddick and Adlard, 1978,
Breitmeyer and Ritter, 1986; Pantle and Petersik, 1980). As a result, nothing changes at
these two flash locations when Frame 2 occurs, so they do not seem to move. This type of
explanation suggests that at least part of the apparent motion percept is determined ab carly
processing stages. 16 does not, however, explain how we see element motion. In particular,
why does not the element motion percept collide with the {wo stationary flash percepts?
What kind of perceptual space can carry element motion across, or over, the stationary
flashes?

Reverse-contrast Ternus motion also suggests that motion properties may be determined
at early processing stages. In this paradigm, three white spols on a gray background i
Frame 1 are followed by three black spots on a gray background in Frame 2 (see Figure 1).
At the ISIs where element motion previously oceurred, group motion now occeurs (Pantle and
Picciano, 1976). How does a change of contrast between Frame | and Frame 2 obliterate

-

clement motion? Does it do g0 by altering the effects of visual persistence on Frame 27
Figure |

A unified answer to all of these questions has recently been developed in a neural model
of motion segmentation that clarifies the functional significance of many apparent motion
percepts {Grossherg, 19915 Grossberg and Mingolla, 1993; Grogsherg and Rudd, 1989, 1992).
Perhaps the simplest such model is scliematized in Figure 2. 1t is called a Motion Oriented
Contrast-Sensitive Filter, or MOC Filter. The entire model of motion segmentation consists
of multiple copies of the MOC Filter, each corresponding to a different range of receptive
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field sizes; and each of which inputs to a grouping, or binding, network that is called the
Motion Oriented Cooperative Competitive Loop, or MOCC Loop. Taken together, these
MOC Filters and MOCC Loops are called the Motion Boundary Contour System, or Motion
BCS.

The Motion BCS is designed to possess the minimal number of processing stages that
are capable of tracking an object’s direction-of-motion independent of whether the object’s
several parts are darker than or lighter than the background upon which they are moving.
Grossherg and Rudd (1992) showed that each of the MOC Filter’s processing stages is needed
to explain the full corpus of data about beta, gamma, delta, Ternus, and related types of
motion. The model’s dynamics thereby illustrate how seemingly paradoxical apparent motion
data may he explained as emergent properiies ol ecologically simple design constraints on

the tracking of real moving objects.

Figure 2

2.2 Variable Speed Apparent Motion

In this chapter, I will focus on one key process ol the MOC Iilter; namely, how “large
variations in distance are accomimodated within a near-constant amount ol time” (Kolers,
1972, p. 25). The mechanism that achieves this is pesited to exist between Levels 4 and 5 in
Figure 2. 1t is a surprisingly simple mechanism and utilizes components that are generally
familiar to psychologists: a Gaussian filter followed by contrast enhancement due to lateral
inhibition, Remarkably, in response to temporally successive inputs to the Gaussian filter, a
travelling wave can be generated from the first input location to the second input location,
and the peak of this wave can be contrast-enhanced by lateral inhibition to generate a focal
activation that speeds up or slows down with increases or decreases of distance or IS just

as in the data.
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2.3 G-Waves for Long-Range Apparent Motion

How are long-range apparent motion signals generated in such a model? Figure 3 schema-
tizes how a flash a¢ Level 1 (Iigure 3a) leads 1o a focal activation at Level 5 (Figure 3c)
alter it activates the long-range Gaussian {ilter that joins Level 4 to Level 5 (Figure 3b). The
broad Gaussian activation of Level 5 is sharpened into a focal activation by tateral inhibition,

or competition, among the Level 5 cells.
Igure 3

Figure 4 shows how this input activation looks in thme. The input to Level 1 (IMigure 4a)
generates a slowly decaying temporal trace (Figure 4h) that has been called “visual inertia”
by Austis and Ramachandran (1987). When this trace is led through the Gaussian filter,
It generates a spatially distributed input to Level 5 that waxes and wanes through time,

without spreading across space (Flgure 4¢). The maximum value of this input does not,

move. Hence a single flagh does not canse a movement across space.

Iigure 4

Suppose, however, that two locations both input through the same Gaussian recepiive
field, and that the activation in response to a flash at the first location is decaying while
activation is growing iy response to a flash at the second location {Figure 5). Under these
circumstances, the tolal input to Level 5 [rom both flashes is the sum of a temporally waning
Gaussian plus a temporally waxing Gaussian, as in Figure 6. Under appropriate conditions,
this sum represents a wave whose maximum travels continuously i thme [rom the location

ol the first dash to the location of the second fash.

Figure 5

In swmmary, the time- and space-averaged respouses to individual flashes do not change
their positions of maximal activation through time. In this sense, nothing moves. When a
series of properly timed and spaced flashes is presented, however, the sum of the temporally

g



Janwary 11, 1994
and spatially averaged responses that they generate can produce a continuously moving peak
of activity between the positions of the stroboscopic flashes. This is an emergent property

ol network dynamics, rather than a property of any cell acting alone.

FFigure 6

2.4 Motlon Speed-Up and Multiscale Coherence

This Gaussian wave, called a G-wave, was discovered and mathematically analysed in
Grossherg (1977). These results waited twelve years for publication in Grossherg and Rudd
{1989} because it took that long to understand how a long-range Gaussian filter fit into a
targer theory of motion perception, such as the Motion BCS, that also includes a role for
trangient cells and short-range spatial interactions. A G-wave occeurs whenever waxing and
waning activation traces interact via a spatial Gausstan kernel under appropriate spatioten-
poral conditions. The properties of a G-wave correspond closely to properties of long-range
apparent motion, including the remarkable properties whereby an apparent motion percept
can speed up when the [S1is decreased at a fixed interflash distance, or when the 151 s held
constant and the inferflash distance is imcreased.

The basic mathematical framework for proving these properties is very simple. Let
Hashes ocour at positions 2= 0 and + = L. Suppose ithat

du
J_[:Q = Ay ot J 0 (i)

delines the activity 2y and input Jg at position €, and

de,

= Axg +J;, (:

o
"

does the same al position L, where ay(0) = 2, (0) = 0. Then

t y
wy(t) = [ Ay () (3)
J
and
t
:r:L(!,):/ e A=, ()du, (1)
Jo

g
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Let the inputs Jy and J; switch on to the constant value J at times 0 and 7"+ [ for duration

7' as in

pey o it0<t T "
J“(”‘{o T )
and
N T T <t <27+ 1 :
Jp(t) = {0 29 41 <t (6)
where [ is the 15! between the flashes, Then for T+ 1 <t <27 4 1,
vty — AT = A-T)
xp(t) = E(l - e (")
and
()= 7’%(1 — e AUT= (8)

Let xg(t) and 2 (1) interact via a long-range Gaussian filter
(i = expl-(f — )7 /2K7] (9)

as in Figure 2. For simplicity, replace index ¢ by a continuum of cells at positions w in Level

5. Then the total input to position w of Level 5 is

—1p? (- L)?
T, 1) = wy(l) exp[—z-;—g] + o (1) (_‘.:\:p[w—gi_éh,2 ) -1 (10)

By (7) and (8),

: \ 3 - avE ‘
Tw, t) = li‘(] AT :]n“"‘i(f'"j ) GX])[-.—’-[-{J"W] + (1 —¢™ A1 “")) (\p[(lﬁ.m"@LH (11)

Q2

The main result shows under what combinations of parameters the maximum value of
T(w, 1) moves continuously from position w = 0 towards position w = L through tine. It
also characierizes the maximum flash separation thal can generate a G-wave in response 1o

a Gaussian with size parameter N in (9).

Theorem 1 (Apparent Motion)

11
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The maximum of T'(w, 1) moves continuously from position w = 0 to position w = L il
and only if

L <2K. (12)
Proof: The maximum values of T'(1w,1) occur only at locations w = w{t) such that

T (w, 1) ;
gt = 0. (13)

By (11), such locations obey the equation

AWT) AL gy ox [L(L — 21,11)]
| —e=AT T L Rl 212 |

The function
GAU=TY oA

L/‘("') = "‘“TW (]5)

is an increasing function of L. We wish to determine when the positions w = w{f) at which
T'(ae, ) is maximal increase ag a function of £ In order {or this to happen, the right hand
side of (14), namely function

glw) == T XD

1w [](f - 'ZHJ)] (16)

must also be an increasing funciion of w, for all 0 <w < L, since then we can solve lor

w=g=1{/(1))

.
T
R

as an increasing function ol w for all 0 <w < L.

Function g(w) is monotone increasing if ¢'(r0} > 0, which holds if and only if function

h(w)y = (L - w)[l - -%ng] +w ‘ (18)
satisfies
(i) > 0. (19}
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In order for (17) to hold {for all 0 < w < L, the minimum of h{w) for 0 < w < L must be

positive. The minimum of A{w) occurs at w = %, and equals

L i, L2 .
h(5) = g(z = m“j) (20)

The number A(&) is positive il (12} holds.
The next result proves that the apparent motion signal reaches the position w = g

midway between positions w = 0 and w = L al a time {7 that is independent of L and
v

K. Independence of L illustrates how the wave speeds up to travel over larger interflash

distances,
Theorem 2 (Equal Half-Time Property)

The time at which the motion signal reaches position w = £ is

by =1+ —%[')L [(i’“ 4 (1 = Cﬁ/-l’l‘)]. (21)

i

Proof: By (17), we need to compute £ = [~1{g{w)) when w =%, namely

—
S
——

i
[
e

By {16),
9(s) = 1. (23)
Fquation {21) follows inumediately from (23} and (14).

Remarkably, £1 ;5 in (21} also does not depend upon the width A of the Gaussian filter,
just so long as the filter is wide enough to support a fravelling wave. This means that the
speed-up property, which seems so mysterious in itsell; also achieves an ecologically useful
property; namely, the ability of multiple spatial scales in the motion perception system 1o
generate G-waves that are all spatially coincident (Figure 7). Because of this property, a

coherent motion percept may be synthesized from data from all the spatial scales that are

activated by the stimulus.
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Figure 7

2.5 Spatial Attention Shifts and Target Tracking by the Where Cortical

Stream

Another no less uselul ecological property of motion speed-up is suggested by the fact
that rapidly moving objects may be perceived only intermittently. Irom this perspective,
I suggest that a G-wave may give rise to certain spatial shifts in attention, such as those
reported by Ericksen and Murphy (1987}, Kwak, Dagenbach, and Egeth {1991), LaBerge and
Brown (1989), and Remington and Pierce {1984). Tor example, if a targeted predator or prey
is rapidly moving across a scene, perhaps darting behind protective cover, then an animal
may be able to see the target only intermittently. A G-wave can interpolate these temporally
discrete views with a continuous motion signal that adapts its speed to the varying speed of
the farget. Such a continnous motion signal may be used to predict the location and speed of
the target, and to command motor responses accordingly. The results ol Kwak, Dagenbach,
and Egeth (1891) and of Remington and Plerce (1984) are of particular interest, since they

report a speed-up of spatial attention to cover variable distances in equal time.

In those cases where moticn mechanisms contribute to spatial attention shifts, it needs
to be kept in mind that a spatially continuous motion signal is generated only under certain
spatiotemporal conditions, the speed of the motion signal is nonuniform in time (see Gross-
berg and Rudd, 1992), and spatially discrete jumps in activation may occur in cases where

continucus motion is not observed; for example, if L > 2/ in (12). These properties may

help to disentangle some of the apparently conflicting views about how fast attention shifts

and whether it does so continuously or discretely.

In thinking about these possibilities, the reader might wonder how a continuous motion
signal could be interpolated behind occluding objects in such a way that it is notl seen.
Two themes need to be developed to understand how this might happen. Fivst, the theory
predicts that a boundary segimentation, whether static or moving, is perceptually invisible

14
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within the parvocellular interstripe and magnocellular processing streams of the visual cortex
wherein they are predicied Lo be computed. 1 like to say that “all boundaries are invisihle”.
Visibility is predicted to be a property of the paraliel parvocellular blob cortical stream
(Figure 8). Here boundary segmeniations define the domaing within which visible properties
of brightness, color, and depth fill-in surface representations. {See Grossberg and Mingolla
(1993) and Grossberg, Mingolla, and Todorovié (1989) for a discussion of how this is predicted
to happen.) In addition, one needs to analyse how a boundary segmentation, whether static
“ormoving can be completed “bebind” an occluding object in such a way that it can influence
object recognition without being seen. Exampies of such occluded boundary completions are
discussed in Grossberg {(1994). Bregman (1990, p.23) has also commented upon the possible
utility of a motion signal that can interpolate intermittently viewed moving objects. The

present theory suggests a dynamical explanation of how this can happen in the brain,
3. Modelling Recognition Learning and Categorization
g g g g

3.1 Spatial Attention, Featural Afttention, and Perceptual Binding in the
What and Where Cortical Streams

The hypothesis that a G-wave may give rise to a spatial attention shift is consistent
with the fact that the motion perception, or magnocellular, cortical processing stream is
part of a larger Where processing stream that includes cortical region M1 as well ag parietal
cortex {Figure 8). The Where processing stream computes the locations of targets with
respect to an observer and helps to divect attention and action towards them. In contrast,
the form perception, or parvocellular, cortical processing streanm is part ol a larger What
processing stream that includes region V4 as well as inferotemporal cortex (IMigure 8). The

Whai processing stream is used to recognize targets based upon prior learning.
Figure 8

The second model of this chapter contributes to the understanding of how humans and

15
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other animals can rapidly learn to recognize and categorize objects in their environments
under auntonomous learning conditions in real time. Here again, attention plays a key role. It
does not predics a spatial location of a target. Rather, it amplifies and binds together fealure

combinations that are used to categorize environmental events into object representations,

3.2 The Stability-Plasticity Dilemma

An adequate sell-organizing recognition system must be capable of plasticily in order
to rapidly learn about significant new events, yet its memaory must also remain sfable in
response 1o irrelevant or often repeated events. For example, how do we rapidly learn to
recognize new faces without rvisking the unselective forgetting of our parents’ faces? In
order to prevent the unselective forgetting ol its learned codes by the “blooming, buzzing
confusion™ of irrelevant experience, a sell-organizing recognition system must be sensitive o
novelly. 1t needs to be capable ol distinguishing between {familiar and unlamiliar events, as

well as between expected and unexpected events.

A class of neural models, called Adaptive Resonance Theory, or ART. models was in-
troduced in 1976 to help understand how this is accomplished (Grossherg, 1976a, 1976h).
In ART, dynamical interactions between an attentional subsystem and an ovienting subsys-
tem, or novelty detector, sell-stabilize learning, without an external teacher, as the network
familiarizes itsel with an environment by categorizing the information within it in a way
that predicts hehaviorally successful outcomes {Carpenter and Grossberg, 1991; Grossherg,
19280).  ART models combine several types of processes that have been demonstrated in
cognitive and neurobiological experiments, but not otherwise synthesized into a model sys-
temn. Table 1 lists some of the cognitive processes that are joined together in a consistent
computational format within ART systems. This synthesis illustrates that learning and in-
formation processing mechanisms need fo coevolve in order to achieve behaviorally uselul
properiies. 1t also clarifies how higher-order cognitive processes, such as hypothesis testing of
fearned top-down expectaiions, control such apparently lower-order processes as the learning
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ol bottorm-up recognition categories. That is why an analysis of recognition needs also to be

framed as an analysis of learning.

Tahie 1

3.3 Competitive Learning and Self-Organizing Feature Maps

All the learning goes on in the attentional subsystern. Its processes include activation
of short term memory (STM) traces, incorporation through learning of momentary STM
information into a longer-lasting long term memory (LTM) traces, and interactions between
pathways that carry specific types of information with nonspecific pathways that modulate
the specific pathways in several different ways. These interactions between specific STM and
LTM processes and nonspecific modulatory processes regulate the stability-plasticity balance
during normal learning.

The attentional subsystein undergoes both bottom-up learning and top-down learning
between the processing levels denoted by [ and Fy in Figure 9. Level F containg a network
of nodes, or cell populations, each of which represents a particular combination of sensory
features.

Level Iy contains a network of nodes that represent recognition codes, or categories,
which are selectively activated by the patterns of activation across Iy, BEach node in [
sends output signals to a subsel of nodes in Iy, lsach node in /% thus receives inputs from
many /1 nodes. The thick arrow from Fy to [y in Figure 9a represents in a concise way the
array of diverging and converging pathways shown in Figure 9b. Learning takes place at the
synapses denoted by semicivealar endings in the My — [ pathways. Pathways that end i
arrowheads do not undergo learning. 'Uhis bottom-up learning enables Iy nodes to become
selectively tuned to particular combinations of activation patterns across I by changing
their I'I'M traces. This basic property of recognition learning is mathematically proved

helow.

Figure 4
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Why does not bottom-up learning sulfice? An analysis of this problem was carried out in
a type of model - called a self-organizing feature map, competitive learning, or learned vector
quantization - that forms part ol a larger ART system. Such a bottom-up learning model
shows how to combine associative learning and lateral inhibition for purposes of learned
categorization. As shown in Figure 10a, an input pattern is normalized and regisiered as a
pattern of activity, or STM, across the leature detectors of level 7. FEach ) output signal
is multiplhied or gated, by the adaptive weight, or LTM trace, in its respective pathway.
All these LI'M-gated inputs are added up at their tavget 5 nodes. Lateral inhibitory, or
competitive, interactions across the /5 nodes contrast-enhance this input patiern. Whereas
many I nodes may receive inputs from /9, lateral inhibition allows a much smaller set of

I nodes to store their activation in STM.
Figure 10

Only the I nodes that win the competition and store their activity in §TM can influence
the Tearning process. STM activity opens a learning gate at the LTM traces that abut the
winning nodes. These LTM traces can then approach, or track, the input signals in their
pathways by a process of steepest descent. This learning law is thus often called galed
steepest descend, or dnstar learning. Tt was introduced into neural network models in the
19607 (Grossberg, 1969) and is the learning law that was used to introduce ART (Grossherg,
1976a, 1976h). In particular, let 2y, denote the STM activity of the ith M) node, 2y; the

STM activity of the jth Io node, and z;; the adaptive weight or LI'M trace in the bottom-up

pathway from node ¢ in /4 to node j in 5. Then the rate of change through time of z;;,
denoted by -(«31‘-,-:55?3 oheys an equation ol the form
@iy = )y + 9(1)] 24)
?E'_Z»&tj = .112] =25 glT) (u
where [ and ¢ are non-negative signal funciions. Note that if [(xy;) = 0, then -;}fzsij- = £

Thus no learning occurs if the gale [(x9;) 13 closed. This can occur either il no inputs
[ 27 2_}

serbarb FYoor 1 node 5 Joses the competition across /. 10 flas) = 0, then 27, increases if

i i . 2 . 3y i
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glas;) > 25 and decreases if g(ey;) < 255

Such an LTM trace z;; can increase or decrease to track the signal g(z;) in its pathway.
It is thus not a Hebbian associative law, which can only increase during a tearning episode.
Because the adaptive weight z;; can either increase or decrease is size, the same law (24)
can control both long term potentiation (LTP) and long term depression (LTD). Bguation
(24) bas been used to model neurophysiological data about hippocampal LTP (Levy, 1985;
Levy and Desmond, 1985} and adaptive tuning of cortical feature detectors during the vi-
sual critical period (Rauschecker and Singer, 1979; Singer, 1983}, lending support to ART
predictions that both systems would employ such a learning law (Grossherg, 1976a, 1976Dh).

Self-organizing feature map models were introduced and characterized computationally
in Grossherg (1972, 19764, 1976h, 1978), Malshurg {1973), and Willshaw and Malsburg
(1976}, These madels were subsequently applied and further developed by many authors
{Amari and Takeuchi, 1978; Bienenstock, Cooper, and Munro, 1982; Cohen and Grossherg,
1987; CGrossberg, 1982, 1987a, 1987h; Grossherg and Kuperstein, 1986; Kohonen, [984;
Linsker, 1986; Rumelthart and Zipser, 1985}, They exhibit many usetul properties, especially
il not too many input patierns, or clusters of input patterns, perturb level /9 relative to the
number of categorizing nodes in level 45, [t was shown that under these sparse environmental
conditions, category learning is stable; the I'T'M traces track the statistics of the environment,
are scll-normalizing, and oscillate a minimwm number of times (Grossberg, 1976a, 1976D,
1978). Tn addition, it was observed that the category selection rule tends Lo minimize ervor, as
i a Bayesian clagsifier, These are the hasic properties that have heen used in all subsequent,
applications.

16 was also proved, however, that under arbitrary environmental conditions, learning be-
comes unstable. 1l our own learned categorizations exhibited this property, we could forget
our parents’ faces.  Although a gradual switching off of plasticity can partially overcome
this problem, such a mechanism cannot work in a recognition learning systens whose plastic-
ity necds to be maintained throughout adulthood. This memory instability is due to hasie
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properiies ol associative learning and lateral inhibition. ART models were introduced to in-
corporate sell-organizing feature maps in such a way as to stabilize their learning in response

to an arbitrary stream of input patterns.

3.4 Feature Binding and Attentional Focusing

In an ART model (Carpenter and Grossherg, 1987, 1991), learning does not occur as
S001 as some winning £y activities are stored in STM. Instead activation of /4 nodes may be
interpreted as “making a hypothesis” about an input at /7. When [ iy activated, 1t quickly
generates an output pattern that is transmitted along the top-down adaptive pathways from
I to I 0 These top-down signals are multiplied in their respective pathways by L'TM
traces at the semiciren]ar synaptic knobs of Figure 10h. The LTM-gated signals from all
the active I5 nodes are added to generate the total top-down feedback paitern from Fy to
7. This pattern plays the role of a learned expectation.  Activation of this expectation
“tests the hypothesis,” or “reads out the prototype,” of the active Iy category. As shown in
Figure 10, ART networks are designed to mabeh (he expected prototype” of the category
against the bottom-up input pattern, or exemplar, to /7. Nodes that are activated by this
exemplar are suppressed il they do not correspond o large LTM traces in the top-down
prototype pattern. The matched Iy pattern encodes the cluster of input features that arve
relevant Lo the hypothesis based upon the networl’s past experience. This resultant activity
pattern, called X* i Figure 10b, encodes the paitern of features to which the network starts
to “pay attention.”

Il the expectation is close enough to the input exemplar, then a state of resonance de-
velops as the attentional focus takes hold. The pattern X* of attended {eatures reactivates
the 7 category Y which, in turn, reactivates X*. The network locks into a resonant state
through a positive feedback Joop that dynamically links, or binds, X* with Y. Damasio
(1989) has used the term “convergence zones” 1o deseribe such a resonant process. The res-
onance binds spatially distributed features into either a stable equilibrium or a synchronous
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oscillation {Lckborn and Schanze, 19915 Grossherg and Somers, 1991, 1992) with proper-
ties much like synchronous feature binding in visual cortex (ISckhorn ef al., 1988; Gray and

Singer, 1989; Gray el al., 1989).

In ART, the resonant state, rather than bottom-up activation, drives the learning pro-
cess. The resonant state persists long enough, at a high enough activity level, to activale the
slower learning process; hence the term adaplive resonance theory. The resonance process
shows how dynamical properties, such as differences in the faster STM rates and slower L'TM
rates, are exploited by the system as a whole. Fast information processing in STM is altered
by previously learned LTM traces, even il the LTM traces do not underge new learning
due to the STM patterns that they help to create. When an STM resonance is maintained
through a feedback exchange of bottom-up and top-down signals, it lasts long enough for the
slower L'T'M traces fo respond to the resonating STM activities and to undergo new learning.
In effect, the resonance embodies a global system-wide consensus that the resonating STM

patterns are worth learning about.

ART systems learn prototypes, rather than exemplars, because the attended feature
vector X rather than the input exemplar itsell, is learned. These prototypes may, however,
also be used o encode individual exemplars. How the maiching process achieves this is
described below. I the mismatch between bottom-up and top-down inlormation is too great,
then resonance cannot develop. Instead the Fy category is guickly reset belore erroncous
learning can occur, and a bout of hypothesis testing, or memory scarch, is initiated to
discover a better category. This combination of top-down matching, attention {ocusing,
and memory search is whal stabilizes ART learning and memory in an arbitrary input
covironment. The top-down matching process suppresses {hose {features within an exemplar
that are not expected and starts to focus attention on the features X* that are sharved by the
excmplar and the active prototype. The memory search chooses a new category on a [ast
time scale, belore an exemplar that is too different from the prototype can destabilize its
previous learning, How these matching and search operations work will now be summarized.
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3.5 Phonemic Restoration, Priming, and Consclousness

The ART attentive matching process is realized by combining bottom-up inputs and top-
down expectations with a nonspecilic arousal process that is calied attentional gain control
{Carpenter and Grossherg, 1987, 1991}, Avn /7 node can be fully activated only if two of
the three input sources that converge on the node send positive signals to the node at a
given time. This constraint is called the 2/3 Rule. A bottom-up input patiern turns on the
attentional gain control channel in order to instate itsell in STM at Iy (Figure 10a). A top-
down expectation turns off the attentional gain control channel (Figure 10b). As a result,
onty those input features ihat are confirmed by the top-down protetype can be attended at

I alter an Fy category is selected.

The 2/3 Rule enables an ART network to solve the stability-plasticity dilemma. Car-
penter and Grossberg (1987) proved that ART learning and memory are stable in arbitrary
enviromments, but become unstable when 2/3 Rule matching is eliminated. Thus the match-
g law that guarantees stable learnivg also enables the network to pay attention. This type
ol insight could never be derived without an analysis of the dynamics of autonomous learning

in real time,

Matching by the 2/3 Rulein the brain is illustrated by experiments on “phonemic restora-
tion” (Repp, 1991; Samuel, 1981a, 1981h; Warren, 1984, Warren and Sherman, 1974). Sup
pose thial a noise spectrum replaces a letter sound, or phonetic segment, in a word heard in
an otherwise unambiguous context. Then subjects hear the correct phonetic segment, not
the noise, to the extent that the noise spectrum includes the acoustic signal of the phones
Il silence replaces the noise, then only silence is heard. Top-down expectations thus amplify
expecied inpub leatures while suppressing unexpected {features, but do not create activations

not already in the input, just as in the 2/3 Rule

The 2/3 Rule for matching also explaing paradoxical reaction thue and ervor data {from
priming experiments during jexical decision and letter gap detection tasks (Grossherg and
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Stone, 1986; Schvaneveldt and MacDonald, 1981). Although priming is often thought of as
a residual effect of previous hottom-up activabion, a combination of bottom-up activation
and top-down 2/3 Rule matching was needed to explain the complete data pattern. This
analysis combined bottom-up priming with a type of top-down priming; namely, the top-
down activation that prepares a network for an expected event that may or may not occur.
The 2/3 Rule hereby clarifies why priming, by itself, is subliminal and unconscious, even
though it can facilitate supraliminal processing of a subsequent expected event. Ounly the
resonant gtate can support a conscious event in the model.

These examples illustrate how data from a variety of experimental paradigms can emerge
from computational properties that are designed o accomplish quite different [unctions
than the paradigm itsell might disclose; in this case, fast and stable recognition learning in

response to a rapidly changing environment.

3.6 Memory Search, Vigilance, and Category Generalization

The criterion ol an acceptable 2/3 Rule match is defined by the model parameter p that is
called vigilance (Carpenter and Grossherg, 1987, 1841). The vigilance parameter is comnputed
in the orienting subsystem A. Vigilance weighs how stmilar an input exemplar I must be to
a top-down prototype V in order for resonance to cccur. It does so by comparing the total
amount of inhibition from the attentional focus at /7y with the total amount of excitation
from the input pattern I (Figure 10Dh). In cases where binary features are processed, the
2/3 Rule implies that the attentional {focus X* equals the intersection In'V of the bottom-
up exemplar T and the top-down prototype V. Resonance occurs i plI] — |X*| < 0. This
inequality says that the /7y attentional focus X* inhibits A move than the input T excites it.

If A s inhibited, then a resonance bas time to develop between Iy and £y,
3 i 2

Vigilance calibrates how much novelly the system can tolerate helore activating A and
searching for a dilferent category. H the top-down expectation and the bottom-up input are
too different to satisty the resonance criterion, then hypothesis testing, or memory search, is
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triggered, because the inhibition from /7] to A is no longer sufficient to prevent the excitation
due to Irom activating A. Nonspecific arousal from A to £y resets the active category ag %
and inifiates the memory scarch. Memory search leads 1o selection of a better category ag
level 15 with which to represent the tnput {features at level [, During search, the orienting
subsystem interacts with (he abtentional subsystem, as in Figures 10¢ and 10d, to rapidly
reset mismatched categories and to select other /5 representations with which to learn about
novel events, without risking unselective forgetting of previous knowledee. Search may select
a lamiliar category if its protolype is similar enough to the input to satisly the vigilance
eriterion. The prototype may then be relined by 2/3 Rule attentional focussing. If the input
is too different rom any previously learned prototype, then an uncommitted population of

Iy cells is rapidly selected and learning of a new category is initiated.

3.7 Supervised Learning of Many—to—-One Maps from Categories to Names

Because vigilance can vary across learning trials, recognition categories capable of en-
coding widely dilfering degrees of generalizafion or abstraction can be learned by a single
ART system. Low wvigilance p leads to broad generalization and abstract prototypes be-
cause exemplars T that difler greatly from an active prototype 'V can salisty pIi—|X*| < 0.
High vigilance leads to narrow generalization and to prototypes that vepresent fewer input
exemplars, even a single exemplar. Thus a single AR systemn may be used, say, to rec-

ognize abstract categories that encode higher-order invariants of faces and dogs, as well as

L bl )
individual faces and dogs. ART systems hereby provide a new answer to whether the brain
learns profotypes or exemplars. Various authors have realized that neither one nor the other

alternative is satislactory, and that a hybrid system is needed (Smith, 1990).

Supervised ART, or ARTMAP systems can perform this hybrid function in a manner
thal is sensitive to environmental demands (Figure 11). In an ARTMAP gystem, predictive
errors can be used to trigger searches lor new calegories. As a result, many calegories in
one modality (c.g., visnal recognition categories) may he learned and associated with cach
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category in another modality (e.g., auditory naming categories), just as there may be many
different visual fonts that all have the same name “A”. A predictive error in naming increases
the vigilance p in the visual categorization network just enough to satisly plli—|X* > 0 and
thereby to activale 4 and initiate a memory search for a better visual category with which
to predict the desived name (Carpenter and Grossberg, 1992; Carpenter, Grossberg, and
Reynolds, 1991; Carpenter ¢f al.; 1992). Since low vigilance leads to learning of the most
general categories, this operation, which is called maleh fracking, sacrifices the minimum
amount ol visual generalization on each learning trial in order to correct a naming ervor.
Table 2 summarizes how such a supervised ART system performs relative to other ma-
chine learning, genetic algorithmi, and back propagation networks in benchmark simula-
tlong, These benchmarks indicate that models of biological learning enjoy compuiational
advantages over more traditional approaches. Such benchmarks are described more fully in

Carpenter, Grossherg, and Reynolds (1991} and Carpenter el al. {1992).

Table 2

3.8 Memory Consolidation as an Emergent Property of Network Dynamics

As inputs are practiced over learning trials, the search process eventually converges
upon stable categories thai access the corresponding category divectly, withoui the need for
search. The category that is selected is the one whose prototype provides the globally best
match to the input pattern at the system’s present state of knowledge. In this way, “familiar”
patierns can resonate with their category without the need for search, much as Gibson (1979,
p. 249) may have intended when he hypothesized that the perceptual system “resonates to
the invariant structure or is attuned to it”. I both familiar and unfamiliar events are
experienced through time, Tamiliar inputs can divectly activate their learned categories, even
while unfamiliar inputs continue to trigger adaptive memory scarches for better categories,
unéit the network’s memory capacity is fully uiilized (Carpenter and Grossherg, 1937, 1991).

This process wherehy search is gradually and antomatically disengaged may be inter-
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preted as a form ol memory consolidation. This type of memory consolidation is an emergent
property of network interactions. It is, once again, a property that can only be understood
by studying the network’s dynamics. ISmergent consolidation does not, however, preclude
structural forms of consolidation, since persistent resonance may also be a trigger for other
learning-dependent processes, such as transmitter production and protein synthesis, at indi-

vidual cells.

3.9 Face Recognition and Inferotemporal Cortex

How do components of the ART model map onto brain mechanisms? To begin with, level
I properties may he compared with properties of cell activations in inferotemporal cortex
(I'T) during recognition learning in monkeys. The ability of Fy nodes to learn categories
with different levels of generalization clarifies how some [T cells can exhibit high specificity,
such as selectivity to views of particular faces, while other cells respond to broader features
of the animal’s environment (Desimone, 1991; Desimone and Ungerieider, 1939; Gochin of
al., 1991 Harvies and Pervett, 19%1; Mishkin, 1982; Mishkin and Appenzeller, 1937; Perretd,
Mistiin, and Chitty, 1987; Schwartz ef al., 1983; Seibert and Waxman, 1991). In addition,
when monkeys are exposed to casy and difliculs disariminations (Spitzer, Desimone, and
Moran, 1988), “in the difficult condition the animals adopted a stricter internal criterion
for discriminating matching from nonmatching sthuli Lo the animals® internal representa-
tions of the stimuli were better separated, independent of the criterion used to discriminate
them ... increased effort appears to cause enhancement of the responses and sharpened se-
lectivity for attended stimali” {pp. 339-340). These are also properties of model cells in
Iy, Prototypes represent a smaller sel of exemplars at higher vigilance levels, so a stricter
matching criterion is learned. These exemplars match their finer prototypes better than do
exemplars which match a coarser profotype. This better match more strongly activates the
corresponding Iy nodes.

Data from TV support the hypothesis that unfamiliar or unexpected stinuli nonspecif
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ically activate level Iy via the orienting subsystems, According to Desimone (1992), “the
fact that I'T cortex has a reduced level of activation for familiar or expected stimuli suggests
that a high level of cortical activation may itsell serve as a trigger for attentional and ori-
enting systemns, causing the subject to orient to the stimulus causing the activation. This
ink between the muemonic and attentional systems would ‘close the loop’ hetween the two
systeins, resulting in orienting hehavior that is influenced by both current stimuli and prior
memories. Such a mechanism has a number of similarities to the adaptive resonance theory”
(p. 359). Properties of I'T cells during working memory tasks suggest that active reset oceurs

il

at the end ol each trial (Miller, Li, and Desimone, 1991; Riches, Wilson, and Brown, 1991).
Reset of £ 15 also a key ART operation.

2l

These recent neurophysiological data about I't cells during recognition iasks are thus
reflected in level Iy properties. Additional data suggest thal the pulvinar may mediate
aspects of attentional gain control (Desimone, 1992; Robinson and Peterson, 1992). Data
that correlate 1T and pulvinar vecordings are needed to critically test this hypothesis. Car-
penter and Grossherg (1993) have suggested that the orienting operations whereby vigilance
is controlled may take place in the hippocampal formation. They support this hypothesis
by showing how a formal lesion of the orienting system in ART creates a set of properties
strikingly like symptoms of medial temporal ammesia in human patients with hippocampal
lesions. This linkage suggests the prediciion that operations which make the novelty-related
potentials of the hippocampal formation more sensitive Lo input changes may trigger the
formation of more selective inferotemporal recognition categories. Such a correlation may he
sought, for example, when monkeys learn easy and ditficult discriminations. The hypothesis
also suggests thal operations which block hippocampal novelty potentials may lead to the
learning of coarser recognition categories, with amnesic symptoms as the limiting case when

the hippocampal formation is completely inoperative.

3.10 Feature Discovery by Competitive Learning
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The above properties of ART systems have been computationally demonstrated and
mathematically proved in a series of articles by Gail Carpenter and myself in collaboration
with several students. The core articles are hrought together in Carpenter and Grossberg
(1991). In the present chapter, some of the most important mathematical propertics of
competitive learning and self-organizing leature maps are reviewed. These properties are
important both in themselves and as a stepping stone to a mathematical study of ART
systems,

Perhaps the simplest competitive learning system is defined by the following equations.
Let {; be the input to the 2 node in Fy. Lel fagt competitive interactions within /7 normalize
this input. FThere are several possible types of normalization. In the simplest type, the

normalized activity @y; of the i node, or cell population, in /) satisfies

I -
Ly; = ()1‘ = Sj;if;‘ (‘2;))

so that

Yoy =1 {26)

Property (1) 15 called L' normalization. I L? normalization, Y20, = 1. The effects of
choosing different values of p, notably p =2, were first described in Grossherg (1978). lere
we analyse the case p== 1, as in the Grossherg (1976a) model that was also used by Rumelhart
and Zipser (1985).

The normalized signals §; are nultiplied hy adaptive weights z;; and added to generate

the total input

Sj = }]1-01-2” (27)

to each node 7 in Iy A competition between nodes in /4y rapidly chooses the activity @y,
whose {otal input S5 is maximal for stovage in STM, while novmalizing the total activity of
£y, Such a network is olten said to carry out a winner-take-all {WTA) operation. How a
WTA competitive network may be designed was first deseribed in Grossberg (1973). This
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fast compeiitive dynamical process may be approximated by the aigebraic equation

1 il S, > max (¢,5, : k#7 Ha

0 Si< max (6,5 ¢ E#J)
where ¢ 18 a threshold that all inputs must exceed in order 1o trigger the 5'TM choice and
storage process.

Learning in the L'TM traces takes place more slowly than the STM processes (25) and
{28). Hence learning cannot be approximated by an algebraic equation. Rather, it obeys the
instar, or gated steepest descent, differential equation (24). Tn the present case, this reduces
to

d o
—(ﬁ'zu = .'L'gj(——f;’ij + 95). (Zf})

In order to get a sense ol how competitive learning and self-organizing feature maps
work, suppose that a single input pattern @ perturbs I through time and activates node
Jo=J in By As aresult, the total inputs ) to /5 nodes in (27) obey the inequalities
Sy S, kA S s0 ey = L and gy = 0, ko J, by (28). By (29), only the vector
sy (2 gy B0y s 2y) OF UM traces that abut node J undergo learning, because only

xoy > 0in (29). During learning, the LTM vector z; is attracted towards the normalized

input vector = (0, 8,,.. ., 0,) as each z;; is “tuned” by the 1 feature activity 0;. As

i i

learning procecds, the Euclidean length |z i = \/L-i 7, of the LM vector is normalized as
it approaches the length [|4]] = /%07 of the input vector, and the total input 5 in (27)

increases o 1ts maximal possible value.
This result was proved in Grossberg (1976a) and is reviewed below. s significance is

clarified by noting that the total input S, to node J i (27) can be rewritten as
Sy = Nz = 00z 11 cos(0, 2}, (30)

hecause S is the dot product, or inner product, ol the vectors #f and z;. Given that [Jz;|]

approaches ||f}] during learning, (30) shows that the maximal S, among all 5, is the one
whose cos(,z;) 18 maximal. This quantity corresponds to that vector zy which is most
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parallel to 8. In other words, the STM competition (28) at /% chooses the node J whose
vector z; is most parallel to 4, and learning tunes z; to become even more parallel 1o 4. In

addition, the fact that

z 41 approaches [|0]] shows that choosing all input vectors so that
their length |01 = 1 eliminates the effects of variable input length on the category choice
process. Then L7 normalization with p = 2 replaces the L' normalization in (26). This
implication of the learning theorem was noted in Grosshberg (1978) and used by Kohonen
(1984) in his subsequent applications of sell-organizing feature maps. Grossberg (1976a) also
proved that, when multiple mputs activate I, then the LTM weight vectors tend to track
the statistics of the input enviromment. Thig property was also exploited by Kohonen (1984),

among others.

Theorem 3 (Adaptive Tuning of Feature Maps)

Given a pattern 4, suppose that there exists a unique j = J such that
S(0) = max{e, Sp(0) k# (31)

Let 0 be practiced during a sequence of nonoverlapping intervals [, Vialm = 1,2, Then’
the angle between 20)(1) and @ monotonically decreases, the signal S, (¢) is monotonically

attracted towards (02, and 212 oscillates at most once as it pursues S;(¢). In particular,

110112, the limiting relations

Jin [ = T S, (1) = o) (32)
hold il and only if
Z (V‘m e [jml) N (;5)
=z

Proof of Theorem 1. Consider the case in which

WOI? = 55 (0) > max{c, Sp(0) bk J) (34)
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The case in which S;(0) = 0% can be treated similarly. First it will be shown that if the
inequalities

HOIZ > S5(8) > max{e, Sy(t) + k # J) (35)

bold at any time { =7, then they hold at all [uture times £ > T, By (34), aq (') = 1 and
wor (1) = 0, k # J. Consequently, by (29), al any time { = T during a learning interval

[{ ms V, m}
d

7% (1) = =2, (1) + 0; (36)
and
(A i
for ks Jand o= 1,2, n. By (27) and (35)-(37),
l '1

Z[jz ””z]

>_,0 Zig ot 0
s i (38)

Thus by (34}, from the first moments of learning onwards,

f{. Sy =>0= _;7 S, Ry (39)

Since Sy (1) continues to grow while all 5, (1) remain constant, & 5 J, inequality (34) continues
to hold for all £ = 7" throughout the learning process. Since all ay; = 0 whenever no learning
oceurs, there is no change in any z;; or 8 during these thnes. Thus (34) holds for all £ > 7"
Maoreover, by (38), 5, {1) converges monotonically towards ||9]]%.

To show that S;(1) converges to |07 only il (33) holds, integrate (38) throughout the

yinth jearning interval [0, Vi) Then

Sy (Vi) = S (U e W=t g (1 = e (V= (40)
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since no learning oceurs between time ¢ = V, and time L= U0y, S;(Unar) = 55 (Vie),
Using notation Sy, = 5, ({/,) and Wy, = Vi, — Uy, for simplicity, (40) may thus be written
as

‘STJ,HH—I = ‘S',}"m,(a‘_ﬂfm + EW]HzU - (':-H/m ) (/11)

Ecuation (41) can be solved recursively by setting o =1,2,... in (41) to find that

9 Lol = 8 e k= W10 12(1 = ¢ ke Wy, (42)
from which it follows that 5;({) converges to [j0]]* only if 3539 Wi = oo,
To show that S increases towards |0} if
D)1 < 191, (43)
we need only to show that S;{0) < 0112, since then (—‘,%.S'_;({]) >0 by (38). Were
S4(0) = oI, (44)
then by (30), (43), and (44),
N0 D00 2 S (0) = 1017 = 1101 114D(0) ) (15)
and thus
120720) = 01 = 1)1 (46)

which 1s a contradiction.
To show that the learning process normalizes the vector of LEM traces, let us use the

notation Ny = |lz00])2 = 500 22,0 By (36)

H

d .. . fd
AN, =95 a0
di !\-] ; vt di i
=23 2=z +0)
1

= 2N, + 5,) (4

-1
RN
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Equations {38) and (47) show that N, tracks S as S tracks ||0]]>. Consequently the norm
120y = /N approaches ||0]] as learning proceeds. In addition, since S; monotonically
approaches 1012, N oscillates at most once.

Finally, let us verify that the angle between Z0) and @ closes monotonically during

learning even while

2|1 is converging to [|9]. To do this, the notation C'; = cos(2(/),0) is
convenient. It is sufficient to prove that C;(¢) increases towards 1 as learning proceeds. By

(30}, 'y can be rewritien as

_ g :
O — 48
VA 9
Differentiating (48), we find that
1 i
3d ¢ o ONTE N
_(é_(:" _ IVJ me — {5{7] N 7 mi\ 7 (/l())
di’ 101V |

substituting {38) and (47) into (49) and cancelling the term N ;5 in two places leads to the

equation
L NGOYR -57
' HOLLN
I i}
—um! T rsy o
which by (48) is the same ag
oo _ 0 2 .
d!,("‘] = N_;(l ~ (5 = 0. 51)

Bauation (51) shows that () increases monotonically towards 1.

4. Concluding Remarks

This chapter has described two models whose explanations of complex data can be
understood by analysing their interactive dynamics in real time. The first model illustrates
how clagsical data about apparent motion can he rationalized in terng of the spatiotemiporal

dynamics of a long-range Gaussian filter Tollowed by a contrast-enhancing stage ol lateral
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inhibition. The model suggests how paradoxical properties of motion speed-up can be linked
to the functionally uselul property ol synthesizing motion data hrom muliiple spatial scales,
and to the property of predictively interpolating intermitient motion signals in a way that
is capable of continnously tracking a target moving at variable speeds with a {ocus of spatial
attention.

The second model illustrates how a combination of bottom-up adaptive filtering, top-
down learned expectations, attentive resonance, and novelty-sensitive memory scarch can
control rapid learning of recognition categories whose shape and coarseness can be matched to
complex environmental demands, including culturally imposed demands. The model clarifies
how top-down expectations can stabilize the learning process in an arbitrary environment
and, in so doing, focus attention upon and coherently hind those prototypical feature clusters
that are used in object categorization. Properties such ag memory consolidation arise as
dynamical properties of network interactions, and data about such varied phenomena as
phonemic restoration, priming, and the dynamics of inferotemporal cortex were linked to
emergent properties of the network maodel.

These resuits suggest that basic neural mechanisms, such as contrast-enhancing lateral
inhibition, play a vole in multiple neural systems, whether to select the peak of a motion
wave, ag in Figure 6, or to choose a recognition category, as in equation (28). On the level of
the system design itself, the results support the view thai two distinet fypes of attention may
modulate visual information processing, one a form of spatial attention that arises in the
Where processing siream through ML and parietal cortex, and the other a form of featural
attention that arises within the Whal processing stream through V4 and temporal cortex
(Figure 8). How these two types of attention interact during our daily experiences with
rapidiy changing mixtures of familiar and unfamiliar events remains an important subject

for future regearch.
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FIGURE CAPTIONS

I'igure 1. The Ternus display. (a) Three spots are presented in each frame in such a way thal
the two leltwardmost spots in Frame 2 occupy the same positions as the two rightwardmost
spots in Frame 1. The two frames are repeatedly cycled with [SIs inserted between them. At
very short 1S]s, all dots appear to flicker in place. At Jonger 151s the dots at shared positions
appear to remain stationary, while apparent motion occurs between the leftwardmost spot in
Frame 1 and the rightwardmost spot in Frame 2 {“element motion™). At still longer 1SIs, the
three dots appear to move from IFrame 1 to Frame 2 and back as a group (“group motion™).
(h) When the dots in successive frames have opposite contrast with respect to the frame,
only group motion occurs at the [SIs where element motion occurred in {a). [Reprinted with
permission [rom Grosshberg and Rudd {1992).]

ren

Figure 2. The simplest one-dimensional MOC Filter. The nput pattern at Level 1 s
spatially and temporally filtered by sustained response cells at Level 2. The sustained cells
have oriented receptive fields that are sensitive Lo the divection-of-contrast in the image,
either davk-to-light or ight-to-dark. Level 2 cells play the role ol a short-range spatial filter.
Spatial and temporal averaging are also carried outl by transient response cells at Level 3.
The transient cells have unoviented receptive fields that are sensitive to the direction of
contrast change in the cell input. The upward arrow denotes transient on-cells that are
activated by a transition from dark to light. The downward artow denotes transient offcells
that are activated by a transition [rom light to dark., Level 4 cells combine sustained and
transient cell signals multiplicatively and are thus rendered sensitive to hoth direction-ol-
motion and direction-ol-contrast. Level 5 cells sum across space via a long-range Gaussian
spabial filter, and across the two types of Level 4 cells. Level 5 cells are thus sensitive to
direction-ol-motion bul insensitive to direction-ol-contrast. [Reprinted with permission from

Grossberg and Rudd {1992}]
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Figure 3. Spatial responses at various levels of the MOC Filter to a point input. (a)
Sustained activity of a Level 2 cell. () Total input pattern to Level 5 after convolution with
a Gaussian kernel. (¢) Contrast-enhanced output of Level § centered at the location of the

input maximum. {[Reprinted with permission from Grossherg and Rudd (1992).]

Figure 4. Temporal response ol the MOC Filter to a point input. (a} The input is presented
al a briel duration at location I. (b) Sustained cell activity al 1 gradually builds after the
input onset, then decays after offset. (¢) Growsh of the input pattern to Level 5 with transient,
cell activity held constant. The activity pattern retaing a Gaussian shape centered at the
locagion of the input, thal waxes and wanes through time without spreading across space.

[Reprinted with permission from Grossherg and Rudd (1992},

Figure 5. Temporal response of the sustained cells z..(4) at Level 2 to two brief successive
point inputs L.(4) atl locations 4 = 0 and 7 = W. For an appropriately timed display, the
decaying response at pesition 0 overlaps in (ime the rising response at position W. Parameter

K is defined in the full model. [Reprinted with permission from Grossherg and Rudd (1992).]

Figure 6. Simulated MOC Filter response to a two-flagh display. Successive rows correspond
to increasing times lollowing the Frame 1 offset. (a) The two lower curves in each row depict
the total input K, at position 7 of Level § due to each of the two flashes. The input due to the
lefi flash decreases while the input due to the rvight flagh increases. The summed input due
to both flashes is a traveling wave whose maximuim value across space moves continuously

between the two flagh Jocations. (D) Position over time ol the contrast-enhanced Level 5

response. [Reprinted with permission from Grossherg and Rudd (1992},

Figure 7. Motion paths generated by MOC Filters with different Gaussian filter kernel
widths A in (9). The motion paths are plotted in a space-time diagram wherein each
rectangle indicates the spatiotemporal boundaries ol one flash in a two flash display. All the
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motion paths intersect at a point halfway between the two flash focations. [Reprinted with

permission from Grogsberg and Rudd (1992)].

Figure 8. Schematic diagram of anatomical connections and neuronal selectivities ol early
visual areas in the macaque monkey. LGN = lateral geniculate nucleus {(parvocellular and
magnocetular divisions). Divisions of VI and V2: blob = cytochrome oxidase blob regions;
interblob = cytochrome oxidase-poor regions surrounding the blobs; 4B = lamina 413; thin
= {hin (narrow) cytochrome oxidase strips; interstripe = cytochrome oxidase-poor regions
between the thin and thick stripes; thick = thick (wide) cytochrome oxidase strips; V3 =
visual area 3; V4 = visual area(s) 4; MT = middle temporal area. Areas V2, V3, V4, M'T’
have connections to other areas not explicitly represented here. Arvea V3 may also receive
projections [rom V2 interstripes or thin stripes. Heavy lines indicate robust primary con-
nections, and thin lines indicate weaker, more variable connections. Dotted lines represent
observed connections that reguire additional verification. leons: rainbow = tuned and/or
opponent wavelength selectivity {incidence at least 40%); angle symbol = orientation selec-
tivity (incidence at Jeast 20%): spectacles = binocular disparity selectivity and/or strong
binocular interactions (V2) (incidence at least 20%); pointing hand = direction of motion
sclectivity (incidence at least 20%). [Adapted with permission from DeYoe and van Iissen

(1988).]

Figure 9. Interactions between the attentional and orienting subsystems of an adaptive
resonance theory (ART) circuit: Level £ encodes a distributed representation ol an event
to be recognized via a short term memory (STM) aciivation patlern across a network of
feature detectors. Level 9 encodes the event to be recognized using a more compressed 5TM
representation of the Iy pattern. Learning of these recognition codes takes place at the long
term memory (LTM} traces within the bottom-up and top-down pathways between levels
Iy and 150 The top-down pathways can read-out learned expectations whose protolypes are
matched against hottom-up input patterns at 7. Mismatches in response to novel events
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activate the orienting subsystem A on the right side of the figure, depending on the value
of the vigilance parameter p. Arousal emitted [rom A resets the recognition codes that
are active in S'T'M at /% and initiates a memory search for a more appropriate recognition
code. Qutput from subsystem A can also trigger an orienting response. (a) Block diagram
of circuit. [Reprinted with permission from Carpenter and Grogsherg (1990).] (b) Individual
pathways of cireuit, including the input level Fy thal generates inputs to level 1. The
gain conbrol input 1o level I helps to instantiate the 2/3 Rule {see text). Gain control to
tevel % is needed to instate a category in STM. [Reprinted with permission from Carpenter,

Girossberg, and Reynolds (1991).]

Figure 10. ART search for an /%y recognition code: (a) The input patiern I generates the
specific STM activity pattern Xoat £y as it nonspecifically activates the orlenting subsystem
Ao X is represented by the hatched pattern across Iy, Pattern X both inhibits A and
generates the output pattern S, Pattern S is transformed by the LTM traces into the input
pattern T, which activates the STM pattern Y across F4. (b) Pattern Y generates the top-
down output pattern U which is transformed inte the protosype pattern V. II'V mismatches
I at £, then a new S'T'M activity pattern X* iy generated al Fy. X* s represented by the
hatched paitern. Inactive nodes corresponding to X are unhatched. The reduction in total
STM activity which occurs when X is translormed into X* causes a decrease in the total
inhibition from Fy to A. (¢} If the vigilance criterion fails to be met, A releases a nonspecilic
arousal wave to £, which resets the STM pattern Y at /5. {d) After Y is inhibited, its top-
down prototype signal is eliminated, and X can be reinstated at Fy. Enduring traces of the
prior reset lead X to activate a different STM pattern Y* at Fy. If the top-down prototype
due to Y* also mismatches I ab [/, then the search for an appropriate / code continues
until amore appropriate /% representation is selected. Then an attentive resonance develops
and lfearning of the attended data is initiated. [Reprinted with permission from Carpenter
and Grossherg (1990).]
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Figure 11.(a) Many-to-one learning combines categorization of many exemplars into one
category, and labeling of many categories with the same name. (b) In an ARTMAP archi-
tecture, the ART, and ART, networks form recognition categories of the separate streams of
input vectors labelled a and b, as in the case of visual categories and their auditory naming
categories. The Map Iield learns an associative map from categories in ART, to categories
in ART,. When a predicted output in ART, is mismaiched by an input vector b, the Match
Tracking process increases the ART, vigilance value p, until p4lal — (x4 > 0, thereby trig-
gering memory search for a betéer set of features in a with which to build a category that

can correctly predict b, [Reprinted with permission from Carpenter and Grossherg (1992)].

Table 1. Complementary cognitive and neural properties that are synthesized into a sell-
consistent computational format within individual ART recognition models. The cimulative
computational constraints imposed by these properties force design decisions that are not

evident in either cognitive or neural data by themselves.

Table 2. Some machine learning benchmark studies which compare the performance of
supervised ART, or ARTMALD, models with that of alternative models. These benchmarks
deseribe how well these systems predict test sets when they experience equivalent training
sets (as in benchmarks 1-4) and the number of epochs, or repetitions of the training set, thal
are needed o reach the same level ol accuracy (benchimark ) [Reprinted with permission

from Carpenter and Grossherg, 1992].
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COMPLEMENTARY PROPERTIES OF AN

ART RECOGNITION ARCHITECTURE

stability plasticity
attention orlentation
short term memory long term memory
bottom-up top-down
match mismatch
direct access memory search
resonance reset
supraliminal subliminal
specific nonspecific
local features global patterns
atientional gain vigilance
cooperation competition
distributed compressed

Table 1



ARTMAP BENCHMARK STUDIES

1. Medical database - mortality following coronary bypass grafting (CABG) surgery
FUZZY ARTMAP significantly outperforms:
LOGISTIC REGRESSION
ADDITIVE MODEL
BAYESIAN ASSIGNMENT
CLUSTER ANALYSIS
CLASSIFICATION AND REGRESSION TREES
EXPERT PANEL-DERIVED SICKNESS SCORES
PRINCIPAL COMPONENT ANALYSIS

2. Mushroom database
DECISION TREES ( 90-95 % correct )

ARTMAP { 100% correct )
Training set an order of magnitude smaller

3. Letter reoogni’tion database
GENETIC ALGORITHM ( 82% correct )
FUZZY ARTMAP ( 96% correct )

4. Circle-in-the-Square task
BACK PROPAGATION ( 80% correct )
FUZZY ARTMAP ( 99.5% correct )

5. Two-Spiral task
BACK PROPAGATION (10,000 ~ 20,000 training epochs)
FUZZY ARTMAP ( 1-5 training epochs )

Table 2



